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Abstract. Here we consider the ordinary and fractional approximation of functions by sublinear positive
operators with applications to generalized convolution type operators expressed by sublinear integrals
such as of Choquet and Shilkret ones. The fractional approximation is under fractional differentiability
of Caputo, Canavati and Iterated-Caputo types. We produce Jackson type inequalities under basic initial
conditions. So our way is quantitative by producing inequalities with their right hand sides involving the
modulus of continuity of ordinary and fractional derivatives of the function under approximation. We give
also an application related to Picard singular integral operators.

1. Background - I

Here we follow [3], pp. 1-17.
Let I ⊂ R be a bounded or unbounded interval, n ∈N, and

CBn
+ (I) =

{
f : I→ R+ : f (i) is continuous and bounded on I, for both i = 0,n

}
. (1)

We define for

f ∈ CB+ (I) =
{
f : I→ R+ : f is continuous and bounded on I

}
,

the first modulus of continuity

ω1
(

f , δ
)

= sup
x,y∈I:

|x−y|≤δ

∣∣∣ f (x) − f
(
y
)∣∣∣ , (2)

where 0 < δ ≤ diameter (I), also defined the same for just uniformly continuous functions f : I→ R+.
Call C+ (I) =

{
f : I→ R+ : f is continuous on I

}
.

Let LN : C+ (I) → CB+ (I), n,N ∈ N be a sequence of operators satisfying the following properties (see
also [5], p. 17):
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(i) (positive homogeneous)

LN
(
α f

)
= αLN

(
f
)

, ∀ α ≥ 0, f ∈ C+ (I) , (3)

(ii) (Monotonicity)

if f , 1 ∈ C+ (I) satisfy f ≤ 1, then LN
(

f
)
≤ LN

(
1
)
, ∀ N ∈N, (4)

and
(iii) (Subadditivity)

LN
(

f + 1
)
≤ LN

(
f
)

+ LN
(
1
)
, ∀ f , 1 ∈ C+ (I) . (5)

We call LN positive sublinear operators.
In particular we consider the restrictions LN |CBn

+(I) : CBn
+ (I)→ CB+ (I) .

As in [5], p. 17, we get that for f , 1 ∈ CB+ (I) ,∣∣∣LN
(

f
)

(x) − LN
(
1
)

(x)
∣∣∣ ≤ LN

(∣∣∣ f − 1∣∣∣) (x) , ∀ x ∈ I. (6)

Furthermore, also from [5], p. 17, we have∣∣∣LN
(

f
)

(x) − f (x)
∣∣∣ ≤ LN

(∣∣∣ f (·) − f (x)
∣∣∣) (x) +

∣∣∣ f (x)
∣∣∣ |LN (1) (x) − 1| , ∀ x ∈ I. (7)

Given that LN (1) = 1, ∀ N ∈N, we get∣∣∣LN
(

f
)

(x) − f (x)
∣∣∣ ≤ LN

(∣∣∣ f (·) − f (x)
∣∣∣) (x) , ∀ x ∈ I, ∀ N ∈N. (8)

We mention Hölder’s inequality for positive sublinear operators

Theorem 1.1. ([3], p. 6) Let L : C+ (I)→ CB+ (I), be a positive sublinear operator and f , 1 ∈ C+ (I), furthermore let
p, q > 1 : 1

p + 1
q = 1. Assume that L

((
f (·)

)p
)

(s∗) , L
((
1 (·)

)q
)

(s∗) > 0 for some s∗ ∈ I. Then

L
(

f (·) 1 (·)
)

(s∗) ≤
(
L
((

f (·)
)p
)

(s∗)
) 1

p
(
L
((
1 (·)

)q
)

(s∗)
) 1

q . (9)

By assuming LN

(
|· − x|n+1

)
(x) > 0, (9) and LN (1) = 1, we obtain

LN (|· − x|n) (x) ≤
(
LN

(
|· − x|n+1

)
(x)

) n
n+1 , (10)

in case of n = 1 we derive

LN (|· − x|) (x) ≤
√(

LN

(
(· − x)2

)
(x)

)
. (11)

We mention also the following result.

