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Abstract. EP elements are important research objects in the ring theory. This paper mainly gives sufficient
and necessary conditions for an element in a ring to be an EP element, partial isometry, and strongly EP
element by using solutions of certain equations.

1. Introduction

Let R be an associative ring with 1. An element a ∈ R is said to be group invertible if there exists a#
∈ R

such that
aa#a = a, a#aa# = a#, aa# = a#a.

The element a# is called the group inverse of a, which is uniquely determined by the above equations [3].
An involution ∗ : a 7−→ a∗ in a ring R is an anti-isomorphism of degree 2, that is,

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

The element a in R is called normal if aa∗ = a∗a.
An element a+ in R is called the Moore-Penrose inverse (MP-inverse) of a [5], when satisfying the

following conditions
aa+a = a, a+aa+ = a+, (aa+)∗ = aa+, (a+a)∗ = a+a.

If such a+ exists, then it is unique [5]. Denote by R# and R+ the set of group invertible elements of R and the
set of all MP-invertible elements of R respectively. An element a is said to be EP if a ∈ R#⋂R+ and satisfies
a# = a+ [4]. We denote by REP the set of all EP elements of R. According to [2], a ∈ R is called normal EP, if
a is normal and a ∈ R+. Clearly, a is normal EP if and only if a is normal and EP. Denote by RNEP the set of
all normal EP elements of R. An element a ∈ R+ is called partial isometry if a+ = a∗ and a is called strongly
EP element if a ∈ REP is a partial isometry. We denote the set of all partial isometry elements and strongly
EP elements of R by RPI and RSEP [1].

In [9], D. Mosić and D. S. Djordjević presented some equivalent conditions for the element a in a ring
with involution to be a partial isometry. Recently, some studies on partial isometries and EP elements have
come to some meaningful conclusions in [2, 6, 10, 12]. Moreover, the description of EP elements by using
solutions of equations has been explored in [10, 11].
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Inspired by the above articles, in this paper, we provide some sufficient and necessary conditions for
an element in a ring to be an EP element, partial isometry, normal EP element and strongly EP element by
using solutions of equations. It is an interesting and meaningful job.

2. Characterization of REP, RPI and RSEP

In [6, Theorem 2.1(xxiv)], Mosić proves that if a ∈ R#
∩ R+, then a ∈ REP if and only if aa+a∗a = a∗a2a+.

Hence, naturally, we can obtain the following equation.

aa+xa = xa2a+ (1)

Lemma 2.1. Let a ∈ R#
∩ R+ and x ∈ R, then the following holds:

1) If (a#)∗a2a+x = 0, then a+x = 0.
2) If (a+)∗a2a+x = 0, then a+x = 0.
3) If a∗a2a+x = 0, then a+x = 0.

Proof. 1) Since (a#)∗a2a+x = 0, pre-multiply the equality by a#(a+)∗a∗a∗, one obtains aa+x = 0. Again pre-
multiply the last equality by a+, we have a+x = 0.

2) Pre-multiply the equality (a+)∗a2a+x = 0 by (a#)∗a#aa∗, we have (a#)∗a2a+x = 0. Hence a+x = 0 by 1).
3) Pre-multiply the equality a∗a2a+x = 0 by ((a#)∗)2, one obtains (a#)∗a2a+x = 0, this infers a+x = 0 by

1).

Theorem 2.2. Let a ∈ R#
∩ R+. Then a ∈ REP if and only if the equation (1) has at least one solution in χa =

{a, a#, a+, a∗, (a#)∗, (a+)∗}.

Proof. (⇒) Since a ∈ REP, a# = a+, this infers x = a is a solution.
(⇐) (1) If x = a, then aa+a2 = a3a+, that is a2 = a3a+, this gives a# = (a#)3a2 = (a#)3a3a+ = a#aa+. By [6,

Theorem 2.1(xix)], we have a ∈ REP.
(2) If x = a#, then aa+a#a = a#a2a+, that is a#a = aa+. Hence, by [7, Theorem 1.2] (or [8]), we have a ∈ REP.
(3) If x = a+, then aa+a+a = a+a2a+. Pre-multiply the equality by 1− aa+, one has (1− aa+)a+a2a+ = 0. Then

post-multiply it by a#aa+ and we have (1 − aa+)a+ = 0. Hence, we have a ∈ REP.
(4) If x = a∗, then aa+a∗a = a∗a2a+. Hence, by [6, Theorem 2.1(xxiv)], we have a ∈ REP.
(5) If x = (a#)∗, then aa+(a#)∗a = (a#)∗a2a+. Post-multiply the equality by 1−a+a, we have (a#)∗a2a+(1−a+a) =

