Partial Isometry and Strongly EP Elements

Jiayi Cai ${ }^{\text {a }}$, Zhichao Chen ${ }^{\text {a }}$, Junchao Wei ${ }^{\text {a }}$
${ }^{a}$ School of Mathematical Science, Yangzhou University, Yangzhou, 225002, P. R. China

Abstract

EP elements are important research objects in the ring theory. This paper mainly gives sufficient and necessary conditions for an element in a ring to be an EP element, partial isometry, and strongly EP element by using solutions of certain equations.

1. Introduction

Let R be an associative ring with 1 . An element $a \in R$ is said to be group invertible if there exists $a^{\#} \in R$ such that

$$
a a^{\#} a=a, \quad a^{\#} a a^{\#}=a^{\#}, \quad a a^{\#}=a^{\#} a .
$$

The element $a^{\#}$ is called the group inverse of a, which is uniquely determined by the above equations [3].
An involution $*: a \longmapsto a^{*}$ in a ring R is an anti-isomorphism of degree 2 , that is,

$$
\left(a^{*}\right)^{*}=a, \quad(a+b)^{*}=a^{*}+b^{*}, \quad(a b)^{*}=b^{*} a^{*} .
$$

The element a in R is called normal if $a a^{*}=a^{*} a$.
An element a^{+}in R is called the Moore-Penrose inverse (MP-inverse) of a [5], when satisfying the following conditions

$$
a a^{+} a=a, \quad a^{+} a a^{+}=a^{+}, \quad\left(a a^{+}\right)^{*}=a a^{+}, \quad\left(a^{+} a\right)^{*}=a^{+} a .
$$

If such a^{+}exists, then it is unique [5]. Denote by $R^{\#}$ and R^{+}the set of group invertible elements of R and the set of all MP-invertible elements of R respectively. An element a is said to be $E P$ if $a \in R^{\#} \cap R^{+}$and satisfies $a^{\#}=a^{+}$[4]. We denote by $R^{E P}$ the set of all $E P$ elements of R. According to [2], $a \in R$ is called normal $E P$, if a is normal and $a \in R^{+}$. Clearly, a is normal $E P$ if and only if a is normal and $E P$. Denote by $R^{N E P}$ the set of all normal $E P$ elements of R. An element $a \in R^{+}$is called partial isometry if $a^{+}=a^{*}$ and a is called strongly $E P$ element if $a \in R^{E P}$ is a partial isometry. We denote the set of all partial isometry elements and strongly $E P$ elements of R by $R^{P I}$ and $R^{S E P}$ [1].

In [9], D. Mosić and D. S. Djordjević presented some equivalent conditions for the element a in a ring with involution to be a partial isometry. Recently, some studies on partial isometries and EP elements have come to some meaningful conclusions in $[2,6,10,12]$. Moreover, the description of EP elements by using solutions of equations has been explored in [10, 11].

[^0]Inspired by the above articles, in this paper, we provide some sufficient and necessary conditions for an element in a ring to be an $E P$ element, partial isometry, normal $E P$ element and strongly $E P$ element by using solutions of equations. It is an interesting and meaningful job.

2. Characterization of $R^{E P}, R^{P I}$ and $R^{S E P}$

In [6, Theorem 2.1(xxiv)], Mosić proves that if $a \in R^{\#} \cap R^{+}$, then $a \in R^{E P}$ if and only if $a a^{+} a^{*} a=a^{*} a^{2} a^{+}$. Hence, naturally, we can obtain the following equation.

$$
\begin{equation*}
a a^{+} x a=x a^{2} a^{+} \tag{1}
\end{equation*}
$$

Lemma 2.1. Let $a \in R^{\#} \cap R^{+}$and $x \in R$, then the following holds:

1) If $\left(a^{\#}\right)^{*} a^{2} a^{+} x=0$, then $a^{+} x=0$.
2) If $\left(a^{+}\right)^{*} a^{2} a^{+} x=0$, then $a^{+} x=0$.
3) If $a^{*} a^{2} a^{+} x=0$, then $a^{+} x=0$.

Proof. 1) Since $\left(a^{\#}\right)^{*} a^{2} a^{+} x=0$, pre-multiply the equality by $a^{\#}\left(a^{+}\right)^{*} a^{*} a^{*}$, one obtains $a a^{+} x=0$. Again premultiply the last equality by a^{+}, we have $a^{+} x=0$.
2) Pre-multiply the equality $\left(a^{+}\right)^{*} a^{2} a^{+} x=0$ by $\left(a^{\#}\right)^{*} a^{\#} a a^{*}$, we have $\left(a^{\#}\right)^{*} a^{2} a^{+} x=0$. Hence $a^{+} x=0$ by 1$)$.
3) Pre-multiply the equality $a^{*} a^{2} a^{+} x=0$ by $\left(\left(a^{\#}\right)^{*}\right)^{2}$, one obtains $\left(a^{\#}\right)^{*} a^{2} a^{+} x=0$, this infers $a^{+} x=0$ by 1).

Theorem 2.2. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{E P}$ if and only if the equation (1) has at least one solution in $\chi_{a}=$ $\left\{a, a^{\#}, a^{+}, a^{*},\left(a^{\#}\right)^{*},\left(a^{+}\right)^{*}\right\}$.

Proof. (\Rightarrow) Since $a \in R^{E P}, a^{\#}=a^{+}$, this infers $x=a$ is a solution.
$(\Leftarrow)(1)$ If $x=a$, then $a a^{+} a^{2}=a^{3} a^{+}$, that is $a^{2}=a^{3} a^{+}$, this gives $a^{\#}=\left(a^{\#}\right)^{3} a^{2}=\left(a^{\#}\right)^{3} a^{3} a^{+}=a^{\#} a a^{+}$. By [6, Theorem 2.1(xix)], we have $a \in R^{E P}$.
(2) If $x=a^{\#}$, then $a a^{+} a^{\#} a=a^{\#} a^{2} a^{+}$, that is $a^{\#} a=a a^{+}$. Hence, by [7, Theorem 1.2] (or [8]), we have $a \in R^{E P}$.
(3) If $x=a^{+}$, then $a a^{+} a^{+} a=a^{+} a^{2} a^{+}$. Pre-multiply the equality by $1-a a^{+}$, one has $\left(1-a a^{+}\right) a^{+} a^{2} a^{+}=0$. Then post-multiply it by $a^{\#} a a^{+}$and we have $\left(1-a a^{+}\right) a^{+}=0$. Hence, we have $a \in R^{E P}$.
(4) If $x=a^{*}$, then $a a^{+} a^{*} a=a^{*} a^{2} a^{+}$. Hence, by [6, Theorem 2.1(xxiv)], we have $a \in R^{E P}$.
(5) If $x=\left(a^{\#}\right)^{*}$, then $a a^{+}\left(a^{\#}\right)^{*} a=\left(a^{\#}\right)^{*} a^{2} a^{+}$. Post-multiply the equality by $1-a^{+} a$, we have $\left(a^{\#}\right)^{*} a^{2} a^{+}\left(1-a^{+} a\right)=$ 0. It follows from Lemma 2.1 that $a^{+}\left(1-a^{+} a\right)=0$. Thus $a \in R^{E P}$.
(6) If $x=\left(a^{+}\right)^{*}$, then $a a^{+}\left(a^{+}\right)^{*} a=\left(a^{+}\right)^{*} a^{2} a^{+}$. Post-multiply it by $1-a^{+} a$, one has $\left(a^{+}\right)^{*} a^{2} a^{+}\left(1-a^{+} a\right)=0$. It follows from Lemma 2.1 that $a \in R^{E P}$.

