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Advanced Ordinary and Fractional Approximation by Positive
Sublinear Operators

George A. Anastassiou®

?Department of Mathematical Sciences
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Abstract. Here we consider the ordinary and fractional approximation of functions by sublinear positive
operators with applications to generalized convolution type operators expressed by sublinear integrals
such as of Choquet and Shilkret ones. The fractional approximation is under fractional differentiability
of Caputo, Canavati and Iterated-Caputo types. We produce Jackson type inequalities under basic initial

conditions. So our way is quantitative by producing inequalities with their right hand sides involving the

modulus of continuity of ordinary and fractional derivatives of the function under approximation. We give
also an application related to Picard singular integral operators.

1. Background -1

Here we follow [3], pp. 1-17.

Let I € R be a bounded or unbounded interval, n € IN, and

CBL(I) = {f :T— R, : f? is continuous and bounded on I, for both i = O,n}.

1)
We define for
feCBy(I)={f :I > R, : fis continuous and bounded on I},
the first modulus of continuity
w1 (f,8)= sup |[f)-f(y)|, )
x,y€l:
|x—y|<o

where 0 < 6 < diameter (I), also defined the same for just uniformly continuous functions f : I — R,.
CallC. (I) ={f : I = R, : f is continuous on I}.

Let Ly : C+ (I) = CB. (I), n,N € IN be a sequence of operators satisfying the following properties (see
also [5], p. 17):
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(i) (positive homogeneous)

Ly(af)=aln(f), Ya=0, feCi(]), 3)
(i) (Monotonicity)
if f,g € C4 (I) satisfy f < g,then Ly (f) <Ln(g9), YN €N, (4)
and
(iii) (Subadditivity)
Lv(f+9) <In(H+Ln(g), VY f9€Ci(D). (5)

We call Ly positive sublinear operators.
In particular we consider the restrictions Ly|cp: () : CB} (I) = CB, (I).
Asin [5], p. 17, we get that for f,g € CB, (I),

Ly (f) (@) = Ly (9) )] < Ln (| - 9]) @), Vel ©)
Furthermore, also from [5], p. 17, we have

L () ) = F @] < I (|f O = F@]) @)+ |f @Iy (D) @) =11, Vxel. 7)
Given that Ly (1) =1,V N € N, we get

v ()@ - fF@<In(fO - fF@]) ), Yxel, YNeN. ®)

We mention Holder’s inequality for positive sublinear operators

Theorem 1.1. ([3], p. 6) Let L : C,. (I) = CB, (I), be a positive sublinear operator and f, g € C (I), furthermore let
pg>1: % + % = 1. Assume that L((f(-))p) (s+), L((g (-))q) (s.) > 0 for some s, € I. Then

LY 6) < (L(FOP)6) (L0 6) 9
By assuming Ly (l' - x|”+1) (x) >0, (9) and Ly (1) = 1, we obtain
L (= ) () < (L (1 = ™) @)™ (10)
in case of n = 1 we derive
L (- = ) (@) < J(Ln (¢ = 0%) (). (11)

We mention also the following result.

Theorem 1.2. ([3], p. 7) Let (Ln)yew be a sequence of positive sublinear operators from C. (I) into CB, (I),
and f € CB"(I), f™ could be only uniformly continuous, where n € N and I ¢ R a bounded or unbounded
interval. Assume Ly (1) =1, VN € N, and f(’) (x) =0,i=1,..,n, for a fixed x € I. Furthermore assume that

Ly (l-=2"")(x) >0,V N e N.
Then
n (0, (L (1= ) )™
n! ’
(Ln (- = ™) )™
n+1) !

v (f) () = f ()] <

Ly (I = x") (%) + VNeN. (12)
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We mention (n = 1 case)

Corollary 1.3. ([3], p. 7) Let (Ln)new be a sequence of positive sublinear operators from C. (I) into CB, (I), and
f € CBL(I), f’ could be only uniformly continuous, and I C R a bounded or unbounded interval. Assume Ly (1) =1,

VN eN,and f' (x) =0, for a fixed x € I. Furthermore assume that Ly ((- - x)z) (x)>0,YNeN.
Then

Lx (@ = F @] < @ (7 \(Ew (€ = 27) @)

(Ln (¢ = 27) )

Ly (I = x]) (x) + > ,

VN eN. (13)

Remark 1.4. ([3], p. 7) (i) to Theorem 1.2: Assuming Ly (|- - x|”+1) (x) = 0, as N — oo, using (10), we get that
(Ln (f)) (x) = f(x), as N — co.

