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Transmission Problem For The Sturm–Liouville Equation Involving a
Retarded Argument

Erdoğan Şena

aTekirdag Namik Kemal University, Kampus str. 1, TR-59030, Tekirdag, Turkey

Abstract. In this work, spectral properties of a discontinuous boundary-value problem with retarded ar-
gument which contains a spectral parameter in the boundary conditions and in the transmission conditions
at the point of discontinuity are investigated. To this aim, asymptotic formulas for the eigenvalues and
eigenfunctions are obtained.

1. Introduction

Delay differential equations, especially differential equations with retarded argument arise in many areas
of mathematical modelling: for example, population dynamics (taking into account the gestation times),
infectious diseases (accounting for the incubation periods), physiological and pharmaceutical kinetics
(modelling, for example, the body’s reaction to CO2, etc. in circulating blood) and chemical kinetics (such
as mixing reactants), the navigational control of ships and aircraft and more general control problems (see
[1] and the references therein).

Boundary value problems for ordinary differential equations with a parameter in the equation and/or
in the boundary conditions were studied by many authors in various statements (e.g., see [2-10]).

Boundary value problems for differential equations of the second order with retarded argument were
studied in [11-20].

The present article is devoted to studying the spectral properties of the eigenvalues and eigenfunctions
of a boundary value problem with retarded argument. In the present considered problem’s boundary
conditions and transmission conditions involves a spectral parameter. The main result of the present paper
is Theorem 3.3 and Theorem 3.4 on asymptotic formulas for eigenvalues and eigenfunctions.

The operator under consideration is defined by the differential expression

u′′(t) + q(t)u(t − ∆(t)) + ρu(t) = 0 (1)

on
[
0, π2

)
∪

(
π
2 , π

]
, with boundary conditions

u(0)
√
ρ cosα + u′(0) sinα = 0, (2)
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u(π)
√
ρ cos β + u′(π) sin β = 0, (3)

and transmission conditions

1
δ

u(
π
2
− 0) = 3

√
ρu(

π
2

+ 0), (4)

1
δ

u′(
π
2
− 0) = 3

√
ρu′(

π
2

+ 0), (5)

where the real-valued function q(t) is continuous in
[
0, π2

)
∪

(
π
2 , π

]
and has a finite limit q(π2±0) = limt→ π

2 ±0 q(t),

the real valued function ∆(t) ≥ 0 is continuous in
[
0, π2

)
∪

(
π
2 , π

]
and has a finite limit ∆(π2 ±0) = limt→ π

2 ±0 ∆(t),

t−∆(t) ≥ 0, if t ∈
[
0, π2

)
; t−∆(t) ≥ π

2 , if t ∈
(
π
2 , π

]
; ρ is a real spectral parameter and δ , 0 is an arbitrary real

number.
It must be also noted that some applications of second-order boundary value problems which contains

a spectral parameter in transmission conditions can be found in [21].
Let w1(t, ρ) be a solution of Eq. (1) on

[
0, π2

]
, satisfying the initial conditions

w1
(
0, ρ

)
= sinα,w′1

(
0, ρ

)
= −
√
ρ cosα (6)

The conditions (6) define a unique solution of Eq. (1) on
[
0, π2

]
([12], p. 12).

After defining above solution, we shall define the solution w2
(
t, ρ

)
of Eq. (1) on

[
π
2 , π

]
by means of the

solution w1
(
t, ρ

)
by the initial conditions

w2

(
π
2
, ρ

)
= ρ−1/3δ−1w1

(
π
2
, ρ

)
, w′2(

π
2
, ρ) = ρ−1/3δ−1w′1(

π
2
, ρ). (7)

The conditions (7) are defined as a unique solution of Eq. (1) on
[
π
2 , π

]
.

Consequently, the function w
(
t, ρ

)
is defined on

[
0, π2

)
∪

(
π
2 , π

]
by the equality

w(t, ρ) =

{
w1(t, ρ), t ∈ [0, π2 ),
w2(t, ρ), t ∈ (π2 , π]

is a such solution of the Eq. (1) on
[
0, π2

)
∪

(
π
2 , π

]
; which satisfies one of the boundary conditions and both

transmission conditions.