Remark: In the following, we denote the set $\left\{a, a^{\#}, a^{+}, a^{*},\left(a^{\#}\right)^{*},\left(a^{+}\right)^{*}\right\}$ by χ_{a} as above.
Now, we modify the equation (1) as follows:

$$
\begin{equation*}
a a^{*} x a=x a^{2} a^{+} \tag{2}
\end{equation*}
$$

Theorem 2.3. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{S E P}$ if and only if the equation (2) has at least one solution in χ_{a}.
Proof. (\Rightarrow) Since $a \in R^{S E P}, a^{\#}=a^{+}=a^{*}$, this infers $x=a$ is a solution.
$(\Leftarrow)(1)$ If $x=a$ is a solution, then $a a^{*} a^{2}=a^{3} a^{+}$. Post-multiply it by $a^{\#}$, one has $a a^{*} a=a$, and this infers $a \in R^{P I}$. Now $a^{3} a^{+}=a a^{*} a^{2}=a a^{+} a^{2}=a^{2}$. Hence by Theorem 2.2 (1) we get $a \in R^{E P}$ and then $a \in R^{S E P}$.
(2) If $x=a^{\#}$ is a solution, then $a a^{*} a^{\#} a=a^{\#} a^{2} a^{+}=a a^{+}$. Pre-multiply the equality by a^{+}, one has $a^{*} a^{\#} a=a^{+}$, this gives $a^{*} a=a^{*} a a^{\#} a=a^{+} a$, so $a \in R^{P I}$. It follows that $a^{+}=a^{*} a^{\#} a=a^{+} a^{\#} a$. By [6, Theorem 2.1(xxii)], we have $a \in R^{E P}$. Hence $a \in R^{S E P}$.
(3) If $x=a^{+}$is a solution, then $a a^{*} a^{+} a=a^{+} a^{2} a^{+}$. Post-multiply the equality by a^{*}, we have $a a^{*} a^{*}=a^{+} a^{2} a^{+} a^{*}$. Apply the involution on the last equality, one obtains $a^{2} a^{*}=a^{2} a^{+} a^{+} a$. Pre-multiply the equality by $a^{\#}$, one has $a a^{*}=a a^{+} a^{+} a$. Again apply the involution, one obtains $a a^{*}=a^{+} a^{2} a^{+}$. Then pre-multiply the equality by
a, and this gives $a^{2} a^{*}=a^{2} a^{+}$. Hence $a \in R^{P I}$ by [7, Theorem 2.1]. Now $a a^{+}=a a^{*}=a^{+} a^{2} a^{+}$. Hence $a \in R^{E P}$ and so we get $a \in R^{S E P}$.
(4) If $x=a^{*}$ is a solution, then $a a^{*} a^{*} a=a^{*} a^{2} a^{+}$. Pre-multiply the equality by $1-a^{+} a$, we have $a^{*} a^{2} a^{+}\left(1-a^{+} a\right)=$ 0 . By Lemma 2.1, we have $a^{+}\left(1-a^{+} a\right)=0$, so $a \in R^{E P}$. Hence $a^{*} a=a^{*} a^{2} a^{+}=a a^{*} a^{*} a$, this gives $a^{*}=a a^{*} a^{*}$ when multiplying the equality on the right by a^{+}. It follows that $a=a^{2} a^{*}$. By [9, Theorem 2.3(xx)], $a \in R^{S E P}$.
(5) If $x=\left(a^{\#}\right)^{*}$ is a solution, then $a a^{*}\left(a^{\#}\right)^{*} a=\left(a^{\#}\right)^{*} a^{2} a^{+}$. Post-multiply the equality by $a a^{\#} a^{+}$, we have $a a^{*}\left(a^{\#}\right)^{*}=\left(a^{\#}\right)^{*}$. Apply the involution on the last equality, and this gives $a^{\#}=a^{\#} a a^{*}$. Post-multiply it by a, one has $a a^{\#}=a a^{*}$. Hence $a \in R^{S E P}$ by [9, Theorem 2.3(v)].
(6) If $x=\left(a^{+}\right)^{*}$ is a solution, then $a a^{*}\left(a^{+}\right)^{*} a=\left(a^{+}\right)^{*} a^{2} a^{+}$, that is $a^{2}=\left(a^{+}\right)^{*} a^{2} a^{+}$. Post-multiply the equality by $a^{\#}$, then we have $a=\left(a^{+}\right)^{*} a a^{\#}$. Pre-multiply it by a^{*}, one obtains $a^{*} a=a^{+} a$, and this infers $a \in R^{P I}$ by [9, Theorem 2.1]. Now $a^{2}=\left(a^{+}\right)^{*} a^{2} a^{+}=\left(a^{*}\right)^{*} a^{2} a^{+}=a^{3} a^{+}$, this infers $a \in R^{E P}$. Therefore $a \in R^{S E P}$.

Now, we modify the equation (2) as follows:

$$
\begin{equation*}
a a^{*} x a=a^{2} a^{+} x \tag{3}
\end{equation*}
$$

Lemma 2.4. Let $a \in R^{\#} \cap R^{+}$and $x \in R$. If $a^{+} a^{*} x=0$, then $a^{*} x=0$.
Proof. Since $a a^{+} a^{+} a a^{*} x=a a^{+} a^{*} x=0$, we get $a^{*} a^{+} a a^{*} x=a^{*} a a^{+} a^{+} a a^{*} x=0$, that is $a^{*} a^{*} x=0$ and then $a^{*} x=$ $\left(a^{\#}\right)^{*} a^{*} a^{*} x=0$.

Lemma 2.5. Let $a \in R^{\#} \cap R^{+}$.

1) If $a^{+} a^{*}=a^{+} a^{+}$, then $a \in R^{P I}$.
2) If $a^{*} a^{+}=a^{+} a^{+}$, then $a \in R^{P I}$.

Proof. 1) Pre-multiply the equality $a^{+} a^{*}=a^{+} a^{+}$by $a^{*} a$, we have $a^{*} a^{*}=a^{*} a^{+}$. Post-multiply the last equality by a and then apply the involution, one obtains $a^{*} a^{2}=a^{+} a^{2}$, which implies that $a \in R^{P I}$.
2) The proof is similar to 1).

Lemma 2.6. Let $a \in R^{\#} \cap R^{+}$. If $a^{+} a^{*} a^{+}=a^{+} a^{+} a^{+}$, then $a \in R^{P I}$.
Proof. Since $a^{+} a^{*} a^{+}=a^{+} a^{+} a^{+}, a^{+} a^{*} a^{+} a=a^{+} a^{+} a^{+} a$. Apply the involution on the equality, we have $a^{+} a^{2}\left(a^{+}\right)^{*}=$ $a^{+} a\left(a^{+}\right)^{*}\left(a^{+}\right)^{*}$, and then $a^{+} a^{2}\left(a^{+}\right)^{*}=a^{+} a^{2} a^{+}\left(a^{+}\right)^{*}\left(a^{+}\right)^{*}$. Pre-multiply it by $a^{\#} a$, gives $a\left(a^{+}\right)^{*}=a a^{+}\left(a^{+}\right)^{*}\left(a^{+}\right)^{*}=$ $\left(a^{+}\right)^{*}\left(a^{+}\right)^{*}$. Again apply the involution on the last equality, we have $a^{+} a^{*}=a^{+} a^{+}$. Thus $a \in R^{P I}$ by Lemma 2.5.

