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Abstract. In this paper, we consider the newly defined partial (¢, x)—fractional integral and derivative to
study a new class of partial fractional differential equations with impulses. The existence and Ulam-Hyers
stability of solutions for the proposed equation are investigated via the means of measure of noncompactness
and fixed point theorems. The presented results are quite general in their nature and further complement
the existing ones.

1. Introduction

One of the most important tasks in mathematics is to prove results which are more general in their nature.
The differential equations of integer order are well known in literature and thus a huge amounts of work
have been achieved with respect to their theory and applications. One of the generalizations of ordinary
differential equations is so called as fractional differential equations that is based on the fractional calculus
which explores various possibilities of determining the differentiation and integration for an arbitrary
order. It is worth mentioning that many physical phenomena having memory and genetic characteristics
can be adequately described by using systems governed by fractional differential equations. The physical
phenomena often demonstrate fractional dynamical behavior due to the property of nonlocal behaviour
[18,19, 28, 30, 31].

Qualitative theory of fractional differential equations have been investigated by many researchers [4,
5,27, 34]. The theory of impulsive fractional differential equations has also gained considerable attention
and as a result many researchers have reported very useful results in these settings [20-22, 29, 35, 36, 38].
It is realized that impulsive fractional differential equations can provide ideal models to explain the actual

2010 Mathematics Subject Classification. Primary 26A33; Secondary 34A08, 34B27

Keywords. —fractional partial differential equations, Measure of noncompactness, Ulam-Hyers stability, Fixed point theorem.

Received: 19 May 2020; Revised: 10 October 2020; Accepted: 24 October 2020

Communicated by Erdal Karapinar

M. Fetkan thanks the Slovak Research and Development Agency under the contract No. APVV-18-0308, and the Slovak Grant
Agency VEGA No. 1/0358/20 and No. 2/0127/20; J. Alzabut would like to thank Prince Sultan University for funding this work through
research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.

Email addresses: arjumandseemab52@gmail.com (Arjumand Seemab), mujeeburrehman345@yahoo.com (Mujeeb ur Rehman),
Michal.Feckan@gmail.com (Michal Feckan), jalzabut@psu.edu.sa (Jehad Alzabut), sabbas.iitk@gmail.com (Syed Abbas)



A. Seemab et al. / Filomat 35:6 (2021), 1977-1991 1978

processes that at some moments suddenly deviate from their states and can not be represented using the
classical fractional differential equations. Over the past three decades, the problem of impulsive partial
fractional differential equations have received a great deal of interest amongst many mathematicians and
scientists due to their widespread applications in different real world phenomena [1-3]. A few number of
research papers, however, have been comparably reported in this regard.

On the other hand, the study of stability for fractional differential equations appears to be very crucial
topic. There are several types of stability. One of its well known types is the so known as Ulam stability
which has been introduced by Ulam for functional equation. Ulam originally addressed the consistency of
functional equations in a speech given at the University of Wisconsin in 1940. His question was: under what
circumstances does an additive mapping occur similar to an approximately additive mapping?. In 1941,
Hyers gave the first response to Ulam'’s question in the case of Banach spaces in [26]. This type of stability
is then called the Ulam-Hyers stability. In 1978, Rassias [32] introduced a remarkable generalization of
the Ulam-Hyers stability of mappings by considering variables. The concept of stability for a functional
equation arises when we replace the functional equation by an inequality which acts as a perturbation of the
equation. Considerable attention has been paid to the study of the Ulam-Hyers and Ulam-Hyers—Rassias
stability of all kinds of integer order fractional differential equations [12-15, 24, 33, 37].

The problem of existence and stability of solutions of fractional order Darboux problem was studied by
researchers in the papers [6-11, 16] and many others. In [8], Abbas and Benchohra proved the existence
results by applying the nonlinear alternative of Leray-Schauder type fixed point theorem for the following
problem

(Dyu)t, ) = f(t,ru(t, ), DYu(t, ), (1) €3, t# b, k=1,2,-,m,
u(ty,r) =u(t,,r) + L(ut,, ), rel0,b], k=1,2,---,m,
u(t,0) = o(t), t €[0,a], u(0,r) = ¢(r), r € [0,b], p(0) = ¢(0),

wherea, b >0, O = (0,0), D{ is the mixed regularized derivative of order v = (v1,v2) € (0,1]x(0,1], 0 = ¢y <
o<ty <ty =4, f:IXR'"XR"->R", [ :R* > R", k=1,2,---,m, ¢ :[0,a] > Band ¢ : [0,b] —» B
are given absolutely continuous functions. In another work [6], Abbas et al. considered a class of partial
fractional differential equations with non instantaneous impulses on a Banach space B. They investigated
the stability and uniqueness of the solution.

