
Filomat 35:6 (2021), 1963–1975
https://doi.org/10.2298/FIL2106963G

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. The present paper deals with metallic Kähler manifolds. Firstly, we define a tensor H which can
be written in terms of the (0, 4)−Riemannian curvature tensor and the fundamental 2−form of a metallic
Kähler manifold and study its properties and some hybrid tensors. Secondly, we obtain the conditions under
which a metallic Hermitian manifold is conformal to a metallic Kähler manifold. Thirdly, we prove that the
conformal recurrency of a metallic Kähler manifold implies its recurrency and also obtain the Riemannian
curvature tensor form of a conformally recurrent metallic Kähler manifold with non-zero scalar curvature.
Finally, we present a result related to the notion of Z recurrent form on a metallic Kähler manifold.

1. Introduction

It is known that the number η = 1+
√

5
2 ≈ 1, 61803398874989..., which is the positive root of the equation

x2
− x − 1 = 0, is called the golden mean. As a literature review related to golden mean has been done,

we see that two well-known generalizations have existed. First of them is called the golden p−proportions
of golden mean and defined as positive root of the equation xp+1

− xp
− 1 = 0, (p = 0, 1, 2, 3, ...) in [13].

The second generalization named metallic means family (or metallic proportions) was introduced by V. W.
de Spinadel in [9],[10],[11],[12]. For two positive integers p and q, the positive solutions of the equation
x2
− px − q = 0 are named as members of the metallic means family. All the members of the metallic

means family are positive quadratic irrational numbers σp,q =
p+
√

p2+4q
2 and these numbers σp,q are also

called (p, q)−metallic numbers. In [6], authors have defined a metallic structure as a (1, 1) tensor field J
satisfying J2

− pJ − qI = 0 on a Riemannian manifold and studied some properties. Now, we take into
account a new equation x2

− px + 3
2 q = 0. If we want to ensure that the new equation has complex roots,

then we should give these two conditions q > 0 and −
√

6q < p <
√

6q. So, the numbers σc
p,q =

p±
√

p2−6q
2

are obtained as the complex roots of this equation. σc
p,q =

p+
√

p2−6q
2 that is one of the roots of this equation

will be called as members of metallic complex means family. If p = 1 and q = 1, then the complex metallic

means family σc
p,q =

p+
√

p2−6q
2 reduces to the complex golden mean: σc

1,1 = 1+
√

5i
2 , i2 = −1 which is a complex

analog of well-known golden mean [2]. Any (1, 1)−tensor field J satisfying J2
− J + 3

2 I = 0 is called
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almost complex golden structure. Almost complex golden structures were defined in [2]. Note that there is
a bijection between almost complex structures and almost complex golden structure, as it is shown in [1, 3].
If a (1, 1)−tensor field J provides the equation x2

− px + 3
2 q = 0, then we call it an almost complex metallic

structure. Precisely, an almost complex metallic structure is a polynomial structure as defined in [4, 5], with
the structural polynomial Q(J) = J2

− pJ + 3
2 qI.

Different kinds of geometric structures (such as almost product, almost contact, almost paracontact
etc.) allow to get rich results while studying on Riemannian manifolds. Recently, Riemannian manifolds
with almost metallic structures are defined and studied in [14]. In this paper, it has been considered
metallic Kähler manifolds with an almost complex metallic structure and a Riemannian metric. As our
main goal, it is examined how we can get results when we transfer the known geometric properties on
Kähler manifolds to our own space. Many different techniques have been used in the process due to the
different characteristics of an almost complex metallic structure and some results are obtained. An almost
complex metallic structure allows to reinterpret plenty of structures on Riemannian manifolds. Thanks to
the structure tensor which is introduced in this article, we hope to have results in the studies done with the
structure tensor in the long run.

2. Preliminaries

In this section, some definitions that are relevant to the whole paper are made. It is stated that all
geometric expressions mentioned in this paper are assumed to be class of C∞. Let Mn be an n−dimensional
diffrentiable manifold. For being one to one correspondence between almost complex structures and almost
complex metallic structures (see [14]), the dimension n must be even. An almost complex metallic structure
on M2k satisfies the following equation

J
k

i J
j

k = pJ j
i −

3
2

qδ j
i .