(ii) to Corollary 1.3: Assuming L ((- = x)%) (x) = 0,as N = oo, using (11), we get that (Ly (f)) (x) = f (x), as
N — oo.

(iii) The right hand sides of (12), (13) are finite.
We also mention the basic result (n = 0 case).

Theorem 1.5. ([3], p. 8) Let (Ln)nen be a sequence of positive sublinear operators from C. (I) into CB, (I), and
f € CB. (), f could be only uniformly continuous, where I C R a bounded or unbounded interval. Assume that
Ly (I = 1) (x) > O, for some fixed x € I, YV N € N. Then

1)

Ly () @) = F@)] < f @) 1Ly (1) () = 1] +

[Ly (1) (x) + w1 (f, Ln (- = x) (x)), YN €N, (14)
2) when Ly (1) = 1, we get

Ly (f) () = £ ()] < 201 (f, Ly (- = x)) (x)), Y N € N. (15)

Remark 1.6. ([3], p. 8) (to Theorem 1.5) Here x € I is fixed.

i) Assume Ly (1) (x) = 1,as N — oo, and Ly (|- — x]) (x) = 0, as N — oo, given that f is uniformly continuous
we get that L, (f) (x) = f (x), as N — oo (use of (14)). Notice here that Ly (1) (x) is bounded.

ii) Assume that Ly (1) = 1, and Ly (|- —x]) (x) = 0, as N — oo, and f is uniformly continuous on I, then
L, (f)(x) = f (x),as N — oo (use of (15)).

iii) The right hand sides of (14) and (15) are finite.

2. Background - II ([4])

Consider Q) # @ and let # be a ¢-algebra in Q). Here y is a set function y : ¥ — [0, +00) which is
monotone, i.e. for A,B € 3 : A C Bwe have i (A) < u(B), furthermore it holds u (@) = 0.

Here f,g9: QQ — R, = [0, +00) are F -measurable, we write it as f,g € M(Q, R,).

We consider a functional denoted by the integral symbol (SL) fA fdu, V A € ¥, which is positive, i.e.
[, fdu = 0.

We assume the following properties:

(i) (positive homogeneous)

(SL)anfdlu:a(SL)Lfdy, Va>0,VfeM(QR,).
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(ii) Monotonicity) if f,g € M (Q, R,) satisfy f < g, then (SL) fA fdu < (SL) fA gdu, YAeF.

And
(iii) (Subadditivity)

(SL)L(f+g)dyS(SL)Lfdy+(SL)£gdy, YAeF.
(iv)
(SL)fldy =u(d), VAeTF.
A

(V) If Q = RY, d € N, we assume that y is strictly positive, i.e. i (A) > 0, for any A compact subset of RY.
Here ¥ = 8B the Borel o-algebra.

We call (SL) fA fdu a sublinear integral.

We notice the following:

fO=f@-g@+70)<|[f@-g@|+g0(),

hence

60 [ Fdut <60 [ (F0-g@]+9)du ) <

(SL) fA £ () — g (9] dis () + (SD) fA @) du (),
i.e.

(SD) fA £ () () — (SL) fA g () du () < (SL) fA I () — g )| dut ).

Similarly, we get that

(SD) fA 9 du () — (SL) fA £ (@) () < (SL) f I () — 9 ()]s ().

A

In conclusion, it holds

s fA £ (@) () — (S) fA g () du ()] < (S1) fA I () — 9 () ds @), (16)

YVAeF andV f,ge M(Q R,).