Lemma 1.1. Let w
(
t, ρ

)
be a solution of Eq.(1) and ρ > 0. Then the following integral equations hold:

w1(t, ρ) = sin (α − st) −
1
s

t∫
0

q (τ) sin s (t − τ) w1
(
τ − ∆ (τ) , ρ

)
dτ

(
s =
√
ρ, ρ > 0

)
, (8)

w2(t, ρ) =
1

s2/3δ
w1

(
π
2
, ρ

)
cos s

(
t −

π
2

)
+

w′1
(
π
2 , ρ

)
s5/3δ

sin s
(
t −

π
2

)
(9)

−
1
s

t∫
π/2

q (τ) sin s (t − τ) w2
(
τ − ∆ (τ) , ρ

)
dτ

(
s =
√
ρ, ρ > 0

)
.

Proof. To prove this, it is enough to substitute −s2w1(τ, ρ) − w′′1 (τ, ρ) and −s2w2(τ, ρ) − w′′2 (τ, ρ) instead of
−q(τ)w1(τ − ∆(τ), ρ) and −q(τ)w2(τ − ∆(τ), ρ) in the integrals in (8) and (9) respectively and integrate by
parts twice.
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2. An existence theorem

In this chapter, we show that the characteristic function of the problem (1)-(5) has an infinite set of roots.

Theorem 2.1. The problem (1)-(5) can have only simple eigenvalues.

Proof. Let ρ̃ be an eigenvalue of the problem (1)-(5) and

ũ(t, ρ̃) =

{
ũ1(t, ρ̃), t ∈ [0, π2 ),
ũ2(t, ρ̃), t ∈ (π2 , π]

be a corresponding eigenfunction. Then from (2) and (6) it follows that the determinant

W
[
ũ1(0, ρ̃),w1(0, ρ̃)

]
=

∣∣∣∣∣ ũ1(0, ρ̃) sinα
ũ′1(0, ρ̃) −

√
ρ cosα

∣∣∣∣∣ = 0,

and the functions ũ1(t, ρ̃) and w1(t, ρ̃) are linearly dependent on
[
0, π2

]
. We can also prove that the functions

ũ2(t, ρ̃) and w2(t, ρ̃) are linearly dependent on
[
π
2 , π

]
. Hence

ũ j(t, ρ̃) = R jw j(t, ρ̃)
(
j = 1, 2

)
(10)

for some R1 , 0 and R2 , 0. We must show that R1 = R2. Suppose that R1 , R2. From the equalities (4) and
(10), we have

ũ(
π
2
− 0, ρ̃) − 3

√
ρ̃δũ(

π
2

+ 0, ρ̃) = ũ1(
π
2
, ρ̃) − 3

√
ρ̃δũ2(

π
2
, ρ̃)

= R1w1(
π
2
, ρ̃) − 3

√
ρ̃δR2w2(

π
2
, ρ̃)

=
3
√
ρ̃δR1w2(

π
2
, ρ̃) − 3

√
ρ̃δR2w2(

π
2
, ρ̃)

=
3
√
ρ̃δ (R1 − R2) w2(

π
2
, ρ̃) = 0.

Since δ1 (R1 − R2) , 0 it follows that

w2

(
π
2
, ρ̃

)
= 0. (11)

By the same procedure, from equality (5), we can derive that

w
′

2

(
π
2
, ρ̃

)
= 0. (12)

From the fact that w2(t, ρ̃) is a solution of the differential Eq. (1) on
[
π
2 , π

]
and satisfies the initial conditions

(11) and (12) it follows that w1(t, ρ̃) = 0 identically on
[
π
2 , π

]
(see [12, p. 12, Theorem 1.2.1]).

By using this method, we may also find

w1

(
π
2
, ρ̃

)
= w

′

1

(
π
2
, ρ̃

)
= 0.

