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Abstract. Here the notion of α−Hθ− contraction has been proposed to construct some fixed point results
of single-valued and multivalued mappings in Menger PM spaces. In addition, an existence result to an
integral equation is concerned to justify the obtained results.

1. Introduction

In 1942, to qualify the space between two points, the idea of probabilistic metric space was proposed
by Menger [8]. By applying this notion, it turns out in a metric space distribution functions can be seen in
lieu of positive real numbers. Indeed, the idea of probabilistic metric space is applied in states which the
distance between two points is not specified, but the probabel distance between two points is determined.
After introducing the notion of probabilistic metric space, to study Menger’s line of research, Sehgal and
Bharucha [14] studied the probabel version of the classical Banach contraction principle. Since then, the
theory of fixed point theory has been studied in probabilistic metric spaces by many authors to obtain
theoridical results for different types of contraction mappings (see for example [2, 4, 5, 10, 11, 13–18]).
Parvaneh et.al.[9] studied the notion of α − η − HΘ− contraction to get some fixed point results. They
assumed that the symbole ∆Θ be the collection of all functions h : (0,∞) −→ [1,∞) in which the following
conditions hold true:

1◦ h is strictly increasing;

2◦ For all sequence {αn} ⊆ (0,∞),

lim
n−→∞

γn = 0⇐⇒ lim
n−→∞

h(γn) = 1;

3◦ There exist 0 < r < 1 and l ∈ (0,∞) so that

lim
n−→∞

h(t) − 1
tr = l;
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Also, the collection of all functions D : R+
4
−→ R+ which satisfies condition G(see [9]) was indicated by the

symbol ∆D. Next, they introduced the notion of α − η −HΘ− contraction as follows:

Definition 1.1. Assume that a self-mapping T has been defined on the metric space (X, d). Given two functions
α, η : X × X −→ [0,∞), The mapping T is called an α − η −HΘ− contraction if

h(d(Tx,Ty)) ≤ [h(x, y)]
D

(
d(x,Tx),d(y,Ty),,d(x,Ty),d(y,Tx)

)
for all x, y ∈ X with η(x,Tx) ≤ α(x, y) and d(Tx,Ty) > 0 where h ∈ ∆Θ and D ∈ ∆D.

Now, we recall the following theorem from [9].

Theorem 1.2. Assume that a self-mapping T : X −→ X has been defined on the complete metric space X. Then a
fixed point of the mapping T is obtained, if the following conditions hold true :

1◦ T is an α−admissible mapping with respect to η;

2◦ T is an α − η −HΘ−contraction;

3◦ There exists x0 ∈ X such that α(x0,Tx0) ≥ η(x0,Tx0);

4◦ T is α − η−continuous.

Moreover, if Given x, y ∈ Fix(T) we have α(x, y) ≥ η(x, x) , then a unique fixed point of the mapping T is obtained .

Now, the following definition of [9] is given which will be applied in our consideration.

Definition 1.3. A self mapping T on a metric space X is called orbitally continuous at z ∈ X if

lim
n−→∞

Tnx = z =⇒ lim
n−→∞

TTnx = Tz,

where {xn} ⊆ O(w) for some w ∈ X . Besides, if T be orbitally continuous for all z ∈ X, then T will be orbitally
continuous on X.

Remark 1.4. [7] Assume that a self-mapping T : X −→ X has been defined on an orbitally T−complete metric space
X. Moreover, suppose α : X × X −→ [0,∞) is defined by

α(x, y, t) =

{
3 if x, y ∈ O(w),
0 otherwise

where O(w) indicates an orbit of a point w ∈ X. Besides, T is an α−η−continuous, when T is an orbitally continuous
map on (X, d).

In this paper, as a primary goal, probabilistic versions of Theorem 1.2 will be considered. For this aim, first
some new types of probabilistic versions are given in Menger PM spaces. Section 3 is devoted to consider
some fixed point results of single-valued and orbitally continuous mappings in Menger PM spaces and the
results are constructed in cases where the mentioned spaces are complete and partially orderd. Besides, in
section 4, we study an existence result of an integral equation on a Banach space to illustrate the theoridical
results.
Now some subsidiary facts which are concerned with discussion are presented.
In this paper the intervals (−∞,+∞) and [0,∞) will be indicated by R and R+ respectively.
A mapping G : R∪{−∞,+∞} −→ [0, 1] is named distribution function if G satisfies the following conditions:

1◦ G is nondecreasing;

2◦ Left continuous on R;
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3◦ G(0) = 0 and G(+∞) = 1.