3. Background - III

About the Choquet integral:
We make

Definition 3.1. Consider Q) # @ and let C be a o-algebra of subsets in .
(i) (see, e.g., [13], p. 63) The set function u : C — [0, +oo] is called a monotone set function (or capacity) if
(@) =0and p(A) < u(B) forall A,B € C, with A C B. Also,  is called submodular if

UAUB)+u(ANB) < u(A)+u(B), forall A,BeC. 17)

w is called bounded if 11 (QQ) < 400 and normalized if u (Q) = 1.
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(ii) (see, e.g., [13], p. 233, or [7]) If 11 is a monotone set function on C and if f : QO — R is C-measurable (that is,
for any Borel subset B C R it follows f~' (B) € C), then for any A € C, the Choquet integral is defined by

+
0

©) fA fdu = f (R nA)dp+ fﬂ [ (Fs ()N A) - u(a)]dp, (18)

where we used the notation Fg (f) = {w € Q: f (w) > B}. Notice that if f > 0 on A, then in the above formula we get
J;Ooo =0.

The integrals on the right-hand side are the usual Riemann integral.

The function f will be called Choquet integrable on A if (C) fA fdueR.

Next we list some well known properties of the Choquet integral.

Remark 3.2. If u : C — [0, +00] is a monotone set function, then the following properties hold:

(i) For all a > 0 we have (C) anfdy =a-(C) fA fdu (if f > 0 then see, e.g., [13], Theorem 11.2, (5), p. 228 and
if f is arbitrary sign, then see, e.g., [81, p. 64, Proposition 5.1, (ii)).

(ii) For all ¢ € R and f of arbitrary sign, we have (see, e.g., [13], pp. 232-233, or [8], p. 65) (C) L (f+o)du =
©) [ fdu+c-p(A).

If  is submodular too, then for all f, g of arbitrary sign and lower bounded, we have (see, e.g., [8], p. 75, Theorem
6.3)

(C)L(f+g)d‘us(C)Lfdy+(C)£gdy. (19)

(iii) If f < g on A then (C) fA fdu < (C) fA gdu (see, e.g., [13], p. 228, Theorem 11.2, (3) if f,g = 0 and p. 232 if
f, g are of arbitrary sign).
(iv) Let f > 0. If A C B then (C) fAfdy <(©) fody. In addition, if p is finitely subadditive, then

© [ stu=© [ fau+© [ an 20)

(v) It is immediate that (C) [, 1-du (t) = u(A).

(vi) If u is a countably additive bounded measure, then the Choquet integral (C) fA fdu reduces to the usual
Lebesgue type integral (see, e.g., [8], p. 62, or [13], p. 226).

(vii) If Q = R, d € IN, we assume y is strictly positive, i.e. 1 (A) > 0, for every A compact subset of R?. Here
C = B the Borel o-algebra.

Clearly here, for u being submodular, we get

© fA £ () dp ()~ (C) fA 900 dp ()

VAeCandV f,g € M(Q,R}) (f, g are measurable with respect to C o-algebra).
(viii) If f > 0, then (C) [, fdu > 0.

<© | [f@)-g@|du@), (21)
A

From now on in this article we assume that y : C — [0, +o0) and is submodular.

4. Background - IV

Here we follow [12].
Let ¥ be a o-field of subsets of an arbitrary set Q). An extended non-negative real valued function u on
F is called maxitive if y (@) = 0 and

u (UiglE;) = supp (E;), (22)

iel
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where the set [ is of cardinality at most countable, where {E;};cs is a disjoint collection of sets from . We
notice that i is monotone and (22) is true even {E;};cr are not disjoint. For more properties of p see [12]. We

also call y a maxitive measure. Here f stands for a non-negative measurable function on ). In [12], Niel
Shilkret developed his non-additive integral defined as follows:

(NY) f fdu = sug{y -w(Dn{f=yht, (23)
D ye

where Y = [0,m] or Y = [0, m) with 0 < m < o0, and D € . Here we take Y = [0, c0).
It is easily proved that

