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Abstract. The present paper deals with metallic Kéhler manifolds. Firstly, we define a tensor H which can
be written in terms of the (0,4)—Riemannian curvature tensor and the fundamental 2—form of a metallic
Kéhler manifold and study its properties and some hybrid tensors. Secondly, we obtain the conditions under
which a metallic Hermitian manifold is conformal to a metallic Kdhler manifold. Thirdly, we prove that the
conformal recurrency of a metallic Kédhler manifold implies its recurrency and also obtain the Riemannian
curvature tensor form of a conformally recurrent metallic Kdhler manifold with non-zero scalar curvature.
Finally, we present a result related to the notion of Z recurrent form on a metallic Kdhler manifold.

1. Introduction

It is known that the number 1 = HT‘B ~ 1,61803398874989..., which is the positive root of the equation
x> —x—1 =0, is called the golden mean. As a literature review related to golden mean has been done,
we see that two well-known generalizations have existed. First of them is called the golden p—proportions
of golden mean and defined as positive root of the equation x**! —x” -1 =0, (p = 0,1,2,3,...) in [13].
The second generalization named metallic means family (or metallic proportions) was introduced by V. W.
de Spinadel in [9],[10],[11],[12]. For two positive integers p and g, the positive solutions of the equation
x?> —px — g = 0 are named as members of the metallic means family. All the members of the metallic
means family are positive quadratic irrational numbers o,, = PN W and these numbers o, are also
called (p, g)—metallic numbers. In [6], authors have defined a metallic structure as a (1, 1) tensor field J

satisfying 92 — pJ — gl = 0 on a Riemannian manifold and studied some properties. Now, we take into
account a new equation x? — px + %q = 0. If we want to ensure that the new equation has complex roots,

. o =6
then we should give these two conditions g > 0 and — /69 < p < 4/6g. So, the numbers o}, = w
. . . \p?2-6 . . .
are obtained as the complex roots of this equation. g}, = w that is one of the roots of this equation
will be called as members of metallic complex means family. If p = 1 and g = 1, then the complex metallic
. 26 [ . .
means family o}, , = w reduces to the complex golden mean: o7, = 1+T‘/§l, i = =1 which is a complex

analog of well-known golden mean [2]. Any (1,1)—tensor field J satisfying J2 — J + 3I = 0 is called
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almost complex golden structure. Almost complex golden structures were defined in [2]. Note that there is
a bijection between almost complex structures and almost complex golden structure, as it is shownin [1, 3].
If a (1, 1)—tensor field J provides the equation x* — px + 3q = 0, then we call it an almost complex metallic
structure. Precisely, an almost complex metallic structure is a polynomial structure as defined in [4, 5], with
the structural polynomial Q(J) = I - pJ + 241

Different kinds of geometric structures (such as almost product, almost contact, almost paracontact
etc.) allow to get rich results while studying on Riemannian manifolds. Recently, Riemannian manifolds
with almost metallic structures are defined and studied in [14]. In this paper, it has been considered
metallic Kdhler manifolds with an almost complex metallic structure and a Riemannian metric. As our
main goal, it is examined how we can get results when we transfer the known geometric properties on
Kéhler manifolds to our own space. Many different techniques have been used in the process due to the
different characteristics of an almost complex metallic structure and some results are obtained. An almost
complex metallic structure allows to reinterpret plenty of structures on Riemannian manifolds. Thanks to
the structure tensor which is introduced in this article, we hope to have results in the studies done with the
structure tensor in the long run.

2. Preliminaries

In this section, some definitions that are relevant to the whole paper are made. It is stated that all
geometric expressions mentioned in this paper are assumed to be class of C*. Let M,, be an n—dimensional
diffrentiable manifold. For being one to one correspondence between almost complex structures and almost
complex metallic structures (see [14]), the dimension n must be even. An almost complex metallic structure
on My satisfies the following equation

j—ikjk] = pij - Eqéij'

Consider a (1, 1)—tensor field 3 defined by
Tk _ sk _ gk
Fr=psf-Tk

It is easy to demonstrate that  also is an almost complex metallic structure. We call it conjugate almost
metallic structure and it satisfies

— 3.
ki i
;j ;k ——zq(s]-.