Theorem 1.2. ([3], p. 7) Let (LN)N∈N be a sequence of positive sublinear operators from C+ (I) into CB+ (I),
and f ∈ CBn

+ (I), f (n) could be only uniformly continuous, where n ∈ N and I ⊂ R a bounded or unbounded
interval. Assume LN (1) = 1, ∀ N ∈ N, and f (i) (x) = 0, i = 1, ...,n, for a fixed x ∈ I. Furthermore assume that
LN

(
|· − x|n+1

)
(x) > 0, ∀ N ∈N.

Then

∣∣∣LN
(

f
)

(x) − f (x)
∣∣∣ ≤ ω1

(
f (n),

(
LN

(
|· − x|n+1

)
(x)

) 1
n+1

)
n!

·LN (|· − x|n) (x) +

(
LN

(
|· − x|n+1

)
(x)

) n
n+1

(n + 1)

 , ∀ N ∈N. (12)
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We mention (n = 1 case)

Corollary 1.3. ([3], p. 7) Let (LN)N∈N be a sequence of positive sublinear operators from C+ (I) into CB+ (I), and
f ∈ CB1

+ (I), f ′ could be only uniformly continuous, and I ⊂ R a bounded or unbounded interval. Assume LN (1) = 1,
∀ N ∈N, and f ′ (x) = 0, for a fixed x ∈ I. Furthermore assume that LN

(
(· − x)2

)
(x) > 0, ∀ N ∈N.

Then∣∣∣LN
(

f
)

(x) − f (x)
∣∣∣ ≤ ω1

(
f ′,

√(
LN

(
(· − x)2

)
(x)

))
·LN (|· − x|) (x) +

√(
LN

(
(· − x)2

)
(x)

)
2

 , ∀ N ∈N. (13)

Remark 1.4. ([3], p. 7) (i) to Theorem 1.2: Assuming LN

(
|· − x|n+1

)
(x) → 0, as N → ∞, using (10), we get that(

LN
(

f
))

(x)→ f (x), as N→∞.
(ii) to Corollary 1.3: Assuming LN

(
(· − x)2

)
(x)→ 0, as N→∞, using (11), we get that

(
LN

(
f
))

(x)→ f (x), as
N→∞.

(iii) The right hand sides of (12), (13) are finite.

We also mention the basic result (n = 0 case).

Theorem 1.5. ([3], p. 8) Let (LN)N∈N be a sequence of positive sublinear operators from C+ (I) into CB+ (I), and
f ∈ CB+ (I), f could be only uniformly continuous, where I ⊂ R a bounded or unbounded interval. Assume that
LN (|· − x|) (x) > 0, for some fixed x ∈ I, ∀ N ∈N. Then

1) ∣∣∣LN
(

f
)

(x) − f (x)
∣∣∣ ≤ f (x) |LN (1) (x) − 1|+

[LN (1) (x) + 1]ω1
(

f ,LN (|· − x|) (x)
)
, ∀ N ∈N, (14)

2) when LN (1) = 1, we get∣∣∣LN
(

f
)

(x) − f (x)
∣∣∣ ≤ 2ω1

(
f ,LN (|· − x|) (x)

)
, ∀ N ∈N. (15)

Remark 1.6. ([3], p. 8) (to Theorem 1.5) Here x ∈ I is fixed.
i) Assume LN (1) (x)→ 1, as N →∞, and LN (|· − x|) (x)→ 0, as N →∞, given that f is uniformly continuous

we get that Ln
(

f
)

(x)→ f (x), as N→∞ (use of (14)). Notice here that LN (1) (x) is bounded.
ii) Assume that LN (1) = 1, and LN (|· − x|) (x) → 0, as N → ∞, and f is uniformly continuous on I, then

Ln
(

f
)

(x)→ f (x), as N→∞ (use of (15)).
iii) The right hand sides of (14) and (15) are finite.