0. It follows from Lemma 2.1 that a+(1 − a+a) = 0. Thus a ∈ REP.
(6) If x = (a+)∗, then aa+(a+)∗a = (a+)∗a2a+. Post-multiply it by 1 − a+a, one has (a+)∗a2a+(1 − a+a) = 0. It

follows from Lemma 2.1 that a ∈ REP.

Remark: In the following, we denote the set {a, a#, a+, a∗, (a#)∗, (a+)∗} by χa as above.
Now, we modify the equation (1) as follows:

aa∗xa = xa2a+ (2)

Theorem 2.3. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if the equation (2) has at least one solution in χa.

Proof. (⇒) Since a ∈ RSEP, a# = a+ = a∗, this infers x = a is a solution.
(⇐) (1) If x = a is a solution, then aa∗a2 = a3a+. Post-multiply it by a#, one has aa∗a = a, and this infers

a ∈ RPI. Now a3a+ = aa∗a2 = aa+a2 = a2. Hence by Theorem 2.2 (1) we get a ∈ REP and then a ∈ RSEP.
(2) If x = a# is a solution, then aa∗a#a = a#a2a+ = aa+. Pre-multiply the equality by a+, one has a∗a#a = a+,

this gives a∗a = a∗aa#a = a+a, so a ∈ RPI. It follows that a+ = a∗a#a = a+a#a. By [6, Theorem 2.1(xxii)], we have
a ∈ REP. Hence a ∈ RSEP.

(3) If x = a+ is a solution, then aa∗a+a = a+a2a+. Post-multiply the equality by a∗, we have aa∗a∗ = a+a2a+a∗.
Apply the involution on the last equality, one obtains a2a∗ = a2a+a+a. Pre-multiply the equality by a#, one
has aa∗ = aa+a+a. Again apply the involution, one obtains aa∗ = a+a2a+. Then pre-multiply the equality by
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a, and this gives a2a∗ = a2a+. Hence a ∈ RPI by [7, Theorem 2.1]. Now aa+ = aa∗ = a+a2a+. Hence a ∈ REP and
so we get a ∈ RSEP.

(4) If x = a∗ is a solution, then aa∗a∗a = a∗a2a+. Pre-multiply the equality by 1−a+a, we have a∗a2a+(1−a+a) =
0. By Lemma 2.1, we have a+(1− a+a) = 0, so a ∈ REP. Hence a∗a = a∗a2a+ = aa∗a∗a, this gives a∗ = aa∗a∗ when
multiplying the equality on the right by a+. It follows that a = a2a∗. By [9, Theorem 2.3(xx)], a ∈ RSEP.

(5) If x = (a#)∗ is a solution, then aa∗(a#)∗a = (a#)∗a2a+. Post-multiply the equality by aa#a+, we have
aa∗(a#)∗ = (a#)∗. Apply the involution on the last equality, and this gives a# = a#aa∗. Post-multiply it by a,
one has aa# = aa∗. Hence a ∈ RSEP by [9, Theorem 2.3(v)].

(6) If x = (a+)∗ is a solution, then aa∗(a+)∗a = (a+)∗a2a+, that is a2 = (a+)∗a2a+. Post-multiply the equality
by a#, then we have a = (a+)∗aa#. Pre-multiply it by a∗, one obtains a∗a = a+a, and this infers a ∈ RPI by [9,
Theorem 2.1]. Now a2 = (a+)∗a2a+ = (a∗)∗a2a+ = a3a+, this infers a ∈ REP. Therefore a ∈ RSEP.

Now, we modify the equation (2) as follows:

aa∗xa = a2a+x (3)

Lemma 2.4. Let a ∈ R#
∩ R+ and x ∈ R. If a+a∗x = 0, then a∗x = 0.

Proof. Since aa+a+aa∗x = aa+a∗x = 0, we get a∗a+aa∗x = a∗aa+a+aa∗x = 0, that is a∗a∗x = 0 and then a∗x =
(a#)∗a∗a∗x = 0.