Let the collection of all probability distribution functions are denoted by the symbole ∆+. Besides, the
subset E+ ⊆ ∆+ is defined by E+ = {G ∈ ∆+; l−G(+∞) = 1} where l−G(x) = lim

t−→x−
G(t). A maximal element for

E+ is given by

L(t) =

{
0 if t ≤ 0,
1 t > 0

Definition 1.5. [6] If Λ : [0, 1] × [0, 1] −→ [0, 1] is the function with following conditions:

1◦ Λ is commutative and associative;

2◦ Λ is continuous;

3◦ Λ(a, 1) = a, for all a ∈ [0, 1];

4◦ Λ(a, b) ≤ Λ(c, d), whenever a ≤ c and b ≤ d,

Then Λ is called t−norm.
For example Λ(a, b) = ab and Λm(a, b) = min{a, b} are product t−norm and min t−norm, respectively.

Definition 1.6. [6, 13] Assume that X is a nonempty set, T is a continuous t−norm, and D : X × X −→ E+ be a
mapping with the following conditions:

1◦ Dx,y(t) = L(t)⇐⇒ x = y t > 0;

2◦ Dx,y(t) = Dy,x(t) for all x, y ∈ X, t > 0;

3◦ Dx,y(t + s) ≥ T(Dx,z(t),Dz,y(s)), x, y, z ∈ X, s, t ≥ 0,.

Then, the triple (X,D,T) is named Menger PM space.

Definition 1.7. [6, 13] Let (X,D,Λ) be a Menger PM space,

1◦ If lim
n−→∞

Dxn,x(t) = 1, t > 0, then {xn} will be called convergent to x in X.

2◦ If lim
n,m−→∞

Dxn,xm (t) = 1, t > 0, then {xn} will be called cauchy sequence in X.

3◦ If every cauchy sequence of points in X has a limit that is also in X, then a Menger PM space (X,D,T) is called
complete.

From [13] we know that in the space (X,D,Λ) the collection of neighborhoods{
wp(ε, λ); p ∈ X, λ, ε > 0

}
,

where

wp(ε, λ) =

{
x ∈ X : Dx,p(ε) > 1 − λ

}
,

induces the topology τ on X. Assume that in the space (S,D,Λ) the symbol CB(S) indicates the collection of
all subsets of S which are closed in the topology τ. Moreover, the functions Fx,A and FA,B are defined by:

Dx,A(t) = sup
y∈A

Dx,y(t), t ≥ 0,

and

DA,B(t) = sup
s<t

Λ(inf
x∈A

sup
y∈B

Dx,y(s), inf
y∈B

sup
x∈A

Dx,y(s)), t ≥ 0,

where x ∈ S and A,B ∈ CB(S).
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Lemma 1.8. [3] If in the space (S,D,Λ) , A ∈ CB(S) and Λ be continuous t-norm, then the following conditions hold
true:

1◦ Dx,A(t) = 1, t > 0 if and only if x ∈ A;

2◦ Dx,A(t1 + t2) ≥ Λ(Dx,y(t1),Dy,A(t2)), t1, t2 ≥ 0;

3◦ For any A,B ∈ CB(S) and x ∈ A, Dx,B(t) ≥ DA,B(t), for all t ≥ 0.

Definition 1.9. [12] Given two functions γ, β : S × S × (0,∞) −→ R+, the mulivalued mapping T : S −→ 2S is
called an γ−admissible mapping with respect to β if

∀x ∈ S, ∀y ∈ Tx γ(x, y, t) ≤ β(x, y, t) −→ γ(y, z, t) ≤ β(y, z, t) ∀z ∈ Ty, t > 0.

2. On some Fixed point ideas in Menger PM- spaces.

In this section, first applying ideas and definitions presented in [12], we propose some notions in Menger
PM spaces. Then, we inaugurate our main results in the mentioned spaces where the mentioned spaces are
complete and partially ordered.
Now let ∆h be the set of all functions h : [0, 1] −→ (0, 1] provided that:

1◦ h is strictly increasing;

2◦ For all sequence {αn} ⊂ [0, 1],

lim
n−→∞

αn = 1⇐⇒ lim
n−→∞

h(αn) = 1.

Besides, inspired from [9], the symbol ∆M is applied to present the set of all functions M : [0, 1]4
−→ R+ so

that if max{t1, t2, t3, t4} = 1, then M(t1, t2, t3, t4) = k where k ∈ [0, 1).

Example 2.1. M(l1, l2, l3, l4) = L ln(max{l1, l2, l3, l4}) + k in which L ∈ R+ and k ∈ [0, 1).

Example 2.2. M(l1, l2, l3, l4) = L(1 −max{l1, l2, l3, l4}) + k in which L ∈ R+ and k ∈ [0, 1).