If My, has an almost complex metallic structures ., the pair (My, J) is an almost complex metallic
manifold. If the almost complex metallic structure J is integrable, i.e., its Nijenhuis tensor vanishes, then
it is called a complex metallic structure and then the pair (M, J) is called a complex metallic manifold. A
Riemannian metric which satisfies

gijjki = _gkij]'i

is called a hybrid metric. We will say that an almost complex metallic manifold equipped with a hybrid
metric g is an almost metallic Hermitian manifold. In addition, by the conditions Ny = 0 and dw = 0
(equivalently, VJ = 0), the triple (M, g, J) is a metallic Kdhler manifold [14]. Here, V is the Levi-Civita
connection and w;; = ginJ’ ]h is the fundamental 2—form. Note that if the triple (M, g, ) is a metallic Kdhler

manifold, then (MZk, g, 3 ) is so.

Example 2.1. Let us consider the R%* endowed with the Euclidean metric g, ie.
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Two complex metallic structures on R?* are given by

j:z

o +(Z st ..
(20’6””7’7)67. psi i =10,k i j=k+1,..,2k
2 j 2 i

H s

It is easy to see that the triple (R, T, g) are two metallic Kihler Euclidean spaces.

Example 2.2. Let M be a k-dimensional differentiable Riemannian manifold of class C* and with a Riemannian
metric g, T(M) its tangent bundle, and m the natural projection T(M) — M. Let V be the Levi-Civita connection on
M and denote by VX and "X the vertical and horizontal lift respectively to the tangent bundle T(M) ([16]) of a vector

field X on M.
The Sasaki metric °g is defined on T(M) by the three equations [16]:

S9("XVY) = V(g Y),
S9(Vx,"y) 0,
("X My) = V(gxY).

We can define two almost complex metallic structures J=on T(M) by

Ta(1X) = X 7 ()X,
To(VX) = VX + (gl

Also note that ° g is hybrid with respect to J=. Then we can say that the triple (T (M) L T=,S g) are two almost metallic

Hermitian manifolds.
The Levi-Civita connection °V of Sg satisfies [7]:

() V™Y =" (Vx1) - 2¥ (R V) w),
(i) SVvY = %H (R, X)Y),
(i) SVux'Y ="V (VxY) + %H (R(u,Y)X),

(iv) SVv"Y =0.

We now consider the covariant derivative of .. We obtain

C

(VixT2) (YY) = (ZG”'ﬁT_p) 1R, X)Y)

from which it follows that (SVin) (VY) = 0 if and only if the Riemannian curvature tensor R is zero. In the case,

the Levi-Civita connection reduces to
() VY =H(VxY),
(i) SVvllY =0,
(i) SVux'Y =V (VxY),
(iv) “Vvx"Y =0.

Hence, it is easy to see

(9 T2) () = (V) (V) = (¥ TE) () =0

From all of the above, we can say that the triple (T M) Tz, g) are two metallic Kahler manifolds if and only if the

base manifold is flat.



3. Properties of some tensors on metallic Kidhler manifolds

A. Gezer et al. / Filomat 35:6 (2021), 1963-1975

1966

This section can be divided into three parts. In the first part, it is examined some properties of the
curvature tensor on metallic Kéhler manifold. In the second part, we define a tensor H; and study relations
between the curvature tensor and the tensor Hy;. In the last part, the harmonicity of the tensor Hy; is

examined.

From the Ricci identity, we write

ViV; «jih = VjVk jih = Rka J;° - Rkﬁ jshf

where Rka are the components of the Riemannian curvature tensor field R. In a metallic Kdhler manifold,

we immediately find

h s _ s h
Rkjs*yi _Rkjijs :

On multiplying (1) by Kis . gnm, we obtain

2
Rkjrm = _3_q

Rejis T m T,

If we transvect (1) by g/, we infer that

h s ji
7zkjs :]1 g
h —js
R, s @
where Rkh =R, h
]S
write down

"R =

kjs

5]5R ho

kjs

C’stR ho_

kjs

a")']sR h

kjs

C’D‘]SR h

kjs

a)'st h

kjs

a")']sR h_

kjs

9"

= ﬂk]Sz jshgﬁ
= ﬁksjsh/

%~j5 (Rkj’; + Rkj];)

37 (R~ R,!)
%ajsﬂkj}; - %5stij
%a?fsvzk; - %asfﬂesk’;
%51‘572,{; + %~fs7€s,f’j
1

~i h h
E ” (Rkjs + Rskj)
15
- 5@ R

If we substitute (3) into (2), we get

1

h _ h
— R =R T,

which gives

s 1 (2 n T m
Rk jsh =_§ a)]S(ER]Smjnhjk ).