Consider a (1, 1)−tensor field Ĵ defined by

Ĵ
k

j = pδ k
j −J

k
j .

It is easy to demonstrate that Ĵ also is an almost complex metallic structure. We call it conjugate almost
metallic structure and it satisfies

Ĵ
k

j J
i

k =
3
2

qδ i
j .

If M2k has an almost complex metallic structures J , the pair (M2k,J) is an almost complex metallic
manifold. If the almost complex metallic structure J is integrable, i.e., its Nijenhuis tensor vanishes, then
it is called a complex metallic structure and then the pair (M2k,J) is called a complex metallic manifold. A
Riemannian metric which satisfies

1i jJ
i

k = −1kiJ
i

j

is called a hybrid metric. We will say that an almost complex metallic manifold equipped with a hybrid
metric 1 is an almost metallic Hermitian manifold. In addition, by the conditions NJ = 0 and dω = 0
(equivalently, ∇J = 0), the triple

(
M2k, 1,J

)
is a metallic Kähler manifold [14]. Here, ∇ is the Levi-Civita

connection andωi j = 1ihJ
h
j is the fundamental 2−form. Note that if the triple

(
M2k, 1,J

)
is a metallic Kähler

manifold, then
(
M2k, 1, Ĵ

)
is so.

Example 2.1. Let us consider the R2k endowed with the Euclidean metric 1 , i.e.

1 =

 δi
j

0

0
δi

j

 , i, j = 1, ..., k, i, j̄ = k + 1, ..., 2k.
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Two complex metallic structures on R2k are given by

J± =


p
2δ

i
j

∓(
2σc

p,q−p
2 )δi

j

±(
2σc

p,q−p
2 )δi

j
p
2δ

i
j

 , i, j = 1, ..., k, i, j̄ = k + 1, ..., 2k.

It is easy to see that the triple (R2k,J±, 1) are two metallic Kähler Euclidean spaces.

Example 2.2. Let M be a k-dimensional differentiable Riemannian manifold of class C∞ and with a Riemannian
metric 1, T(M) its tangent bundle, and π the natural projection T(M)→ M. Let ∇ be the Levi-Civita connection on
M and denote by VX and HX the vertical and horizontal lift respectively to the tangent bundle T(M) ([16]) of a vector
field X on M.

The Sasaki metric S1 is defined on T(M) by the three equations [16]:
S1

(
VX, VY

)
= V (

1 (X,Y)
)
,

S1
(

VX, HY
)

= 0,
S1

(
HX, HY

)
= V (

1 (X,Y)
)
.

We can define two almost complex metallic structures Ĵ± on T(M) by Ĵ±(HX) =
p
2

HX ∓ (
2σc

p,q−p
2 )VX,

Ĵ±(VX) =
p
2

VX ± (
2σc

p,q−p
2 )HX.

Also note that S1 is hybrid with respect to Ĵ±. Then we can say that the triple
(
T (M) , Ĵ±, S1

)
are two almost metallic

Hermitian manifolds.
The Levi-Civita connection S

∇ of S1 satisfies [7]:

(i) S
∇HX

HY = H (∇XY) −
1
2

V (R (X,Y) u) ,

(ii) S
∇VX

HY =
1
2

H (R (u,X) Y) ,

(iii) S
∇HX

VY = V (∇XY) +
1
2

H (R (u,Y) X) ,

(iv) S
∇VX

VY = 0.

We now consider the covariant derivative of Ĵ±. We obtain(
S
∇VXĴ±

) (
VY

)
=

(2σc
p,q − p

4

)
H (R (u,X) Y)

from which it follows that
(

S
∇VXĴ±

) (
VY

)
= 0 if and only if the Riemannian curvature tensor R is zero. In the case,

the Levi-Civita connection reduces to

(i) S
∇HX

HY = H (∇XY) ,
(ii) S

∇VX
HY = 0,

(iii) S
∇HX

VY = V (∇XY) ,
(iv) S

∇VX
VY = 0.

