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Abstract. This paper introduces fundamental ideas of bitopological dynamical systems. Here, notions of
bitopological transitivity, point transitivity, pairwise iterated compactness, weakly bitopological transitiv-
ity, etc. are introduced. Later, it is shown that under pairwise homeomorphism, weakly point transitivity
implies weakly bitopological transitivity. Moreover, under pairwise homeomorphism; pairwise compact-
ness and pairwise iterated compactness are found to be equivalent. Later, we apply our results in the
development process of a human embryo from the zygote until birth. During the process of biological
application, we disprove conjecture 1 of Nada and Zohny [S. I. Nada, H. Zohny, An application of relative
topology in biology. Chaos, Solitons and Fractals, 42 (2009) 202–204].

1. Introduction

Dynamical systems deal with systems that evolve with time. In topological dynamical system, we are
concerned with a continuous self map or a homeomorphism on a non-empty topological space. There are
many aspects of topological dynamical system, which have been extensively studied by many researchers
since last century. But, because of the involvement of only one topology, there is a limitation of topological
dynamical system. It cannot represent a system having two physical states at the same time. For example,
in the development of an organism from zygote, the brain together with the central nervous system and
the other body parts grow parallelly since different stem cell layers generate them. Thus, they can be
represented by two topologies. This motivates us to generalize the notion of topological dynamical system.
We consider bitopological space to generalize the notion of topological dynamical system. In a bitopological
space, we get two topologies on the same set that may represent two physical states related to an object at
the same time. In this matter, we must not be confused with the notion “states” of quantum mechanics.

Kelly [16] introduced the concept of bitopological space. Later, bitopological space attracted the attention
of many researchers of various branches. Fletcher et al. [14] introduced the concept of pairwise compactness
in a bitopological space. Pervin [20] extended the concept of continuity and connectedness in a bitopological
space. For recent theoretical works in bitopological space, one may refer to Acharjee and Tripathy [5],
Acharjee et al. [3], Acharjee et al. [4] and many others. Recently, bitopological space has been applied in
many areas of science and social science. One may find its applications in medical science [25], economics
([6, 11]), computer science [10], etc.
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Email addresses: sacharjee326@gmail.com (Santanu Acharjee), kabindragoswami@gmail.com (Kabindra Goswami),

hsarmah@gauhati.ac.in (Hemanta Kumar Sarmah)



S. Acharjee et al. / Filomat 35:6 (2021), 2011–2021 2012

Topological transitivity is one of the most studied notions in the theory of topological dynamical system.
For the motivation of the notion of topological transitivity, one may think of a real physical system, where a
state is never given or measured accurately, but contains certain errors [17]. According to [17], one should
study open subsets of the phase space instead of points and describe how open subsets move in that space.
It is also one of the most important components of chaos.

Kolyada [17], Akin et al. [7] and many others studied transitive map in compact metric spaces. Recently,
transitive map was generalized to G-spaces by Garg and Das [15]. Also, Akin and Carlson [8], Mai and Sun
[18] generalized transitive map in general topological spaces. In this paper, we introduce transitive map in
a bitopological space and study some of its fundamental properties. As per our information; this paper is
the first one to introduce bitopological dynamical system.

The paper is divided into three sections. In the preliminary section, we recall some existing definitions
of bitopological space and topological dynamical system. In the next section, we introduce bitopological
dynamical system. We also introduce bitopological transitivity, point transitivity, pairwise iterated com-
pactness, etc. and establish some relationships among them. As an application of our theory, we show
that the growth process of a human baby from the zygote till its birth can be represented by a bitopologi-
cal dynamical system. Moreover, we give evidence from medical literature that our reasons to choose two
topologies in the growth process of a human baby have advantage over choosing one topology as suggested
by Nada and Zohny [19]. We also disprove conjecture 1 of Nada and Zohny [19] by providing suitable
mathematical theory with the help of some results which are derived in this paper. Recently, Acharjee et
al. [2] disproved the conjecture 2 of Nada and Zohny [19]. Moreover, conjecture 3 of Nada and Zohny [19]
was disproved recently by Acharjee et al. [1].

2. Preliminary Definitions

This section consists of some existing definitions of topological dynamical system and bitopological
space.

Definition 2.1. ([16]) A quasi-pseudo-metric on a set X is a non-negative real-valued function p(, ) on the
product X × X such that:

(i) p(x, x) = 0, where x ∈ X;

(ii) p(x, z) ≤ p(x, y) + p(y, z), where x, y, z ∈ X.

