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Abstract. We present generalized extensions of Berezin number inequalities involving the Euclidean
Berezin number and f�connection of operators.

1. Introduction

LetH be a complex Hilbert space with an inner product `�, �e and the corresponding norm Y � Y. Let L�H�
be the C�-algebra of all bounded linear operators fromH into itself. In the case when dimH � n, we identify
L�H� with the matrix algebraMn of all n�n complex matrices. An operator A > L�H� is said to be positive,
and denoted A C 0, if `Ax,xe C 0 for all x >H.

The numerical range of T > L�H� is defined as

W�T� � �`Tx,xe � x >H, YxY � 1�
and the numerical radius of T, denoted by w�T�, is defined by w�T� � sup�SzS � z > W�T��.

It is well-known that the set W�T� is a convex subset of the complex plane and that the numerical radius
w��� is a norm on L�H�; being equivalent to the usual operator norm YTY � sup�YTxY � x > H, YxY � 1�. In
fact, for every T > L�H�,

1
2
YTY B w�T� B YTY. (1)

Obtaining sharper lower and upper bounds of (1) have attracted numerous researchers due to its applica-
tions in the operator theory and other fields. For example, bounds for the zeros of polynomials is an inter-
esting application of the numerical radius inequalities (see [7]). We refer the reader to [9, 11, 18, 23, 24, 28]
as a sample of references treating numerical radius inequalities.
Another interesting set of applications of the quantity w�A� includes the study of perturbation, convergence
and approximation problems as well as iterative methods, etc; [2].

A Hilbert space H � H�Ω� of complex valued functions on a nonempty open set Ω ` C which has the
property that point evaluations are continuous, is called a functional Hilbert space. The point evaluations are
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continuous means for each λ > Ω, the map f z� f �λ� is a continuous linear functional onH. For each λ > Ω,
there is a unique element kλ ofH such that f �λ� � ` f , kλe for all f >H by Riesz representation theorem. The
collection �kλ � λ > Ω� is known as the reproducing kernel ofH. Problem 37 of [14] states that the reproducing
kernel of a functional Hilbert space H with �en� as an orthonormal basis is kλ�z� � Q

n
en�λ�en�z�. Let

k̂λ � kλ~YkλY be the nomalized reproducing kernel of H, where λ > Ω. The function Ã defined on Ω by
Ã�λ� � `Ak̂λ, k̂λe is the Berezin symbol of a bounded linear operator A on H. The Berezin set and the Berezin
number of the operator A are defined by

Ber�A� � �Ã�λ� � λ > Ω� and ber�A� � sup�SÃ�λ�S � λ > Ω�,
respectively. These definitions are named in honor of Felix Berezin, who introduced these notions in [8].
For our purpose, we set the Berezin norm of an operator as YAYber � sup�S`Ak̂λ1 , k̂λ2eS � λ1, λ2 > Ω�. Clearly,
the Berezin symbol Ã is a bounded function on Ω whose values lie in the numerical range of the operator
A, and hence

Ber�A� b W�A� and ber�A� B w�A�.
The Berezin number of an operator T satisfies the following properties:
(i) ber�βT� � SβSber�T� for all β > C.
(ii) ber�T � S� B ber�T� � ber�S�.
Let Ti > L�H�Ω��,1 B i B n. Bakherad [4] then introduced the concept of generalized Euclidean Berezin
number of T1, . . . ,Tn as

berr�T1, . . . ,Tn� � sup
λ>Ω

� n

Q
i�1

S`Tik̂λ, k̂λeSr�
1~r

.

The generalized Euclidean Berezin number berr, r C 1, has the following properties:
(i) berr�βT1, . . . , βTn� � SβS berr�T1, . . . ,Tn� for all β > C;
(ii) berr�T1 � S1, . . . ,Tn � Sn� B berr�T1, . . . ,Tn� � berr�S1, . . . ,Sn�,
where Ti,Si > L�H�Ω��,1 B i B n.