Lemma 2.5. Let a ∈ R#
∩ R+.

1) If a+a∗ = a+a+, then a ∈ RPI.
2) If a∗a+ = a+a+, then a ∈ RPI.

Proof. 1) Pre-multiply the equality a+a∗ = a+a+ by a∗a, we have a∗a∗ = a∗a+. Post-multiply the last equality
by a and then apply the involution, one obtains a∗a2 = a+a2, which implies that a ∈ RPI.

2) The proof is similar to 1).

Lemma 2.6. Let a ∈ R#
∩ R+. If a+a∗a+ = a+a+a+, then a ∈ RPI.

Proof. Since a+a∗a+ = a+a+a+, a+a∗a+a = a+a+a+a. Apply the involution on the equality, we have a+a2(a+)∗ =
a+a(a+)∗(a+)∗, and then a+a2(a+)∗ = a+a2a+(a+)∗(a+)∗. Pre-multiply it by a#a, gives a(a+)∗ = aa+(a+)∗(a+)∗ =
(a+)∗(a+)∗. Again apply the involution on the last equality, we have a+a∗ = a+a+. Thus a ∈ RPI by Lemma
2.5.

Lemma 2.7. Let a ∈ R#
∩ R+ and x ∈ R. If a+a∗a#x = 0, then ax = 0.

Proof. Pre-multiply the equality a+a∗a#x = 0 by (aa#a+)∗a, we have a#x = 0. Hence ax = a2a#x = 0.

Lemma 2.8. Let a ∈ R#
∩ R+ and x ∈ R.

1) If xa+a+ = 0, then xa+ = 0.
2) If a+a+x = 0, then a+x = 0.

Proof. 1) Post-multiply the equality xa+a+ = 0 by aa∗(a#)∗, we have xa+(a#a)∗ = 0. Noting that a+(a#a)∗ =
a+(aa+)∗(a#a)∗ = a+. Then xa+ = 0.

2) The proof is similar to 1).

Lemma 2.9. Let a ∈ R#
∩ R+ and x ∈ R.

1) If a∗a#x = 0, then ax = 0.
2) If xa#a∗ = 0, then xa = 0.

Proof. 1) Since a∗a#x = 0, a+a∗a#x = 0. Hence ax = 0 by Lemma 2.7.
2) The proof is similar to 1).
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Lemma 2.10. Let a ∈ R#
∩ R+.

1) If a∗a∗ = a∗a+, then a ∈ RPI.
2) If a∗a∗ = a+a∗, then a ∈ RPI.

Proof. 1) Pre-multiply the equality a∗a∗ = a∗a+ by a+(a+)∗, one gets a+a∗ = a+a+. Hence a ∈ RPI by Lemma 2.5.
2) The proof is similar to 1).

Theorem 2.11. Let a ∈ R#
∩ R+. Then a ∈ RPI if and only if the equation (3) has at least one solution in χa.

Proof. (⇒) Since a ∈ RPI, a∗ = a+. Hence x = a is a solution.
(⇐) (1) If x = a is a solution, then aa∗a2 = a2a+a = a2. Post-multiply the equality by a#a+, we have

aa∗ = aa+. Hence a ∈ RPI by [9, Theorem 2.1].
(2) If x = a# is a solution, then aa∗a#a = a2a+a# = aa#. Post-multiply the equality by a, we have aa∗a = a.

Hence a ∈ RPI.
(3) If x = a+ is a solution, then aa∗a+a = a2a+a+. Post-multiply the equality by 1 − aa+, one obtains

aa∗a+a(1− aa+) = 0, it follows that a∗a+a(1− aa+) = 0. Pre-multiply it by a(a#)∗, we have a(1− aa+) = 0. Hence
a ∈ REP, this infers aa+ = a2a+a+ = aa∗a+a = aa∗. Thus a ∈ RPI.

(4) If x = a∗ is a solution, then aa∗a∗a = a2a+a∗, this gives a2a+a∗ = aa∗a∗a = (aa∗a∗a)a+a = a2a+a∗a+a. Pre-
multiply the equality by a+a#, one has a+a∗ = a+a∗a+a. By Lemma 2.4, we have a∗ = a∗a+a, this gives a ∈ REP.
It follows that aa∗ = a2a+a∗ = aa∗a∗a, so a∗ = a∗a∗a, a = a∗a2 and then a ∈ RSEP by [9, Theorem 2.3(xix)].