Definition 2.2. ([16]) Let p(, ) be a quasi-pseudo-metric on X, and let q(, ) be defined by q(x, y) = p(y, x),
where x, y ∈ X. Then, q(, ) is also a quasi-pseudo metric on X. We say that p(, ) and q(, ) are conjugate, and
denote the set X with the structure by (X, p, q).

If p(, ) is a quasi-pseudo-metric on a set X, then the open p-sphere with centre x and radius ε > 0 is the
set Sp(x, ε) = {y : p(x, y) < ε}. The collection of all open p-spheres forms a base for a topology. Similarly, q(, )
determines a topology for X. We shall denote the topology determined by p(, ) by τ1 and that of q(, ) by τ2.

Definition 2.3. ([16]) A space X on which are defined two (arbitrary) topologies τ1 and τ2 is called a
bitopological space and denoted by (X, τ1, τ2).

Definition 2.4. ([16]) A bitopological space (X, τ1, τ2) is quasi-pseudo-metrizable if there is a pair p(, ) and
q(, ) of conjugate quasi-pseudo metrices such that τ1 and τ2 are determined by p(, ) and q(, ) respectively.

Definition 2.5. ([21]) A function f from a bitopological space (X, τ1, τ2) into a bitopological space (Y, ψ1, ψ2)
is said to be pairwise continuous ( respectively, a pairwise homeomorphism ) iff the induced functions
f : (X, τ1)→ (Y, ψ1) and f : (X, τ2)→ (Y, ψ2) are continuous ( respectively, homeomorphisms).

Pervin [20] called this a continuous map. However, we shall call this as pairwise continuous map, due
to Reilly [21].
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Definition 2.6. ([12]) A subset A of a bitopological space (X, τ1, τ2) is called bidense in X if A is dense in
both (X, τ1) and (X, τ2).

Definition 2.7. ([14]) A coverU of a bitopological space (X, τ1, τ2) is pairwise open ifU ⊂ τ1 ∪ τ2,U ∩ τ1
contains a non-empty set, andU ∩ τ2 contains a non-empty set.

Definition 2.8. ([14]) A bitopological space (X, τ1, τ2) is pairwise compact provided every pairwise open
cover of X has a finite subcover.

Definition 2.9. ([9]) Let X be a topological space. A continuous map f : X → X is said to be a topological
dynamical system with discrete time or simply a topological dynamical system. When f is a homeomor-
phism (that is, a bijective continuous map with continuous inverse), we also say that it is an invertible
topological dynamical system.

Let Z, R andN denote the set of integers, the set of real numbers and the set of non-negative integers
respectively.

The forward orbit [13] of a point x ∈ X under f is defined as O+(x) = { f n(x) : n ∈ N}, where f n denotes
the nth iteration of the map f i.e. f 0 is the identity map on X and f n = f ◦ f n−1, the composition of f and
f n−1. If f is a homeomorphism, then the backward orbit of x is the set O−(x) = { f−n(x) : n ∈ N} and the full
orbit of x (or simply orbit of x) is the set O(x) = { f n(x) : n ∈ Z}.

Definition 2.10. ([8]) A set A ⊂ X is +invariant when f (A) ⊂ A and A is −invariant when A ⊂ f (A). A is
called invariant when f (A) = A.

We now recall the following notions from Akin and Carlson [8]:
A dynamical system (X, f ), where X is a topological space and f : X→ X is a continuous map, is:
(i) (TT) if for every pair U, V of non-empty open subsets of X, the set N(U, V) = {k ∈ Z : f k(U) ∩ V ,

∅} = {k ∈ Z : U ∩ f−k(V) , ∅} is non-empty. We call this as k−transitivity.
(ii) (DO+) if there exists a point x ∈ X with forward orbit of x, O(x) = { f n(x) : n ∈ N} is dense in X. In

this case, (X, f ) is said to be point transitive and x as a transitive point.
The set of transitive points of X is labeled as Trans f . When Trans f = X, then the system (X, f ) is called

minimal.

3. Main Results

In this section, we define some fundamental notions of bitopological dynamical system. We give suitable
examples and study their various interrelated properties.

Definition 3.1. Let (X, τ1, τ2) be a bitopological space. A bitopological dynamical system is a pair (X, f ),
where (X, τ1, τ2) is a bitopological space and f : X → X is a pairwise continuous map. The dynamics is
obtained by iterating the map.

The forward orbit of a point x ∈ X under f is defined as O+(x) = { f n(x) : n ∈ N}, where f n denotes the
nth iteration of the map f . If f is a homeomorphism, then the backward orbit of x is the set O−(x) = { f−n(x) :
n ∈N} and the full orbit of x (or simply orbit of x) is the set O(x) = { f n(x) : n ∈ Z}.