The Berezin symbol has been studied in detail for Toeplitz and Hankel operators on Hardy and Bergman
spaces. A nice property of the Berezin symbol is mentioned next. If Ã�λ� � B̃�λ� for all λ > Ω, then A � B.
Therefore, the Berezin symbol uniquely determines the operator. Some excellent results about the Berezin
number were found in [4, 5, 13, 25–27] very recently.

Among many techniques in obtaining numerical radius and Berezin number inequalities is the study
of certain scalar ones. For example, the classical Young inequality which states that if a, b C 0 and 0 B β B 1,
then

aβb1�β
B βa � �1 � β�b, (2)

is an example of such important scalar inequalities.
During the last decades several generalizations, reverses, refinements and applications of the Young in-
equality in various setting have been given, see [3, 19–21] and the references therein. A refinement of
inequality (2) is presented by Kittaneh and Manasrah [19] as follows:

aβb1�β
B βa � �1 � β�b � r0�a

1
2 � b

1
2 �2, where r0 � min�β,1 � β�. (3)

Later, the same authors in [1] presented the general form of (3) as follows:

�aβb1�β�m � rm
0 �a

m
2 � b

m
2 �2

B �βa � �1 � β�b�m, where r0 � min�β,1 � β� (4)

and for any positive integer m. Recently, Choi [10] gave a further refinement of the Young inequality as
follows:

�aβb1�β�m � �2r0�m ��a � b
2

�
m

� �ab� m
2 � B �βa � �1 � β�b�m, (5)

�aβb1�β�m � �2R0�m ��a � b
2

�
m

� �ab� m
2 � C �βa � �1 � β�b�m, (6)
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where r0 � min�β,1 � β� and R0 � max�β,1 � β�.
We refer the reader also to [22, Section 2.4] for more elaboration on this refinement.

We know from [15] that for 0 B β B 1 and r C 1,

βa � �1 � β�b B �βar � �1 � β�br� 1
r . (7)

It follows from (7) and inequality (5) that

�aβb1�β�m � �2r0�m ��a � b
2

�
m

� �ab� m
2 � B �βar � �1 � β�br� m

r , (8)

where r0 � min�β,1 � β�. In particular, for β � 1
2 , we get

�a
1
2 b

1
2 �m � ��a � b

2
�

m

� �ab� m
2 � B

1
2

m
r
�ar � br� m

r . (9)

In 1952, Kato [16] showed the mixed Schwarz inequality, which asserts

S`Ax, yeS2 B bSAS2β x,xg bSA�S2�1�β� y, yg , 0 B β B 1, (10)

for the operator A > L�H� and the vectors x, y >H, where SAS � �A�A�1~2.
The objective of this paper is to present some results of Berezin number inequalities involving f -

connection of operators. Finally, we present a generalized Euclidean Berezin number inequality and refine
the inequality (13).

Many related results that extend known results from the literature will be presented with an empha-
size on the relation with known results in the literature. The first needed inequality is the following
generalization of the mixed Cauchy-Schwarz inequality [17, Theorem 1].

Lemma 1.1. Let A > L�H� and let f and 1 be non-negative continuous functions on �0,ª� satisfying the identity
f �t�1�t� � t for all t > �0,ª�. Then

S`Ax, yeS B Y f �SASx�YY1�SA�S�yY
for all x, y inH.

When dealing with inner product inequalities, the following inequality becomes handy [12, Theorem
1.2]:

f �`Ax,xe� B ` f �A�x,xe , (11)

valid for the convex function f � J � R, the self adjoint operator A with spectrum in J and the unit vector
x >H. The inequality (11) is reversed when f is concave. As a consequence of this inequality, we obtain the
following celebrated McCarthy inequality.

Lemma 1.2. Let T > L�H�, T C 0 and x >H be a unit vector. Then
(i) `Tx,xer

B `Trx,xe for r C 1;
(ii) `Trx,xe B `Tx,xer for 0 @ r B 1.