Hence, it is easy to see(
S
∇VXĴ±

) (
HY

)
=

(
S
∇HXĴ±

) (
VY

)
=

(
S
∇VXĴ±

) (
VY

)
= 0.

From all of the above, we can say that the triple
(
T (M) , Ĵ±, S1

)
are two metallic Kähler manifolds if and only if the

base manifold is flat.
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3. Properties of some tensors on metallic Kähler manifolds

This section can be divided into three parts. In the first part, it is examined some properties of the
curvature tensor on metallic Kähler manifold. In the second part, we define a tensor Hkj and study relations
between the curvature tensor and the tensor Hkj. In the last part, the harmonicity of the tensor Hkj is
examined.

From the Ricci identity, we write

∇k∇ j J
h

i − ∇ j∇k J
h

i = R h
kjs J

s
i − R

s
k ji J

h
s ,

where R h
kjs are the components of the Riemannian curvature tensor field R. In a metallic Kähler manifold,

we immediately find

R
h

kjs J
s

i = R s
k ji J

h
s . (1)

On multiplying (1) by Ĵ i
r 1hm, we obtain

Rkjrm = −
2
3q
Rkjis J

s
m Ĵ

i
r .

If we transvect (1) by 1 ji, we infer that

R
h

kjs J
s

i 1
ji = R

s
k ji J

h
s 1

ji

R
h

kjs ω̃
js

= R
s

k J
h

s , (2)

where R h
k = R h

kjs 1
js and ω̃ js denotes the contravariant components of ω in M2k. By using left side of (2), we

write down

ω̃ js
R

h
kjs =

1
2
ω̃ js

(
R

h
kjs + R h

kjs

)
ω̃ js
R

h
kjs =

1
2
ω̃ js

(
R

h
kjs − R

h
jks

)
ω̃ js
R

h
kjs =

1
2
ω̃ js
R

h
kjs −

1
2
ω̃ js
R

h
jks

ω̃ js
R

h
kjs =

1
2
ω̃ js
R

h
kjs −

1
2
ω̃sj
R

h
skj

ω̃ js
R

h
kjs =

1
2
ω̃ js
R

h
kjs +

1
2
ω̃ js
R

h
skj

ω̃ js
R

h
kjs =

1
2
ω̃ js

(
R

h
kjs + R h

skj

)
ω̃ js
R

h
kjs = −

1
2
ω̃

js

R
h

jsk. (3)

If we substitute (3) into (2), we get

−
1
2
ω̃ js
R

h
jsk = R s

k J
h

s (4)

which gives

R
s

k J
h

s = −
1
2
ω̃ js

(
2
3q
R

n
jsm J

h
n Ĵ

m
k

)
. (5)
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After transvecting (5) by Ĵ r
h, we have

R
s

k J
h

s Ĵ
r
h = −

1
2
ω̃ js 2

3q
R

n
jsm J

h
n Ĵ

m
k Ĵ

r
h

R
s

k

3q
2
δ r

s = −
1
2
ω̃ js 2

3q
R

n
jsm J

h
n Ĵ

m
k Ĵ

r
h

3q
2
R

r
k = −

1
2
ω̃ js 2

3q
R

n
jsm

3q
2
δ r

n Ĵ
m

k

3q
2
R

r
k = −

1
2
ω̃ js
R

r
jsm Ĵ

m
k

3q
2
R

r
k = R

s
mJ

r
s Ĵ

m
k

R
r

k =
2
3q
R

s
m J

r
s Ĵ

m
k .

So, we can state the following result:

Theorem 3.1. The tensor R r
k in a metallic Kähler manifold

(
M2k, 1,J

)
satisfies the following equation

R
r

k =
2
3q
R

s
m J

r
s Ĵ

m
k . (6)

By transvecting (6) with J k
l , we find

R
r

k J
k

l =
2
3q
R

s
m J

r
s Ĵ

m
k J

k
l

R
r

k J
k

l =
2
3q
R

s
m J

r
s

3q
2
δ m

l

R
r

k J
k

l = R
s

l J
r

s

R
r

k J
k

l 1rm = R
s

l J
r

s 1rm

Rkm J
k

l = R
s

l ωsm

Rkm J
k

l = −R
s

l ωms

Rkm J
k

l = −Rlk J
k

m . (7)

Hence, we obtain the following result:

Corollary 3.2. In a metallic Kähler manifold (M2k,J , 1), the tensor Rkm is hybrid with respect to J .