1)

()

and @”* denotes the contravariant components of w in My. By using left side of (2), we
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After transvecting (5) by K ;» we have

RS I T;

1 -
_Ew _R]smj jkmjh
12 n h r
_E qusm’ jn kajh
1
_E _qR]sm 2 njk
_1 R
2 w jsm k
str:i'km
3q7< VAN A

So, we can state the following result:

Theorem 3.1. The tensor R, in a metallic Kihler manifold (M, g, ) satisfies the following equation

R, = ‘R I T (6)

3q

By transvecting (6) with J,¥, we find

R T}
R T}
R T}
er jlkgrm
ka gj}k

ka «Ylk
ka \le

2 ram

37 Ry TS T T
2 o s 3
S_qu js 2 6[
ﬂlsjsr

Rlsjsrgrm

Rls Wsm

—R* s

R T,k ()

Hence, we obtain the following result:

Corollary 3.2. In a metallic Kihler manifold (Mo, S, g), the tensor Ry, is hybrid with respect to .

A tensor Hy; in a metallic Kdhler manifold is defined by (for Kadhler manifold, see [15])

Hk] = Rkjsr w
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It follows from (4) that

—S0"Ry = RET

—%JS’ﬂsﬁk = R @
—% i 0T = Ris @
Ry 9T = R
1

Rinsr g 0" = Ris T g
Hiw g™ = Ris T 9"
Hijg" = RuJj9"

Hyj = ReJ}.

If we transvect (8) with 3 j , we get

HyJ = ReJ}3/

oy 3
Hy; jz] = Rks;‘sls
_ 2y T
Ri = 3:H T/
After multiplying (8) by @/ = 7,/g", we obtain
Hy @ = R T @
Hy @ = Ris jjsa)\kj
ij = Ris j]'s:imj _t]'"k
» 3
Hy @ = Ry 7‘762 g™
2 .
%ij o= Riem 5]mk
2
R = 3—qu]' w ].
Thus, we yield:

Theorem 3.3. In a metallic Kihler manifold (M, J, g), the following equations are satisfied

Hy = ReJ;,

2 T

Ra = Eijj,,
2 Ak'

= 3—quij.

As a direct result of the above theorem we have the following theorem:

1968

(8)

(10)

Theorem 3.4. A metallic Kihler manifold (M, J,q) is an Einstein manifold if and only if the tensor Hy; is

proportional to the fundamental 2—form @y;.
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As we take into account the fundamental 2—form wy; = g7, " ina metallic Kdhler manifold we easily
see that Vo = 0. Let us apply the derivative operator V¥ = g V;, to the both of sides of (8). Then we obtain

ViHyj = (V'Ri) T
From (10), standard calculations give
Vi Hjm =—(Vp, R) ]j’”. (11)

On the other hand, from the Bianchi identity we write down
ViRijin + ViRiiin + Vi Riin = 0. (12)
If we transvect (12) by @ g, we get

Vi(Ryjin " %) + ViR @" %) + V(Ryan @™ %) =
g"Vi Hy; + Vi (Hpg"™) + V; (Hyg") =
VFHy; + Vi ij +ViH' =
ViH + ViH S =

o O o O

from which, by taking into account (11), we obtain

VK Hyj = (Vi R) jj" =0. (13)
From this, we obtain immediately the following theorem:
Theorem 3.5. The tensor Hyj in a metallic Kihler manifold (Max, I, g) is harmonic if and only if the scalar curvature
tensor of the metallic Kithler manifold is constant.
4. Conformal transformation

In this section, we are going to find out the conditions under which a metallic Hermitian manifold is
conformal to a metallic Kdhler manifold.
By a conformal transformation, a hybrid metric g;; is transformed into g;;, the structure tensor J ].k

remains unchanged and the fundamental 2—form wj; is transformed into w;;:
wj = Qlw,
9 = P93
If we suppose that the transformed metallic Hermitian manifold is a metallic Kdhler manifold, then
(dw)yji = dwiji + djwix + diwg; =0
(@@); = 9k (9*w;i) + 9; (9 wir) + 9 (9wiy) = 0
20pwji + ¢ (9kw]‘i) +20p wik + ¢° (9 jwik) + 20wy + @° <9iwkj) =0

Z(P(pka)jj + Z(p(p]-a)ik + 2(p(pia)k]- + (p2 (da))kﬁ =0. (14)
Dividing both sides of (14) with 2¢?, we get

L PN I _
w;i + (pa),k+ (pa)k]+ z(da))kﬂ =0

1
(pka)ﬁ + (p]-a)ik + (p,-a)k]- + E(dw)kji = 0, (15)
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where @ = dilng, transvecting (15) with @/, we obtain