For the sake of a deep understanding of the behavior of complex systems, generalization of fractional
differential operators was subject to an intensive debate in the last few years. The objective of this paper is
to resume this trend and establish existence and stability criteria for the following class of impulsive partial
fractional differential equations

(Dg" u)(t, 7 = £(t, r,u(t, 1), ‘D™ u(t, 7)), (t,r)€J:=[0,a]x[0,b], t# b, k=1,2,--,m,
u(ty,r) = u(t;,r) + L(u(t_,r), r€[0,b], k=1,2,--- ,m, )
u(t,0) = (), t €[0,a], u(0,r) = ¢(r), r € [0,b], ¢(0) = ¢(0),

within the newly defined partial (¢, x)—fractional integral and derivative. Here a,b > 0, O = (0,0), CD8¢’X
is the fractional (¢, x)—partial Caputo derivative of order v = (v1,12) € (0,11 x (0,1], 0 = £y < t;--- <
tw <tm1 =a, £ : IJXBXB—>B, Iy :B—>B, k=12,---,m ¢ :[0,a] - Band ¢ : [0,0] — B are
given absolutely continuous functions and B is a Banach space. Furthermore ¢, x € C([0,4], [0, b]) are
second order continuously differentiable strictly increasing and positive functions on [0, a], [0, b], such that
¢’ (1), xX'(r) # 0 for all (£, r) € 3. We consider equation (1) in frame of partial fractional derivative with respect
to two functions (¢, x) which generalizes the above cited problems to a larger class of functions. Unlike
previous results, the main theorems are proved by using different approach that is based on the measure of
noncompactness and Monch'’s fixed point theorem. Furthermore, we establish sufficient conditions for the
generalized Ulam-Hyers—Rassias stability of the solutions of equation (1).
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2. Auxiliary preliminaries

By C(3), we denote the Banach space of all continuous functions from J in to B equipped with the norm
llulleo = SUP(; ey |lu(t, r)||. The LY(3J) is the space of Lebegue integrable functions u : J — B with the norm

b
lull, = f e
0 0

Definition 2.1. Let O = (0,0), v = (v1,12) > O, u € LXJ) and ¢, x € C*([0,a],[0,b]) be positive strictly
increasing functions such that ¢'(t), x'(r) # 0 for all (t,r) € 3. The partial Riemann—Liouville (¢, x)—fractional
integral of order v of u(t, r) with respect to ¢, x is defined as

I ut,) = s fo fo (G(0) = PN () = XD (O (Duls, T)deds.

In particular, we write

AP u)(t, 1) = u(t,r), and (I5"%u)t,r) = fo t fo r u(s, 1)’ (s)x’ (1)dds,
for almost all (t,v) € J, where v = (1,1). Moreover

(Ig(’”u)(t, 0) = (Igu)(0,7) =0, t € [0,a], r € [0, b].
If ¢ = x, then we write 18(7”)( = I:)’(P.

Example 2.2. Let v € (0,1] X (0, 1], and 5,y > =1, ¢(0), x(0) = 0. Then

r+DI(y+1)
Fvi+p+DI(v2+y+1)

(PP () = (@) B ()=,

for almost all ¢(t), x(r) € C*([0,a], [0, b]).