(NY) f fdu = sup {y-uDni{f>yhi. (24)
D >

The Shilkret integral takes values in [0, co].
The Shilkret integral ([12]) has the following properties:

(N*)f)(zsdu =u(E), (25)
Q
where xr is the indicator function on E € F,
(N9 f cfdy =c(N") f fdu, ¢=0, (26)
D D
(N*) | supfudp =sup(NY) f fadu, (27)
D nelN nelN D

where f,, n € N, is an increasing sequence of elementary (countably valued) functions converging uniformly
to f. Furthermore we have

(N") fD fdu >0, (28)

f > g implies (N*)fl;fdy > (N*)j;gdy, (29)

where f,g: Q — [0, o] are measurable.
Leta < f (w) < b for almost every w € E, then

0 ®) < V) [ f < bu(B); (30)

o) [ 1= ®); (1)

f > 0 almost everywhere and (N*) fE fdu = 0imply u(E) =0;
(N%) fQ fdu = 0if and only f = 0 almost everywhere;
(N%) fod/J < oo implies that

N(f) := {w € Q|f () # 0} has o-finite measure;

(N*)L(f+g)dys(N*)fod/,t+(N*)ngdy; (32)
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and
o) fD fdu - () fD gdu

From now on in this article we assume that y : # — [0, +00).
If Q =R%, d € N, we assume u is strictly positive, i.e. 1 (A) > 0, for every A compact subset of RY. Here
¥ = B the Borel o-algebra.

< (N fD |f - g|du. (33)

Conclusion 4.1. We observe that the Choquet integral (C) fA fdu and Shilkret integral (N*) fA fdu are perfect

examples of the sublinear integral (SL) L fdu of Section 2, fulfilling all properties and they have great applications
in many areas of pure and applied mathematics and mathematical economics.
Therefore, all the results presented in this article which are for the general integral (SL) fA fdu are of course valid

for the Choquet and Shilkret integrals.
5. Main Results

5.1. Ordinary Approximation

All terms, notations and assumptions here will be as in Backgrounds I-IV.

So here it is f € C" (R, R;) with f and f are being bounded, but f® could be uniformly continuous
regardless if it is bounded or not, n € Z,..

Let B be the Borel o-algebra on R and uy (N € IN) be a sequence of monotone set functions from 8 into
R;,ie forA,Be B: A cCBwehave uy(A) < un(B), and un (@) =0, with uyy (R) =1, VN € N.

We will study here the approximation properties of the following sequence of positive sublinear convo-
lution type operators

Px () (x) = (SL) fR £t Dy (), 34)

¥ N €N, to f(x), where x € R is fixed, pointwise and uniform in a quantitative way.
We would assume that Py (f) € CB. (R), ¥ N € IN. Clearly it holds Py (1) = 1. Notice here that

(=)@ =60 [ 1 du 0, 35)

VN eIN,whereneZ,.
Based on the above we present

Theorem 5.1. Assume further that f9 (x) =0,i=1,...,n, for a fixed x € R and that

(SL) f [t duy (f) >0, YN € N.
R
Then

<

[P ()00 - £ @] = |51 fR £+ Dy () - £ ()

(n+2) (n) n+1 T
n+10 " [f /((SL)L;W dun (t)) ]

((SL) fIR "+ dyN(t))M, VN eN. (36)
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Proof. By Theorem 1.2 and (10). O
Remark 5.2. If (SL) [, 1" dun (t) — 0, then Py (f) (x) — f (x), as N — +oo.
The n =1 case follows:

Corollary 5.3. Assume further that f’ (x) = 0, for a fixed x € R and that

(SL) f Pdun () >0, VN € N.
R

Then

1
2

-t s3] o)
[Pn () @) = £ ()] < S (f,((SL) [ #du ](SL) [ #dux) )

VYN eN.
If (SL) f]R 2dun (t) — 0, then Py (f) (x) = f (x), as N — +oo.

Proof. By Corollary 1.3 and (11). O
The case n = 0 comes next.