(5) If x = (a#)∗ is a solution, then aa∗(a#)∗a = a2a+(a#)∗. Pre-multiply the equality by 1 − a+a, we have
a2a+(a#)∗(1 − a+a) = 0. Once again pre-multiply the last equality by a∗a∗a#, we have a∗(1 − a+a) = 0 and then
a ∈ REP. Hence a(a+)∗ = a(a#)∗ = a2a+(a#)∗ = aa∗(a+)∗a = aa+a2 = a2. Hence a∗a∗ = a+a∗, this infers a ∈ RPI by
Lemma 2.10.

(6) If x = (a+)∗ is a solution, then aa∗(a+)∗a = a2a+(a+)∗, that is a2 = a(a+)∗. Hence a∗a∗ = a+a∗, this infers
a ∈ RPI by Lemma 2.10.

Now, we modify the equation (3) as follows:

axa∗a = a2a+x. (4)

Theorem 2.12. Let a ∈ R#
∩ R+. Then a ∈ RPI if and only if the equation (4) has at least one solution in χa.

Proof. ⇒ Since a ∈ RPI, x = a is a solution.
⇐ (1) If x = a is a solution, then a2a∗a = a2a+a = a2. Similar to the proof of Theorem 2.11, we have a ∈ RPI.
(2) If x = a# is a solution, then aa#a∗a = a2a+a# = aa#. Pre-multiply it by a2, we have x = a is a solution. By

(1), we claim a ∈ RPI.
(3) If x = a+ is a solution, then aa+a∗a = a2a+a+. Post-multiply the equality by aa+, one has aa+a∗a =

aa+a∗a2a+. Pre-multiply the last equality by (aa#a+)∗, one obtains a = a2a+. Hence a ∈ REP. Now a+a = aa+ =
a2a+a+ = aa+a∗a = a∗a, this infers a ∈ RPI by [9, Theorem 2.1].

(4) If x = a∗ is a solution, then aa∗a∗a = a2a+a∗. Post-multiply it by aa+, one has aa∗a∗a = aa∗a∗a2a+. Pre-
multiply the last equality by (a+a#)∗a+, one obtains a = a2a+. Hence a ∈ REP, this gives aa∗ = a2a+a∗ = aa∗a∗a,
so a∗ = a∗a∗a. Hence we get a ∈ RSEP by [9, Theorem 2.3(xix)].

(5) If x = (a#)∗ is a solution, then a(a#)∗a∗a = a2a+(a#)∗, this gives aa+(a#)∗ = a#a2a+(a#)∗ = a#a(a#)∗a∗a =
a#(a(a#)∗a∗a)(a+a) = a#a2a+(a#)∗a+a = aa+(a#)∗a+a. Apply the involution on the last equality and we have
a#aa+ = a+. By [6, Theorem 2.1(xxii)], a ∈ REP. It follows that a2 = a2a+a = a(a+)∗a∗a = a(a#)∗a∗a = a2a+(a#)∗ =
a(a#)∗ = a(a+)∗. Hence a∗a∗ = a+a∗, this infers a ∈ RPI by Lemma 2.10.

(6) If x = (a+)∗ is a solution, then a(a+)∗a∗a = a2a+(a+)∗, that is a2 = a(a+)∗. Hence a∗a∗ = a+a∗, this infers
a ∈ RPI by Lemma 2.10.

Now, we modify the equation (4) as follows:

axa∗y = yaa+x (5)
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Theorem 2.13. Let a ∈ R#
∩ R+. Then a ∈ RPI if and only if the equality (5) has at least one solution in

ρ2
a = {(x, y)|x, y ∈ ρa = {a, a#, a+, (a#)∗, (a+)∗}}.