2. Background - II ([4])

Consider Ω , ∅ and let F be a σ-algebra in Ω. Here µ is a set function µ : F → [0,+∞) which is
monotone, i.e. for A,B ∈ Ω : A ⊂ B we have µ (A) ≤ µ (B), furthermore it holds µ (∅) = 0.

Here f , 1 : Ω→ R+ = [0,+∞) are F -measurable, we write it as f , 1 ∈M (Ω,R+).
We consider a functional denoted by the integral symbol (SL)

∫
A f dµ, ∀ A ∈ F , which is positive, i.e.∫

A f dµ ≥ 0.
We assume the following properties:
(i) (positive homogeneous)

(SL)
∫

A
α f dµ = α (SL)

∫
A

f dµ, ∀ α ≥ 0, ∀ f ∈M (Ω,R+) .
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(ii) (Monotonicity) if f , 1 ∈M (Ω,R+) satisfy f ≤ 1, then (SL)
∫

A f dµ ≤ (SL)
∫

A 1dµ, ∀ A ∈ F .
And
(iii) (Subadditivity)

(SL)
∫

A

(
f + 1

)
dµ ≤ (SL)

∫
A

f dµ + (SL)
∫

A
1dµ, ∀ A ∈ F .

(iv)

(SL)
∫

A
1dµ = µ (A) , ∀ A ∈ F .

(v) If Ω = Rd, d ∈N, we assume that µ is strictly positive, i.e. µ (A) > 0, for any A compact subset of Rd.
Here F = B the Borel σ-algebra.

We call (SL)
∫

A f dµ a sublinear integral.
We notice the following:

f (x) = f (x) − 1 (x) + 1 (x) ≤
∣∣∣ f (x) − 1 (x)

∣∣∣ + 1 (x) ,

hence

(SL)
∫

A
f (x) dµ (x) ≤ (SL)

∫
A

(∣∣∣ f (x) − 1 (x)
∣∣∣ + 1 (x)

)
dµ (x) ≤

(SL)
∫

A

∣∣∣ f (x) − 1 (x)
∣∣∣ dµ (x) + (SL)

∫
A
1 (x) dµ (x) ,

i.e.

(SL)
∫

A
f (x) dµ (x) − (SL)

∫
A
1 (x) dµ (x) ≤ (SL)

∫
A

∣∣∣ f (x) − 1 (x)
∣∣∣ dµ (x) .

Similarly, we get that

(SL)
∫

A
1 (x) dµ (x) − (SL)

∫
A

f (x) dµ (x) ≤ (SL)
∫

A

∣∣∣ f (x) − 1 (x)
∣∣∣ dµ (x) .

In conclusion, it holds∣∣∣∣∣(SL)
∫

A
f (x) dµ (x) − (SL)

∫
A
1 (x) dµ (x)

∣∣∣∣∣ ≤ (SL)
∫

A

∣∣∣ f (x) − 1 (x)
∣∣∣ dµ (x) , (16)

∀ A ∈ F and ∀ f , 1 ∈M (Ω,R+) .

3. Background - III

About the Choquet integral:
We make

Definition 3.1. Consider Ω , ∅ and let C be a σ-algebra of subsets in Ω.
(i) (see, e.g., [13], p. 63) The set function µ : C → [0,+∞] is called a monotone set function (or capacity) if

µ (∅) = 0 and µ (A) ≤ µ (B) for all A,B ∈ C, with A ⊂ B. Also, µ is called submodular if

µ (A ∪ B) + µ (A ∩ B) ≤ µ (A) + µ (B) , for all A,B ∈ C. (17)

µ is called bounded if µ (Ω) < +∞ and normalized if µ (Ω) = 1.
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(ii) (see, e.g., [13], p. 233, or [7]) If µ is a monotone set function on C and if f : Ω→ R is C-measurable (that is,
for any Borel subset B ⊂ R it follows f−1 (B) ∈ C), then for any A ∈ C, the Choquet integral is defined by