Definition 2.3. Let u € LY(3) and v € (0,1] X (0, 1]. Then the partial Caputo (¢, x)—fractional derivative of order v
of u(t, r) is defined by

PX — @,
DY u(t, r) = (15D u)(t, r)

- L o (D& u)(s, ) Ny
i r(l_Vl)r(l—Vz)fo fo @O~ pE) (1) - @y P O

Forv = (1,1), we have

VD, ¢,

DO‘ “u(t,r) = (Dt'rxu)(t, 7),
for almost all (t,v) € 3. By 1 — v we mean (1 —vy, 1 —v,) €[0,1) X [0,1).
Example 2.4. Let ,y > -1, ¢(0), x(0) =0, v € (0,1] x (0, 1]. Then

g+ DIy +1)
Fr-vi+ DIty —vp +1

"D @O U@ = OO ),

for almost all p(t), x(r) € C2([0,a], [0, b]).
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Denote by Df:x = (7orm (t) o) Mr) the mixed order partial (¢, x)—fractional derivative. In what follows, we

present some properties of partial Riemann-Liouville (¢, x)—fractional integral and the mixed order partial
(¢, x)—fractional derivative.

Lemma 2.5. The following properties are satisfied:

(P1) IV’¢’X IV’M u= Ig+3,¢,x u. (Semi group property).

(P,) 15" D™ u)(t, 1) = u(t, r) — u(0,7) - u(t, 0) + u(0, 0).
Proof. The proof of (P;) follows from the definition. We proceed to prove (P,) as follows:

LoX o [ 1
(oDl itim) = X[((P’(t)x’(r)z?t&r)u(t’r)]

)
f f P’ ()X (1) [( ") (7) Fsot )u(s T)] drds
:I}[L ;T(aasu(s,r))d’c]ds
¢
=f0 [%M(S,r)—%u(s,O)]ds

= u(tl 7’) - u(ol 1’) - M(t, O) + u(ol 0)/
which completes the proof. [

Lemma 2.6. Let f : 3 X B X B — B be a continuous function. Then u € C is a solution of the problem:

DL ut,r) = ft,r,u(t, ), D u(t, n), (1) € 3
u(t,0) = @(t), t €[0,a],

u(0,r) = ¢(r), r € [0,b], 2)
¢(0) = 1(0),
if and only if u(t, r) satisfies
u(t, 1) = w(t, r) + IVt v ult, 1), Do u(t, ), (1) €3, )

where w(t,r) = p(t) + P(r) — ¢(0).
Proof. Let u(t, r) be a solution of problem (2). Then by the definition of the derivative (CDS(P’X u)(t,r), we have
I (Df;’xu)(t, r) = (¢, 1, u(t, ), DL u(t, ).
Thus, applying I on both sides of the above equation, we get
I (1 (DY )t 1) = AL Rt 1), ult, 1), DL u(t, 1).
Consequently by the semi group property (P1), we have
17D u(t, ) = ISP Gt 1, u(t, 1), Dy u(t, v).
Since from property (P2), we have I j Lo D(P Au(t, r) = u(t, r) — w(t,r), thus, we obtain
u(t, 1) = w(t, 1) + IV E(E v, ult, ), DS udt, 7).

If we let u(t, r) satisfy (3), then, clearly u(t, r) satisfies (2). O
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Lemma 2.7. [25] Let function f : 3 X B X B — B be continuous. Then problem (2) is equivalent to the equation

gt 1) = £t 1, w(t, 1) + 157" g(t, 1), g(t, 7)),

and if g € C(3J) is the solution of this equation, then u(t,r) = w(t, ) + I'(')’(P’Xg(t, 7).

To proceed further, we set

Ik := (tr, tiea] X [0, b].

To define the solutions of problem (1), we shall consider the space PC(J, B) = {u 3> B:ueC(3,B);, k=
0,1.---,m, and there exist u(t_,r) and ultt,r); k=1,2--- ,m, with u(t,,r) = u(ty,7) for each r € [0, b]}. The
set PC(J, B) is a Banach space equipped with the norm

llullpc = sup [lu(t, NIl-
(eI

Set
3 =3/, r), - (b 1), T € [0, D]}
Definition 2.8. Let u € PC(J, B) and vth—derivative of u exist on J’. Then u is said to be a solution of problem (1)
if u satisfies (CDI(’)"’/)’X u)(t,r) = f(t,r,ult,r), Dg(*b”( u(t,r)) on I’ and the conditions of problem (1) are satisfied.
For the next lemma, we let h € C([ty, tx+1] X [0, b], B), zx = (t,0), and
w(t,r) = u(t,0) + u(t, r) —u(t,0), k=0,1,---,m. 4)
Lemma 2.9. A function u € AC([tx, ty+1] X [0,0],B); k=0,1---,m is the solution of the differential equation
DL (e, r) = h(t,7); (87) € [, b ] X [0,0],
with condition (4) if and only if u(t, r) satisfies
u(t, 1) = ilt 1) + I )(E1); (47) € [ ti] X [0, b1 5)

Lemma 2.10 can be proved by using the same algorithms as in the proof of Lemma 3.3 in [10]. Lemma 3.3
in [10] is the special case of Lemma 2.10, if we take ¢(t) = x(t) = t.