Proof. ⇒ Since a ∈ RPI, a+ = a∗, we have (x, y) = (a, a) is a solution.
⇐ (1) If y = a, then we have the equation (4). Then by Theorem 2.12, a ∈ RPI.
(2) If y = a#, then we have the equation

axa∗a# = a#aa+x. (6)

(i) If x = a, then a2a∗a# = a#aa+a = aa#, this gives aa∗a = a#a2a∗a#a2 = a#aa#a2 = a. Hence a ∈ RPI.
(ii) If x = a#, then aa#a∗a# = a#aa+a# = a#a#. Pre-multiply the equality by a2, we have a2a∗a# = aa#. It

follows that x = a is a solution of the equation (2.6). Hence a ∈ RPI by (i).
(iii) If x = a+, then aa+a∗a# = a#aa+a+, it follows that aa+a∗a# = aa+a∗a#aa+. Pre-multiply the equality by

a+, we have a+a∗a# = a+a∗a#aa+. By Lemma 2.7, a = a2a+. Hence a ∈ REP, this infers a∗a+ = a∗a# = aa+a∗a# =
a#aa+a+ = a+a+. Hence a ∈ RPI by Lemma 2.5.

(iv) If x = (a#)∗, then a(a#)∗a∗a# = a#aa+(a#)∗. Noting that (a#)∗aa+ = (a#)∗. Then a(a#)∗a∗a# = a(a#)∗a∗a#aa+.
Pre-multiply the equality by a∗a+, we have a∗a# = a∗a#aa+. By Lemma 2.7, we get a = a2a+, this infers a ∈ REP.
So a+a = aa+ = aa# = a(a+)∗a∗a# = a(a#)∗a∗a# = a#aa+(a+)∗ = a+(a+)∗. Thus a ∈ RPI.

(v) If x = (a+)∗, then a(a+)∗a∗a# = a#aa+(a+)∗, that is a#a = a#(a+)∗. Thus a ∈ RPI.

(3) If y = a+, then we have the equation

axa∗a+ = a+x. (7)

(a) If x = a, then a2a∗a+ = a+a. Pre-multiply it by a#, we get aa∗a+ = a#. Thus a ∈ RPI by [9, Theorem
2.3(xvi)].

(b) If x = a#, then aa#a∗a+ = a+a#. Pre-multiply it by a, we get aa∗a+ = a#. Thus a ∈ RPI.
(c) If x = a+, then aa+a∗a+ = a+a+. Pre-multiply it by a+, we get a+a∗a+ = a+a+a+. Hence a ∈ RPI by Lemma

2.6.
(d) If x = (a#)∗, then a(a#)∗a∗a+ = a+(a#)∗. Pre-multiply the equality by aa+a+, one has aa+a+ = aa+a+a+(a#)∗.

By Lemma 2.8, a+ = a+a+(a#)∗. Post-multiply the last equality by a∗a+a, one has a+a∗a+a = a+a+a+a, it follows
that a+a∗a+ = a+a+a+. Hence a ∈ RPI by Lemma 2.6.

(e) If x = (a+)∗, then a(a+)∗a∗a+ = a+(a+)∗, that is a2a+a+ = a+(a+)∗. Pre-multiply the last equality by 1− a+a,
one has (1 − a+a)a2a+a+ = 0. By Lemma 2.8, we have (1 − a+a)a2a+ = 0, it follows that (1 − a+a)a = 0. Hence
a ∈ REP. Then we have x = (a#)∗ is a solution to equation (7). By (d), we get a ∈ RPI.

(4) If y = (a#)∗, then we have the equation

axa∗(a#)∗ = (a#)∗x. (8)

(I) If x = a, then a2a∗(a#)∗ = (a#)∗a. Post-multiply the equality by a+a, we get a2 = (a#)∗a. Again post-
multiply the last equality by a+, and then apply the involution, we have a# = aa+a∗. By [9, Theorem 2.3(xxi)],
a ∈ RPI.

(II) If x = a#, then aa#a∗(a#)∗ = (a#)∗a#. Post-multiply the equality by a∗, we get aa#a∗ = (a#)∗a#a∗. By Lemma
2.9, one gets a2 = (a#)∗a. By the proof of (I), we have a ∈ RPI.

(III) If x = a+, then aa+a∗(a#)∗ = (a#)∗a+. Pre-multiply the equality by a∗a∗, we get a∗a∗ = a∗a+. Hence
a ∈ RPI by Lemma 2.10.

(IV) If x = (a#)∗, then a(a#)∗a∗(a#)∗ = (a#)∗(a#)∗. Take the involution of both sides and we get a#a∗ = a#a#, it
follows that a = a2a∗. Hence a ∈ RPI.