A tensor Hkj in a metallic Kähler manifold is defined by (for Kähler manifold, see [15])

Hkj = Rkjsr ω̃
sr.
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It follows from (4) that

−
1
2
ω̃sr
R

h
srk = R

s
k J

h
s

−
1
2
ω̃sr
R

h
srk = Rks ω̃

sh

−
1
2
Rsrkm 1

mhω̃sr = Rks ω̃
sh

1
2
Rsrkm 1

mhω̃sr = Rks ω̃
hs

1
2
Rkmsr 1

mhω̃sr = Rks J
s

j 1
jh

Hkm 1
mh = Rks J

s
j 1

jh

Hkj 1
jh = Rks J

s
j 1

jh

Hkj = Rks J
s

j . (8)

If we transvect (8) with Ĵ j
l , we get

Hkj Ĵ
j

l = Rks J
s

j Ĵ
j

l

Hkj Ĵ
j

l = Rks
3q
2
δ s

l

Rkl =
2
3q

Hkj Ĵ
j

l . (9)

After multiplying (8) by ω̂kj = Ĵ
j

m1
mk, we obtain

Hkj ω̂
kj = Rks J

s
j ω̂

kj

Hkj ω̂
kj = Rks J

s
j ω̂

kj

Hkj ω̂
kj = Rks J

s
j Ĵ

j
m 1

mk

Hkj ω̂
kj = Rks

3q
2
δ s

m 1
mk

2
3q

Hkj ω̂
kj = Rkm 1

mk

R =
2
3q

Hkj ω̂
kj. (10)

Thus, we yield:

Theorem 3.3. In a metallic Kähler manifold (M2k,J , 1), the following equations are satisfied

Hkj = Rks J
s

j ,

Rkl =
2
3q

Hkj Ĵ
j

l ,

R =
2
3q

Hkj ω̂
kj.

As a direct result of the above theorem we have the following theorem:

Theorem 3.4. A metallic Kähler manifold (M2k,J , 1) is an Einstein manifold if and only if the tensor Hkj is
proportional to the fundamental 2−form ω̂kj.
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As we take into account the fundamental 2−form ωkj = 1mjJ
m

k , in a metallic Kähler manifold we easily
see that ∇ω = 0 . Let us apply the derivative operator ∇k = 1kh

∇h to the both of sides of (8). Then we obtain

∇
kHkj = (∇k

Rks) J s
j .

From (10), standard calculations give

∇m H m
j = − (∇m R) J m

j . (11)

On the other hand, from the Bianchi identity we write down

∇lRkjih + ∇kR jlih + ∇ jRlkih = 0. (12)

If we transvect (12) by ω̃ih1lk, we get

∇l(Rkjih ω̃
ih1lk) + ∇k(R jlih ω̃

ih1lk) + ∇ j(Rlkih ω̃
ih1lk) = 0

1lk
∇l Hkj + ∇k (H jl1

lk) + ∇ j (Hlk1
lk) = 0

∇
kHkj + ∇k H k

j + ∇ j H l
l = 0

∇
kHkj + ∇kH k

j = 0

from which, by taking into account (11), we obtain

∇
k Hkj − (∇k R) J k

j = 0. (13)

From this, we obtain immediately the following theorem:

Theorem 3.5. The tensor Hkj in a metallic Kähler manifold (M2k,J , 1) is harmonic if and only if the scalar curvature
tensor of the metallic Kähler manifold is constant.

4. Conformal transformation

In this section, we are going to find out the conditions under which a metallic Hermitian manifold is
conformal to a metallic Kähler manifold.

By a conformal transformation, a hybrid metric 1i j is transformed into 1i j, the structure tensor J k
j

remains unchanged and the fundamental 2−form ωi j is transformed into ωi j:

ωi j = ϕ2ωi j ,

1i j = ϕ21i j.