Lemma 2.10. Let vi,v, € (0,1] and h : 3 — B be continuous. A function u is a solution of the fractional integral
equation

O, + o o @0 = @)~ () = x(2)!
¢’ (s)X'()h(s, T)dds; if (t,r) € [0, 1] X [0, b],

w(t, ) + L Gt 1) - Lu(t;, 0)))

o T [ @) = )" () — x(2) !

u(t,r) = tio1 ©
¢’ (s)X' ()h(s, T)dtds
t rr
+eanras J, b @0 = dE)" 7 () = x (o)
¢’ ()X’ (D)h(s, T)dds;
if (t,7) € (b trar ] X [0,B], k=1,2--- ,m,
if and only if u is a solution of the fractional initial value problem
DYP%ut, ) = hit,r), )€Y, k=1,2,-- ,m,
P u(t,r) = hit, ), (&) }

u(ty,r) = u(t,,r) + L(u(t,,r), r€[0,b], k=1,2,--- ,m.
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In view of Lemma 2.7 and Lemma 2.10, we state following.

Lemma 2.11. Let the function f : 3 X B X B — B be continuous. Then Problem (1) is equivalent to the problem

g(t,r) = £(t,1, &t 1), 9(8, 7)), (8)

where

W(t, 1) + ks @) = 66)" 7 () = x(@))+ !
&' (5)x' (V)g(s, 0)dds; if (¢,7) € [0, 1] % [0, ],
w(t, ) + L (L, 1) = Lut;, 0)))
g Tl 1 (@) = o) (e(r) = x>
ol (s))( (t)g(s, t)dtds
s b @) = 66 () - x(@)=!
¢’ (s)x'(1)g(s, T)dds;
if (t,7) € (b, k] X [0,0], k=1,2--- ,m,

&ty r) =

w(t, 1) = @(t) + P(r) = ¢(0).
Furthermore, if g € C(3J) is the solution of (8), then u(t,r) = &(t, 7).

Now we establish the Ulam-Hyers stability for problem (1). Lete > 0 and 6 : J — [0, o) be a continuous
function.

Definition 2.12. Problem (1) is Ulam—Hyers—Rassias stable with respect to 0 if there exists a constant ce g > 0 such
that for each solution u € PC of the inequality ||u(t, r) — (Pu)(t, r)llg < O(t,7); (¢, 1) € J, there exists a solution u € PC
of problem (1) with

lu(t, ) — u(t, r)llp < cap0(t, 1); (1) €.

Lemma 2.13. [6] Let B > 0, b is a nonnegative locally integrable function on t € [0, T) and 1 be a nonnegative,
nondecreasing continuous function defined on t € [0,T), n(t) < M and let u(t) is nonnegative and locally integrable
on [0, T) with

t
u(t) < b(t) + n(t) fo (t — )P Lu(s)ds.

Then for t € [0, T), we have

u(t) < b(t) + f [Z (”(;)(F ﬁﬁ ))n(t—s)"ﬁ-lb(s)lds.

The above lemma can easily be extended to functions of two variables.

Lemma 2.14. Let vi,v, >0, ¢, x € C%([0,a], [0, b]) are strictly increasing functions such that ¢’(t), x'(r) # 0 for
all (t,v) € 3, b(t,r) is nonnegative function locally integrable on 3, n(t,r) < M, and suppose u(t, r) is nonnegative
and locally integrable on J with

u(t,r) < b(t,r) +n(t,r) j; fo (P(t) — ()" (x(r) — x(7))">  u(s, T)dsdr.

Then

W (v)I
u(t, ) < bt, 1) + f f [Z ”(;(:Wl()vlf(nig (@) = $E)™ () = X)) b(s, D)|dsd, on 3.