Lemma 2.7. Let $a \in R^{\#} \cap R^{+}$and $x \in R$. If $a^{+} a^{*} a^{\#} x=0$, then $a x=0$.
Proof. Pre-multiply the equality $a^{+} a^{*} a^{\#} x=0$ by $\left(a a^{\#} a^{+}\right)^{*} a$, we have $a^{\#} x=0$. Hence $a x=a^{2} a^{\#} x=0$.
Lemma 2.8. Let $a \in R^{\#} \cap R^{+}$and $x \in R$.

1) If $x a^{+} a^{+}=0$, then $x a^{+}=0$.
2) If $a^{+} a^{+} x=0$, then $a^{+} x=0$.

Proof. 1) Post-multiply the equality $x a^{+} a^{+}=0$ by $a a^{*}\left(a^{\#}\right)^{*}$, we have $x a^{+}\left(a^{\#} a\right)^{*}=0$. Noting that $a^{+}\left(a^{\#} a\right)^{*}=$ $a^{+}\left(a a^{+}\right)^{*}\left(a^{\#} a\right)^{*}=a^{+}$. Then $x a^{+}=0$.
2) The proof is similar to 1).

Lemma 2.9. Let $a \in R^{\#} \cap R^{+}$and $x \in R$.

1) If $a^{*} a^{\#} x=0$, then $a x=0$.
2) If $x a^{\#} a^{*}=0$, then $x a=0$.

Proof. 1) Since $a^{*} a^{\#} x=0, a^{+} a^{*} a^{\#} x=0$. Hence $a x=0$ by Lemma 2.7.
2) The proof is similar to 1).

Lemma 2.10. Let $a \in R^{\#} \cap R^{+}$.

1) If $a^{*} a^{*}=a^{*} a^{+}$, then $a \in R^{P I}$.
2) If $a^{*} a^{*}=a^{+} a^{*}$, then $a \in R^{P I}$.

Proof. 1) Pre-multiply the equality $a^{*} a^{*}=a^{*} a^{+}$by $a^{+}\left(a^{+}\right)^{*}$, one gets $a^{+} a^{*}=a^{+} a^{+}$. Hence $a \in R^{P I}$ by Lemma 2.5.
2) The proof is similar to 1).

Theorem 2.11. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{P I}$ if and only if the equation (3) has at least one solution in χ_{a}.
Proof. (\Rightarrow) Since $a \in R^{P I}, a^{*}=a^{+}$. Hence $x=a$ is a solution.
$(\Leftarrow)(1)$ If $x=a$ is a solution, then $a a^{*} a^{2}=a^{2} a^{+} a=a^{2}$. Post-multiply the equality by $a^{\#} a^{+}$, we have $a a^{*}=a a^{+}$. Hence $a \in R^{P I}$ by [9, Theorem 2.1].
(2) If $x=a^{\#}$ is a solution, then $a a^{*} a^{\#} a=a^{2} a^{+} a^{\#}=a a^{\#}$. Post-multiply the equality by a, we have $a a^{*} a=a$. Hence $a \in R^{P I}$.
(3) If $x=a^{+}$is a solution, then $a a^{*} a^{+} a=a^{2} a^{+} a^{+}$. Post-multiply the equality by $1-a a^{+}$, one obtains $a a^{*} a^{+} a\left(1-a a^{+}\right)=0$, it follows that $a^{*} a^{+} a\left(1-a a^{+}\right)=0$. Pre-multiply it by $a\left(a^{\#}\right)^{*}$, we have $a\left(1-a a^{+}\right)=0$. Hence $a \in R^{E P}$, this infers $a a^{+}=a^{2} a^{+} a^{+}=a a^{*} a^{+} a=a a^{*}$. Thus $a \in R^{P I}$.
(4) If $x=a^{*}$ is a solution, then $a a^{*} a^{*} a=a^{2} a^{+} a^{*}$, this gives $a^{2} a^{+} a^{*}=a a^{*} a^{*} a=\left(a a^{*} a^{*} a\right) a^{+} a=a^{2} a^{+} a^{*} a^{+} a$. Premultiply the equality by $a^{+} a^{*}$, one has $a^{+} a^{*}=a^{+} a^{*} a^{+} a$. By Lemma 2.4, we have $a^{*}=a^{*} a^{+} a$, this gives $a \in R^{E P}$. It follows that $a a^{*}=a^{2} a^{+} a^{*}=a a^{*} a^{*} a$, so $a^{*}=a^{*} a^{*} a, a=a^{*} a^{2}$ and then $a \in R^{S E P}$ by [9, Theorem 2.3(xix)].
(5) If $x=\left(a^{\#}\right)^{*}$ is a solution, then $a a^{*}\left(a^{\#}\right)^{*} a=a^{2} a^{+}\left(a^{\#}\right)^{*}$. Pre-multiply the equality by $1-a^{+} a$, we have $a^{2} a^{+}\left(a^{\#}\right)^{*}\left(1-a^{+} a\right)=0$. Once again pre-multiply the last equality by $a^{*} a^{*} a^{\#}$, we have $a^{*}\left(1-a^{+} a\right)=0$ and then $a \in R^{E P}$. Hence $a\left(a^{+}\right)^{*}=a\left(a^{\#}\right)^{*}=a^{2} a^{+}\left(a^{\#}\right)^{*}=a a^{*}\left(a^{+}\right)^{*} a=a a^{+} a^{2}=a^{2}$. Hence $a^{*} a^{*}=a^{+} a^{*}$, this infers $a \in R^{P I}$ by Lemma 2.10.
(6) If $x=\left(a^{+}\right)^{*}$ is a solution, then $a a^{*}\left(a^{+}\right)^{*} a=a^{2} a^{+}\left(a^{+}\right)^{*}$, that is $a^{2}=a\left(a^{+}\right)^{*}$. Hence $a^{*} a^{*}=a^{+} a^{*}$, this infers $a \in R^{P I}$ by Lemma 2.10.