Definition 2.3. In a Menger PM space (S,D,Λ), a mapping T : S −→ 2S has the generalized approximate valued
property, if for all a ∈ S and x ∈ Ta there exists y ∈ Tx satisfying

DTa,Tx(t) −Dx,y(t) ≤ ϕ(Dx,y(t),Dx,Tx(t)), t > 0,

where ϕ : R+ ×R+ −→ R with ϕ(s, t) = s
2 − t.

Definition 2.4. In a Menger PM spac (S,D,Λ), a mapping T : S −→ 2S has the w− generalized approximate valued
property, if for all a ∈ S and x ∈ Ta there exists y ∈ Tx satisfying

DTa,T2a(t) −Dx,y(t) ≤ ϕ(Dx,y(t),Dx,Tx(t)), t > 0,

where ϕ : R+ ×R+ −→ R with ϕ(s, t) = s
2 − t.

Definition 2.5. Given the space (S,D,Λ) and the function γ : S × S × (0,∞) −→ R+, a mulivalued mapping
T : S −→ 2S is called an γ −Mh−contraction, if

h(DTx,Ty(t)) ≥
[
h(Dx,y(t))

]M

(
Dx,Tx(t),Dy,Ty(t),Dx,Ty(t),Dy,Tx(t)

)
, t > 0.

for all x, y ∈ S with γ(x, y, t) ≤ 1 where M ∈ ∆M and h ∈ ∆h.
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Definition 2.6. Let (S,D,Λ) be a Menger PM space and also T : S −→ 2S be a multivalued mapping. Given the
function α : S × S × (0,∞) −→ R+, if for each sequence {xn} in S with α(xn, xn+1, t) ≤ 1 we have

lim
n−→∞

FTxn,Tx(t) = 1, t > 0,

then T is called continuous.

Now, due to [1], the following definition is presented which is more general compared to the Definition
1.9.

Definition 2.7. Assume that the multivalued mapping T : S −→ 2S has been defined on the set S provided that the
space (S,D,Λ) is a Menger PM space. Given the function γ : S × S × (0,∞) −→ R+, if

∀x ∈ S, ∀y ∈ Tx γ(x, y, t) ≤ 1 −→ γ(y, z, t) ≤ 1 ∀z ∈ Ty, t > 0,

then, T is called γ−admissible.

Now, we state the first result as follows.

Theorem 2.8. Suppose that the mapping T : S −→ CB(S) has been defined on the set S provided that the space
(S,D,Λ) is a Menger PM space and the mapping T has the generalized approximate valued property. Moreover,
assume that the following conditions hold true:

1◦ T is an γ-admissible mapping;

2◦ T is an γ −Mh-contraction;

3◦ For some x0 ∈ S there exists x1 ∈ Tx0 so that γ(x0, x1, t) ≤ 1 for all t > 0;

4◦ T is continuous.

Then, a fixed point of the mapping T is obtained , in other words, there exists x ∈ S so that x ∈ Tx. Moreover, if for
all x, y ∈ Fix(T) the condition γ(x, y, t) ≤ 1, t > 0 is satisfied, then unique fixed point is obtained of the mapping T.

Proof. Assume that x0 , x1, otherwise we obtain the conclusion. Now, the generalized approximate valued
property of T implies that there exists x2 ∈ Tx1 so that DTx0,Tx1 (t) −Dx1,x2 (t) ≤ ϕ(Dx1,x2 (t),Dx1,Tx1 (t)). Hence,

DTx0,Tx1 (t) −Dx1,x2 (t) ≤
1
2

Dx1,x2 (t) −Dx1,Tx1 (t)

< Dx1,x2 (t) −Dx1,x2 (t) = 0, t > 0.

For x2 ∈ Tx1, applying γ-admissible property of T, we deduce that γ(x1, x2, t) ≤ 1 for all t > 0. If x1 ∈ Tx1,
then the proof is completed. Let x2 , x1. Again, according to the assumptions, there exists x3 ∈ Tx2 so that

DTx1,Tx2 (t) − Fx2,x3 (t)
≤ ϕ(Dx2,x3 (t),Dx2,Tx2 (t))

≤
1
2

Dx2,x3 (t) −Dx2,Tx2 (t) < Dx2,x3 (t) −Dx2,x3 (t) = 0, t > 0.