Theorem 5.4. Assume that (SL) f]R [t|dun (f) > 0, ¥ N € IN. Then

IPx () - £l < 2an (f,(SL) I (t)), 38)

VYN eNN.
Given that f is uniformly continuous and not necessarily bounded, from R into R, then (38) is again valid and
if (SL) [ *dun (t) = 0, then Py (f) — f, uniformly, as N — +oo.

Proof. By Theorem 1.5 (15). [

Application 5.5. Consider the well-known Picard singular integral operators:

AGICE f Faot e b, (39)

where & > 0. Here f is chosen so that Py (f) (x) € R, ¥ x € R, e.g. f is bounded. Also P} (f) is continuous when f
is uniformly continuous.
We notice that

1 <
Ejjwe cdt=1, £>0. (40)

In [11] they obtained the degree of convergence of the operators Py to the unit operator I with rates over the class of
Holder-continuous functions as & — 0. In [10] they derived some more refined convergence to I (as & — 0), however
only over the set of (Cor) 2m-periodic continuous functions on R. See also [2], pp. 127-129 for bounded and uniformly
continuous functions over R,we get uniform convergence of Py — I.

We consider here only & > 0 such that % =NeN,as& — 0.

Thus, it holds

%] f e Ndgt =1, YN e N. (41)
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Clearly here according to our theory
dun (t) = "“th VN eN,

and Py, (f) is a special case of Py (f).
We observe here that (n € Z..)

(SL) f [t duy (t) = % f [t e NG = N f e NGy (42)
R —c0 0

Nn+1)! @m+1)
= Nn+2 = Nn+l — 0, as N — +oo.
Therefore our special case of (SL) f]R |t dy (t) generated from the Picard operators converges to zero as N — +oo,
where n € Z.,. Furthermore our results apply to Picard operators convergence to the unit I.

This application realizes our general convergence theory making possible our assumptions.

5.2. Fractional Approximation
We need

Definition 5.6. Let v > 0, n = [v] ([-] is the ceiling of the number), f € AC"([a,b]) (space of functions f with
=Y € AC ([a, b]), absolutely continuous functions). We call left Caputo fractional derivative of order v > 0 (see [9],
p- 49, [1], p. 394) the function

n-v—-1 n)
D, f (x) F(n ) f —1) (f)dt, Yxelal], (43)
where I is the gamma function I (v) = fooo e”'t1dt, v > 0.
We set D% f (x) = f (x), ¥ x € [a,b].

Exactly the same way one can define Dy, f over [xo, +o0), xg € R, for f € AC" ([xo,b]), Vb € R, b > xo.
We also need

Definition 5.7. (see also [2], p. 336) Let f € AC"([a,b]), r = [a], @ = 0. We right Caputo fractional derivative of
order a > 0 is given by

b
DY f(x) = f C=x)" Q) dL, Vxelab]. (44)

I'r-a
We set DY_f (x) = f (x).

Exactly the same way one can define D5 _f over (-0, xo], xo € R, for f € AC" ([4,x0]), Va € R:a < xo.
We make

Convention 5.8. We assume that
*xOf(x 0, for x < xy, (45)
and
D3,-f (x) =0, for x > xo, (46)
forall x,xo € R.

We also make
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Convention 5.9. Let a real number m > 0, from now on we assume that DY, _f is either bounded or uniformly
continuous function on (—oo,xo], similarly from now on we assume that DI} f is either bounded or uniformly
continuous function on [xg, +00).

We need

Definition 5.10. Let Dy f (real number m > 0) denote any of Dy, _f, D5, f and 6 > 0. We set

Xo— *X0

w1 (Dl f,6),, = max {a)1 (D2-£,6) .y @1 (D2 fo 5){){0,%)}, (47)

where xy € R. Notice that w, (Dm f, 6)]R < +00.