Now, we modify the equation (3) as follows:

$$
\begin{equation*}
a x a^{*} a=a^{2} a^{+} x \tag{4}
\end{equation*}
$$

Theorem 2.12. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{P I}$ if and only if the equation (4) has at least one solution in χ_{a}.
Proof. \Rightarrow Since $a \in R^{P I}, x=a$ is a solution.
$\Leftarrow(1)$ If $x=a$ is a solution, then $a^{2} a^{*} a=a^{2} a^{+} a=a^{2}$. Similar to the proof of Theorem 2.11, we have $a \in R^{P I}$.
(2) If $x=a^{\#}$ is a solution, then $a a^{\#} a^{*} a=a^{2} a^{+} a^{\#}=a a^{\#}$. Pre-multiply it by a^{2}, we have $x=a$ is a solution. By (1), we claim $a \in R^{P I}$.
(3) If $x=a^{+}$is a solution, then $a a^{+} a^{*} a=a^{2} a^{+} a^{+}$. Post-multiply the equality by $a a^{+}$, one has $a a^{+} a^{*} a=$ $a a^{+} a^{*} a^{2} a^{+}$. Pre-multiply the last equality by $\left(a a^{\#} a^{+}\right)^{*}$, one obtains $a=a^{2} a^{+}$. Hence $a \in R^{E P}$. Now $a^{+} a=a a^{+}=$ $a^{2} a^{+} a^{+}=a a^{+} a^{*} a=a^{*} a$, this infers $a \in R^{P I}$ by [9, Theorem 2.1].
(4) If $x=a^{*}$ is a solution, then $a a^{*} a^{*} a=a^{2} a^{+} a^{*}$. Post-multiply it by $a a^{+}$, one has $a a^{*} a^{*} a=a a^{*} a^{*} a^{2} a^{+}$. Premultiply the last equality by $\left(a^{+} a^{\#}\right)^{*} a^{+}$, one obtains $a=a^{2} a^{+}$. Hence $a \in R^{E P}$, this gives $a a^{*}=a^{2} a^{+} a^{*}=a a^{*} a^{*} a$, so $a^{*}=a^{*} a^{*} a$. Hence we get $a \in R^{S E P}$ by [9, Theorem 2.3(xix)].
(5) If $x=\left(a^{\#}\right)^{*}$ is a solution, then $a\left(a^{\#}\right)^{*} a^{*} a=a^{2} a^{+}\left(a^{\#}\right)^{*}$, this gives $a a^{+}\left(a^{\#}\right)^{*}=a^{\#} a^{2} a^{+}\left(a^{\#}\right)^{*}=a^{\#} a\left(a^{\#}\right)^{*} a^{*} a=$ $a^{\#}\left(a\left(a^{\#}\right)^{*} a^{*} a\right)\left(a^{+} a\right)=a^{\#} a^{2} a^{+}\left(a^{\#}\right)^{*} a^{+} a=a a^{+}\left(a^{\#}\right)^{*} a^{+} a$. Apply the involution on the last equality and we have $a^{\#} a a^{+}=a^{+}$. By [6, Theorem 2.1(xxii)], $a \in R^{E P}$. It follows that $a^{2}=a^{2} a^{+} a=a\left(a^{+}\right)^{*} a^{*} a=a\left(a^{\#}\right)^{*} a^{*} a=a^{2} a^{+}\left(a^{\#}\right)^{*}=$ $a\left(a^{\#}\right)^{*}=a\left(a^{+}\right)^{*}$. Hence $a^{*} a^{*}=a^{+} a^{*}$, this infers $a \in R^{P I}$ by Lemma 2.10.
(6) If $x=\left(a^{+}\right)^{*}$ is a solution, then $a\left(a^{+}\right)^{*} a^{*} a=a^{2} a^{+}\left(a^{+}\right)^{*}$, that is $a^{2}=a\left(a^{+}\right)^{*}$. Hence $a^{*} a^{*}=a^{+} a^{*}$, this infers $a \in R^{P I}$ by Lemma 2.10.

Now, we modify the equation (4) as follows:

$$
\begin{equation*}
a x a^{*} y=y a a^{+} x \tag{5}
\end{equation*}
$$

Theorem 2.13. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{P I}$ if and only if the equality (5) has at least one solution in $\rho_{a}^{2}=\left\{(x, y) \mid x, y \in \rho_{a}=\left\{a, a^{\#}, a^{+},\left(a^{\#}\right)^{*},\left(a^{+}\right)^{*}\right\}\right\}$.

Proof. \Rightarrow Since $a \in R^{P I}, a^{+}=a^{*}$, we have $(x, y)=(a, a)$ is a solution.
$\Leftarrow(1)$ If $y=a$, then we have the equation (4). Then by Theorem $2.12, a \in R^{P I}$.
(2) If $y=a^{\#}$, then we have the equation

$$
\begin{equation*}
a x a^{*} a^{\#}=a^{\#} a a^{+} x . \tag{6}
\end{equation*}
$$

(i) If $x=a$, then $a^{2} a^{*} a^{\#}=a^{\#} a a^{+} a=a a^{\#}$, this gives $a a^{*} a=a^{\#} a^{2} a^{*} a^{\#} a^{2}=a^{\#} a a^{\#} a^{2}=a$. Hence $a \in R^{P I}$.
(ii) If $x=a^{\#}$, then $a a^{\#} a^{*} a^{\#}=a^{\#} a a^{+} a^{\#}=a^{\#} a^{\#}$. Pre-multiply the equality by a^{2}, we have $a^{2} a^{*} a^{\#}=a a^{\#}$. It follows that $x=a$ is a solution of the equation (2.6). Hence $a \in R^{P I}$ by (i).
(iii) If $x=a^{+}$, then $a a^{+} a^{*} a^{\#}=a^{\#} a a^{+} a^{+}$, it follows that $a a^{+} a^{*} a^{\#}=a a^{+} a^{*} a^{\#} a a^{+}$. Pre-multiply the equality by a^{+}, we have $a^{+} a^{*} a^{\#}=a^{+} a^{*} a^{\#} a a^{+}$. By Lemma 2.7, $a=a^{2} a^{+}$. Hence $a \in R^{E P}$, this infers $a^{*} a^{+}=a^{*} a^{\#}=a a^{+} a^{*} a^{\#}=$ $a^{\#} a a^{+} a^{+}=a^{+} a^{+}$. Hence $a \in R^{P I}$ by Lemma 2.5.
(iv) If $x=\left(a^{\#}\right)^{*}$, then $a\left(a^{\#}\right)^{*} a^{*} a^{\#}=a^{\#} a a^{+}\left(a^{\#}\right)^{*}$. Noting that $\left(a^{\#}\right)^{*} a a^{+}=\left(a^{\#}\right)^{*}$. Then $a\left(a^{\#}\right)^{*} a^{*} a^{\#}=a\left(a^{\#}\right)^{*} a^{*} a^{\#} a a^{+}$. Pre-multiply the equality by $a^{*} a^{+}$, we have $a^{*} a^{\#}=a^{*} a^{\#} a a^{+}$. By Lemma 2.7, we get $a=a^{2} a^{+}$, this infers $a \in R^{E P}$. So $a^{+} a=a a^{+}=a a^{\#}=a\left(a^{+}\right)^{*} a^{*} a^{\#}=a\left(a^{\#}\right)^{*} a^{*} a^{\#}=a^{\#} a a^{+}\left(a^{+}\right)^{*}=a^{+}\left(a^{+}\right)^{*}$. Thus $a \in R^{P I}$.
(v) If $x=\left(a^{+}\right)^{*}$, then $a\left(a^{+}\right)^{*} a^{*} a^{\#}=a^{\#} a a^{+}\left(a^{+}\right)^{*}$, that is $a^{\#} a=a^{\#}\left(a^{+}\right)^{*}$. Thus $a \in R^{P I}$.
(3) If $y=a^{+}$, then we have the equation