Accordingly, DTx1,Tx2 (t) ≤ Dx2,x3 (t). Besides, γ(x2, x3, t) ≤ 1 t > 0. By continuing this method, we construct
the sequence {xn} in S so that for all t > 0 we get DTxn−1,Txn (t) ≤ Dxn,xn+1 (t) and γ(xn, xn+1, t) ≤ 1. Now, since T
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is an γ −Mh-cnotraction, for all t > 0 we derive that

h(Dxn,xn+1 (t))
≥ h(DTxn−1,Txn (t))

≥

[
h(Dxn−1,xn (t))

]M

(
Dxn ,Txn (t),Dxn−1 ,Txn−1 (t),Dxn ,Txn−1 (t),Dxn−1 ,Txn (t)

)

=

[
h(Dxn−1,xn (t))

]M

(
Dxn ,Txn (t),Dxn−1 ,Txn−1 (t),Dxn−1 ,Txn (t),1

)
.

(1)

Given that max
{

Dxn,Txn (t),Dxn−1,Txn−1 (t),Dxn−1,Txn (t), 1
}

= 1 and M ∈ ∆M, there exists k ∈ [0, 1) such that

M
(
Dxn,Txn (t),Dxn−1,Txn−1 (t),Dxn−1,Txn (t), 1

)
= k, t > 0.

From (1), we have

[
h(Dxn−1,xn (t))

]k

≤ h(Dxn,xn+1 (t)) ≤ 1, t > 0,

that is,[
h(Dx0,x1 (t))

]kn

≤ h(Dxn,xn+1 (t)) ≤ 1, t > 0.

If n tends to infinitely in the obtained inequality, we deduce that h((Dxn,xn+1 (t)) −→ 1, t > 0. Inconsequence,
by the definition of h, lim

n−→∞
Dxn,xn+1 (t) = 1. Now, it is shown that {xn} is a cauchy sequence in S. For any t > 0

we have

Dxn,xn+p (t) ≥ ∆
(
Dxn,xn+1 (

t
p

),Dxn+1,xn+p (
(p − 1)t

p
)
)

≥ ∆
(
Dxn,xn+1 (

t
p

),∆(Dxn+1,xn+2 (
t
p

), ...,Dxn+p−1,xn+p (
t
p

)), ...
)
.

If n tends to infinitely, we get lim
n−→∞

Dxn,xn+p (t) = 1, t > 0. So the cauchy feature of the sequence {xn} is
ontained. Since (S,D,Λ) is complete, for a point x ∈ X we have xn −→ x. Now, due to the continuity
property of T, for any t > 0 we conclude that lim

n−→∞
DTxn,Tx(t) = 1. Consequently,

Dx,Tx(t) ≥ Λ(Dx,xn+1 (
t
2

),Dxn+1,Tx(
t
2

))

≥ Λ(Dx,xn+1 (
t
2

),DTxn,Tx(
t
2

)) −→ Λ(1, 1) = 1.

Hence, Dx,Tx(t) = 1, t > 0 which implies that x ∈ Tx. Assume x , y ∈ Fix(T) in which γ(x, y, t) ≤ 1, t > 0.
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Hence using 2◦ we get,

h(DTx,Ty(t)) ≥
[
h(Dx,y(t))

]M

(
Dx,Tx(t),Dy,Ty(t),Dx,Ty(t),Dy,Tx(t)

)

=

[
h(Dx,y(t))

]M

(
1,1,Dx,Ty(t),Dy,Tx(t)

)
, t > 0.

So,
[
h(Dx,y(t))

]kn

≤ h(Dx,y(t)) ≤ 1 for all t > 0. If n −→ ∞ in the obtained estimate, we get, h(Dx,y(t)) = 1. Thus

because of condition 2◦ of h, x = y and the conclusion is followed.

Now, in view of Example 2.1 and Theorem 2.8 we earn the following result.

Corollary 2.9. Suppose that T : S −→ CB(S) be a multivalued mapping on the set S provided that (S,D,Λ) is a
complete Menger PM space in which Λ is a continuous t-norm. Besides, assume that T has the generalized approximate
valued property and the following conditions hold true:

1◦ T is an γ-admissible mapping;

2◦ Given x, y ∈ S and t > 0 with γ(x, y, t) ≤ 1 , we have

h(DTx,Ty(t)) ≥
[
h(Dx,y(t))

]L ln

(
max

{
Dx,Tx(t),Dy,Ty(t),Dx,Ty(t),Dy,Tx(t)

})
+k

;

where k ∈ [0, 1).

3◦ For some x0 ∈ S we get x1 ∈ Tx0 so that γ(x0, x1, t) ≤ 1 t > 0;

4◦ T is continuous.

Then, a fixed point is obtained for the mapping T, in other words, there exists x ∈ S so that x ∈ Tx. Moreover, if Given
x, y ∈ Fix(T) the condition γ(x, y, t) ≤ 1, t > 0 is satisfied, then unique fixed point is obtained for the mapping T.