2. Main Results

2.1. Berezin number inequalities for f�connections of operators
For positive definite operators T,S > L�H�, the operator geometric mean is defined by

T ®S � T1~2�T�1~2ST�1~2�1~2T1~2.
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Let f be a continuous function defined on the real interval J containing the spectrum of T�1~2ST�1~2, where S
is a self-adjoint operator and T is a positive invertible operator. By using the continuous functional calculus,
the f -connection σ f is defined as follows

Tσ f S � T1~2 f �T�1~2ST�1~2�T1~2. (12)

Note that for the functions �1 � β� � βt and tβ, the definition (12) leads to the arithmetic and geometric
operator means, respectively; see [12]. The aim of this subsection is to extend and generalize main result of
[6, Theorem 2].

Theorem 2.1. Let T,S,X > L�H� be such that T,S are positive invertible. Then for m >N and r C 1,

berm��Tσ f S�X� B 2�m~rberm~r��X�T1~2 f 2�T�1~2ST�1~2�T1~2X�r � Tr� � inf
λ>Ω

ξ�k̂λ�,
where

ξ�k̂λ� � c1
2
�X�T1~2 f 2�T�1~2ST�1~2�T1~2X � T�k̂λ, k̂λh

m

� �`X�T1~2 f 2�T�1~2ST�1~2�T1~2Xk̂λ, k̂λe`Tk̂λ, k̂λe�m~2.

Proof. We have

S`�Tσ f S�Xk̂λ, k̂λeSm
� S`T1~2 f �T�1~2ST�1~2�T1~2Xk̂λ, k̂λeSm
� S` f �T�1~2ST�1~2�T1~2Xk̂λ,T1~2k̂λeSm
B Y f �T�1~2ST�1~2�T1~2Xk̂λYmYT1~2k̂λYm

� �` f �T�1~2ST�1~2�T1~2Xk̂λ, f �T�1~2ST�1~2�T1~2Xk̂λe1~2`T1~2k̂λ,T1~2k̂λe1~2�m

� �`X�T1~2 f 2�T�1~2ST�1~2�T1~2Xk̂λ, k̂λe1~2`Tk̂λ, k̂λe1~2�m

B 2
�m

r �`X�T1~2 f 2�T�1~2ST�1~2�T1~2Xk̂λ, k̂λer � `Tk̂λ, k̂λer� m
r

� ��`X�T1~2 f 2�T�1~2ST�1~2�T1~2Xk̂λ, k̂λe � `Tk̂λ, k̂λe
2

�
m

� �`X�T1~2 f 2�T�1~2ST�1~2�T1~2Xk̂λ, k̂λe`Tk̂λ, k̂λe�m~2¡

B 2
�m

r `��X�T1~2 f 2�T�1~2ST�1~2�T1~2X�r � Tr�k̂λ, k̂λem~r

� ��`�X�T1~2 f 2�T�1~2ST�1~2�T1~2X � T�k̂λ, k̂λe
2

�
m

� �`X�T1~2 f 2�T�1~2ST�1~2�T1~2Xk̂λ, k̂λe`Tk̂λ, k̂λe�m~2¡.
Taking supremum over λ > Ω, we get the desired result.

Putting m � 1 � r in Theorem 2.1 and using the fact that ber�T� B YTY,we get the following result as follows.

Corollary 2.2. Let T,S,X > L�H� be such that T,S are positive invertible. Then

ber��Tσ f S�X� B 1
2

ber�X�T1~2 f 2�T�1~2ST�1~2�T1~2X � T� � inf
λ>Ω

ξ�k̂λ�,
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where

ξ�k̂λ� � dX�T1~2 f 2�T�1~2ST�1~2�T1~2X � T�
2

k̂λ, k̂λi
� �`X�T1~2 f 2�T�1~2ST�1~2�T1~2Xk̂λ, k̂λe`Tk̂λ, k̂λe�1~2.

Taking f �t� � t1~2 and m � 1 � r in Theorem 2.1, obtain the following result.