If we suppose that the transformed metallic Hermitian manifold is a metallic Kähler manifold, then

(dω)kji = ∂kω ji + ∂ jωik + ∂iωkj = 0

(dω)kji = ∂k

(
ϕ2ω ji

)
+ ∂ j

(
ϕ2ωik

)
+ ∂i

(
ϕ2ωkj

)
= 0

2ϕϕkω ji + ϕ2
(
∂kω ji

)
+ 2ϕϕ jωik + ϕ2

(
∂ jωik

)
+ 2ϕϕiωkj + ϕ2

(
∂iωkj

)
= 0

2ϕϕkω ji + 2ϕϕ jωik + 2ϕϕiωkj + ϕ2 (dω)kji = 0. (14)

Dividing both sides of (14) with 2ϕ2, we get

ϕk

ϕ
ω ji +

ϕ j

ϕ
ωik +

ϕi

ϕ
ωkj +

1
2

(dω)kji = 0

ϕkω ji + ϕ jωik + ϕiωkj +
1
2

(dω)kji = 0, (15)
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where ϕk = ∂klnϕ, transvecting (15) with ω̂ ji, we obtain

ϕkω jiω̂
ji + ϕ jωikω̂

ji + ϕiωkjω̂
ji +

1
2

(dω)kjiω̂
ji = 0

−3qn ϕk +
3q
2
ϕk +

3q
2
ϕk + ωk = 0

3q (−n + 1)ϕk + ωk = 0
ωk

3q (n − 1)
= ϕk. (16)

If we substitute (16) into (15), we infer

ωk

3q (n − 1)
ω ji +

ω j

3q (n − 1)
ωik +

ωi

3q (n − 1)
ωkj +

1
2

(dω)kji = 0

(dω)kji +
2

3q (n − 1)

(
ωkω ji + ω jωik + ωiωkj

)
= 0. (17)

From (17), we obtain

∂lωkji − ∂kωl ji − ∂ jωkli − ∂iωkjl = 0

2
3q (n − 1)

((∂lωk − ∂kωl)ω ji −
(
∂lω j − ∂ jωl

)
ωki − (∂lωi − ∂iωl)ω jk

−

(
∂ jωi − ∂iω j

)
ωlk − (∂kωi − ∂iωk)ωl j −

(
∂ jωk − ∂kω j

)
ωli = 0

from which, by transvecting with ω̂ ji, we find

2
3q (n − 1)

(−3qn (∂lωk − ∂kωl) +
3q
2
δ j

k

(
∂lω j − ∂ jωl

)
+

3q
2
δi

k (∂lωi − ∂iωl)

−

(
∂ jωi − ∂iω j

)
ωlkω̂

ji
−

3q
2
δi

l (∂kωi − ∂iωk) +
3q
2
δ j

l

(
∂ jωk − ∂kω j

)
) = 0

2
3q (n − 1)

(−3qn (∂lωk − ∂kωl) +
3q
2

(∂lωk − ∂kωl) +
3q
2

(∂lωk − ∂kωl)

−

(
∂ jωi − ∂iω j

)
ωlkω̂

ji
−

3q
2

(∂kωl − ∂lωk) +
3q
2

(∂lωk − ∂kωl)) = 0

2
3q (n − 1)

(−3qn (∂lωk − ∂kωl) +
3q
2

(∂lωk − ∂kωl) +
3q
2

(∂lωk − ∂kωl)

−

(
∂ jωi − ∂iω j

)
ωlkω̂

ji +
3q
2

(∂lωk − ∂kωl) +
3q
2

(∂lωk − ∂kωl)

2
3q (n − 1)

((
−3qn + 6q

)
(∂lωk − ∂kωl) −

(
∂ jωi − ∂iω j

)
ωlkω̂

ji
)

−
2

(n − 1)

(
(n − 2) (∂lωk − ∂kωl) −

(
∂ jωi − ∂iω j

)
ωlkω̂

ji
)

= 0. (18)
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After multiplying (18) by ω̂lk, we have