Theorem 2.10. Suppose that the mapping T : S −→ CB(S) has been defined on the set S provided that (S,D,Λ)
is a complete Menger PM space in which Λ is a continuous t-norm. Moreover, assume that the mapping T has the
generalized approximate valued property and the following conditions hold true:

1◦ T is an γ-admissible mapping;

2◦ T is an γ −Mh-contraction;

3◦ For some x0 ∈ S there exists x1 ∈ Tx0 such that γ(x0, x1, t) ≤ 1 for all t > 0;

4◦ If {xn} be a sequence in S so that γ(xn, xn+1, t) ≤ 1, n ∈ N and xn −→ x, then a subsequence {xnk } of {xn} is
obtained provided that γ(xnk , x, t) ≤ 1, k ∈ N.

Then, a fixed point is obtained for the mapping T, in other words, for a point x ∈ S we get x ∈ Tx. Moreover, if for all
x, y ∈ Fix(T) the condition γ(x, y, t) ≤ 1, t > 0 is satisfied, then unique fixed point is obtained for the mapping T.
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Proof. Like proving Theorem 2.8, we construct the sequence {xn} in S so that γ(xn, xn+1, t) ≤ 1 and xn −→ x
for x ∈ S. Now due to 4◦ and given that T is γ −Mh-contraction, for all t > 0 we deduce that

h(DTxnk ,Tx(t)) ≥ (h(Dxnk ,x
(t)))

M

(
Dxnk ,Txnk

(t),Dx,Tx(t),Dxnk ,Tx(t),Dx,Txnk
(t)

)
. (2)

Further, in view of the proof of Theorem 2.8 for all t > 0 we have Dxnk ,Txnk
(t) ≥ Dxnk ,xnk+1 (t) and lim

k−→∞
Dxnk ,xnk+1

(t) =

1. Hence, lim
k−→∞

Dxnk ,Txnk
(t) = 1, t > 0. As M is continuous, we deduce that

lim
k−→∞

M(Dxnk ,Txnk
(t),Dx,Tx(t),Dxnk ,Tx(t),Dx,Txnk

(t)) = k < 1. (3)

Due to (2) and (3), we conclude that lim
k−→∞

h(Dxnk+1 ,Tx(t)) = 1, t > 0. Accordingly,

lim
k−→∞

Dxnk+1 ,Tx(t) = 1, t > 0.

On the other hand,

Dx,Tx(t) ≥ Λ
(
Dx,xnk+1

(t),Dxnk+1 ,Tx (t)
)
−→ Λ(1, 1) = 1, t > 0.

Consequently, Dx,Tx(t) = 1 which implies x ∈ Tx.

Due to Example 2.1 and Theorem 2.10, we get a result as follows.

Corollary 2.11. Suppose that the mapping T : S −→ CB(S) has been defined on the set S provided that (S,D,Λ)
is a complete Menger PM space in which Λ is a continuous t-norm. Moreover, assume that the mapping T has the
generalized approximate valued property and the following conditions hold true:

1◦ T is an γ-admissible mapping;

2◦ Given x, y ∈ S with γ(x, y, t) ≤ 1 , the following inequality holds true:

h(DTx,Ty(t)) ≥
[
h(Dx,y(t))

]L ln

(
max

{
Dx,Tx(t),Dy,Ty(t),Dx,Ty(t),Dy,Tx(t)

})
+k

, t > 0.

3◦ For some x0 ∈ S a point x1 ∈ Tx0 exists so that γ(x0, x1, t) ≤ 1, t > 0;

4◦ If {xn} be a sequence in S so that γ(xn, xn+1, t) ≤ 1, n ∈ N and xn −→ x, then a subsequence {xnk } of {xn} is
obtained provided that γ(xnk , x, t) ≤ 1, k ∈ N.

Then, a fixed point is obtained for the mapping T, in other words, for a point x ∈ S we get x ∈ Tx. Moreover, if given
x, y ∈ Fix(T) the condition γ(x, y, t) ≤ 1, t > 0 is satisfied, then unique fixed point is obtained for the mapping T.

Now, taking L = 0 in Corollary 2.11 the following corollary is followed.

Corollary 2.12. Suppose that the mapping T : S −→ CB(S) has been defined on the set S provided that (S,D,Λ)
is a complete Menger PM space in which Λ is a continuous t-norm. Moreover, assume that the mapping T has the
generalized approximate valued property and the following conditions hold true:

1◦ T is an γ-admissible mapping;

2◦ Given x, y ∈ S with γ(x, y, t) ≤ 1 , the following inequality is satisfied:

h(DTx,Ty(t)) ≥
[
h(Dx,y(t))

]k

; t > 0.
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3◦ For some x0 ∈ X there exists x1 ∈ Tx0 such that γ(x0, x1, t) ≤ 1, t > 0;

4◦ If {xn} be a sequence in S so that γ(xn, xn+1, t) ≤ 1, n ∈ N and xn −→ x, then a subsequence {xnk } of {xn} is
obtained provided that γ(xnk , x, t) ≤ 1, k ∈ N.