(C)
∫

A
f dµ =

∫ +∞

0
µ
(
Fβ

(
f
)
∩ A

)
dβ +

∫ 0

−∞

[
µ
(
Fβ

(
f
)
∩ A

)
− µ (A)

]
dβ, (18)

where we used the notation Fβ
(

f
)

=
{
ω ∈ Ω : f (ω) ≥ β

}
. Notice that if f ≥ 0 on A, then in the above formula we get∫ 0

−∞
= 0.

The integrals on the right-hand side are the usual Riemann integral.
The function f will be called Choquet integrable on A if (C)

∫
A f dµ ∈ R.

Next we list some well known properties of the Choquet integral.

Remark 3.2. If µ : C → [0,+∞] is a monotone set function, then the following properties hold:
(i) For all a ≥ 0 we have (C)

∫
A a f dµ = a · (C)

∫
A f dµ (if f ≥ 0 then see, e.g., [13], Theorem 11.2, (5), p. 228 and

if f is arbitrary sign, then see, e.g., [8], p. 64, Proposition 5.1, (ii)).
(ii) For all c ∈ R and f of arbitrary sign, we have (see, e.g., [13], pp. 232-233, or [8], p. 65) (C)

∫
A

(
f + c

)
dµ =

(C)
∫

A f dµ + c · µ (A) .
If µ is submodular too, then for all f , 1 of arbitrary sign and lower bounded, we have (see, e.g., [8], p. 75, Theorem

6.3)

(C)
∫

A

(
f + 1

)
dµ ≤ (C)

∫
A

f dµ + (C)
∫

A
1dµ. (19)

(iii) If f ≤ 1 on A then (C)
∫

A f dµ ≤ (C)
∫

A 1dµ (see, e.g., [13], p. 228, Theorem 11.2, (3) if f , 1 ≥ 0 and p. 232 if
f , 1 are of arbitrary sign).

(iv) Let f ≥ 0. If A ⊂ B then (C)
∫

A f dµ ≤ (C)
∫

B f dµ. In addition, if µ is finitely subadditive, then

(C)
∫

A∪B
f dµ ≤ (C)

∫
A

f dµ + (C)
∫

B
f dµ. (20)

(v) It is immediate that (C)
∫

A 1 · dµ (t) = µ (A) .
(vi) If µ is a countably additive bounded measure, then the Choquet integral (C)

∫
A f dµ reduces to the usual

Lebesgue type integral (see, e.g., [8], p. 62, or [13], p. 226).
(vii) If Ω = Rd, d ∈ N, we assume µ is strictly positive, i.e. µ (A) > 0, for every A compact subset of Rd. Here

C = B the Borel σ-algebra.
Clearly here, for µ being submodular, we get∣∣∣∣∣(C)

∫
A

f (x) dµ (x) − (C)
∫

A
1 (x) dµ (x)

∣∣∣∣∣ ≤ (C)
∫

A

∣∣∣ f (x) − 1 (x)
∣∣∣ dµ (x) , (21)

∀ A ∈ C and ∀ f , 1 ∈M (Ω,R+) ( f , 1 are measurable with respect to C σ-algebra).
(viii) If f ≥ 0, then (C)

∫
A f dµ ≥ 0.

From now on in this article we assume that µ : C → [0,+∞) and is submodular.