Corollary 2.3. Let T,S,X > L�H� be such that T,S are positive invertible. Then

ber��T ®S�X� B 1
2

ber�X�SX � T� � inf
λ>Ω

ξ�k̂λ�,
where

ξ�k̂λ� � d�X�SX � T�
2

k̂λ, k̂λi � �`�X�SX�k̂λ, k̂λe`Tk̂λ, k̂λe�1~2.

Taking X � I in Theorem 2.1 we get the following.

Corollary 2.4. Let T,S > L�H� be positive invertible. Then for m >N, r C 1

ZTσ f SZm

ber B 2�m~rZ�T1~2 f 2�T�1~2ST�1~2�T1~2�r � TrZm~r

ber � infξ�k̂λ�,
where

ξ�k̂λ� � b�T1~2 f 2�T�1~2ST�1~2�T1~2 � T�
2

k̂λ, k̂λgm

� �`T1~2 f 2�T�1~2ST�1~2�T1~2k̂λ, k̂λe`Tk̂λ, k̂λe�m~2.

Taking r � 1, X � I and f �t� � t1~2, we have the following simplified form.

Corollary 2.5. Let T,S > L�H� be such that T,S are positive invertible. Then for m >N,

ZT ®SZm

ber B 2�mZS � TZm

ber � inf
λ>Ω

ξ�k̂λ�,
where

ξ�k̂λ� � cS � T
2

k̂λ, k̂λh
m

� `Sk̂λ, k̂λem~2`Tk̂λ, k̂λem~2.

Proposition 2.6. Let T,S,X > L�H� such that T,S A 0 and r A 1,m >N. Then

Z�Tσ f S�XZm

ber B 2�m~r�ZX�T1~2 f 2�T�1~2ST�1~2�T1~2XZr

ber �
ZTZr

ber�m~r � inf
λ, µ >Ω

ξ�k̂λ, k̂µ�,
where

ξ�k̂λ, k̂µ� ���
`X�T1~2 f 2�T�1~2ST�1~2�T1~2k̂λk̂λ, k̂λe � `Tk̂µ, k̂µe

2
�
�

m

� �`X�T1~2 f 2�T�1~2ST�1~2�T1~2Xk̂λ, k̂λe`Tk̂µ, k̂µe�m~2
.

Proof. Let k̂λ, k̂µ >H�Ω�, then

S`�Tσ f S�Xk̂λ, k̂µeSm � S`T1~2 f �T�1~2ST�1~2�T1~2Xk̂λ, k̂µeSm
� S` f �T�1~2ST�1~2�T1~2Xk̂λ,T1~2k̂µeSm
B `X�T1~2 f 2�T�1~2ST�1~2�T1~2Xk̂λ, k̂λem~2`Tk̂µ, k̂µem~2.
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Using similar technique as in Theorem 2.1, we get

`�Tσ f S�Xk̂λ, k̂µem
B 2�m~r�`X�T1~2 f 2�T�1~2ST�1~2�T1~2Xk̂λ, k̂λer � `Tk̂µ, k̂µer�m~r

� ���
aX�T1~2 f 2�T�1~2ST�1~2�T1~2Xk̂λ, k̂λf � `Tk̂µ, k̂µe

2
�
�

m

� �`X�T1~2 f 2�T�1~2ST�1~2�T1~2Xk̂λ, k̂λe`Tk̂µ, k̂µe�m~2¡
Taking supremum over λ,µ > Ω, we have

Y�Tσ f S�XYm
B 2�m~r�YX�T1~2 f 2�T�1~2ST�1~2�T1~2XYr � YTYr�m~r � inf

λ, µ>Ω
ξ�k̂λ, k̂µ�,

where

ξ�k̂λ, k̂µ� � �
�
`X�T1~2 f 2�T�1~2ST�1~2�T1~2Xk̂λ, k̂λe � `Tk̂µ, k̂µe

2
�
�

m

� �`X�T1~2 f 2�T�1~2ST�1~2�T1~2Xk̂λ, k̂λe`Tk̂µ, k̂µe�m~2
.