$$
\begin{equation*}
a x a^{*} a^{+}=a^{+} x \tag{7}
\end{equation*}
$$

(a) If $x=a$, then $a^{2} a^{*} a^{+}=a^{+} a$. Pre-multiply it by $a^{\#}$, we get $a a^{*} a^{+}=a^{\#}$. Thus $a \in R^{P I}$ by [9, Theorem 2.3(xvi)].
(b) If $x=a^{\#}$, then $a a^{\#} a^{*} a^{+}=a^{+} a^{\#}$. Pre-multiply it by a, we get $a a^{*} a^{+}=a^{\#}$. Thus $a \in R^{P I}$.
(c) If $x=a^{+}$, then $a a^{+} a^{*} a^{+}=a^{+} a^{+}$. Pre-multiply it by a^{+}, we get $a^{+} a^{*} a^{+}=a^{+} a^{+} a^{+}$. Hence $a \in R^{P I}$ by Lemma 2.6.
(d) If $x=\left(a^{\#}\right)^{*}$, then $a\left(a^{\#}\right)^{*} a^{*} a^{+}=a^{+}\left(a^{\#}\right)^{*}$. Pre-multiply the equality by $a a^{+} a^{+}$, one has $a a^{+} a^{+}=a a^{+} a^{+} a^{+}\left(a^{\#}\right)^{*}$. By Lemma 2.8, $a^{+}=a^{+} a^{+}\left(a^{\#}\right)^{*}$. Post-multiply the last equality by $a^{*} a^{+} a$, one has $a^{+} a^{*} a^{+} a=a^{+} a^{+} a^{+} a$, it follows that $a^{+} a^{*} a^{+}=a^{+} a^{+} a^{+}$. Hence $a \in R^{P I}$ by Lemma 2.6.
(e) If $x=\left(a^{+}\right)^{*}$, then $a\left(a^{+}\right)^{*} a^{*} a^{+}=a^{+}\left(a^{+}\right)^{*}$, that is $a^{2} a^{+} a^{+}=a^{+}\left(a^{+}\right)^{*}$. Pre-multiply the last equality by $1-a^{+} a$, one has $\left(1-a^{+} a\right) a^{2} a^{+} a^{+}=0$. By Lemma 2.8, we have $\left(1-a^{+} a\right) a^{2} a^{+}=0$, it follows that $\left(1-a^{+} a\right) a=0$. Hence $a \in R^{E P}$. Then we have $x=\left(a^{\#}\right)^{*}$ is a solution to equation (7). By (d), we get $a \in R^{P I}$.
(4) If $y=\left(a^{\#}\right)^{*}$, then we have the equation

$$
\begin{equation*}
\operatorname{axa}^{*}\left(a^{\#}\right)^{*}=\left(a^{\#}\right)^{*} x . \tag{8}
\end{equation*}
$$

(I) If $x=a$, then $a^{2} a^{*}\left(a^{\#}\right)^{*}=\left(a^{\#}\right)^{*} a$. Post-multiply the equality by $a^{+} a$, we get $a^{2}=\left(a^{\#}\right)^{*} a$. Again postmultiply the last equality by a^{+}, and then apply the involution, we have $a^{\#}=a a^{+} a^{*}$. By [9, Theorem 2.3(xxi)], $a \in R^{P I}$.
(II) If $x=a^{\#}$, then $a a^{\#} a^{*}\left(a^{\#}\right)^{*}=\left(a^{\#}\right)^{*} a^{\#}$. Post-multiply the equality by a^{*}, we get $a a^{\#} a^{*}=\left(a^{\#}\right)^{*} a^{\#} a^{*}$. By Lemma 2.9, one gets $a^{2}=\left(a^{\#}\right)^{*} a$. By the proof of (I), we have $a \in R^{P I}$.
(III) If $x=a^{+}$, then $a a^{+} a^{*}\left(a^{\#}\right)^{*}=\left(a^{\#}\right)^{*} a^{+}$. Pre-multiply the equality by $a^{*} a^{*}$, we get $a^{*} a^{*}=a^{*} a^{+}$. Hence $a \in R^{P I}$ by Lemma 2.10.
(IV) If $x=\left(a^{\#}\right)^{*}$, then $a\left(a^{\#}\right)^{*} a^{*}\left(a^{\#}\right)^{*}=\left(a^{\#}\right)^{*}\left(a^{\#}\right)^{*}$. Take the involution of both sides and we get $a^{\#} a^{*}=a^{\#} a^{\#}$, it follows that $a=a^{2} a^{*}$. Hence $a \in R^{P I}$.
(V) If $x=\left(a^{+}\right)^{*}$, then $a\left(a^{+}\right)^{*} a^{*}\left(a^{\#}\right)^{*}=\left(a^{\#}\right)^{*}\left(a^{+}\right)^{*}$. Apply the involution on the equality, we get $a^{\#} a a^{+} a^{*}=a^{+} a^{\#}$. Pre-multiply it by a, we get $a a^{+} a^{*}=a^{\#}$. Hence $a \in R^{P I}$ by [9, Theorem 2.3(xxi)].
(5) If $y=\left(a^{+}\right)^{*}$, then we have the equation

$$
\begin{equation*}
a x a^{+} a=\left(a^{+}\right)^{*} a a^{+} x . \tag{9}
\end{equation*}
$$

1) If $x=a$, then $a^{2}=\left(a^{+}\right)^{*} a$. Hence $a \in R^{P I}$.
2) If $x=a^{\#}$, then $a a^{\#} a^{+} a=\left(a^{+}\right)^{*} a a^{+} a^{\#}$, that is $a a^{\#}=\left(a^{+}\right)^{*} a^{\#}$. Hence $a \in R^{P I}$.
3) If $x=a^{+}$, then $a a^{+} a^{+} a=\left(a^{+}\right)^{*} a a^{+} a^{+}$, this infers $a a^{+} a^{+} a\left(1-a a^{+}\right)=0$, so $a^{+} a^{+} a\left(1-a a^{+}\right)=0$. By Lemma 2.8, we get $a^{+} a\left(1-a a^{+}\right)=0$. Thus $a \in R^{E P}$, this implies $x=a^{\#}$ is a solution to the equation (9). Then by 2), we get $a \in R^{P I}$.
4) If $x=\left(a^{\#}\right)^{*}$, then $a\left(a^{\#}\right)^{*} a^{+} a=\left(a^{+}\right)^{*} a a^{+}\left(a^{\#}\right)^{*}$. Take the involution of both sides, we get $a^{+} a a^{\#} a^{*}=a^{\#} a a^{+} a^{+}$. So $\left(1-a a^{+}\right) a^{+} a a^{\#} a^{*}=0$. Post-multiply it by $\left(a^{+}\right)^{*}$, we get $\left(1-a a^{+}\right) a^{+} a a^{\#}=0$. Then post-multiply it by $a a^{+}$, we get $\left(1-a a^{+}\right) a^{+}=0$. Hence $a \in R^{E P}$, it follows that $a^{\#} a^{\#}=a^{\#} a a^{+} a^{+}=a^{+} a a^{\#} a^{*}=a^{\#} a^{*}$. Thus we get $a \in R^{P I}$.
5) If $x=\left(a^{+}\right)^{*}$, then $a\left(a^{+}\right)^{*} a^{+} a=\left(a^{+}\right)^{*} a a^{+}\left(a^{+}\right)^{*}$, that is $a\left(a^{+}\right)^{*}=\left(a^{+}\right)^{*}\left(a^{+}\right)^{*}$. Take the involution of the equality, we get $a^{+} a^{*}=a^{+} a^{+}$. Hence $a \in R^{P I}$ by Lemma 2.5.