(V) If x = (a+)∗, then a(a+)∗a∗(a#)∗ = (a#)∗(a+)∗. Apply the involution on the equality, we get a#aa+a∗ = a+a#.
Pre-multiply it by a, we get aa+a∗ = a#. Hence a ∈ RPI by [9, Theorem 2.3(xxi)].
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(5) If y = (a+)∗, then we have the equation

axa+a = (a+)∗aa+x. (9)

1) If x = a, then a2 = (a+)∗a. Hence a ∈ RPI.
2) If x = a#, then aa#a+a = (a+)∗aa+a#, that is aa# = (a+)∗a#. Hence a ∈ RPI.
3) If x = a+, then aa+a+a = (a+)∗aa+a+, this infers aa+a+a(1 − aa+) = 0, so a+a+a(1 − aa+) = 0. By Lemma

2.8, we get a+a(1 − aa+) = 0. Thus a ∈ REP, this implies x = a# is a solution to the equation (9). Then by 2),
we get a ∈ RPI.

4) If x = (a#)∗, then a(a#)∗a+a = (a+)∗aa+(a#)∗. Take the involution of both sides, we get a+aa#a∗ = a#aa+a+.
So (1− aa+)a+aa#a∗ = 0. Post-multiply it by (a+)∗, we get (1− aa+)a+aa# = 0. Then post-multiply it by aa+, we
get (1 − aa+)a+ = 0. Hence a ∈ REP, it follows that a#a# = a#aa+a+ = a+aa#a∗ = a#a∗. Thus we get a ∈ RPI.

5) If x = (a+)∗, then a(a+)∗a+a = (a+)∗aa+(a+)∗, that is a(a+)∗ = (a+)∗(a+)∗. Take the involution of the equality,
we get a+a∗ = a+a+. Hence a ∈ RPI by Lemma 2.5.

Now, we modify the equation (5) as follows:

yaxa∗ = xaa+y. (10)

Lemma 2.14. Let a ∈ R#
∩ R+ and x ∈ R.

1) If x(a+)∗a = 0, then x(a+)∗ = 0.
2) If a(a+)∗x = 0, then (a+)∗x = 0.

Proof. 1) Noting that (a+)∗ = (a+)∗a+a. Then we have x(a+)∗ = x(a+)∗a+a2a# = x(a+)∗aa# = 0.
2) The proof is similar to 1).

Theorem 2.15. Let a ∈ R#
∩ R+. Then a ∈ RPI if and only if the equation (10) has at least one solution in

τ2
a = {(x, y)|x, y ∈ τa = {a#, a+, a∗, (a#)∗, (a+)∗}}.

Proof. ⇒ If a ∈ RPI, then (x, y) = (a+, a∗) is a solution.
⇐ (1) If y = a#, then we have the equation

a#axa∗ = xa#. (11)

(i) If x = a#, then a#aa#a∗ = a#a#. Pre-multiply it by a2, we have aa∗ = aa#. Hence a ∈ RSEP by [9, Theorem
2.3(v)].

(ii) If x = a+, then a#aa+a∗ = a+a#. Pre-multiply it by a and we get aa+a∗ = a#. Hence a ∈ RSEP by [9,
Theorem 2.3(xxi)].

(iii) If x = a∗, then a#aa∗a∗ = a∗a#. Post-multiply the equality by 1− aa+, we get a∗a#(1− aa+) = 0. It follows
from Lemma 2.9 that a(1−aa+) = 0, this infers a ∈ REP. Hence a∗a∗ = a+aa∗a∗ = a#aa∗a∗ = a∗a#, we pre-multiply
it by a(a+)∗ and get a2a+a∗ = a2a+a#, this gives aa∗ = aa#. Thus a ∈ RSEP by [9, Theorem 2.3(v)].

(iv) If x = (a#)∗, then a#a(a#)∗a∗ = (a#)∗a#. Post-multiply the equality by aa+, we get (a#)∗a# = (a#)∗a#aa+.
Pre-multiply it by aa+a∗, one has a# = a#aa+. Hence a ∈ REP, it follows that (a#)∗a# = a#a(a#)∗a∗ = a#a(a+)∗a∗ =
a#a2a+ = aa+ = aa#. Furthermore, we have (a#)∗a = (a#)∗a#a2 = aa#a2 = a2. Thus a ∈ RSEP.