A. Seemab et al. / Filomat 35:6 (2021), 1977-1991 1983

Definition 2.15. [23] Let B be a Banach space and Qg be the bounded subset of B. The Kuratowski measure of
noncompactness is the map y : Qp — [0, +-00) defined by

n
y(E) = inf {d >0:EcC U E;, diam(E;) < d}, E; € Qp.

i=1
Proposition 2.16. [23] The Kuratowski measure of noncompactness satisfies the following properties:

(i) y(E) = 0 & E is compact;

(ii) y(E) = y(E);

(iii) EC F = y(E) < y(F);

(iv) y(E+F) < y(E) + y(F);

(v) y(cE) = cly(E); c € R;

(vi) y(convE) = y(E).

Theorem 2.17. [23] Let S be a closed, bounded and convex subset of a Banach space such that 0 € S,andlet @ : S — S
be a continuous mapping. If the implication W = conv®(W) or W = ©(W) U {0} = y(W) = 0, hold for every
W C S, then @ has a fixed point.

3. Main results

In this section, we investigate the main results for the existence and Ulam-Hyers stability of solution
for problem (1). Before we proceed, we set forth these hypotheses:

(S1) The function f : 3 X B X B — B be continuous,
(S2) There exist constants [f >0, 0 < l’f < 1 such that
I, 7,1, 0) = £(t, 7,0, )| < Igllu = ull + Illo -],
foreach u,v,u,v € Band (t,7) € 3.
(S3) There exist a constant [I* > 0 such that
12 (ue) = LeG)ll < I'lfue — ull,
foranyuw,u€B, k=1,2,--- ,m.
Theorem 3.1. Suppose that (S1) — (S3) are satisfied. If

21p(p(a))” (x(b))™

2ml+ —I)T(vy + DLz + 1) <

then problem (1) has unique solution on 3.

Proof. Let us define an operator @ : PC(J) — PC(J), by
Qu)(t, 1) = w(t,r) + Z Ti(u(ty, 1) = Le(u(t, 0)))

0<ty<t

1 t r . .
T )3 f fo (@(t) = ()"~ (x(r) = x())"* ™"

O<ty<t ti-1

&' (s)x'(1)g(s, T)dtds

t r
+ m ft fo (@) = p()" 7 (x(r) = x(0)>
¢’ (s)X'(1)g(s, T)dds,
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where g € C(3) such that
g(tl 1’) = f(t/ 7, u(tl r)l g(tr 1’))

Certainly, the fixed points of the operator @ are solutions of the problem (1). Let u, u € PC(J), then we have

m

D), 7) = DEE A < Y (MeCutt, 1) = LGt M)
k=1
+ |I(ut, 0)) = TGai(ey, DI
1 m t r ~ —
T f ) [ @ -oen )

(xX() = x(@)"> 7'’ ($)x (Dllg(s, 7) — ks, 7)lldTds

; r _ v1—1 _ -1
* e . @0 =060 - 1o
¢'(s)X' (0)llg(s, T) — h(s, T)lldds,

where g,h € C(3) such that g(t,r) = f(t, v, u(t, ), g(t,v)) and h(t, r) = (t, r, u(t, r), h(t, r)).
By (52), we get the estimate

llg(t,7) = h(t, DIl < Lellu(t, r) = ult, )l + Lllg(t, r) = h(t, D,

which implies

! _ _
lg(t, 1) = ht, Il < T2t 1) = T, | < =t = Tl

f f
Thus (S3) and (10) imply

m

D)t 7) = PEE Dlipe < Y (It 7) = e, Il + e, 0) - T, O))

k=1

m et
+<1—l'>r<vl>r<w>2f f @(t) = ¢(s))

(x(r) = x(0)"> 7' ()X (Dllu — Hllpcdds

<1—l'>r<vl>r<vZ>f f (@) = o)™

(1) = x(©)"* 71" (5)x (Dllu — Ullpcd eds,

. 21 ¢(Pp(a))" (x(b))™ —_
: (2’“1 T AT+ DTz + 1)] ot =l

From the above inequalities, we conclude that @ is a contraction. Hence by contraction mapping principle
® has a unique fixed point. 0O

We introduce the notation

(Ip"
(= Iy = 2mEy T ()L (nvs)’