Now, we modify the equation (5) as follows:

$$
\begin{equation*}
y a x a^{*}=x a a^{+} y . \tag{10}
\end{equation*}
$$

Lemma 2.14. Let $a \in R^{\#} \cap R^{+}$and $x \in R$.

1) If $x\left(a^{+}\right)^{*} a=0$, then $x\left(a^{+}\right)^{*}=0$.
2) If $a\left(a^{+}\right)^{*} x=0$, then $\left(a^{+}\right)^{*} x=0$.

Proof. 1) Noting that $\left(a^{+}\right)^{*}=\left(a^{+}\right)^{*} a^{+} a$. Then we have $x\left(a^{+}\right)^{*}=x\left(a^{+}\right)^{*} a^{+} a^{2} a^{\#}=x\left(a^{+}\right)^{*} a a^{\#}=0$.
2) The proof is similar to 1).

Theorem 2.15. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{P I}$ if and only if the equation (10) has at least one solution in $\tau_{a}^{2}=\left\{(x, y) \mid x, y \in \tau_{a}=\left\{a^{\#}, a^{+}, a^{*},\left(a^{\#}\right)^{*},\left(a^{+}\right)^{*}\right\}\right\}$.

Proof. \Rightarrow If $a \in R^{P I}$, then $(x, y)=\left(a^{+}, a^{*}\right)$ is a solution.
$\Leftarrow(1)$ If $y=a^{\#}$, then we have the equation

$$
\begin{equation*}
a^{\#} a x a^{*}=x a^{\#} . \tag{11}
\end{equation*}
$$

(i) If $x=a^{\#}$, then $a^{\#} a a^{\#} a^{*}=a^{\#} a^{\#}$. Pre-multiply it by a^{2}, we have $a a^{*}=a a^{\#}$. Hence $a \in R^{S E P}$ by [9, Theorem 2.3(v)].
(ii) If $x=a^{+}$, then $a^{\#} a a^{+} a^{*}=a^{+} a^{\#}$. Pre-multiply it by a and we get $a a^{+} a^{*}=a^{\#}$. Hence $a \in R^{\text {SEP }}$ by [9, Theorem 2.3(xxi)].
(iii) If $x=a^{*}$, then $a^{\#} a a^{*} a^{*}=a^{*} a^{\#}$. Post-multiply the equality by $1-a a^{+}$, we get $a^{*} a^{\#}\left(1-a a^{+}\right)=0$. It follows from Lemma 2.9 that $a\left(1-a a^{+}\right)=0$, this infers $a \in R^{E P}$. Hence $a^{*} a^{*}=a^{+} a a^{*} a^{*}=a^{\#} a a^{*} a^{*}=a^{*} a^{\#}$, we pre-multiply it by $a\left(a^{+}\right)^{*}$ and get $a^{2} a^{+} a^{*}=a^{2} a^{+} a^{\#}$, this gives $a a^{*}=a a^{\#}$. Thus $a \in R^{S E P}$ by [9, Theorem 2.3(v)].
(iv) If $x=\left(a^{\#}\right)^{*}$, then $a^{\#} a\left(a^{\#}\right)^{*} a^{*}=\left(a^{\#}\right)^{*} a^{\#}$. Post-multiply the equality by $a a^{+}$, we get $\left(a^{\#}\right)^{*} a^{\#}=\left(a^{\#}\right)^{*} a^{\#} a a^{+}$. Pre-multiply it by $a a^{+} a^{*}$, one has $a^{\#}=a^{\#} a a^{+}$. Hence $a \in R^{E P}$, it follows that $\left(a^{\#}\right)^{*} a^{\#}=a^{\#} a\left(a^{\#}\right)^{*} a^{*}=a^{\#} a\left(a^{+}\right)^{*} a^{*}=$ $a^{\#} a^{2} a^{+}=a a^{+}=a a^{\#}$. Furthermore, we have $\left(a^{\#}\right)^{*} a=\left(a^{\#}\right)^{*} a^{\#} a^{2}=a a^{\#} a^{2}=a^{2}$. Thus $a \in R^{S E P}$.
(v) If $x=\left(a^{+}\right)^{*}$, then $a^{\#} a\left(a^{+}\right)^{*} a^{*}=\left(a^{+}\right)^{*} a^{\#}$, that is $a a^{+}=\left(a^{+}\right)^{*} a^{\#}$. Then $a^{2}=a a^{+} a^{2}=\left(a^{+}\right)^{*} a^{\#} a^{2}=\left(a^{+}\right)^{*} a$. Hence $a \in R^{P I}$.
(2) If $y=a^{+}$, then we have the following equation

$$
\begin{equation*}
a^{+} a x a^{*}=x a a^{+} a^{+} . \tag{12}
\end{equation*}
$$

(a) If $x=a^{\#}$, then $a^{+} a a^{\#} a^{*}=a^{\#} a a^{+} a^{+}$. Hence $\left(1-a a^{+}\right) a^{+} a a^{\#} a^{*}=\left(1-a a^{+}\right) a^{\#} a a^{+} a^{+}=0$. Post-multiply it by $\left(a^{+}\right)^{*}$ and we have $\left(1-a a^{+}\right) a^{+} a a^{\#}=0$. Again post-multiply it by $a a^{*}$ and we have $\left(1-a a^{+}\right) a^{*}=0$. Hence $a \in R^{E P}$. So we can get $a^{+} a^{*}=a^{\#} a^{*}=a^{+} a a^{\#} a^{*}=a^{\#} a a^{+} a^{+}=a^{\#} a^{+}=a^{+} a^{+}$. Hence we get $a \in R^{P I}$ by Lemma 2.5.
(b) If $x=a^{+}$, then $a^{+} a a^{+} a^{*}=a^{+} a a^{+} a^{+}$, that is $a^{+} a^{*}=a^{+} a^{+}$. Hence, $a \in R^{P I}$ by Lemma 2.5.
(c) If $x=a^{*}$, then $a^{+} a a^{*} a^{*}=a^{*} a a^{+} a^{+}$. Hence, we have $a^{*} a^{*}=a^{*} a^{+}$. Then $a \in R^{P I}$ by Lemma 2.10.
(d) If $x=\left(a^{\#}\right)^{*}$, then $a^{+} a\left(a^{\#}\right)^{*} a^{*}=\left(a^{\#}\right)^{*} a a^{+} a^{+}=\left(a^{\#}\right)^{*} a^{+}$, that is $\left(a^{\#}\right)^{*} a^{*}=\left(a^{\#}\right)^{*} a^{+}$. Then take the involution of both sides, we have $a a^{\#}=\left(a^{+}\right)^{*} a^{\#}$. Hence, $a \in R^{P I}$.
(e) If $x=\left(a^{+}\right)^{*}$, then $a^{+} a\left(a^{+}\right)^{*} a^{*}=\left(a^{+}\right)^{*} a a^{+} a^{+}$, that is $a^{+} a^{2} a^{+}=\left(a^{+}\right)^{*} a a^{+} a^{+}$. Then we have $\left(1-a^{+} a\right)\left(a^{+}\right)^{*} a a^{+} a^{+}=$ $\left(1-a^{+} a\right) a^{+} a^{2} a^{+}=0$. By Lemma 2.8 we have $\left(1-a^{+} a\right)\left(a^{+}\right)^{*} a a^{+}=0$, this infers $\left(1-a^{+} a\right)\left(a^{+}\right)^{*} a=0$. By Lemma 2.14, one gets $\left(1-a^{+} a\right)\left(a^{+}\right)^{*}=0$. Post-multiply it by $a^{*} a$, then we have $\left(1-a^{+} a\right) a=0$. Hence, $a \in R^{E P}$ and so $\left(a^{+}\right)^{*}=\left(a^{+}\right)^{*} a^{+} a=\left(a^{+}\right)^{*}\left(a a^{+} a^{+}\right) a=\left(\left(a^{+}\right)^{*} a a^{+} a^{+}\right) a=a^{+} a\left(a^{+}\right)^{*} a^{*} a=a a^{+}\left(a^{+}\right)^{*} a^{*} a=\left(a^{+}\right)^{*} a^{*} a=a a^{+} a=a$. Hence, $a \in R^{P I}$.
(3) If $y=a^{*}$, then we have the following equation