(v) If x = (a+)∗, then a#a(a+)∗a∗ = (a+)∗a#, that is aa+ = (a+)∗a#. Then a2 = aa+a2 = (a+)∗a#a2 = (a+)∗a. Hence
a ∈ RPI.

(2) If y = a+, then we have the following equation

a+axa∗ = xaa+a+. (12)

(a) If x = a#, then a+aa#a∗ = a#aa+a+. Hence (1 − aa+)a+aa#a∗ = (1 − aa+)a#aa+a+ = 0. Post-multiply it by
(a+)∗ and we have (1 − aa+)a+aa# = 0. Again post-multiply it by aa∗ and we have (1 − aa+)a∗ = 0. Hence
a ∈ REP. So we can get a+a∗ = a#a∗ = a+aa#a∗ = a#aa+a+ = a#a+ = a+a+. Hence we get a ∈ RPI by Lemma 2.5.
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(b) If x = a+, then a+aa+a∗ = a+aa+a+, that is a+a∗ = a+a+. Hence, a ∈ RPI by Lemma 2.5.
(c) If x = a∗, then a+aa∗a∗ = a∗aa+a+. Hence, we have a∗a∗ = a∗a+. Then a ∈ RPI by Lemma 2.10.
(d) If x = (a#)∗, then a+a(a#)∗a∗ = (a#)∗aa+a+ = (a#)∗a+, that is (a#)∗a∗ = (a#)∗a+. Then take the involution of

both sides, we have aa# = (a+)∗a#. Hence, a ∈ RPI.
(e) If x = (a+)∗, then a+a(a+)∗a∗ = (a+)∗aa+a+, that is a+a2a+ = (a+)∗aa+a+. Then we have (1−a+a)(a+)∗aa+a+ =

(1 − a+a)a+a2a+ = 0. By Lemma 2.8 we have (1 − a+a)(a+)∗aa+ = 0, this infers (1 − a+a)(a+)∗a = 0. By Lemma
2.14, one gets (1 − a+a)(a+)∗ = 0. Post-multiply it by a∗a, then we have (1 − a+a)a = 0. Hence, a ∈ REP and
so (a+)∗ = (a+)∗a+a = (a+)∗(aa+a+)a = ((a+)∗aa+a+)a = a+a(a+)∗a∗a = aa+(a+)∗a∗a = (a+)∗a∗a = aa+a = a. Hence,
a ∈ RPI.

(3) If y = a∗, then we have the following equation

a∗axa∗ = xaa+a∗. (13)

1) If x = a#, then a∗aa#a∗ = a#aa+a∗. Post-multiply it by (a+)∗ and we have a∗a#a = aa#a+a+a. Then
(1 − aa+)a∗aa# = (1 − aa+)aa#a+a+a = 0. Post-multiply it by aa+(a+)∗ and we have (1 − aa+)a+a = 0. Thus,
a+a = aa+a+a, this gives a∗a#a = aa#a+a+a = a#. Hence a ∈ RPI.

2) If x = a+, then a∗aa+a∗ = a+aa+a∗, that is a∗a∗ = a+a∗. Thus a ∈ RPI by Lemma 2.10.
3) If x = a∗, then a∗aa∗a∗ = a∗aa+a∗ = a∗a∗. So we can get a2 = a2a∗a. Hence, a ∈ RPI.
4) If x = (a#)∗, then a∗a(a#)∗a∗ = (a#)∗aa+a∗ = (a#)∗a∗. Then, we have aa# = aa#a∗a. Hence, a ∈ RPI.
5) If x = (a+)∗, then a∗a(a+)∗a∗ = (a+)∗aa+a∗. Thus, we can get aa+a∗a = a2a+a+. Then we have

a2a+a+(1 − a+a) = aa+a∗a(1 − a+a) = 0. Pre-multiply it by a∗a#, then we have a∗a+(1 − a+a) = 0. Pre-
multiply it by a+(a+)∗, then we have a+a+(1 − a+a) = 0. By Lemma 2.8, a+(1 − a+a) = 0, this infers a ∈ REP.
Then aa+ = a2a+a+ = aa+a∗a = a∗a. Hence, a ∈ RPI by [9, Theorem 2.3(iv)].