Cn =
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Theorem 3.2. Let the hypothesis (S1) — (S3) hold and the following assumption hold
(iv) 0 € LY(3,[0,00)) and there exists Ag = (Ag, + Ag,) > O such that, for each (t,r) € 3, we have

m fe
Y[ f [ch(qb(tk) () - XD O (D, ﬂldmsmele(t ",
=1 Vi

and

[/ ch(qb(t)—<¢>(S))"”1‘1(x(r)—X(T))””2‘1¢’(S)X’(T)6(s,T)l drds < 6,000, 1)
n=1

If condition (9) holds, then the problem (1) is a generalized Ulam—Hyers—Rassias stable.

Proof. Let u € PC be a solution of the inequality |lu — ®(u)llpc < O(t,1); (t, ) € J. It follows from Theorem
3.1, u is a unique fixed point of ®. Thus for each (t,r) € J, we have

u(t,r) = u)(t,r)

w(t,r) + Z (I (u(ty, 1)) = Ity , 0)))

O<t<t
1 h ' -1 vo—=1 17 ’
+ mg;t ftk o (P(te) — p(s)" ™ (x(r) = x (1)) ¢’ ()X (V)h(s, T)dds

1 ! ’ _ v1—1 _ vo—1 47 ’
s ). @0 =007 60 -y o @hs Divds

For each (t,r) € J, it follows that

llu(t, r) = u(t, llpc = llu(t, r) — @@)(t, llec < [lut, r) — Pu)(t, r)llpc + 1Pw)(E, 1) — P)(t, 7)llpc
< O(t,v) + 2ml||u(t, r) — u(t,r ”pC

(1—1’)F(V1)F(V2)k1]t; o @t s O)
(X(r) = x(@)"2 71’ ($)x’ (0)l|u — Ul pedtds

lf t 7 bt
ta=r OTWIT() J, fo @O =6
(x() = x(1))"21 ¢ ()X’ (Dllu — ullpcdds

or
hu(t, 1)~ 1, Pl < asz)e(t' 2
AT )moumz ft 600 = 000 a0~ 1) o =Tt
+(1_1})(1_21,51,*)]%)%) [ [ 6000 o= o g o~ e
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By Lemma 2.14, we obtain

- 1 Ly (" (Y
It ) =Tl € 5000+ (=g 2, [ [ [0S 0000 = 060 = oy

¢ (5)X' (1)0(s, T)]d’(ds

_ 1y P
Y a2 f fo [ L (60 = 9™ )= x(o)
¢’ ()’ (V0(s, ) |dds

1
< T=2mh) (L+A0) O(t, 1) = co,00(t, 1),

from which we deduce that problem (1) is a generalized Ulam-Hyers—Rassias stable. [
For our next existence result, we make use of the following hypotheses:

(A1) f: 3 x BxB — B satisfies the Caratheodory conditions:
e f(t,7,u,v) is continuous in u, v for each fixed t and r.
e f(t,7,u,v) is measurable in ¢, r for each fixed u and v.

(Az) There exist p,q € LY(J, R*) N C(J, R*), such that
I, v, u, 0| < p(t, Hllull + g(t, )llvll, for (t,r) € J and each u,v € B.

(A3) There exists a real number ¢ > 0 such that ||[I;(u)|| < c||ul|, for each u € B.
(A4) Ir € C(B, B) and for each bounded set E C B, we assume Y(Ix(E)) < cy(E), k=1,2,--- ,m.

(As) For each (t,r) € J and each bounded set E C B, we assume

Tim (63 X Ex E)) < £5259(E); here 3 = ([t = b 1] x [r = h, 71} N3,

Theorem 3.3. Suppose the hypotheses (S;) and (A1) — (As) hold. Let P* = sup p(t,r) and Q* = sup q(t,r) < 1. If

(t,ES (tr)eJ

2P (p(a))" (x (b)) <1 (11)

M T O + DT+ D)~

then problem (1) has at least one solution.