From the latter discussions of w2(t, ρ̃) it follows that w1(t, ρ̃) = 0 identically on
[
0, π2

)
∪

(
π
2 , π

]
. But this

contradicts (6), thus completing the proof.
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The function w(t, ρ) defined in introduction is a nontrivial solution of Eq. (1) satisfying conditions (2),
(4) and (5). Putting w(t, ρ) into (3), we get the characteristic equation

H(ρ) ≡
√
ρw(π, ρ) cos β + w′(π, ρ) sin β = 0. (13)

By Theorem 2.1, the set of eigenvalues of boundary-value problem (1)-(5) coincides with the set of real

roots of Eq. (13). Let q1 =
π/2∫
0
|q(τ)|dτ and q2 =

π∫
π/2

∣∣∣q(τ)
∣∣∣ dτ.

Lemma 2.2. (1) Let ρ ≥ 4q2
1. Then for the solution w1

(
t, ρ

)
of Eq. (8), the following inequality holds:∣∣∣w1

(
t, ρ

)∣∣∣ ≤ 2, t ∈
[
0,
π
2

]
. (14)

(2) Let ρ ≥ max
{
4q2

1, 4q2
2

}
. Then for the solution w2

(
t, ρ

)
of Eq. (9), the following inequality holds:

∣∣∣w2
(
t, ρ

)∣∣∣ ≤ 4
√

2
3
√

q2
1δ
, t ∈

[
π
2
, π

]
. (15)

Proof. Let C1ρ = max[0, π2 ]
∣∣∣w1

(
t, ρ

)∣∣∣. Then from (8), for every ρ > 0, the following inequality holds:

C1ρ ≤ |sin (α − st)| +
1
s

C1ρq1 ≤ 1 +
1
s

C1ρq1.

If s ≥ 2q1 then we get (14). Differentiating (8) with respect to t, we have

w′1(t, ρ) = −s cos (α − st) −

t∫
0

q(τ) cos s (t − τ) w1(τ − ∆ (τ) , ρ)dτ (16)

From (16) and (14), for s ≥ 2q1, the following inequalities hold:∣∣∣w′1(t, ρ)
∣∣∣ ≤ s + 2q1 ≤ s + s = 2s,∣∣∣w′1(t, ρ)
∣∣∣

s
≤ 2. (17)

Let C2ρ = max[ π2 ,π]
∣∣∣w2

(
t, ρ

)∣∣∣. Then from (9), (14) and (17), for s ≥ 2q1 and s ≥ 2q2, the following inequalities
hold:

C2ρ ≤
4

3
√

4q2
1δ

+
1
s

C2ρq2,

C2ρ ≤
4
√

2
3
√

q2
1δ
.

Hence, if ρ ≥ max
{
4q2

1, 4q2
2

}
, we get (15).

Theorem 2.3. The problem (1)-(5) has an infinite set of positive eigenvalues.
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Proof. Differentiating (9) with respect to t, we get

w′2(t, ρ) = −
3
√

s
δ

w1

(
π
2
, ρ

)
sin s

(
t −

π
2

)
+

w′1
(
π
2 , ρ

)
3√

s2δ
cos s

(
t −

π
2

)
−

t∫
π/2

q(τ) cos s (t − τ) w2(τ − ∆ (τ) , ρ)dτ (s =
√
ρ, ρ > 0). (18)

From (8), (9), (13), (16) and (18), we get

s

 1
s2/3δ

sin
(
α −

sπ
2

)
−

1
s

π
2∫

0

q(τ) sin s(
π
2
− τ)w1(τ − ∆(τ), ρ)dτ

 cos
sπ
2

−
1

s5/3δ

s cos
(
α −

sπ
2

)
+

π
2∫

0

q(τ) cos s(
π
2
− τ)w1(τ − ∆(τ), ρ)dτ

 sin
sπ
2

−
1
s

π∫
π/2

q(τ) sin s(π − τ)w2(τ − ∆(τ), ρ)dτ

 cos β

+

−
3
√

s
δ

sin
(
α −

sπ
2

)
−

1
s

π
2∫

0

q(τ) sin s(
π
2
− τ)w1(τ − ∆(τ), ρ)dτ

 sin
sπ
2

−
1

3√

s2δ

s cos
(
α −

sπ
2

)
+

π
2∫

0

q(τ) cos s(
π
2
− τ)w1(τ − ∆(τ), ρ)dτ

 cos
sπ
2

−

π∫
π
2

q(τ) cos s(π − τ)w2(τ − ∆(τ), ρ)dτ

 sin β = 0. (19)