4. Background - IV

Here we follow [12].
Let F be a σ-field of subsets of an arbitrary set Ω. An extended non-negative real valued function µ on

F is called maxitive if µ (∅) = 0 and

µ (∪i∈IEi) = sup
i∈I
µ (Ei) , (22)
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where the set I is of cardinality at most countable, where {Ei}i∈I is a disjoint collection of sets from F . We
notice that µ is monotone and (22) is true even {Ei}i∈I are not disjoint. For more properties of µ see [12]. We
also call µ a maxitive measure. Here f stands for a non-negative measurable function on Ω. In [12], Niel
Shilkret developed his non-additive integral defined as follows:

(N∗)
∫

D
f dµ := sup

y∈Y

{
y · µ

(
D ∩

{
f ≥ y

})}
, (23)

where Y = [0,m] or Y = [0,m) with 0 < m ≤ ∞, and D ∈ F . Here we take Y = [0,∞).
It is easily proved that

(N∗)
∫

D
f dµ = sup

y>0

{
y · µ

(
D ∩

{
f > y

})}
. (24)

The Shilkret integral takes values in [0,∞].
The Shilkret integral ([12]) has the following properties:

(N∗)
∫

Ω

χEdµ = µ (E) , (25)

where χE is the indicator function on E ∈ F ,

(N∗)
∫

D
c f dµ = c (N∗)

∫
D

f dµ, c ≥ 0, (26)

(N∗)
∫

D
sup
n∈N

fndµ = sup
n∈N

(N∗)
∫

D
fndµ, (27)

where fn, n ∈N, is an increasing sequence of elementary (countably valued) functions converging uniformly
to f . Furthermore we have

(N∗)
∫

D
f dµ ≥ 0, (28)

f ≥ 1 implies (N∗)
∫

D
f dµ ≥ (N∗)

∫
D
1dµ, (29)

where f , 1 : Ω→ [0,∞] are measurable.
Let a ≤ f (ω) ≤ b for almost every ω ∈ E, then

aµ (E) ≤ (N∗)
∫

E
f dµ ≤ bµ (E) ; (30)

(N∗)
∫

E
1dµ = µ (E) ; (31)

f > 0 almost everywhere and (N∗)
∫

E f dµ = 0 imply µ (E) = 0;
(N∗)

∫
Ω

f dµ = 0 if and only f = 0 almost everywhere;
(N∗)

∫
Ω

f dµ < ∞ implies that

N
(

f
)

:=
{
ω ∈ Ω| f (ω) , 0

}
has σ-finite measure;

(N∗)
∫

D

(
f + 1

)
dµ ≤ (N∗)

∫
D

f dµ + (N∗)
∫

D
1dµ; (32)
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and ∣∣∣∣∣(N∗) ∫
D

f dµ − (N∗)
∫

D
1dµ

∣∣∣∣∣ ≤ (N∗)
∫

D

∣∣∣ f − 1∣∣∣ dµ. (33)

From now on in this article we assume that µ : F → [0,+∞).
If Ω = Rd, d ∈N, we assume µ is strictly positive, i.e. µ (A) > 0, for every A compact subset of Rd. Here

F = B the Borel σ-algebra.

Conclusion 4.1. We observe that the Choquet integral (C)
∫

A f dµ and Shilkret integral (N∗)
∫

A f dµ are perfect
examples of the sublinear integral (SL)

∫
A f dµ of Section 2, fulfilling all properties and they have great applications

in many areas of pure and applied mathematics and mathematical economics.
Therefore, all the results presented in this article which are for the general integral (SL)

∫
A f dµ are of course valid

for the Choquet and Shilkret integrals.

5. Main Results

5.1. Ordinary Approximation
All terms, notations and assumptions here will be as in Backgrounds I-IV.
So here it is f ∈ Cn (R,R+) with f and f (n) are being bounded, but f (n) could be uniformly continuous

regardless if it is bounded or not, n ∈ Z+.
Let B be the Borel σ-algebra on R and µN (N ∈N) be a sequence of monotone set functions from B into

R+, i.e. for A,B ∈ B : A ⊂ B we have µN (A) ≤ µN (B), and µN (∅) = 0, with µN (R) = 1, ∀ N ∈N.
We will study here the approximation properties of the following sequence of positive sublinear convo-

lution type operators

PN
(

f
)

(x) = (SL)
∫
R

f (x + t) dµN (t) , (34)