Proof. Let us define an operator ® : PC(J) — PC(J), by

D(u)(t, 1) =w(t,r) + Z e (u(ty, 7)) = Le(u(ty, 0)))

O<ty<t
1
* oty A ft

f @(t) — (s
O<tr<t ¥ tk-1 0

() = x(©)* 7' (5)x (D5, T, u, v)dds

t r
+ m ft L ((P(t) - ¢(5))V1—1(X(r) _ X(T))VZ_l
¢’ (5)x'(T)(s, T, u, v)dds,

te
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where v(t, r) = CD2’¢’X u(t, r). Clearly the fixed points of the operator @ are solutions of problem (1).
Define a closed bounded and convex set B,, = {u € PC(3J, B) : ||ullpc < o}, where

llwlleo

2P (p(a)" (x(b))"
(1-QIF(v1+1D)I(v2+1)

< ro. (12)
1—-2mc—

First we show that @ is continuous.

Let {u,} be a sequence such that u, — u, in C([0, ;] X [0, b], B). In view of assumption (S;), and for each
(t,r) € [0,t1] X [0, b], we have

1 t 7 _ bye
@), 1) - @, < s fo fo (k) - $()" ™ () — (@)
&' (S)X (DIE(s, £, un(s, T), vals, T)) — £(s, t, u(s, 1), v(s, T))|ldzds

lf e — v1—1 _ -1
< ey J, 00000 -x)
¢ ()X (Ollun(s, ) = u(s, 7)lldeds.

Since f is Caratheodory type function, then by the Lebsegue dominated convergence theorem [17], we
obtain

[[(Du,)(t, 1) — (Pu)(t, Mllco,nixoe,e — 0, as n— oo.

For each (t,7) € (t, tk+1] X [0,0], k=1,2,--- ,m, we have

@un)(t, 7) = @u)t, Il < Y it 1) = Teut, M)

k=1

+ ) et 0)) = (e, O
k=1

1 m ty r -
" r(w)r(w)kzzf j: . fo (@(t) = P(s))

(x(r) = x (@) ()X (OIS, T, th, 0n) = £(5, 7, 1, 0)l|deds

I A A PN
) ftk fo (@1 = ()" (x(r) = x(7))
O ()X (O, T, thy, v0) — £(s, T, u, V)||dds.

Since I is continuous, then again by Lebsegue dominated convergence theorem, we obtain

(D )(t, ) — (DPu)(t, )llc(ty tenixiop,By — 0, as n — oo,

Next we show that ® maps B, into itself.
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For each u € B,,, by (A2), (A3) and by condition (11), (12), we have for each (t,7) € J, we have

@)t I < lleolt, DI+ Y Mty /Dl + Y WeCas(t, O))
k=1 k=1

; Y N ' _ v1—1 _ -1
+rmnwg%&£ﬁ£@®>¢@) (x(r) = x(7))
¢ (5)x' (D)llf(s, T, u, v)|dds

L B — o ) — eyl ()
+r(V1)r(Vz)L jo‘((P(t) ds)™ ™ (x(r) = x (1) " (5)x"(7)

lIf(s, 7, u, v)lldtds
< llwllpc + 2melfullpc

; Y N ' _ -1 _ vp—1
+-r0“)r07);g;~L;IJE(¢(”) PN (x(r) = x(1)

p(s, 1)
1- Q(S/ T)

I N A N
* ST f [ @000 - x(o)

< lwlleo + [ch +

l[ullpcdrds

P'(5)x'(7)

llullpcdTds

2P (@@ ()|
(1- Q) + Dl +1)| =

ro.

Now we show that ®(B,,) is bounded and equicontinuous.

As by the previous step, it is clear that ®(B,,) is a bounded set of PC(J, B). Take (11,11), (12,12) € J, 71 <
Ty, 11 < 1y, and let u € B,,, we have

[(Pu)(12, 72) — (Pu)(T1, 1)l < llw (T2, 72) — w(T1, 11| + Z(”Ik(u(t]:/ r2) = Ie(u(t,, r)l)
k=1

; - . B _ 11—-1 _ 1,—1
* F(Vl)r(vz);ﬁlj(; (Pte) = P(s)™ ™ (x(r2) = x(7))
@' (S)X (DII(s, T, u, v)lldvds