−
2 (n − 2)
(n − 1)

(
(∂lωk − ∂kωl) ω̂lk

−

(
∂ jωi − ∂iω j

)
ωlkω̂

jiω̂lk
)

= 0

−
2 (n − 2)
(n − 1)

(
(∂lωk − ∂kωl) ω̂lk +

(
∂ jωi − ∂iω j

)
3qn ω̂ ji

)
= 0

−
2 (n − 2)
(n − 1)

(
(∂lωk − ∂kωl) ω̂lk + (∂lωk − ∂kωl) 3qn ω̂lk

)
= 0(

−
2 (n − 2)
(n − 1)

+ 3qn
)

(∂lωk − ∂kωl) ω̂lk = 0

3qn2
−

(
3q + 2

)
n + 4

n − 1
(∂lωk − ∂kωl) ω̂lk = 0.

We can see that (∂lωk − ∂kωl) ω̂lk = 0 if 3qn2
−

(
3q + 2

)
n + 4 , 0. When we use this equation in (18), we

get

−
2 (n − 2)
(n − 1)

((∂lωk − ∂kωl)) = 0.

For n , 2, we obtain

∂lωk − ∂kωl = 0.

Theorem 4.1. A necessary and sufficient condition for a metallic Hermitian manifold to be conformal to a metallic
Kähler manifold is that, for 2n > 4

(dω)kji +
2

3q (n − 1)

(
ωkω ji + ω jωik + ωiωkj

)
= 0

and, for n , 2 and 3qn2
−

(
3q + 2

)
n + 4 , 0

∂lωk − ∂kωl = 0.

5. Conformally recurrent metallic Kähler manifolds

Let Mn be an n−dimensional metallic Kähler manifold (n = 2k, k , 1, 2) and C h
kji be its conformal

curvature tensor. If the following condition is satisfied

∇lCkjih = λlCkjih, (19)

where Ckjih = C h
kji1rh, then the metallic Kähler manifold is called a conformally recurrent metallic Kähler

manifold. Here

Ckjih = Rkjih + 1khL ji − 1 jhLki + 1 jiLkh − 1kiL jh, (20)

L ji = −
1

2n − 2
R ji +

1
2 (2n − 1) (2n − 2)

R1 ji. (21)

Therefore, we can write (19) as

∇lRkjih + ∇l1khL ji − ∇l1 jhLki + ∇l1 jiLkh − ∇l1kiL jh =

λl

(
Rkjih + 1khL ji − 1 jhLki + 1 jiLkh − 1kiL jh

)
. (22)
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Transvecting (22) with ω̃ih, we get

2∇lHkj +
4

2n − 2
∇lH jk +

4
2 (2n − 1) (2n − 2)

ω jk∇lR =

λl

(
4

2n − 2
H jk +

4
2 (2n − 1) (2n − 2)

ω jkR

)
. (23)

By using (10), after transvecting (23) with ω̂kj, we infer

(∇lR − λlR)

6qn (2n − 1) − 2ωkjω̂kj

(2n − 1) (2n − 2)

 = 0

which gives

∇lR =λlR. (24)

Substituting (24) into (23), we obtain

∇lHkj = λlHkj

from which

∇lHkj = λlHkj

∇lHkj = λlRkjJ
s

j

∇lHkjĴ
m

j = J
s

j Ĵ
m

j λlRks

3q
2
∇lRkm =

3q
2
λlRkm

∇lRkm = λlRkm. (25)

From (21) we immediately see that

∇lL ji = λlL ji.

Therefore (22) reduces to

∇lRkjih = λlRkjih (26)

which implies that Rkjih is recurrent with recurrence vector λl. Thus we can sate the following theorem:

Theorem 5.1. A metallic Kähler manifold is conformally recurrent if and only if it is recurrent.

The vector ui = λsJ
s

i is called associated vector of λi with respect to J . It is easy to see that

ulλl = 0 (27)
ulul = λlλs. (28)

Since λlλl = θ , 0. we easily say that λl and ul are non-null orthogonal vectors with equal lengths.
From (13) , we have

∇
kHkj = Ru j.