In particular, letting f �t� � t1~2, m � 1,2, ... we have the following simplified form.

Corollary 2.7. Let T,S,X > L�H� such that T,S A 0 and let r A 1. Then

Z�T ®S�XZm

ber B 2�m~r�ZX�SXZr

ber �
ZTZr

ber�m~r

� inf
λ, µ >Ω

¢̈̈¦̈̈¤�
`X�SXk̂λ, k̂λe � `Tk̂µ, k̂µe

2
�

m

� �`X�SXk̂λ, k̂λe`Tk̂µ, k̂µe�m~2
£̈̈§̈̈¥ .

2.2. Generalized Euclidean Berezin number inequalities.

In this subsection, we show our main results; starting with the generalized Euclidean Berezin number.
Our first result is a generalized refinement of [6, Theorem 9].

Theorem 2.8. Let H � H�Ω� be a reproducing kernel Hilbert space on Ω and Ai,Bi,Si > L�H� �i � 1,2, . . . ,n�
and let f and 1 be non negative continuous functions on �0,ª� such that f �t�1�t� � t for all t > �0,ª�. Then for
m � 1,2, . . . and r,p C m,

berp
p�A�

1 S1B1, . . . ,A�

nSnBn� B n1� m
r

2
m
r

ber
m
r � n

Q
i�1

��B�i f 2�SSiS�Bi� pr
m � �A�

i 1
2�SS�i S�Ai� pr

m ��
� inf
λ>Ω

ξ�k̂λ�,
where

ξ�k̂λ� � n

Q
i�1

� 1
2m

�`��B�i f 2�SSiS�Bi� p
m � �A�

i 1
2�SS�i S�Ai� p

m �k̂λ, k̂λe�m

� �`�B�i f 2�SSiS�Bi� p
m k̂λ, k̂λe`�A�

i 1
2�SS�i S�Ai� p

m k̂λ, k̂λe� m
2 	.
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Proof. Let k̂λ is the normalized reproducing kernel ofH�Ω�, then

n

Q
i�1

S`A�

i SiBik̂λ, k̂λeSp

�

n

Q
i�1

S`SiBik̂λ,Aik̂λeSp

B

n

Q
i�1

Y f �SSiS�Bik̂λYpY1�SS�i S�Aik̂λYp (by Lemma 1.1)

�

n

Q
i�1

` f �SSiS�Bik̂λ, f �SSiS�Bik̂λe p
2 `1�SS�i S�Aik̂λ,1�SS�i S�Aik̂λe p

2

�

n

Q
i�1

�`B�i f 2�SSiS�Bik̂λ, k̂λe p
2m `A�

i 1
2�SS�i S�Aik̂λ, k̂λe p

2m �m

B

n

Q
i�1

�`�B�i f 2�SSiS�Bi� p
m k̂λ, k̂λe1~2`�A�

i 1
2�SS�i S�Ai� p

m k̂λ, k̂λe1~2�m
(by Lemma 1.2)

B

n

Q
i�1

�1
2
�`�B�i f 2�SSiS�Bi� p

m k̂λ, k̂λer � `�A�

i 1
2�SS�i S�Ai� p

m k̂λ, k̂λer��
m
r

�
n

Q
i�1

��1
2
�`�B�i f 2�SSiS�Bi� p

m k̂λ, k̂λe � `�A�

i 1
2�SS�i S�Ai� p

m k̂λ, k̂λe��
m

� �`�B�i f 2�SSiS�Bi� p
m k̂λ, k̂λe`�A�

i 1
2�SS�i S�Ai� p

m k̂λ, k̂λe�m~2	 (by (9))

B
n1�m~r

2m~r d n

Q
i�1

��B�i f 2�SSiS�Bi� pr
m � �A�

i 1
2�SS�i S�Ai� pr

m � k̂λ, k̂λi
m
r

�
n

Q
i�1

�`1
2
��B�i f 2�SSiS�Bi� p

m � �A�

i 1
2�SS�i S�Ai� p

m � k̂λ, k̂λem

� �`�B�i f 2�SSiS�Bi� p
m k̂λ, k̂λe`�A�

i 1
2�SS�i S�Ai� p

m k̂λ, k̂λe� m
2 	,

where the last inequality follows from (11), noting concavity of the mapping t ( t
m
r , as we have m B r.