Then, a fixed point is obtained of the mapping T, in other words, there exists x ∈ S so that x ∈ Tx. Moreover, if given
x, y ∈ Fix(T) the condition γ(x, y, t) ≤ 1, t > 0 is satisfied, then unique fixed point is obtained of the mapping T.

Now, we present the following definition of [12] which will be applied in the next results.

Definition 2.13. Suppose that the order relation � is defined on the set S. We say that A � B if given a ∈ A and
b ∈ B we have a � b.

Theorem 2.14. Suppose that the space (S,D,Λ,�) is a complete partially ordered Menger PM space in which Λ is
a continuous t-norm. Moreover, assume that T : S −→ CB(S) is a multivalued mapping which has the generalized
approximate valued property and the following conditions hold true:

1◦ Given x, y ∈ S with x � y,

h(DTx,Ty(t)) ≥
[
h(Dx,y(t))

]M

(
Dx,Tx(t),Dy,Ty(t),Dx,Ty(t),Dy,Tx(t)

)
, t > 0;

2◦ If x ∈ S and y ∈ Tx so that x � y, then {y} � Ty;

3◦ There exists x0 ∈ X and x1 ∈ Tx0 such that x0 � x1;

4◦ T is continuous or if {xn} is a sequence in S so that xn � xn+1, n ∈ N and xn −→ x, then we earn a subsequence
{xnk } of {xn} so that xnk � x, k ∈ N.

Then, a fixed point is obtained for the mapping T, in other words, there exists x ∈ S such that x ∈ Tx. Moreover, T
has a unique fixed point if given x, y ∈ Fix(T) the relation x � y is satisfied.

Proof. Taking

γ(x, y, t) =

1 if x � y,
0 otherwise

in Theorems [2.8-2.10], we see that all conditions of Theorems [2.8-2.10] are satisfied. So from Theorems
[2.8 -2.10] we conclude a fixed point of the mapping T.

Theorem 2.15. Suppose that the space (S,D,Λ) is a complete Menger PM space in which Λ is a continuous t-norm.
Moreover, assume that T : S −→ CB(S) is a multivalued mapping which has the w-generalized approximate valued
property and the following conditions hold true:

1◦ T has the γ−admissible property;

2◦ Given x, y ∈ X and t > 0 with γ ≤ 1, the following inequality holds:

h(DT(x),T2(x)(t)) ≥
[
h(Dx,Tx(t))

]k

; (4)

where k ∈ [0, 1) and h ∈ ∆h.

3◦ For some x0 ∈ S a point x1 ∈ Tx0 exits so that γ(x0, x1, t) ≤ 1, t > 0;

4◦ T is continuous;
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5◦ Given t > 0 and x ∈ Fix(Tn) we have γ(x,Tx, t) ≤ 1.

Then, Fix(T) = Fix(Tn).

Proof. Like proving Theorem 2.8, we make a sequence {xn} in S so that γ(xn, xn+1, t) ≤ 1 and DTxn,T2xn(t) ≤

Dxn,xn+1 (t), t > 0. Hence, from (4) we earn

1 ≥ h(Dxn,xn+1 (t)) ≥ h(DTxn,T2
xn

(t)) ≥
[
h(Dxn,Txn (t))

]k

≥

[
h(Dxn,xn+1 (t))

]k

≥ · · · ≥

[
h(Dx0,x1 (t))

]kn

, t > 0.

If n tends to infinitely in the above estimate, for any t > 0 we obtain that

lim
k−→∞

h(Dxn,xn+1 (t)) = 1.

Accordingly, lim
n−→∞

Fxn,xn+1 (t) = 1, t > 0. Now, like proving Theorem 2.8, a fixed point is obtained for the
mapping T. To prove Fix(T) = Fix(Tn), we may assume that Fix(Tn) , Fix(T). Hence, a point w ∈ Fix(Tn) is
obtained so that w dose not belong to Fix(T). Inconsequence, from (4) and 5◦ , we have

1 ≥ h(Dw,Tw(t)) ≥ h(DT(Tn−1(w)),T2(Tn−1(w)(t))) ≥
[
h(DTn−1(w),Tn(w)(t))

]k

≥

[
h(DTn−2(w),Tn−1(w)(t))

]k2

≥ · · · ≥

[
h(Dw,Tw(t))

]kn

, t > 0.