Here, homeomorphism of f indicates homeomorphism of the function f : (X, τi)→ (X, τi) separately for
all i ∈ {1, 2} as it is clear in terms of bitopological space. Thus, we can consider pairwise homeomorphism
equivalently.

Definition 3.2. Let (X, f ) be a bitopological dynamical system. A point x ∈ X is called a fixed point for f if
f (x) = x. The point x is a periodic point of period n if f n(x) = x, where n ∈ N. The least positive integer n
for which f n(x) = x is called the prime period of x.
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Definition 3.3. Let (X, f ) be a bitopological dynamical system. For U ∈ τ1 and V ∈ τ2, we define the
following:

N(U,V) = {(m,n) : m,n ∈N, f m(U) ∩ V , ∅ and U ∩ f n(V) , ∅}.

The map f is called bitopologically transitive ( or (m,n)−transitive) if for any pair of non-empty sets U ∈ τ1
and V ∈ τ2, the set N(U,V) is non-empty.

The following definition is the generalization of the above definition. The definition given below is
based on both forward iteration and backward iteration.

Definition 3.4. Let (X, f ) be a bitopological dynamical system. For U ∈ τ1 and V ∈ τ2, we define:

Z(U,V) = {(m,n) : m,n ∈ Z, f m(U) ∩ V , ∅ and U ∩ f n(V) , ∅}.

The map f is called weakly bitopologically transitive ( or (m,n)−weakly transitive) if for any pair of
non-empty sets U ∈ τ1 and V ∈ τ2, the set Z(U,V) is non-empty.

Now, we have the following theorem which establishes the relationship between (m,n)−transitivity and
iteration of the function on two topologies.

Theorem 3.1. Let (X, f ) be a bitopological dynamical system. If the map f is pairwise continuous, then the following
conditions are equivalent:

(i) f is bitopologically transitive ( or (m,n)−transitive).
(ii) for every non-empty set U ∈ τ1, ∪

m∈N
f m(U) is dense in (X, τ2) and for every non-empty set V ∈ τ2, ∪

n∈N
f n(V)

is dense in (X, τ1).

Proof. (i) =⇒ (ii): Let U ∈ τ1 be arbitrary. The bitopological transitivity of the map f implies that for each
non-empty set V ∈ τ2, the set N(U,V) is non-empty i.e. f m(U) ∩ V , ∅, where m ∈ N depends on V ∈ τ2.
This gives ∪

m∈N
f m(U) ∩ V , ∅, for each non-empty set V ∈ τ2. Thus, ∪

m∈N
f m(U) is dense in (X, τ2).

Again, let V ∈ τ2 be arbitrary. We get for each non-empty set U ∈ τ1, U ∩ f n(V) , ∅, where n ∈ N
depends on U ∈ τ1 i.e. ∪

n∈N
f n(V) ∩U , ∅, for each non-empty set U ∈ τ1. Thus, ∪

n∈N
f n(V) is dense in (X, τ1).

(ii) =⇒ (i): Let U ∈ τ1 and V ∈ τ2 be two arbitrary non-empty sets. Since ∪
m∈N

f m(U) is dense in (X, τ2),

so ∪
m∈N

f m(U) ∩ V , ∅. This implies that there exists m ∈ N such that f m(U) ∩ V , ∅. Similarly, there exists

n ∈N such that U ∩ f n(V) , ∅. Thus, f is bitopologically transitive.

Similarly, we can get equivalent conditions for weakly bitopologically transitive map. The theorem given
below establishes the relation between forward iteration and backward iteration under weakly transitive
map irrespective ofN, as we had in Theorem 3.1. Here, we are free to consider backward iterations.

Theorem 3.2. Let (X, f ) be a bitopological dynamical system. If the map f is pairwise continuous, then the following
conditions are equivalent:

(i) f is weakly bitopologically transitive ( or (m,n)−weakly transitive).
(ii) for every non-empty set U ∈ τ1, ∪

m∈Z
f m(U) is dense in (X, τ2) and for every non-empty set V ∈ τ2, ∪

n∈Z
f n(V)

is dense in (X, τ1).
(iii) f is (−n,−m)−weakly transitive.