(4) If y = (a#)∗, then we have the following equation

(a#)∗axa∗ = xaa+(a#)∗. (14)

(I) If x = a#, then (a#)∗aa#a∗ = a#aa+(a#)∗. Hence (1− a+a)a#aa+(a#)∗ = (1− a+a)(a#)∗a2a∗ = 0. Post-multiply it
by a∗a, we have (1 − a+a)a = 0. Thus, a ∈ REP. So we can get a+(a+)∗ = (a#aa+)(a#)∗ = (a#)∗aa#a∗ = (a#)∗a+aa∗ =
(a#)∗a∗ = (a+)∗a∗ = aa+ = a+a. Hence, a ∈ RPI.

(II) If x = a+, then (a#)∗aa+a∗ = a+aa+(a#)∗, that is (a#)∗a∗ = a+(a#)∗. Apply the involution on the equality,
we get aa# = a#(a+)∗. Hence a ∈ RPI.

(III) If x = a∗, then (a#)∗aa∗a∗ = a∗aa+(a#)∗ = a∗(a#)∗. Apply the involution on the equality, we have
a#a = a2a∗a#. So we can get a# = a#a#a = a#a2a∗a# = aa∗a#. Hence, a ∈ RPI.

(IV) If x = (a#)∗, then (a#)∗a(a#)∗a∗ = (a#)∗aa+(a#)∗ = (a#)∗(a#)∗. Thus, we have aa#a∗a# = a#a#. Then
pre-multiply it by a and post-multiply it by a2, we have aa∗a = a. Hence, a ∈ RPI.

(V) If x = (a+)∗, then (a#)∗a(a+)∗a∗ = (a+)∗aa+(a#)∗, that is (a#)∗a2a+ = (a+)∗aa+(a#)∗. Take the involu-
tion of both sides, and we can get aa+a∗a# = a#aa+a+. Post-multiply the equality by 1 − aa+, we have
aa+a∗a#(1 − aa+) = 0. Pre-multiply it by (a#a)∗, and we can get a∗a#(1 − aa+) = 0. By Lemma 2.9, we get
a(1 − aa+) = 0, so a ∈ REP. It follows that a∗a+ = a∗a# = a+aa∗a# = aa+a∗a# = a#aa+a+ = a+a+. Hence, we get
a ∈ RPI by Lemma 2.5.

(5) If y = (a+)∗, then we have the following equation

(a+)∗axa∗ = x(a+)∗. (15)

(A) If x = a#, then (a+)∗aa#a∗ = a#(a+)∗. Then a#(a+)∗(1 − aa+) = (a+)∗aa#a∗(1 − aa+) = 0. Noting that
aa#(a+)∗ = aa#(a+aa+)∗ = aa#aa+(a+)∗ = aa+(a+)∗ = (a+)∗. Then pre-multiply it by a∗a, we have a+a(1 − aa+) = 0.
Thus, a ∈ REP. So we can get a#(a+)∗ = (a+)∗aa#a∗ = (a+)∗a∗ = aa+ = a+a = a#a. Hence, a ∈ RPI.

(B) If x = a+, then (a+)∗aa+a∗ = a+(a+)∗. Then, we can get a+(a+)∗(1 − aa+) = (a+)∗aa+a∗(1 − aa+) = 0.
Pre-multiply it by a and we have (a+)∗(1 − aa+) = 0. Thus, a ∈ REP. Then, we can get x = a+ = a#. Hence,
a ∈ RPI by (A).
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(C) If x = a∗, then (a+)∗aa∗a∗ = a∗(a+)∗ = a+a. Apply the involution on the equality, we have a+a = a2a∗a+.
Pre-multiply it by a#, one gets a# = aa∗a+. Hence a ∈ RPI by [9, Theorem 2.3(xvi)].

(D) If x = (a#)∗, then (a+)∗a(a#)∗a∗ = (a#)∗(a+)∗. Thus, we have a+a# = aa#a∗a+. Pre-multiply it by a, we get
a# = aa∗a+. Hence, a ∈ RPI.

(E) If x = (a+)∗, then (a+)∗a(a+)∗a∗ = (a+)∗(a+)∗. Then, we can get aa+a∗a+ = a+a+. Pre-multiply the last
equality by a+, one gets a+a∗a+ = a+a+a+. Hence a ∈ RPI by Lemma 2.6.

Remark: If (x, y) = (a∗, a) is a solution of the equation (10), does a ∈ RPI? We won’t discuss it here but it
is an interesting and meaningful question and it deserves consideration.
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