Due to the above estimate , we earn h(Dw,Tw(t)) = 1, t > 0. Hence w ∈ Tw. So, Fix(T) = Fix(Tn).

3. Some new types of mappings in PM spaces

Here, applying Theorem 2.8, some new results will be constructed.

Theorem 3.1. Let (S,D,Λ) be a complete Menger PM space in which Λ is continuous t-norms. Moreover, assume
that the self mapping f has been defined on the set S and following conditions hold true:

1◦ Given x, y ∈ S with γ(x, y, t) ≤ 1, we earn

h(D f x, f y(t)) ≥
[
h(Dx,y(t))

]M

(
Dx,Tx(t),Dy,Ty(t),Dx,Ty(t),Dy,Tx(t)

)
, t > 0;

2◦ If x ∈ S and γ(x, f x, t) ≤ 1, then γ( f x, f 2x, t) ≤ 1, t > 0 ;

3◦ A point x0 ∈ S exists so that γ(x0, f (x0), t) ≤ 1, t > 0;

4◦ T is continuous or if {xn} is a sequence in S provided that xn � xn+1, n ∈ N and xn −→ x, we obtain a
subsequence {xnk } of {xn} provided that xnk � x, k ∈ N.

Then, a fixed point of the mapping T is obtained.

Proof. Let us the mapping T : S −→ 2S is defined by Tx = { f x}. Hence, it can be easily seen that all conditions
of Theorems [2.8-2.10] are satisfied and Theorems [2.8 -2.10] imply that T has a fixed point.
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Due to Theorem 3.1, the following corollaries are obtained.

Corollary 3.2. Let (S,D,Λ) be a complete Menger PM space in which Λ is continuous t-norm and the relation � has
been defined on the set S. Moreover, assume that the self-mapping T has been defined on the set S and the following
conditions hold true:

1◦ Given u, v ∈ S that u � v, we get

h(DTx,Ty(t)) ≥
[
h(Dx,y(t))

]M

(
Dx,Tx(t),Dy,Ty(t),Dx,Ty(t),Dy,Tx(t)

)
t > 0;

2◦ If x ∈ S and x � Tx then Tx � T2x;

3◦ There exists x0 ∈ S so that x0 � Tx0;

4◦ T is continuous or if {xn} is a sequence in S provided that γ(xn, xn+1, t) ≤ 1, n ∈ N and xn −→ x, we get a
subsequence {xnk } of {xn} so that γ(xnk , x, t) ≤ 1 for all k ∈ N.

Then, a fixed point is earned of the mapping T . Moreover, if given x, y ∈ Fix(T) the relation x � y is satisfied, then T
has a unique fixed point.

Corollary 3.3. Let (S,D,Λ) be a complete Menger PM space in which Λ is continuous t-norm and the relation �
has been defined on the set S. Moreover, assume that the self-mapping T has been defined on the set S which is
nondecreasing with respect to � and the following conditions hold true:

1◦ Given x, y ∈ S with x � y, we have

h(DTx,Ty(t)) ≥
[
h(Tx,y(t))

]M

(
Dx,Tx(t),Dy,Ty(t),Dx,Tx(t),Dy,Tx(t)

)
t > 0;

2◦ A point x0 ∈ S exists so that x0 � Tx0;

3◦ T is continuous or if {xn} is a sequence in S with xn � xn+1 and xn −→ x, we get a subsequence {xnk } of {xn}

provided that xnk � x for all k ∈ N.

Then, a fixed point of the mapping T is obtained. Moreover, if for all x, y ∈ Fix(T) the relation x � y is satisfied, then
unique fixed point is obtained of the mapping T.

Theorem 3.4. Assume that (S,D,Λ) is a complete Menger PM space in which Λ is a continuous t-norm. Moreover,
suppose that T : S −→ S is a self-mapping which satisfies the following conditions:

1◦ Given x, y ∈ O(w) and t > 0 we earn

h(Dx,y(t)) = h(DTx,Ty(t)) ≥
[
h(Dx,y(t))

]M

(
Dx,Tx(t),Dy,Ty(t),Dx,Ty(t),Dy,Tx(t)

)
; (5)

2◦ T is an orbitally continuous function.

Then, a fixed point of the mapping T is obtained . Moreover, if Fix(T) ⊆ O(m), then we get unique fixed point of T.
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Proof. Define

γ(x, y, t) =

1 if x, y ∈ O(m),
0 o.w

in which O(m) indicates an orbit of a point m ∈ X. Following the proof of Remark 1.4, the continuity
property of T is obtained. Now, given x ∈ S provided that γ(x,Tx, t) ≤ 1, t > 0, we get Tx,T2x ∈ O(m) and
γ(Tx,T2x, t) ≤ 1. Hence, the conditions of Theorem 3.1 are satisfied. Thus, we earn a fixed point of T. To
prove uniqueness, let x , y ∈ Fix(T) ⊆ O(w). Now, applying (5) we have

h(Dx,y(t)) ≥
[
h(Dx,y(t))

]kn

, t > 0.