$$
\begin{equation*}
a^{*} a x a^{*}=x a a^{+} a^{*} \tag{13}
\end{equation*}
$$

1) If $x=a^{\#}$, then $a^{*} a a^{\#} a^{*}=a^{\#} a a^{+} a^{*}$. Post-multiply it by $\left(a^{+}\right)^{*}$ and we have $a^{*} a^{\#} a=a a^{\#} a^{+} a^{+} a$. Then $\left(1-a a^{+}\right) a^{*} a a^{\#}=\left(1-a a^{+}\right) a a^{\#} a^{+} a^{+} a=0$. Post-multiply it by $a a^{+}\left(a^{+}\right)^{*}$ and we have $\left(1-a a^{+}\right) a^{+} a=0$. Thus, $a^{+} a=a a^{+} a^{+} a$, this gives $a^{*} a^{\#} a=a a^{\#} a^{+} a^{+} a=a^{\#}$. Hence $a \in R^{P I}$.
2) If $x=a^{+}$, then $a^{*} a a^{+} a^{*}=a^{+} a a^{+} a^{*}$, that is $a^{*} a^{*}=a^{+} a^{*}$. Thus $a \in R^{P I}$ by Lemma 2.10.
3) If $x=a^{*}$, then $a^{*} a a^{*} a^{*}=a^{*} a a^{+} a^{*}=a^{*} a^{*}$. So we can get $a^{2}=a^{2} a^{*} a$. Hence, $a \in R^{P I}$.
4) If $x=\left(a^{\#}\right)^{*}$, then $a^{*} a\left(a^{\#}\right)^{*} a^{*}=\left(a^{\#}\right)^{*} a a^{+} a^{*}=\left(a^{\#}\right)^{*} a^{*}$. Then, we have $a a^{\#}=a a^{\#} a^{*} a$. Hence, $a \in R^{P I}$.
5) If $x=\left(a^{+}\right)^{*}$, then $a^{*} a\left(a^{+}\right)^{*} a^{*}=\left(a^{+}\right)^{*} a a^{+} a^{*}$. Thus, we can get $a a^{+} a^{*} a=a^{2} a^{+} a^{+}$. Then we have $a^{2} a^{+} a^{+}\left(1-a^{+} a\right)=a a^{+} a^{*} a\left(1-a^{+} a\right)=0$. Pre-multiply it by $a^{*} a^{\#}$, then we have $a^{*} a^{+}\left(1-a^{+} a\right)=0$. Premultiply it by $a^{+}\left(a^{+}\right)^{*}$, then we have $a^{+} a^{+}\left(1-a^{+} a\right)=0$. By Lemma 2.8, $a^{+}\left(1-a^{+} a\right)=0$, this infers $a \in R^{E P}$. Then $a a^{+}=a^{2} a^{+} a^{+}=a a^{+} a^{*} a=a^{*} a$. Hence, $a \in R^{P I}$ by [9, Theorem 2.3(iv)].
(4) If $y=\left(a^{\#}\right)^{*}$, then we have the following equation

$$
\begin{equation*}
\left(a^{\#}\right)^{*} a x a^{*}=x a a^{+}\left(a^{\#}\right)^{*} . \tag{14}
\end{equation*}
$$

(I) If $x=a^{\#}$, then $\left(a^{\#}\right)^{*} a a^{\#} a^{*}=a^{\#} a a^{+}\left(a^{\#}\right)^{*}$. Hence $\left(1-a^{+} a\right) a^{\#} a a^{+}\left(a^{\#}\right)^{*}=\left(1-a^{+} a\right)\left(a^{\#}\right)^{*} a^{2} a^{*}=0$. Post-multiply it by $a^{*} a$, we have $\left(1-a^{+} a\right) a=0$. Thus, $a \in R^{E P}$. So we can get $a^{+}\left(a^{+}\right)^{*}=\left(a^{\#} a a^{+}\right)\left(a^{\#}\right)^{*}=\left(a^{\#}\right)^{*} a a^{\#} a^{*}=\left(a^{\#}\right)^{*} a^{+} a a^{*}=$ $\left(a^{\#}\right)^{*} a^{*}=\left(a^{+}\right)^{*} a^{*}=a a^{+}=a^{+} a$. Hence, $a \in R^{P I}$.
(II) If $x=a^{+}$, then $\left(a^{\#}\right)^{*} a a^{+} a^{*}=a^{+} a a^{+}\left(a^{\#}\right)^{*}$, that is $\left(a^{\#}\right)^{*} a^{*}=a^{+}\left(a^{\#}\right)^{*}$. Apply the involution on the equality, we get $a a^{\#}=a^{\#}\left(a^{+}\right)^{*}$. Hence $a \in R^{P I}$.
(III) If $x=a^{*}$, then $\left(a^{\#}\right)^{*} a a^{*} a^{*}=a^{*} a a^{+}\left(a^{\#}\right)^{*}=a^{*}\left(a^{\#}\right)^{*}$. Apply the involution on the equality, we have $a^{\#} a=a^{2} a^{*} a^{\#}$. So we can get $a^{\#}=a^{\#} a^{\#} a=a^{\#} a^{2} a^{*} a^{\#}=a a^{*} a^{\#}$. Hence, $a \in R^{P I}$.
(IV) If $x=\left(a^{\#}\right)^{*}$, then $\left(a^{\#}\right)^{*} a\left(a^{\#}\right)^{*} a^{*}=\left(a^{\#}\right)^{*} a a^{+}\left(a^{\#}\right)^{*}=\left(a^{\#}\right)^{*}\left(a^{\#}\right)^{*}$. Thus, we have $a a^{\#} a^{*} a^{\#}=a^{\#} a^{\#}$. Then pre-multiply it by a and post-multiply it by a^{2}, we have $a a^{*} a=a$. Hence, $a \in R^{P I}$.
(V) If $x=\left(a^{+}\right)^{*}$, then $\left(a^{\#}\right)^{*} a\left(a^{+}\right)^{*} a^{*}=\left(a^{+}\right)^{*} a a^{+}\left(a^{\#}\right)^{*}$, that is $\left(a^{\#}\right)^{*} a^{2} a^{+}=\left(a^{+}\right)^{*} a a^{+}\left(a^{\#}\right)^{*}$. Take the involution of both sides, and we can get $a a^{+} a^{*} a^{\#}=a^{\#} a a^{+} a^{+}$. Post-multiply the equality by $1-a a^{+}$, we have $a a^{+} a^{*} a^{\#}\left(1-a a^{+}\right)=0$. Pre-multiply it by $\left(a^{\#} a\right)^{*}$, and we can get $a^{*} a^{\#}\left(1-a a^{+}\right)=0$. By Lemma 2.9, we get $a\left(1-a a^{+}\right)=0$, so $a \in R^{E P}$. It follows that $a^{*} a^{+}=a^{*} a^{\#}=a^{+} a a^{*} a^{\#}=a a^{+} a^{*} a^{\#}=a^{\#} a a^{+} a^{+}=a^{+} a^{+}$. Hence, we get $a \in R^{P I}$ by Lemma 2.5.
(5) If $y=\left(a^{+}\right)^{*}$, then we have the following equation