. . 1 .
Prwjiv’” + i@ + piwgjw’ + E(da))kﬁa)]’ =0

3 . 3%
Beet S et 5 Pt = 0

3g(-n+Depr+wr, = 0

Wi _
—3l] (Tl — 1) = Q. (16)

If we substitute (16) into (15), we infer

Uk i+ it Wi + —t
39(n-1)"" " 3q(n—-1)"" " 3q(n—1)

1
a)k]‘ + E(da))k]l =0

I
e

(dw)kﬁ + Wwji + Wjwir + wia)kj) (17)

o (
3g(n—1)
From (17), we obtain

diwyji — Iwiji — djwy; — diwgj = 0

2

31] (71 — 1) ((alwk - aka)l) Wji — (3160]' - a,-a)z) Wi — (310)1' - 81-0)[) Wik

- (8]-0)1- — Biwj) Wi — (51(60,' - 8,-a)k) wlj - (ijk - 8ka),-) wy; = 0
from which, by transvecting with @/, we find

2

—_— 39 3q
33(i—1) (=3qn (djwg — dan) + ?6]1 (81wj - 8]-a),) + 7(Sk (O1w; — diw))

—i 39 39
- (3]-@1- — (9,'(4)]‘) a)lka)/’ - ?qé; (8ka),- - Biwk) + ?qé{ (8]-a)k - 3](0)]')) =0

2

£ 3 3
37i-1) (=3qn (dwi — dawy) + Eq (Qwi — Okawy) + ?q D1y — Iawr)

3 3
~ (9jwi - diw;) oy’ - ?q (ke — dyoye) + ; (Diwi — Ihawy)) = 0

2

S 3 3
37i-1) (=3qn (dwi — drawy) + ?q (Qwi — Oy + ?q Q1w — Iawr)

.. 3 3
- (9]'0)1' - 91'(0]‘) wp” + ?q (dwy = ) + ; (diwy — dran)

2 .
3g(n—1) ((_3‘771 + 6‘7) (diwy — dhan) = (aj&)i - 8,‘(4)]') wpw’ )

2
T (n-1)

(0 = 2) Doy = Fawn) = (91 — ;) @) = 0. (18)
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After multiplying (18) by @™, we have
2 n-2)

(n-1) (wlwk — Jawp) @ — ((Qja)i - aiw].) CUZkaﬁﬁk) - 0
_% ((31wk — ) @™ + (8]-@,- - (91'&),') 3qn a;ji) -0
Al w'* —ik
_W ((alOJk - ak(l)l) w" + (8la)k - asz) 3‘/]7’1 @ ) = 0
2 (n-2
3qn2 — (3q+2)n +4
qn” — (3q+2)n + G- T = 0.

n—1

We can see that (djwy — drw;) @ = 0 if 3qn2 —(3q+2)n +4 # 0. When we use this equation in (18), we
get

2(n-2)
C(n-1)

For n # 2, we obtain

((Qrwk — dray)) = 0.

8la)k - kal =0.

Theorem 4.1. A necessary and sufficient condition for a metallic Hermitian manifold to be conformal to a metallic
Kiihler manifold is that, for 2n > 4

(dw)yi + Wkwiji + Wjwik + wz‘wkf) =0

oot
3q(n—-1)
and, forn # 2 and 3qn* — (3q+2)n+4 #0

Blwk - 8ka)1 =0.

5. Conformally recurrent metallic Kdhler manifolds

Let M,, be an n—dimensional metallic Kdhler manifold (n = 2k, k # 1,2) and ij? be its conformal
curvature tensor. If the following condition is satisfied

ViCrjin = MCkijins 19)

where Cyjin = C’k].’;grh, then the metallic Kdhler manifold is called a conformally recurrent metallic Kéhler
manifold. Here

Crjin = Rjin + ginLji — 9Ly + 9jiLin — griLin, (20)

1 1
"2t En =D @n=2)

Therefore, we can write (19) as

L= (21)

ViRxjin + VigLji = ViginLii + VigjiLin — ViguLjn =

A (Rkjih + g Lji — ginLei + 9jiLin — gkii:jh) : (22)
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Transvecting (22) with @™, we get

4
22n—-1)(2n-2)

4
2V1ij + —Vlij +

m_2 w]-kVﬂQ =

4 4
H.
A’(zn—z Kty on-Den-2)

@ ij) .
By using (10), after transvecting (23) with @*/, we infer

6gn (2n — 1) = 2wi;
(V,R—)\,R)( o - 1) - 2o )