Proof. Proceeding as in theorem 3.1., we can prove (i)⇐⇒(ii).
Now, we prove (i)⇐⇒(iii).
(i)⇐⇒(iii): Since f is (m,n)−weakly transitive, so for any pair of non-empty sets U ∈ τ1 and V ∈ τ2, we

have f m(U) ∩ V , ∅ and U ∩ f n(V) , ∅, where m,n ∈ Z. But, f m(U) ∩ V , ∅ ⇐⇒ U ∩ f−m(V) , ∅ as both
say that there exist x ∈ U and y ∈ V such that y = f m(x). Also, U ∩ f n(V) , ∅ ⇐⇒ f−n(U) ∩ V , ∅. Hence,
f−n(U) ∩ V , ∅ and U ∩ f−m(V) , ∅, where m,n ∈ Z. Thus, f is (−n,−m)−weakly transitive.
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Since; pairwise homeomorphism is a very useful tool to study various properties of bitopological space,
hence our intention is to find behaviour of bitopological dynamical system under pairwise homeomorphism.
Thus, we have the following theorem.

Theorem 3.3. Let f be (m,n)−weakly transitive and pairwise homeomorphism in a bitopological space (X, τ1, τ2).
If every non-empty set U ∈ τ1 is −invariant and every non-empty set V ∈ τ2 is +invariant, then for any pair of
non-empty sets U ∈ τ1 and V ∈ τ2, the set Z(U,V) is infinite.

Proof. For any pair of non-empty sets U ∈ τ1 and V ∈ τ2, either U ∩ V , ∅ or U ∩ V = ∅.
Case I: Let U ∩ V , ∅. So, we consider x ∈ U ∩ V. To prove the set Z(U,V) is infinite, it is sufficient

to prove that for any natural number n, f n(U) ∩ V , ∅ and U ∩ f−n(V) , ∅. We shall use the principle of
mathematical induction to prove this.

Now, f (x) ∈ f (U ∩ V) = f (U) ∩ f (V) ⊂ f (U) ∩ V, as V is +invariant. Hence, f (x) ∈ f (U) ∩ V. Let for
some positive integer k, f k(x) ∈ f k(U) ∩ V. Then, f ( f k(x)) ∈ f ( f k(U) ∩ V) = f k+1(U) ∩ f (V) ⊂ f k+1(U) ∩ V
i.e. f k+1(x) ∈ f k+1(U) ∩ V. Thus, due to the principle of mathematical induction, f n(x) ∈ f n(U) ∩ V for any
natural number n. In other words, f n(U) ∩ V , ∅ for any natural number n.

Again, f−1(x) ∈ f−1(U∩V) = f−1(U)∩ f−1(V) ⊂ U∩ f−1(V), as U is−invariant i.e. f−1(x) ∈ U∩ f−1(V). Let
for some positive integer k, f−k(x) ∈ U ∩ f−k(V). Then, f−1( f−k(x)) ∈ f−1(U ∩ f−k(V)) = f−1(U) ∩ f−(k+1)(V) ⊂
U ∩ f−(k+1)(V) i.e. f−(k+1)(x) ∈ U ∩ f−(k+1)(V). Thus, due to the principle of mathematical induction,
f−n(x) ∈ U ∩ f−n(V) for any natural number n. In other words, U ∩ f−n(V) , ∅ for any natural number n.
Thus, f n(U) ∩ V , ∅ and U ∩ f−n(V) , ∅ for any natural number n.

Case II: Let U∩V = ∅. Then, (m,n)−weakly transitiveness of f implies that there exists an integer m such
that f m(x) = y ∈ f m(U) ∩ V, where x ∈ U and y ∈ V. Since, f is a pairwise homeomorphism, so f m(U) = U1
is a non-empty τ1−open set. Thus, we get y ∈ U1 ∩ V. Hence, U1 ∩ V , ∅. Proceeding as in case I, we get
that, f n0 (U1) ∩ V , ∅ for any natural number n0 i.e. f n0 ( f m(U)) ∩ V , ∅. Thus, f m+n0 (U) ∩ V , ∅ for any
natural number n0.

Again, due to (m,n)−weakly transitiveness of f , there exists an integer n such that f n(y) = x ∈ U∩ f n(V),
where x ∈ U and y ∈ V. Since, f is pairwise homeomorphism, so f n(V) = V1 is a non-empty τ2−open set.
Thus, we get y ∈ U ∩ V1, which yields U ∩ V1 , ∅. Proceeding as in case I, we get that, U ∩ f−n0 (V1) , ∅
for any natural number n0. Hence, U ∩ f−n0 ( f n(V)) , ∅. Thus, U ∩ f n−n0 (V) , ∅, for any natural number n0.
Hence, f m+n0 (U) ∩ V , ∅ and U ∩ f n−n0 (V) , ∅ for any natural number n0. Thus, for any pair of non-empty
sets U ∈ τ1 and V ∈ τ2, the set Z(U,V) is infinite.