Taking the supremum over λ > Ω, we get the desired inequality.

Letting m � 1 in Theorem 2.8, we get [6, Theorem 9].

Corollary 2.9. Let Ai,Bi,Si > L�H� �i � 1, . . . ,n� and let f and 1 be non negative continuous functions on �0,ª�
such that f �t�1�t� � t for all t > �0,ª�. Then for all r,p C 1,

berp
p�A�

1 S1B1, . . . ,A�

nSnBn� B n1� 1
r

21~r ber
1
r � n

Q
i�1

��B�i f 2�SSiS�Bi�pr � �A�

i 1
2�SS�i S�Ai�pr��

� inf
λ>Ω

ξ�k̂λ�,
where

ξ�k̂λ� � n

Q
i�1

�`1
2
��B�i f 2�SSiS�Bi�p � �A�

i 1
2�SS�i S�Ai�p�k̂λ, k̂λe

� �`�B�i f 2�SSiS�Bi�pk̂λ, k̂λe`�A�

i 1
2�SS�i S�Ai�pk̂λ, k̂λe� 1

2 	.
Choosing f �t� � 1�t� � t

1
2 and Si � I for i � 1,2, ...,n in Theorem 2.8 we obtain the following simpler form.



S. Sahoo et al. / Filomat 35:6 (2021), 2043–2053 2050

Corollary 2.10. Let Ai,Bi > L�H� �i � 1,2, . . . ,n� and let f and 1 be non negative continuous functions on �0,ª�
such that f �t�1�t� � t for all t > �0,ª�. Then for m � 1,2, . . . , and r,p C m,

berp
p�A�

1 B1, . . . ,A�

nBn� B n1� m
r

2
m
r

ber
m
r � n

Q
i�1

�SBiS 2pr
m � SAiS 2pr

m �� � inf
λ>Ω

ξ�k̂λ�,
where

ξ�k̂λ� � n

Q
i�1

�c1
2
�SBiS 2p

m � SAiS 2p
m � k̂λ, k̂λh

m

� �`SBiS 2p
m k̂λ, k̂λe`SAiS 2p

m k̂λ, k̂λe�
m
2 	 .

Following theorem of this article, we present an upper bound for the generalized Berezin number.

Theorem 2.11. Let Si > L�H� �1 B i B n�. Then for 0 B β B 1,m >N and p C 2m,

berp
p�S1, . . . ,Sn� B ber� n

Q
i�1

�βSSiS p
m � �1 � β�SS�i S p

m �m� � inf
λ>Ω

ξ�k̂λ�,
where
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m

� �`SSiS p
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m k̂λ, k̂λe� m
2
�
� .

Proof. Let k̂λ is the normalized reproducing kernel ofH�Ω�, then
n

Q
i�1

S`Sik̂λ, k̂λeSp

�

n

Q
i�1

�`SSiS2βk̂λ, k̂λe 1
2 `SS�i S2�1�β�k̂λ, k̂λe 1

2 �p (by (10)�
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(by Lemma 1.2�
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Taking supremum over λ > Ω, we get

berp
p�S1, . . . ,Sn� B ber� n

Q
i�1

�βSSiS p
m � �1 � β�SS�i S p

m �m� � inf
λ>Ω

ξ�k̂λ�,
where

ξ�k̂λ� � �2 min�β,1 � β��m
n
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�
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SSiS p
m � SS�i S p

m

2
k̂λ, k̂λi

m

� �`SSiS p
m k̂λ, k̂λe`SS�i S p

m k̂λ, k̂λe� m
2
�
� .