There are four possible cases:
1. sinα , 0, sin β , 0;
2. sinα , 0, sin β = 0;
3. sinα = 0, sin β , 0;
4. sinα = 0, sin β = 0.
In this paper, we shall consider only case 1. The other cases may be considered analogically. Let ρ be

sufficiently large. Then, by (14) and (15), the Eq. (19) may be rewritten in the form

3
√

s
δ

[
sin (α − sπ) cos β − cos (α − sπ) sin β

]
+ O(1) = 0

or

3√s sin
(
sπ + β − α

)
+ O(1) = 0. (20)

Obviously, for large s, Eq. (20) has an infinite set of roots. Thus the theorem is proved.
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3. Asymptotic equalities for eigenvalues and eigenfunctions

Now, we begin to study asymptotic properties of eigenvalues and eigenfunctions. In the following we
shall assume that s is sufficiently large. From (8) and (14), we get

w1(t, ρ) = O(1) on [0,
π
2

]. (21)

From (9) and (15), we get

w2(t, ρ) = O(1) on [
π
2
, π]. (22)

The existence and continuity of the derivatives w′1s(t, ρ) for 0 ≤ t ≤ π
2 , |ρ| < ∞, and w′2s(t, ρ) for π

2 ≤ t ≤
π, |ρ| < ∞, follow from Theorem 1.4.1 in [12].

Lemma 3.1. In case 1, the following asymptotic equalities hold:

w′1s(t, ρ) = O(1), t ∈ [0,
π
2

], (23)

w′2s(t, ρ) = O(1), t ∈ [
π
2
, π]. (24)

Proof. By differentiation of (8) with respect to s, we get, by (21)

w′1s(t, ρ) = −
1
s

t∫
0

q(τ) sin s(t − τ)w′1s
(
τ − ∆ (τ) , ρ

)
+ Z(t, ρ),

∣∣∣Z(t, ρ)
∣∣∣ ≤ Z0. (25)

Let Dρ = max[0, π2 ]

∣∣∣w′1s(t, ρ)
∣∣∣. Then the existance of Dρ follows from continuity of derivation for t ∈

[
0, π2

]
.

From (25), we have

Dρ ≤
1
s

q1Dρ + Z0.

Now, let s ≥ 2q1. Then Dρ ≤ 2Z0 and the validity of the asymptotic formula (23) follows. Formula (24) may
be proved analogically.

Theorem 3.2. Let n be a natural number. For each sufficiently large n, in case 1, there is exactly one eigenvalue of

the problem (1)-(5) near
(
n +

α−β
π

)2
.

Proof. We consider the expression which is denoted by O(1) in the Eq. (20):

−
1

3√

s2δ

π
2∫

0

sin
(
s (π − τ) + β

)
q (τ) w1

(
τ − ∆ (τ) , ρ

)
dτ −

π∫
π
2

sin
(
s (π − τ) + β

)
q (τ) w2

(
τ − ∆ (τ) , ρ

)
dτ.

If formulas (21)-(23) are taken into consideration, it can be shown by differentiation with respect to s that
for large s this expression has bounded derivative. It is obvious that for large s, the roots of Eq. (20)
are situated close to entire numbers. We shall show that, for large n, only one root of (20) lies near to
each n +

α−β
π . Let us consider the function J(s) = 3

√
s sin

(
sπ + β − α

)
+ O(1). Its derivative, which has

the form J′(s) = 1
3

3√
s2

sin
(
sπ + β − α

)
+ 3
√

sπ cos
(
sπ + β − α

)
+ O(1), does not vanish for s close to n +

α−β
π for

sufficiently large n. Thus our assertion follows by Rolle’s Theorem.
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Let n be sufficiently large. In what follows we shall denote byρn = s2
n the eigenvalue of the problem (1)-(5)

situated near
(
n +

α−β
π

)2
. Set sn = n +

α−β
π + δn. Then, from (20), it follows that δn = O

(
1

n1/3

)
. Consequently

sn = n +
α − β

π
+ O

( 1
n1/3

)
. (26)

The formula (26) make it possible to obtain asymptotic expressions for eigenfunction of the problem (1)-(5).
From (8), (16) and (21), we get

w1(t, ρ) = sin (α − st) + O
(1

s

)
, (27)

w
′

1(t, ρ) = −s cos (α − st) + O (1) . (28)