Definition 3.5. Let (X, f ) be a bitopological dynamical system. The map f is called point transitive if there
exists a point x ∈ X with O+(x) is bidense in X. Here, the point x is called a transitive point of f .

A point x ∈ X which is not a transitive point is called an intransitive point. The set of all transitive
points (intransitive points) of f is denoted by tr( f ) ( intr( f )) respectively. If tr( f ) = X, then the system (X, f )
is called minimal.

Definition 3.6. Let (X, f ) be a bitopological dynamical system, where f is pairwise homeomorphism. The
map f is called weakly point transitive if there exists a point x ∈ X with O(x) is bidense in X. Here, the
point x is called a weak transitive point of f .

A point x ∈ X which is not a weak transitive point is called a weak intransitive point. The set of all weak
transitive points (weak intransitive points) of f is denoted by wtr( f ) (wintr( f )) respectively. If wtr( f ) = X,
then the system (X, f ) is called weakly minimal.

The relation between weakly point transitive map and weakly bitopologically transitive map is given
below.

Theorem 3.4. Let (X, f ) be a bitopological dynamical system, where f is pairwise homeomorphism. If f is weakly
point transitive, then f is weakly bitopologically transitive.
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Proof. Since f is weakly point transitive, so there exists a point x ∈ X with O(x) is bidense in X. Thus, for
any pair of non-empty sets U ∈ τ1 and V ∈ τ2, we have O(x) ∩U , ∅ and O(x) ∩ V , ∅. This implies there
exist m,n ∈ Z such that f m(x) ∈ U and f n(x) ∈ V. Then, the following cases may arise:

Case I: Let m = n. Then, f m(x) = y ∈ U ∩ V. Hence, f 0(U) ∩ V , ∅ and U ∩ f 0(V) , ∅. Therefore, f is
weakly bitopologically transitive in this case.

Case II: Let m < n and n = m+r. Then f r( f m(x)) ∈ f r(U) and f−r( f n(x)) ∈ f−r(V). This gives f m+r(x) ∈ f r(U)
and f n−r(x) ∈ f−r(V). So, we have f n(x) ∈ f r(U) and f m(x) ∈ f−r(V). We get f n(x) ∈ f r(U) ∩ V and
f m(x) ∈ U ∩ f−r(V). Hence, f r(U)∩V , ∅ and U ∩ f−r(V) , ∅, which means that f is weakly bitopologically
transitive.

Case III: Let m > n and m = n + s. Proceeding as in case II, we get f−s(U) ∩ V , ∅ and U ∩ f s(V) , ∅,
which says that f is weakly bitopologically transitive. Thus, f is weakly bitopologically transitive.

It is to be noted that the similar relation is not true between point transitive map and bitopological
transitive map. We provide Example 3.3. to prove our claim. Now, we discuss some examples in support
of the above notions.

Example 3.1. Consider the set X = {1, 1
2 ,

1
3 }.We define p : X ×X→ [0,∞) by p(x, y) = x, if x , y and p(x, x) =

0,∀x, y ∈ X. Then, clearly p is a quasi-pseudo metric on X. The conjugate of p, i.e. q(x, y) = p(y, x) ∀x, y ∈ X
is also a quasi-pseudo metric on X. An open p-sphere with centre x and radius ε > 0 is of the form

Sp(x, ε) =

{x}, if x ≥ ε
X, if x < ε

Thus, p induces discrete topology on X. Similarly, q also induces discrete topology on X. Now, we define
f : X→ X by f (1) = 1

2 , f ( 1
2 ) = 1

3 , f ( 1
3 ) = 1. Then, f is a bitopologically transitive and weakly bitopologically

transitive. Also, O+(1) = {1, 1
2 ,

1
3 } = O+( 1

2 ) = O+( 1
3 ) = X. Hence, tr( f ) = X. So, the system (X, f ) is minimal.

Moreover, O(x) = X, ∀x ∈ X. Thus, the system (X, f ) is weakly minimal.