∀ N ∈N, to f (x), where x ∈ R is fixed, pointwise and uniform in a quantitative way.
We would assume that PN

(
f
)
∈ CB+ (R), ∀ N ∈N. Clearly it holds PN (1) = 1. Notice here that

PN

(
|· − x|n+1

)
(x) = (SL)

∫
R

|t|n+1 dµN (t) , (35)

∀ N ∈N, where n ∈ Z+.
Based on the above we present

Theorem 5.1. Assume further that f (i) (x) = 0, i = 1, ...,n, for a fixed x ∈ R and that

(SL)
∫
R

|t|n+1 dµN (t) > 0, ∀ N ∈N.

Then ∣∣∣PN
(

f
)

(x) − f (x)
∣∣∣ =

∣∣∣∣∣(SL)
∫
R

f (x + t) dµN (t) − f (x)
∣∣∣∣∣ ≤

(n + 2)
(n + 1)!

ω1

 f (n),

(
(SL)

∫
R

|t|n+1 dµN (t)
) 1

n+1
(

(SL)
∫
R

|t|n+1 dµN (t)
) n

n+1

, ∀ N ∈N. (36)
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Proof. By Theorem 1.2 and (10).

Remark 5.2. If (SL)
∫
R
|t|n+1 dµN (t)→ 0, then PN

(
f
)

(x)→ f (x), as N→ +∞.

The n = 1 case follows:

Corollary 5.3. Assume further that f ′ (x) = 0, for a fixed x ∈ R and that

(SL)
∫
R

t2dµN (t) > 0, ∀ N ∈N.

Then

∣∣∣PN
(

f
)

(x) − f (x)
∣∣∣ ≤ 3

2
ω1

 f ′,
(
(SL)

∫
R

t2dµN (t)
) 1

2
 ((SL)

∫
R

t2dµN (t)
) 1

2

, (37)

∀ N ∈N.
If (SL)

∫
R

t2dµN (t)→ 0, then PN
(

f
)

(x)→ f (x), as N→ +∞.

Proof. By Corollary 1.3 and (11).

The case n = 0 comes next.

Theorem 5.4. Assume that (SL)
∫
R
|t| dµN (t) > 0, ∀ N ∈N. Then

∥∥∥PN
(

f
)
− f

∥∥∥
∞
≤ 2ω1

(
f , (SL)

∫
R

|t| dµN (t)
)
, (38)

∀ N ∈N.
Given that f is uniformly continuous and not necessarily bounded, from R into R+, then (38) is again valid and

if (SL)
∫
R

t2dµN (t)→ 0, then PN
(

f
)
→ f , uniformly, as N→ +∞.

Proof. By Theorem 1.5 (15).

Application 5.5. Consider the well-known Picard singular integral operators:

P∗ξ
(

f
)

(x) :=
1

2ξ

∫
∞

−∞

f (x + t) e−
|t|
ξ dt, (39)

where ξ > 0. Here f is chosen so that P∗ξ
(

f
)

(x) ∈ R, ∀ x ∈ R, e.g. f is bounded. Also P∗ξ
(

f
)

is continuous when f
is uniformly continuous.

We notice that

1
2ξ

∫
∞

−∞

e−
|t|
ξ dt = 1, ξ > 0. (40)

In [11] they obtained the degree of convergence of the operators P∗ξ to the unit operator I with rates over the class of
Hölder-continuous functions as ξ→ 0. In [10] they derived some more refined convergence to I (as ξ→ 0), however
only over the set of (C2π) 2π-periodic continuous functions onR. See also [2], pp. 127-129 for bounded and uniformly
continuous functions over R,we get uniform convergence of P∗ξ → I.

We consider here only ξ > 0 such that 1
ξ = N ∈N, as ξ→ 0.

Thus, it holds

N
2

∫
∞

−∞

e−|t|Ndt = 1, ∀ N ∈N. (41)
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Clearly here according to our theory

dµN (t) =
N
2

e−|t|Ndt, ∀ N ∈N,

and P∗N−1

(
f
)

is a special case of PN
(

f
)
.