; ° B _ 11—1 _ yy—1
+F(V1)1"(vz)jl; j; (Pp(12) = p(s))" ™ (x(r2) — x(7))
@' (5)x' (0l (s, T, u, v)||dds

m b 1

) ﬁ Zf f (@) = pE)" ™ (x(r1) = ()™
k=1 Y1

O (5)x’ (0)IIf(s, T, u, v)||dds.
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It follows that

l(Pu)(72,72) = (Pu)(T1, 1)l = m t f(¢(T1)_¢(S))V1 (x(r1) = x (o)

&' ()X (T)IIf(s, T, u, v)||dds

< llw(tz, 12) = w(t1, 1)l + Z(Illk(u(t,:, r2) = Ie(u(t , r))ll)

rm)r(mZ f N (0t = 96" (ctra) — x(@)

= (x(r1) = X)) ¢ ()X (OII(s, T, 1, 0)ldrds

1 ti Vl W
rm)r(w)kZ f (¢>(fk) D))" (x(r2) = x ()"

f-1 I

&' (5)X' (DIIf(s, T, u, v)ldds
‘rm)lr(vz) ff fo [(p(r2) = PN (x(r2) = x(x))"*
— (@(11) = $(s)" " (x(r1) = x(0)> ¢ ()X (DIIf(s, T, 1, v)dds

m f fo (P(r2) = ()™ (x(r2) = (1)
@' (5)x (DIIf(s, T, u, v)l\dds

m f f (Qb(’fz) - (P(S))Vl*l (X(T’z) _ X(T))vzfl
@' (5)X (DIF(s, T, u, v)||dtds
m ; (¢(T2) - (P(S))Vl—l (X(VZ) _ X(T))vz—l

¢’ ()X’ (If(s, T, u, v)||dzds.

From ||f(s, T, u, v)|| < we obtain

(1 Q)

I(@u)(T2, 12) = (Pu)(T1, r1)ll < llw(T2,72) = w(T1, 1)l + Z (e (u(t;, 2) = Te(udts, r))ID)

PTO o
(1- Q)F(vl)r(vz)z ft f (P(tx) = P(s))

[(c(r2) = x(0)"*™" = (x(r1) = x ()27 @ (5)x (D)dwds
P To

(- Q) Z f Jn () - 96D (x2) ~ x(0)'*

¢’ ()X’ (t)dds
P To

(1 — Q)L (v (1) ft fo [(¢(T2) — ()" (x(r2) = x(0))"*!

= (p(11) = $()" 7 (x(r1) = x(0)) ¢ (o) (D) eds

1989
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P To
T - QT
¢’ ($)x" (v)dds

v1—1 va—1
(1 Q )F(Vl)r(vz)f f (@(12) = P(s))" ™ (x(r2) — x(1))

@' (5)x' (1)dds

Pr W .
Ta-o 1/1)1" ) f f (@(12) = P())" " (x(r2) = x(0)">™"

¢’ (s)x'(t)dds.

As 11 = 15 and 11 — 1y, implies [|(Pu)(ty, r2) — (Pu)(1,11)ll = 0.

Now let W C By, such that W C conv(®(W) U 0). Since W is a bounded and equicontinuous set. Thus
the function (t,7) — w(t,r) = y(W(t,r)) is continuous on J. In view of (A4), (As) and the properties of the
measure Y, for each (f,7) € J, we have

2 fo (@(T) = ¢ (xr2) — x(0)

w(t, 1) < P(@W)(E ) U{0]) < p(@W)(E ) < ) y((W(s, 1) + Z YW, 0)))

k=1

F(vl)r(vz)zf f (@t = SN~ (x(r) = (@)

P(,)
T-q6,0)

N~ — vi-1 _ -1
+F(V1)F(V2)L£(¢(t) PN (x(r) — x(1))

qb’(S)x’(T)%y(W(s, £))drds

2P ($(@))" (X (b))
2+ 0 + DI(wa + 1)]‘

()X’ (1) y(W(s, t))dtds

< lwllpc

This means that

folhe 1 - 2 + 2o G} <o

1-Q9I'(v1 + DI (v2 +1)

As a consequence of (11) ||w|lpc = 0O, that is, for each (¢,+) € J, we have w(t,r) = 0, so W(t,r) is relatively
compact in B. Therefore W is relatively compact in B;, by the PC-type Ascoli-Arzela theorem. Now from
Theorem 2.17, @ has a fixed point which is a solution of problem (1). O
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