Example 3.2. ([22]) Let us consider the set R of real numbers. We define p : R × R → [0,∞) by p(x, y) =
max{y−x, 0},∀x, y ∈ X. Then, p is a quasi-pseudo metric onR. The conjugate of p i.e. q(x, y) = p(y, x) ∀x, y ∈ R
is also a quasi-pseudo metric on R. Then, an open p-sphere with centre x and radius ε > 0 is of the form

Sp(x, ε) = {y : p(x, y) < ε}
= {y : y − x < ε}
= {y : y < x + ε}

= (−∞, x + ε)

Similarly, Sq(x, ε) = (x − ε,∞). If τ1 and τ2 are the topologies generated by p-spheres and q-spheres
respectively, then (R, τ1, τ2) is a bitopological space. We define f : R → R by f (x) = x + 1. Clearly, f is
invertible and f−1(x) = x − 1. Now, for any set U1 = (−∞, a) ∈ τ1 and a ∈ R, we have

f (U1) = { f (x) : f (x) < f (a)} = {y : f (x) = y, y < a + 1} = (−∞, a + 1) and f−1(U1) = (−∞, a − 1),
i.e. inverse image under f of each τ1−open set is τ1−open. Therefore, f : (R, τ1) → (R, τ1) is a homeo-
morphism. Similarly, f : (R, τ2) → (R, τ2) is a homeomorphism. Hence, f is a pairwise homeomorphism.
Also, O(1) = {..., f−3(1), f−2(1), f−1(1), 1, f (1), f (2), f (3), ...} = {...,−2,−1, 0, 1, 2, 3, 4, ...}, which is bidense in
(R, τ1, τ2). Thus, f is weakly point transitive. Hence, by theorem 3.4., f is weakly bitopologically transitive.

Example 3.3. Let X = { 1
n : n ∈ N − {0}}. We define p : X × X → [0,∞) by p(x, y) = x, if x , y and p(x, x) =

0,∀x, y ∈ X. Then, p is a quasi-pseudo metric on X. Both p and its conjugate q i.e. q(x, y) = p(y, x)∀x, y ∈ X,
induces discrete topology on X. Now, we define f : X → X by f ( 1

n ) = 1
n+1 , where n ∈ N − {0}. Then, f is

pairwise continuous, and one-one but not onto. Here, O+(1) = X, i.e. O+(1) is bidense in X. Therefore, f is
point transitive but f is not bitopologically transitive as there is not any n ∈N such that f n({ 12 }) ∩ {1} , ∅.
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In general, pairwise compactness and iterations are hardly discussed together. Thus, our motivation is
to define pairwise iterated compactness and to establish relation with pairwise compactness.

Definition 3.7. Let (X, τ1, τ2) be a bitopological space and f be a pairwise continuous map. For mi,n j ∈ N,
a collectionU f = { f mi (Ui), f n j (V j) : i, j ∈ ∆} is called an iterated cover of X if X = { ∪

i∈∆
f mi (Ui)} ∪ { ∪

j∈∆
f n j (V j)},

where Ui ∈ τ1 and V j ∈ τ2 are non-empty sets and ∆ is an index set. In addition, ifU f contains the iteration
of atleast one non-empty element of τ1 and atleast one non-empty element of τ2, then it is called pairwise
iterated cover.

Definition 3.8. Let (X, τ1, τ2) be a bitopological space and f be a pairwise continuous map. If every iterated
cover U f of X has a finite subcover, then the space (X, τ1, τ2) is called iterated compact. Also, X is called
pairwise iterated compact if every pairwise iterated coverU f of X has a finite subcover.

Now, the following theorem establishes the relationship between pairwise compactness and pairwise
iterated compactness.

Theorem 3.5. Let (X, τ1, τ2) be a bitopological space and f be pairwise homeomorphism. Then, X is pairwise compact
if and only if X is pairwise iterated compact.

Proof. Let X be pairwise compact and letU f = { f mi (Ui), f n j (V j) : i, j ∈ ∆} be a pairwise iterated cover of X,
where ∆ is an index set. Since f is pairwise homeomorphism, f mi (Ui) = Ai, which is a non-empty τ1-open
set and f n j (V j) = B j, which is a non-empty τ2-open set. Thus,U f is a pairwise open cover of X. Since X is
pairwise compact, thusU f has a finite subcover. Hence, X is pairwise iterated compact.

Conversely, let X be pairwise iterated compact and letU = {Ui,V j : i, j ∈ ∆} be a pairwise open cover of
X, where atleast one Ui ∈ τ1 and V j ∈ τ2 and ∆ is an index set. Then, U f = {{ f 0(Ui), f 0(V j)} : i, j ∈ ∆} is a
pairwise iterated cover of X. The pairwise iterated compactness of X implies thatU f has a finite subcover,
which is the required finite subcover ofU. Hence, X is pairwise compact.

Example 3.4. Let us consider the bitopological dynamical system as defined in Example 3.2. Then, X is
pairwise iterated compact since X is pairwise compact.

Thus, we can conclude this section since we established some important results to introduce the theory
of bitopological dynamical system. Now, we try to find application of our theoretical work from the scenario
of reality.