From (9), (22), (27) and (28), we get

w2(t, ρ) =
sin (α − st)

s2/3δ
+ O

(1
s

)
. (29)

By putting (26) in the (27) and (29), we derive that

u1n = w1
(
t, ρn

)
= sin

(
α +

(
α − β

)
t

π
− nt

)
+ O

( 1
n1/3

)
,

u2n = w2
(
t, ρn

)
=

sin
(
α +

(α−β)t
π − nt

)
δ
(
n +

α−β
π

)2/3
+ O

(1
n

)
.

Hence the eigenfunctions un(t) have the following asymptotic representation:

un(t) =


sin

(
α +

(α−β)t
π − nt

)
+ O

(
1

n1/3

)
for t ∈ [0, π2 ),

sin
(
α+

(α−β)t
π −nt

)
δ
(
n+

α−β
π

)2/3 + O
(

1
n

)
for t ∈ (π2 , π].

Under some additional conditions the more exact asymptotic formulas which depend upon the retardation
may be obtained. Let us assume that the following conditions are fulfilled:

a) The derivatives q′(t) and ∆′′(t) exist and are bounded in [0, π2 )
⋃

(π2 , π] and have finite limits
q′(π2 ± 0) = lim

t→ π
2 ±0

q′(t) and ∆′′(π2 ± 0) = lim
t→ π

2 ±0
∆′′(t), respectively.

b) ∆′(t) ≤ 1 in [0, π2 )
⋃

(π2 , π], ∆(0) = 0 and lim
t→ π

2 +0
∆(t) = 0.

By using b), we have

t − ∆(t) ≥ 0, t ∈ [0,
π
2

); (30)

t − ∆(t) ≥
π
2
, t ∈ (

π
2
, π]. (31)

From (27), (29), (30) and (31), we have

w1
(
τ − ∆ (τ) , ρ

)
= sin (α − s (τ − ∆ (τ))) + O

(1
s

)
, (32)

w2
(
τ − ∆ (τ) , ρ

)
=

sin (α − s (τ − ∆ (τ)))
s2/3δ

+ O
(1

s

)
. (33)
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Putting these expressions into (19), we have

s1/3

δ
sin(α − β − sπ) +

1
2s2/3δ

π
2∫

0

[
cos(β − α + sπ) cos s∆(τ) + sin(β − α + sπ) sin s∆(τ)

− cos(β − α + sπ) cos s(2τ − ∆(τ)) − sin(β − α + sπ) sin s(2τ − ∆(τ))
]
q(τ)dτ

−
1

2s2/3δ

π∫
π
2

[
cos(β − α + sπ) cos s∆(τ) + sin(β − α + sπ) sin s∆(τ)

− cos(β − α + sπ) cos s(2τ − ∆(τ)) − sin(β − α + sπ) sin s(2τ − ∆(τ))
]
q(τ)dτ + O

(1
s

)
= 0. (34)

Let
K (t, s,∆(τ)) = 1

2δ

t∫
0

q(τ) sin s∆(τ)dτ,

L(t, s,∆(τ)) = 1
2δ

t∫
0

q(τ) cos s∆(τ)dτ.
(35)

It is obviously that these functions are bounded for 0 ≤ t ≤ π, 0 < s < +∞.
Under the conditions a) and b) the following formulas

t∫
0

q(τ) cos s(2τ − ∆(τ))dτ = O
(1

s

)
,

t∫
0

q(τ) sin s(2τ − ∆(τ))dτ = O
(1

s

)
(36)

can be proved by the same technique in Lemma 3.3.3 in [12]. From (34), (35) and (36), we have

s sin
(
β − α + sπ

)
− cos

(
β − α + sπ

)
L (π, s,∆ (τ)) − sin

(
β − α + sπ

)
K (π, s,∆ (τ)) + O

( 1
s1/3

)
= 0.

Therefore, we obtain

tan
(
β − α + sπ

)
=

L (π, s,∆ (τ))
s

+ O
( 1

s4/3

)
.