X0
We will use

Theorem 5.11. ([3], p. 89) Let the real number m > 0, m ¢ N, A = [m], xo € R, f € AC*([a,b],Ry) (ie.
f(A‘l) € ACl[a, b], absolutely continuous functions on [a,b]), ¥ [a,b] C R, and f(A) € Lo (R). Furthermore we
assume that f® (xo) =0,k =1,..., A — 1. The Convention 5.9 is imposed here. Then

w1 (D;‘r:]f’ 6)1{{

[f o) = f o)l < gy

[Ix —xo|™ + , 0>0, (48)

forallx e R, 0> 0.
If 0 < m < 1, then we do not need initial conditions.

We make

Remark 5.12. Let Ly, N € IN, be a sequence of positive sublinear operators from C.,. (R) into CB, (IR). Here all are
as in Theorem 5.11 for x = xo and we can rewrite (48) as follows:

w1 (D;nf’ 6)]R m I - x|m+1
lfO)-f@)] < T+ [|‘ — " + m]r (49)
valid over R. Assume that Ly (1) =1,V N € N.
By (8) we obtain
Ly (f) (@) - f ()] <
w1 (D f,0)x . Ly (I- - XI’"”) @
W [LN (I = ") (x) + W =: (&) (50)
We also assume that Ly (I' - xl’"”) (x)>0,YNeNN.
By (9) we get that
Ln (= 51" (9 < (L (1 = 2™) @) (51)
Choose
5= (Ln (- = ™) (x))ﬁ >0, (52)

ie.

M+l = Iy (| _ x|m+1) ).
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Therefore we have

n (D2, (1 (1 = ") )™ )

- 6m+1 B
() < T(m+1) o +(m+1)(5}_ (53)
%wl (D;nfr (LN <| — x|m+1) (x)) Lo ) (LN <| m+1)( )) m'Z]
VN eNN.
We have proved

Theorem 5.13. Let m > 0, m ¢ N, A = [m], x € R, f € AC*([a,b],R}), V¥ [a,b] C R, and fV € L, (R).
Furthermore we assume that f® (x) = 0,k = 1,..., A= 1. We assume that D"_f, D' f are either bounded or uniformly
continuous over (—oo, x], [x, +00), respectively. Let Ly (N € IN) be a sequence of positive sublinear operators from

C. (R) into CB, (R). Assume that Ly (1) = 1, and Ly (|- = x"*') (x) > 0, ¥ N € N. Then

b (=7 )] < %wl (D;"f/ (Ln (1 = ™) (x))ﬁ)m

(Ln (== 0)™, YNeN. (54)
IfLn (|‘ - x|m+1) (x) = 0, then Ly (f) (x) = f(x), as N — +o0.

Next we specialize for Ly = Py, V N € IN, where Py is as in (34), see Section 5.1 for the full description.
We give

Corollary 5.14. All are as in Theorem 5.13 regarding f.
Assume that (SL) [ [t"*" dun (£) > 0, and Py (f) € CB, (R), ¥ N € N. Then

[Py ()00 - £ ] = [0 f}R £+ By () - f ()] <

(m+2) " - s
mwl[Dxf,((SL) f]R I¢] 1dyN(t)) ]R

m

((SL) f 17 duy (t))mﬂ, VNeN. (55)
R

If (SL) [ 11" dun (8) = 0, then Py (f) (x) = f (x), as N — +oo.

Proof. By Theorem 5.13. Notice also that
Py (|- = ™) (x) = (SL) [ 1" dun (), YN € N. O

We need

Definition 5.15. (see [1], p. 24, and [2], p. 334) Let x, xo € R be such that x > xo, v > 0, v € IN, such that p = [v],
[-] the integral part, a =v—p (0 < a < 1).
Let f € C?P (R) and define

2 F) () = f(x—t)v LF B dt, xo < x < +oo. (56)

r()
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the left generalized Riemann-Liouville fractional integral.
Let x,x0 € R be such that x < xg,v>0,v¢ N, suchthatp=[v], a=v-p (0 <a<1).
Let f € C? (R) and define

1 . v—1
(75, f) () = mf z-x)""f(2)dz, —c0<x<x (57)
the right generalized Riemann-Liouville fractional integral.
We need

Definition 5.16. (see also [6]) Let x,xg € R, x > xp,v>0,v¢ N, p=[v] a=v—p.
Let f € CZ’ (R), i.e. f e CP(R)with ||f(”) | < 400, where ||-||, is the supremum norm.