4. Birth of a Child from the Zygote as a Bitopological Dynamical System

In this section, we study the growth of a human embryo from the viewpoint of bitopological dynamical
system. At first, we recall some biological terms related to the development of a newborn from the zygote.

Definition 4.1. ([26]) Embryonic day is the number of days post conception, e.g. E25 i.e. embryonic day
25.

Definition 4.2. ([23]) Gastrulation is the process of forming the three primary germ layers from the epiblast
involving movement of cells through the primitive streak to form endoderm and mesoderm.

Definition 4.3. ([27]) Anencephaly is a congenital absence of a major portion of the brain, skull, and scalp,
with its genesis in the first month of gestation.

Definition 4.4. ([23]) Congenital malformation is synonymous with the term birth defect, it refers to any
structural, behavioral, functional, or metabolic disorder present at birth.
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According to Stiles and Jernigan [26], when the fertilization takes place, a zygote say Z, is formed and
as time goes on, it differentiates to form different cells. At the end of second week after the conception, the
embryo becomes a two layered structure and then gastrulation begins (on embryonic day 13, or E13). After
gastrulation, the embryo becomes a three layered structure: endodermal stem cell layer, mesodermal stem
cell layer and ectodermal stem cell layer. The structures of the gut and the respiratory tract are developed
from the endodermal stem cell layer, while the mesodermal stem cell layer gives rise to structures such as
muscle, bone, cartilage and the vascular system. Ectodermal layer stem cells are of two types: epidermal
ectodermal stem cells and neuroectodermal stem cells. The epidermal ectodermal stem cells develop into
skin, nails, and sweat glands, while neuroectodermal stem cells give rise to the brain and the central nervous
system. The neuroectodermal stem cells are called the neural progenitor cells.

Thus, after gastrulation, the development process of the brain together with the central nervous system
and the other body parts splits since different stem cell layers generate them. We show this by figure 1.

Figure 1: Here, Z- the zygote, U- development of the zygote just before gastrulation, T1- Neural tissues, T2- Non-neural tissues, O1-
Neural organs, O2- Non-neural organs, NS1- Neural organ systems, S2- Non-neural organ systems and R- the baby at the time of birth.

Hence, we can define two topologies as given below:
τ1 = {(φ, τ1(t0)), (U1, τ1(t1)), (U2, τ1(t2)), ..., (Um, τ1(tm)), (R, τ1(T))} and
τ2 = {(φ, τ2(t0)), (V1, τ2(t1)), (V2, τ2(t2)), ..., (Vn, τ2(tn)), (R, τ2(T))},

where φ = Z = U0 = V0, since initially there is only the zygote from which the whole organism develops.
Un = X is the brain together with the central nervous system of the whole organism and Vn = Y is

the other body parts of the whole organism except the brain and the central nervous system. Also, U1,
U2,... represent different development stages of the brain and the central nervous system; while V1, V2,...
represent different development stages of the other body parts except the brain and the central nervous
system. Here, t0 is the time of fertilization and T is the time of birth without indicating the stages of
the growth. In notional sense; (Ui, τ j(ti)) indicates that to reach the stage Ui at the time of growth under
topology τ j; the required time is τ j(ti) where j ∈ {1, 2}. It is important to note that before gastrulation Ui = Vi.
Here, X and Y together forms the whole organism, the baby say R, i.e. X ∪ Y = R. Clearly, (X, τ1|R) and
(Y, τ2|R) form dynamical relative topological spaces (in the sense of Nada and Zohny [19]) individually with
respect to (R, τ1, τ2) as the growth rate of the organism depends on time. Here, τ1|R and τ2|R are two relative
topologies on X. But, (R, τ1, τ2) is a dynamical bitopological space (in our sense bitopological dynamical
system) which contains both the growth of the brain with the central nervous system and growth of other
body parts, which all together yields the baby R.

Here, Z = U0 ⊂ U1 ⊂ U2 ⊂ ... ⊂ Um ⊂ R and Z = V0 ⊂ V1 ⊂ V2 ⊂ ... ⊂ Vn ⊂ R. Also, τ1(t0) < τ1(t1) <
τ1(t2) < ... < τ1(tm) < τ1(T) and τ2(t0) < τ2(t1) < τ2(t2) < ... < τ2(tn) < τ2(T).