Again if we take sn = n +
α−β
π + δn, then from (26),

tan
(
β − α +

(
n +

α − β

π
+ δn

)
π

)
= tan (n + δn)π = tan δnπ =

L
(
π,n +

α−β
π ,∆ (τ)

)
πn

+ O
( 1

n4/3

)
.

Hence, for large n, it follows that

δn =
L
(
π,n +

α−β
π ,∆ (τ)

)
nπ

+ O
( 1

n4/3

)
and finally

sn = n +
α − β

π
+

L
(
π,n +

α−β
π ,∆ (τ)

)
nπ

+ O
( 1

n4/3

)
. (37)

Thus, we have proven the following theorem.
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Theorem 3.3. If conditions a) and b) are satisfied, then the positive eigenvalues ρn = s2
n of the problem (1)-(5) have

the asymptotic formula (37) for n→∞ .

We now may obtain a sharper asymptotic formula for the eigenfunctions. From (8) and (32), we have

w1(t, ρ) = sin (α − st) −
1
s

t∫
0

q (τ) sin s (t − τ) sin s (α − s (τ − ∆ (τ))) dτ + O
( 1

s2

)
.

Thus, from (35) and (36), it follows that

w1(t, ρ) = sin (α − st)
[
1 +

K (t, s, ∆(τ))
s

]
− cos (α − st)

L(t, s,∆(τ))
s

+ O
( 1

s2

)
. (38)

Replacing s by sn and using (37), we have

u1n(t) = w1(t, ρn) = sin
(
α −

(
n +

α − β

π

)
t
) 1 +

K
(
t,n +

α−β
π ,∆ (τ)

)
n


−

cos
(
α −

(
n +

α−β
π

)
t
)

nπ

[
L
(
π,n +

α − β

π
,∆ (τ)

)
− πL

(
t,n +

α − β

π
,∆ (τ)

)]
+ O

( 1
n2

)
. (39)

From (16), (32) and (35), for t ∈
[
0, π2

]
, it follows that

w′

1

(
t, ρ

)
s

= − cos (α − st)
[
1 +

K (t, s, ∆(τ))
s

]
−

L(t, s,∆(τ)) sin (α − st)
s

+ O
( 1

s2

)
. (40)

From (9), (33), (36), (38) and (40), for t ∈
[
π
2 , π

]
, we have

w2
(
t, ρ

)
=

1
s2/3δ

sin
(
α −

sπ
2

) 1 +
K

(
π
2 , s,∆(τ)

)
s

 − L
(
π
2 , s,∆(τ)

)
cos

(
α − sπ

2

)
s

+ O
( 1

s8/3

)
× cos s

(
t −

π
2

)
−

1
s2/3δ

cos
(
α −

sπ
2

) 1 +
K

(
π
2 , s,∆(τ)

)
s


+

L
(
π
2 , s,∆(τ)

)
sin

(
α − sπ

2

)
s

+ O
( 1

s8/3

) sin s
(
t −

π
2

)

−
1

s5/3δ

t∫
π/2

q (τ) sin s (t − τ) sin (α − s (τ − ∆ (τ))) dτ + O
( 1

s2

)

=
sin (α − st)

s2/3δ

[
1 +

K (t, s,∆(τ))
s

]
−

L (t, s,∆(τ)) cos (α − st)
s5/3δ

+ O
( 1

s2

)
.

Now, replacing s by sn and using (37), we have

u2n(t) = w2(t, ρn) =
sin

(
α −

(
n +

α−β
π

)
t
)

n2/3δ

1 +
K

(
t,n +

α−β
π ,∆ (τ)

)
n


+

cos
(
α −

(
n +

α−β
π

)
t
)

n5/3δπ

[
L
(
π,n +

α − β

π
,∆ (τ)

)
− πL

(
t,n +

α − β

π
,∆ (τ)

)]
+ O

( 1
n2

)
. (41)

Thus, we have proven the following theorem.
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Theorem 3.4. If conditions a) and b) are satisfied, then the eigenfunctions un(t) of the problem (1)-(5) have the
following asymptotic representation for n→∞ :

un(t) =


u1n(t) for t ∈ [0, π2 ),

u2n(t) for t ∈ (π2 , π],

where u1n(t) and u2n(t) defined as in (39) and (41) respectively.
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