By taking the limit of the above inequality as n approaches infinity , we get h(Dx,y(t)) = 1. Therefore due to
condition 2◦ of the definition h, x = y.

The following corollary immediately follows from the above theorem.

Corollary 3.5. Assume that (S,D,Λ) is a complete Menger PM space in which Λ is a continuous t-norm. Moreover,
suppose that T : S −→ S is a self-mapping which satifies the following conditions:

1◦ Given x, y ∈ O(w) and t > 0 we earn

h(DTx,Ty(t)) ≥
[
h(Dx,y(t))

]k

, t > 0;

2◦ T is an orbitally continuous function.

Then, we obtain a fixed point of the mapping T. Moreover, if Fix(T) ⊆ O(w), then we get unique fixed point of T.

4. Solvability of an integral equation

Here an existence result of an integral equation is constructed on a Banach space.
Let X = C([0,L],R) indicates the collection of all continuous real-valued fuctions on [0,L]. The space
Y = C([0,L],R) with the norm

‖y‖∞ = max
t∈[0,L]

|y(t)|, y ∈ C([0,L],R),

is a Banach space. Define d : Y × Y −→ R+ by

d(y1, y2) = ‖y1 − y2‖∞, y1, y2 ∈ Y.

Now assume that H : Y × Y −→ E+ has been defined as follows:

Hy1,y2 (t) =
t

t + d(y1, y2)
.

The space (X,F,∆m) has been proposed as a complete Menger PM space which C([0,L],R) induces it. Now,
we deal with considering the following integral equation:

y(t) =

∫ L

0
b(t, s)M(s, y(s))ds + 1(t), t ∈ [0,L]. (6)

Define f : C([0,L],R) −→ C([0,L],R) as follows:

f y(t) =

∫ L

0
b(t, s)M(s, y(s))ds + 1(t), t ∈ [0,L]. (7)

Consider the following conditions:
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1◦ The functions M : [0,L] × Y −→ R, b : [0,L] × [0,L] −→ R and 1 : [0,L] −→ R are continuous;

2◦ There exists γ ∈ C(C([0,L],R) × C([0,L],R) × (0,∞),R) such that for all t > 0 and x, y ∈ C(I,R) that
α(x, y, t) ≤ 1, we have

|M(s, x(s)) −M(s, y(s))| ≤ |x(s) − y(s)|;

3◦ A point x0 ∈ C(I,R) there exists so that γ(x0, f x0, t) ≤ 1, t > 0;

4◦ Given x ∈ C(I,R) and t > 0, if γ(x, f x, t) ≤ 1, then γ( f x, f 2x, t) ≤ 1;

5◦ For a sequence {xn} in C(I,R) provided thatγ(xn, xn+1, t) ≤ 1 n ∈ N and xn −→ x, we earn a subsequence
{xnk } of {xn} so that γ(xnk , x, t) ≤ 1 k ∈ N.

6◦ For all t ∈ [0,L],∫ L

0
b(t, s)ds ≤ 1.

Theorem 4.1. Suppose that the assumptions (1◦ − 6◦) are satisfied. Then we earn at least one solution of the integral
equation (6) in the space C(I,R).

.

Proof. Let f : Y −→ Y be defined as follows:

f y(t) =

∫ L

0
b(t, s)M(s, y(s))ds + 1(t), t ∈ [0,L],

Given y1, y2 ∈ Y and t > 0 with γ(y1, y2, t) ≤ 1 we conclude that

| f (y1)(t) − f (y2)(t)| = |

∫ L

0
b(t, s)[M(s, y1(s)) −M(s, y2(s))]ds|

≤

∫ L

0
b(t, s)|y1(s) − y2(s)|ds ≤ ‖y1(s) − y2(s)‖∞,

that is,

‖ f y1 − f y2‖∞ ≤ ‖y1 − y2‖∞.

Hence,

h(D f y1, f y2 (t)) = h(
t

t + d( f y1, f y2)
) = h(

t
t + ‖ f y1 − f y2‖∞

)

≥ h(
t

t + ‖y1 − y2‖∞
) = h(Dy1,y2 (t)) ≥ h(Dy1,y2 (t))

1
2 .

We see that the conditions of Theorem 3.1 are indefeasible with M(t1, t2, t3, t4) = 1
2 . Hence, from Theorem

3.1 a fixed point of f is obtained in C(I,R) which is a solution of the integral equation (6).
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