Now, let fi : R→ R (the unfolding map ) be defined as

fi(Uk) =

Uk+1 i f i = k
Uk i f i , k

and fi(R) = R, where i, k ∈ {0, 1, ...,m − 1}. Also, we consider fi(Vk) = ∅, ∀ Vk ⊂ R
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Also, let 1 j : R→ R be defined by

1 j(Vk) =

Vk+1 i f j = k
Vk i f j , k

and 1 j(R) = R, where j, k ∈ {0, 1, ...,n − 1}. Also, we consider 1 j(Uk) = ∅, ∀ Uk ⊂ R
Let F = fm−1 ◦ fm−2 ◦ ... ◦ f0 and G = 1n−1 ◦ 1n−2 ◦ ... ◦ 10.
Now, we define the map H : R→ R by

H(A) =


R i f A = R
F(A) i f A ∈ τ1 r τ2,A , R
G(A) i f A ∈ τ2 r τ1,A , R
F(A) ∪ G(A) i f A ∈ τ1 ∩ τ2,A , R

Then, (R,H) forms a bitopological dynamical system.
Also, the forward orbit of the zygote Z is

O+(Z) = ∪
n∈N

Hn(Z)

= H(Z) ∪H2(Z) ∪ ...

= {F(Z) ∪ G(Z)} ∪H2(Z) ∪ ...

= {( fm−1 ◦ fm−2 ◦ ... ◦ f0)(Z) ∪ (1n−1 ◦ 1n−2 ◦ ... ◦ 10)(Z)} ∪H2(Z) ∪ ...

= {( fm−1 ◦ fm−2 ◦ ... ◦ f1)( f0(Z)) ∪ (1n−1 ◦ 1n−2 ◦ ... ◦ 11)(10(Z))} ∪H2(Z) ∪ ...

= {( fm−1 ◦ fm−2 ◦ ... ◦ f2)( f1(U1)) ∪ (1n−1 ◦ 1n−2 ◦ ... ◦ 12)(11(V1)} ∪H2(Z) ∪ ...

After some steps of calculation, we get the following result

O+(Z) = (Um ∪ Vn) ∪H2(Z) ∪ ...
= (X ∪ Y) ∪H(H(Z)) ∪ ...
= R ∪H(R) ∪ ...
= R ∪ R ∪ ...
= R

Thus, O+(Z) = R, which is bidense in (R, τ1, τ2). Hence, H is a point transitive map. Similarly, for any
A ∈ τ1 ∩ τ2, O+(A) is bidense in (R, τ1, τ2).

Hence, we have shown that the growth of human baby can be represented by a bitopological dynamical
system. Medically [23] or from the view point of literature [26], we may conclude that our mathematical
ideas are predicting the growth of a baby from the zygote more accurately than the topological dynamical
system as conjectured by Nada and Zohny [19] in conjecture 1. Thus, it should be our next step to investigate
more accurately the growth process of a baby from the zygote based on growth of the brain together with the
central nervous system and growth of the other body parts from the perspective of bitopological dynamical
system.

The advantage of choosing two topologies in this paper over one topology as considered by Nada and
Zohny [19] is that bitopological dynamical system may be able to find the hidden theoretical causes of
problems like the infants with anencephaly has congenital malformation of other body parts ([27], [24]),
viz, agenesis of kidney, heart anomaly, etc. On the basis of discussions made in medical literature ([23], [24],
[26]), our later observations and findings [1, 2], we firmly believe that bitopological dynamical system is a
better tool in comparison to topological dynamical system as proposed by Nada and Zohny [19]. Hence,
we disprove the conjecture 1 of Nada and Zohny [19] with our results in this section.
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5. Open Questions

In this section, we formulate some questions which are still open. More sophisticated theoretical results
in bitopological dynamical system will be needed to handle these. The questions are given below:

Q.1. Is there any connection between the growth process of a cell to form an organ of the baby and
pairwise iterated compactness?

Q.2. Does the growth process of nervous system follow theoretical ideas related to pairwise Hausdorff-
ness and related structures?

We are expecting that answers to these questions may be helpful for the treatments of various forms of
cancer along with brain disorders.

6. Conclusion

In this paper, we introduced the theory of bitopological dynamical system and defined bitopological
transitivity, point transitivity, pairwise iterated compactness and established some relationships between
them. Later, we showed that the development of a human embryo from the zygote until birth can be
represented by a bitopological dynamical system. Also, medical evidences were provided to justify our
theoretical claims. We firmly believe that if the theoretical relations between the development process of
the brain together with central nervous system and the development of the other body parts may be found
in future, then the medical treatments may be given to stop any congenital malformation just by studying
brain development or body development in prenatal stage. To make this a reality, we need a deep research
in human embryo development as well as in bitopological dynamical system. At the end, we disproved
the conjecture 1 of Nada and Zohny [19].
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