The following simpler form follows from Theorem 2.11 by letting m � 1.

Corollary 2.12. Let Si > L�H� �1 B i B n�. Then for 0 B β B 1 and p C 2,

berp
p�S1, . . . ,Sn� B ber� n

Q
i�1
βSSiSp � �1 � β�SS�i Sp� � inf

λ>Ω
ξ�k̂λ�,

where

ξ�k̂λ� � 2 min�β,1 � β� n

Q
i�1

�d� SSiSp � SS�i Sp
2

� k̂λ, k̂λi � �`SSiSpk̂λ, k̂λe`SS�i Spk̂λ, k̂λe�1~2� .
Letting β � 1

2 and m � 1 in Theorem 2.11, we obtain the following corollary.

Corollary 2.13. Let A,B > L�H�. Then for p C 2,

berp
p�A,B� B 1

2
ber�SASp � SA�Sp � SBSp � SB�Sp� � inf

λ>Ω
ξ�k̂λ�,

where

ξ�k̂λ� � d� SASp � SA�Sp
2
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2
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� `SBSpk̂λ, k̂λe1~2`SB�Sk̂λ, k̂λe1~2.

In particular, we have

ber2�A� B 1
2
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� inf
λ>Ω

�d� SAS2 � SA�S2
2
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�

1
2
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2
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�
1
2

ber�A�A � AA�� � inf
λ>Ω

�1
2
�YAk̂λY2 � YA�k̂λY2� � YAk̂λYYA�k̂λY  ;

which is a refinement of the inequality [5, Corollary 3.2].

ber2�A� B 1
2

ber�A�A � AA��.
Once we finish studying the Euclidean Berezin number, we show a Berezin number inequality.
Hajmohamadi et al. [13] established that

berr�AβXB1�β� B YXYr �ber�βAr � �1 � β�Br� � inf
Yk̂λY�1

ξ�k̂λ�� , (13)

where A,B,X > L�H�, with A,B C 0, r C 2, ξ�k̂λ� � r0�`Ark̂λ, k̂λe 1
2 �`Brk̂λ, k̂λe 1

2 �2, r0 � min�β,1�β� and 0 B β B 1.
The following result is the generalized improvement of (13).
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Theorem 2.14. Let A,B,X > L�H� such that A,B are positive. Then

berr�AβXB1�β� B YXYr �ber�βA
r

2m � �1 � β�B
r

2m � � inf
λ>Ω

ξ�k̂λ�� ,
where

ξ�k̂λ� � �2r0�m �
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2

�
m

� �`A r
2m k̂λ, k̂λe`B r

2m k̂λ, k̂λe� m
2
�
� ,

where, r0 � min�β,1 � β�, r C 2m and 0 B β B 1.

Proof. Let k̂λ is the normalized reproducing kernel ofH�Ω�, then we have

S`AβXB1�βk̂λ, k̂λeSr
� S`XB1�βk̂λ,Aβk̂λeSr
B YXYrYB1�βk̂λYrYAβk̂λYr (by the Cauchy Schwartz inequality)

� YXYr �`B2�1�β�k̂λ, k̂λe r
2m `A2βk̂λ, k̂λe r

2m �m

B YXYr �`A r
m k̂λ, k̂λeβ`B r

m k̂λ, k̂λe1�β�m �by Lemma 1.2�
B YXYr� �β`A r

m k̂λ, k̂λe � �1 � β�`B r
m k̂λ, k̂λe�m

� �2r0�m �
��

`A r
2m k̂λ, k̂λe � `B r

2m k̂λ, k̂λe
2

�
m

� �`A r
2m k̂λ, k̂λe`B r

2m k̂λ, k̂λe� m
2
�
�	,

where the last inequality follows from (5). Taking supremum over λ > Ω, we deduce the desired inequal-
ity.
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