$$
\begin{equation*}
\left(a^{+}\right)^{*} a x a^{*}=x\left(a^{+}\right)^{*} . \tag{15}
\end{equation*}
$$

(A) If $x=a^{\#}$, then $\left(a^{+}\right)^{*} a a^{\#} a^{*}=a^{\#}\left(a^{+}\right)^{*}$. Then $a^{\#}\left(a^{+}\right)^{*}\left(1-a a^{+}\right)=\left(a^{+}\right)^{*} a a^{\#} a^{*}\left(1-a a^{+}\right)=0$. Noting that $a a^{\#}\left(a^{+}\right)^{*}=a a^{\#}\left(a^{+} a a^{+}\right)^{*}=a a^{\#} a a^{+}\left(a^{+}\right)^{*}=a a^{+}\left(a^{+}\right)^{*}=\left(a^{+}\right)^{*}$. Then pre-multiply it by $a^{*} a$, we have $a^{+} a\left(1-a a^{+}\right)=0$. Thus, $a \in R^{E P}$. So we can get $a^{\#}\left(a^{+}\right)^{*}=\left(a^{+}\right)^{*} a a^{\#} a^{*}=\left(a^{+}\right)^{*} a^{*}=a a^{+}=a^{+} a=a^{\#} a$. Hence, $a \in R^{P I}$.
(B) If $x=a^{+}$, then $\left(a^{+}\right)^{*} a a^{+} a^{*}=a^{+}\left(a^{+}\right)^{*}$. Then, we can get $a^{+}\left(a^{+}\right)^{*}\left(1-a a^{+}\right)=\left(a^{+}\right)^{*} a a^{+} a^{*}\left(1-a a^{+}\right)=0$. Pre-multiply it by a and we have $\left(a^{+}\right)^{*}\left(1-a a^{+}\right)=0$. Thus, $a \in R^{E P}$. Then, we can get $x=a^{+}=a^{\#}$. Hence, $a \in R^{P I}$ by (A).
(C) If $x=a^{*}$, then $\left(a^{+}\right)^{*} a a^{*} a^{*}=a^{*}\left(a^{+}\right)^{*}=a^{+} a$. Apply the involution on the equality, we have $a^{+} a=a^{2} a^{*} a^{+}$. Pre-multiply it by $a^{\#}$, one gets $a^{\#}=a a^{*} a^{+}$. Hence $a \in R^{P I}$ by [9, Theorem 2.3(xvi)].
(D) If $x=\left(a^{\#}\right)^{*}$, then $\left(a^{+}\right)^{*} a\left(a^{\#}\right)^{*} a^{*}=\left(a^{\#}\right)^{*}\left(a^{+}\right)^{*}$. Thus, we have $a^{+} a^{\#}=a a^{\#} a^{*} a^{+}$. Pre-multiply it by a, we get $a^{\#}=a a^{*} a^{+}$. Hence, $a \in R^{P I}$.
(E) If $x=\left(a^{+}\right)^{*}$, then $\left(a^{+}\right)^{*} a\left(a^{+}\right)^{*} a^{*}=\left(a^{+}\right)^{*}\left(a^{+}\right)^{*}$. Then, we can get $a a^{+} a^{*} a^{+}=a^{+} a^{+}$. Pre-multiply the last equality by a^{+}, one gets $a^{+} a^{*} a^{+}=a^{+} a^{+} a^{+}$. Hence $a \in R^{P I}$ by Lemma 2.6.

Remark: If $(x, y)=\left(a^{*}, a\right)$ is a solution of the equation (10), does $a \in R^{P I}$? We won't discuss it here but it is an interesting and meaningful question and it deserves consideration.

Acknowledgment

The project is supported by the Foundation of Natural Science of China (Grant No.11471282). In addition, the authors thank the anonymous referee for his/her valuable comments.

References

[1] Y. C. Qu, J. C. Wei, H. Yao. Characterizations of normal elements in ring with involution, Acta. Math. Hungar, 2018, 156(2): 459-464.
[2] R. J. Zhao, H. Yao, J. C. Wei. Characterizations of partial isometries and two special kinds of EP elements, Czechoslovak Math. J., 70(145)(2020): 539-551.
[3] A.Ben-Israel and T.N.E Greville, Generalized Inverses: Theory and Applications, 2nd. ed., Springer (New York, 2003).
[4] R. E. Hartwig, Block generalized inverses, Arch. Rational Mech. Anal., 61(1976), 197-251.
[5] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc., 51 (1955), 406-413.
[6] D. Mosić, D. S. Djordjević, J. J. Koliha. EP elements in rings, Linear Algebra Appl., 431(2009), 527-535.
[7] D. Mosić, D. S. Djordjević. Further results on partial isometries and EP elements in rings with involution. Math. Comput. Model. 54(2011), 460-465.
[8] J. J. Koliha, P. Patrício, Elements of rings with equal spectral idempotents, J. Aust. Math. Soc. 72 (1) (2002), 137-152.
[9] D. Mosić, D. S. Djordjević. Partial isometries and EP elements in rings with involution. Electron. J. Linear Algebra, 18(2009), 761-772.
[10] Y. C. Qu, H. Yao, J. C. Wei, Some characterizations of partial isometry elements in rings with involutions, Filomat 33(19)(2019), 6395-6399.
[11] R. J. Zhao, H. Yao, J. C. Wei, EP elements and the solutions of equation in rings with involution, Filomat 32(13)(2018), 4537-4542.
[12] D. Mosić, Generalized inverses, Faculty of Sciences and Mathematics, University of Niš, Niš, 2018.

[^0]: 2010 Mathematics Subject Classification. 15A09, 16U99, 16W10
 Keywords. EP element, partial isometry, strongly EP element, solutions of certain equation.
 Received: 25 May 2020; Revised: 09 February 2021; Accepted: 19 February 2021
 Communicated by Dijana Mosić
 Research supported by the National Natural Science Foundation of China (No.11471282)
 Email addresses: 563672447@qq.com (Jiayi Cai), 351996442@qq.com (Zhichao Chen), jcweiyz@126.com (Junchao Wei)