By transvecting (12) by ω̃ih, we get

∇l Hkj + ∇k H jl + ∇ j Hlk = 0
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from which standard calculations give

θH jk = −R
(
λku j − λ juk

)
(29)

whence

R jm =
2

3qθ
R

(
p

3q
2
λ jλm + umu j − pλmu j

)
. (30)

By (26), we can write Bianchi’s identity as

∇lRkjih + ∇kR jlih + ∇ jRlkih = 0
λlRkjih + λkR jlih + λ jRlkih = 0 (31)

λlλ
l
Rkjih + λkλ

l
R jlih + λ jλ

l
Rlkih = 0

θRkjih + λkλ
l
Rihjl − λ jλ

l
Rihkl = 0. (32)

Transvecting (31) with 1kh, we get

λlRkjih1
kh + λkR jlih1

kh + λ jRlkih1
kh = 0

λlR jikh1
kh + λkR jlih1

kh
− λ jRlikh1

kh = 0

λlR ji + λkR jlih1
kh
− λ jRli = 0

λkR jlih1
kh = λ jRli − λlR ji. (33)

Using the equation (30) in (33), we get

λh
R jlih =

2
3qθ
R

[(
ui − pλi

) (
λ jul − λlu j

)]
. (34)

By using (34) in (32), we obtain

Rkjih =
2

3qθ2R
(λiuh − λhui)

(
λ juk − λku j

)
.

Substituting (29) into the last equation, we have

Rkjih = −
2

3qR
HkjHih.

Hence we have the following theorem:

Theorem 5.2. In a conformally recurrent metallic Kähler manifold of non-zero scalar curvature, the Riemannian
curvature tensor has the following form

Rkjih = −
2

3qR
HkjHih.

6. Recurrent Z-forms on metallic Kähler manifolds

The last chapter is devoted to Z−forms on metallic Kähler manifolds.
A tensor Zkl on a Riemannian manifold M is defined by

Zkl = Rkl + φ1kl, (35)
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where φ is a scalar function [8]. From (35), we can write the following equations

ZklJ
k

i = −ZikJ
k

l (36)

Zml = −
2
3q

ZikJ
k

l Ĵ
i

m.

The Z−form on M is recurrent if and only if [8]

∇kZi j − ∇ jZik = ωkZi j − ω jZik. (37)

Transvecting (37) with − 2
3qJ

j
h Ĵ

i
l , we get

∇kZi j +
2
3q
∇β

(
ZαkJ

β
j Ĵ

α
i

)
= ωkZi j +

2
3q
ω j

(
ZikJ

β
j Ĵ

α
i

)
. (38)

Exchanging roles of the indices k and i in equation (38), we get

∇iZkj +
2
3q
∇β

(
ZαiJ

β
j Ĵ

α
k

)
= ωiZkj +

2
3q
ωβ

(
ZαiJ

β
j Ĵ

α
k

)
. (39)

When the equations (38) and (39) are added, we have

∇kZi j + ∇iZkj +
2
3q
∇β

(
pZαkJ

β
j J

α
i − ZαkJ

β
j J

α
i + pZαiJ

β
j J

α
k − ZαiJ

β
j J

α
k

)
=

ωkZi j + ωiZkj +
2
3q
ωβ

(
pZαkJ

β
j J

α
i − ZαkJ

β
j J

α
i + pZαiJ

β
j J

α
k − ZαiJ

β
j J

α
k

)
from which, by using (36), we get

∇kZi j + ∇iZkj = ωkZi j + ωiZkj. (40)

By exchanging again roles of the indices in (40) properly, we have

∇kZi j + ∇ jZki = ωkZi j + ω jZki. (41)

If the equations (40) and (41) are added, then we obtain

∇kZi j − ∇ jZik + ∇kZi j + ∇ jZki = ωkZi j − ω jZik + ωkZi j + ω jZki

2∇kZi j = 2ωkZi j

∇kZi j = ωkZi j.

So, we are able to say the following theorem:

Theorem 6.1. On a metallic Kähler manifold, the notion of Z recurrent form is equivalent to the ordinary reccurency
of the Z tensor.
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