Here (], f) (x) is defined via (56) over [xg, +).
We define the subspace Cy , (R) of C;; (R) :

Clpy (R) = {f € CL(R) : {2, f) € C' ([xo, +o0))}.
For f € C} , (R), we define the left generalized v-fractional derivative of f over [xo, +0o0) as
Dy, f = (7% (58)
We need

Definition 5.17. (see also [2], p. 345) Let x,x0 € R, x <x9,v>0,v¢ N, p=[v], a =v—p. Let f € C’bJ (R). Here
( f{o_f) (x) is defined via (57) over (=0, x].
We define the subspace of C; _ (R) of CZ (R) :

Chy- (R) = {f € CL (R : (1172 £0)) € C' (o0, x0])}.

For f € C% _ (R), we define the right generalized v-fractional derivative of f over (—oo, x¢] as

Xo—
— 1 _ ’
D, f = (17~ (720 (59)
We make
Convention 5.18. Let a real number m > 1, from now on we assume that 5;:]_ f is either bounded or uniformly
continuous function on (—oo,xgl, similarly from now on we assume that DZTH f is either bounded or uniformly
continuous function on [xg, +00).

We use

Definition 5.19. Let BZ;f (real number m > 1) denote any ofﬁz_f, Dy, fand 6 > 0. We set

—m —m
w1 (Dxﬂf’ 5)]R = max {wl (D"O—f’ 6)(—oo,xo] @1 (D:%Jf 4 6)[xo,+oo)} ’ (60)
where xy € R. Notice that w, (Exmo f, 6)]R < 400.

We give
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Theorem 5.20. ([3], p. 113) Let m > 1, m ¢ N, p = [m], xo € R, and f € C¥, (R) N C}_(R). Assume that

Xo—

fO(x0)=0,k=1,..,p—1,and (D%f) (xo) = (Bz_f) (xo) = 0. The Convention 5.18 is imposed. Then

@1 <5:;f' 6)1[2 m, X— x0|m+1
|f(x)—f(x0)’ﬁm[|X—x| +m], 6>0, (61)
forall x € R.
We give

Theorem 5.21. Let m > 1, m ¢ N, p = [m], x € R, f : R = R, with f € CI (R) N CI (R). Assume that
fO(x)=0k=1,.,p-1,and (D" f)(x) = (BT_f) (x) = 0. We assume that BT_f, DY, f are either bounded or
uniformly continuous over (—oo,x], [x, +00), respectively.

Let Ly (N € IN) be a sequence of positive sublinear operators from C,. (R) into CB. (R). Assume that Ly (1) =1,
and Ly (l- - x|m+1) (x) >0,V N € N. Then

v (6= 7 @] = g e (LA (b =) 0) ),

(Ln (- =2 (x))% , YVNeN. (62)
If Ly (I- - x|m+1) (x) = 0, then Ly (f) (x) = f(x), as N — +o0.
Proof. Similar to the proof of Theorem 5.13, by using (61). [
We have

Corollary 5.22. Allareasin Theorem 5.21 regarding f, with Ly = Pn, ¥ N € IN. Assume that (SL) f]R ¢t dun () >
0, and Py (f) € CB+ (R), Y N € N. Then

<

[Py ()00 - £ )] = |51 f}R £+ Dy () - F ()

D,f, ((SL> f]R I duy (t))m]

((SL) f ™ dun (t))mﬂ, VN eN. (63)
R

(m+2)
Tm+2)“"

R

If (SL) [, 1™ dun (8) — 0, then Py (f) (x) — £ (x), as N — +oo.