2n-1)2n-2)
which gives
VIR =A/R.
Substituting (24) into (23), we obtain
ViHy; = A;Hy;
from which

ViHyj = AHy
ViHy = ARGT;
Vszj:i]-m = jjs:i]-m/\lﬂks
3q 3q
—V m = A m
> 1R« > AR
ViRen = AMRim-
From (21) we immediately see that
ViLji = M Lji.
Therefore (22) reduces to

ViRijin = MR

1972

(23)

(24)

(25)

(26)

which implies that Ry;i, is recurrent with recurrence vector A;. Thus we can sate the following theorem:

Theorem 5.1. A metallic Kihler manifold is conformally recurrent if and only if it is recurrent.

The vector u; = /\sjl,s is called associated vector of A; with respect to J. It is easy to see that

ul/\l =0
= A

Since A'A; = 6 # 0. we easily say that A; and 1 are non-null orthogonal vectors with equal lengths.

From (13) , we have
Vka]‘ = Ruj.
By transvecting (12) by o, we get

Vi ij+kajl +V]' Hy =0

(27)
(28)
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from which standard calculations give

Gij =-R (/\ku]- - /\]‘uk) (29)
whence
2 3q
R]’m = &]_Qﬂ(p?/\]Am + Upllj — p/\mu]-). (30)

By (26), we can write Bianchi’s identity as
ViRyjin + ViRjiin + V Rikin

ARijin + MeRjiin + A jRikin

MA R + MA' R + AjA Ry =
ORjin + MA Rinjt — A A Ripa

(31)

o o o o

(32)

Transvecting (31) with g, we get
ARijing” + ARjing™ + ARuang™ = 0
AR g™ + MRing™ = A Rung™ = 0
)\ZRJ‘,‘ + /\kRﬂ,‘hgkh - A]'Rli =0
MRiing™ = ARy — MRji. (33)

Using the equation (30) in (33), we get
2
/\hRﬂih = BMJ_QR [(u,- - p/\i) ()L]-ul - )\luj)] . (34)

By using (34) in (32), we obtain

2

Rijin = 3007

R (/\,'uh - )\hui) ()\juk - )\kuj) .
Substituting (29) into the last equation, we have

2
———_Hy;Hj.
qu kjtdih

Ryjin =
Hence we have the following theorem:

Theorem 5.2. In a conformally recurrent metallic Kihler manifold of non-zero scalar curvature, the Riemannian
curvature tensor has the following form

6. Recurrent Z-forms on metallic Kihler manifolds

The last chapter is devoted to Z—forms on metallic Kdhler manifolds.
A tensor Zj on a Riemannian manifold M is defined by

Zi = Ru + dgu, (35)
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where ¢ is a scalar function [8]. From (35), we can write the following equations

ZuJ " = -Zx 9,

2 —.
L = _Ezikmkjn;'

The Z—form on M is recurrent if and only if [8]
VkZi]‘ — V]'Zik = a)kZij - a)jZik.

Transvecting (37) with -2 / :il", we get

2 = 2 g
ViZij + EV/; (Zakj]- ji“) = wiZij + %wj (Zikj]- «Za)-

Exchanging roles of the indices k and i in equation (38), we get

2 B 2 B
ViZk]' + 3—qvﬁ (Zaijj jka) = wiij + 5(‘)[3 (Zaijj LTka) :

When the equations (38) and (39) are added, we have

2
Viiy + ViZij + 3V (PZanT [T = ZuT [T 42T [ 50 = 2aT [ 9,) =

wZij + wilgj + ;—qwﬁ (pzakj ]»ﬁjl-a - Zad jﬁjia +pZail jﬁj = ZaiT jﬁj ka)
from which, by using (36), we get

ViZij + ViZyj = wiZij + wiZ;.
By exchanging again roles of the indices in (40) properly, we have

ViZij +VZy; = wkZij + @ Zy;.
If the equations (40) and (41) are added, then we obtain

VkZi]‘ - V]'Z,'k + szij + V]‘Zki = a)kZ,-]- - a)]'z,'k + wkZ,-]- + w]-Zki
ZVkZ,‘]' = ZwkZ,-]-
VkZ,']‘ = wkZ,j.

So, we are able to say the following theorem:

1974

(36)

(37)

(38)

(39)

(40)

(41)

Theorem 6.1. On a metallic Kihler manifold, the notion of Z recurrent form is equivalent to the ordinary reccurency

of the Z tensor.
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