Proof. By Theorem 5.21. [

5.3. Iterated Fractional Approximation

Here D¢, ,Dg _ stand for the Caputo left and right fractional derivatives, see (43), (44). For n € IN,

Yo—
denote the iterated left and right fractional derivatives as D = D¢, D%, ..D% and D}* = D3 _D§ _..D%

*X0 *XQ T *Xo T *X Xo— Xo—"" Xo— Xo—
(n-times).

We make



G. A. Anastassiou / Filomat 35:6 (2021), 1899-1913 1912

Remark 5.23. Let f : R — R such that f' € Lo, (R), xo € R, 0 < a < 1. The left Caputo fractional derivative
( *xOf) (x) is given for x > xq. Clearly it holds ( *Xof) (x0) = 0, and we define ( *Xof) (x) =0, for x < xy.

Let us assume that D¢ f € C ([xo, +0)), k=0,1,..,n+1;n € N.

The right Caputo fractional derivative (Dﬁo_ f) (x) is given for x < xo. Clearly it holds (D_Q‘O_ f) (x0) = 0, and
define (D;jo_f) (x) =0, for x > xy.

Let us assume that DY_f € C((=c0,x0]), k=0,1,...,n+ 1.

_ Here we restrict ourselves to L <a <1 thatisA:= (n+1)a > 1. We denote D*XxOf pibe f, and

n+1 *Xo
wef = DR,

We make

Convention 5.24. We assume that DX _f is either bounded or uniformly continuous function on (—co, xol, similarly
we assume that D" ,f is either bounded or uniformly continuous function on [xo, +00).

We need

Definition 5.25. Let D§0 f denote any of D _f D} fand 6 > 0. We set

*X(

w1 (DLf,8)y = max{or (DF_£8)_ on (DE,£0), )} (64)

where xg € R. Notice that w, (Dgof, 6)112 < +o00.
We mention

Theorem 5.26. ([3], p. 137) Let &= <a <1, n e N, A=m+1)a>1f:R->R, f €Lo(R), x € R
Assume that D’fjfof € C(lxg,+0)), k = 0,1,...,n+ 1, and (D’fiof) (x0) = 0,i=23,..,n+1. Suppose that
D¥ f € C((—o0,x0]), fork=0,1,...,n +1, and (D;‘;_f) (x0) =0, fori=2,3,...,n+ 1. Convention 5.24 is imposed.
Then

DX ,0 A+1
Do)y [|x— ol + B } (63)

£ - f el < r(ie) (A1)

VxeR, 6>0.

We present

Theorem 5.27. Let m <a<l,neNA:=m+1a> 1, f:R—> Ry, f’ € Lo (R), xp € R. Assume that
D f e C([x,+)), k =0,1,..,n+1, and( =‘xf)(x) =0,i=2,3,..,n+1 Suppose that D* f € C((—o0,x]),
fork =0,1,..,n+1, and (D;“_f) (x) =0, fori =2,3,..,n+ 1. We assume that D/‘ f, D} \.f are either bounded
or uniformly continuous over (—oo,x], [x, +00), respectwely. Let Ly (N € IN) be a sequence of positive sublinear

operators from C, (R) into CB, (R). Assume that Ly (1) =1, and Ly (|~ - xlml) (x) >0,¥ N e N. Then

e e )

(LN (|- - xﬁ“)( )) VNeN. 66)

Ly (|- - xﬁ“)(x) 50, then Ly (f) (x) = £ (x), as N — +oo,
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Proof. Similar to the proof of Theorem 5.13, by using (65). [

We finish with

Corollary 5.28. All areas in Theorem 5.27 regarding f and Ly = Py, ¥V N € IN. Assume that (SL) f]R |iE|XJr1 dun (f) >
0, and Py (f) € CB+ (R), Y N € N. Then

(1+2)

P - < DQ,(SL g t)\
1Py () (@) f(x))<r(A+2)w1 £(¢ )fRII ZON]

((SL) fIR 1+ dyN(t))M, VNeN. (67)

IF(SL) o 11 dun (8) — 0, then Py (f) (x) = f (x), as N — +co.

Proof. By Theorem 5.27. O
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