We observe here that (n ∈ Z+)

(SL)
∫
R

|t|n+1 dµN (t) =
N
2

∫
∞

−∞

|t|n+1 e−|t|Ndt = N
∫
∞

0
tn+1e−tNdt (42)

=
N (n + 1)!

Nn+2 =
(n + 1)!

Nn+1 → 0, as N→ +∞.

Therefore our special case of (SL)
∫
R
|t|n+1 dµN (t) generated from the Picard operators converges to zero as N→ +∞,

where n ∈ Z+. Furthermore our results apply to Picard operators convergence to the unit I.
This application realizes our general convergence theory making possible our assumptions.

5.2. Fractional Approximation
We need

Definition 5.6. Let ν ≥ 0, n = dνe (d·e is the ceiling of the number), f ∈ ACn ([a, b]) (space of functions f with
f (n−1)

∈ AC ([a, b]), absolutely continuous functions). We call left Caputo fractional derivative of order ν > 0 (see [9],
p. 49, [1], p. 394) the function

Dν
∗a f (x) =

1
Γ (n − ν)

∫ x

a
(x − t)n−ν−1 f (n) (t) dt, ∀ x ∈ [a, b] , (43)

where Γ is the gamma function Γ (v) =
∫
∞

0 e−ttv−1dt, v > 0.
We set D0

∗a f (x) = f (x), ∀ x ∈ [a, b] .

Exactly the same way one can define Dν
∗x0

f over [x0,+∞), x0 ∈ R, for f ∈ ACn ([x0, b]), ∀ b ∈ R, b ≥ x0.
We also need

Definition 5.7. (see also [2], p. 336) Let f ∈ ACr ([a, b]) , r = dαe, α ≥ 0. We right Caputo fractional derivative of
order α > 0 is given by

Dα
b− f (x) =

(−1)r

Γ (r − α)

∫ b

x
(ζ − x)r−α−1 f (r) (ζ) dζ, ∀ x ∈ [a, b] . (44)

We set D0
b− f (x) = f (x).

Exactly the same way one can define Dα
x0−

f over (−∞, x0], x0 ∈ R, for f ∈ ACr ([a, x0]), ∀ a ∈ R : a ≤ x0.
We make

Convention 5.8. We assume that

Da
∗x0

f (x) = 0, for x < x0, (45)

and

Dα
x0−

f (x) = 0, for x > x0, (46)

for all x, x0 ∈ R.

We also make
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Convention 5.9. Let a real number m > 0, from now on we assume that Dm
x0−

f is either bounded or uniformly
continuous function on (−∞, x0], similarly from now on we assume that Dm

∗x0
f is either bounded or uniformly

continuous function on [x0,+∞).

We need

Definition 5.10. Let Dm
x0

f (real number m > 0) denote any of Dm
x0−

f , Dm
∗x0

f and δ > 0. We set

ω1

(
Dm

x0
f , δ

)
R

:= max
{
ω1

(
Dm

x0−
f , δ

)
(−∞,x0]

, ω1

(
Dm
∗x0

f , δ
)

[x0,+∞)

}
, (47)

where x0 ∈ R. Notice that ω1

(
Dm

x0
f , δ

)
R
< +∞.

We will use

Theorem 5.11. ([3], p. 89) Let the real number m > 0, m < N, λ = dme, x0 ∈ R, f ∈ ACλ ([a, b] ,R+) (i.e.
f (λ−1)

∈ AC [a, b] , absolutely continuous functions on [a, b]), ∀ [a, b] ⊂ R, and f (λ)
∈ L∞ (R). Furthermore we

assume that f (k) (x0) = 0, k = 1, ..., λ − 1. The Convention 5.9 is imposed here. Then

∣∣∣ f (x) − f (x0)
∣∣∣ ≤ ω1

(
Dm

x0
f , δ

)
R

Γ (m + 1)

[
|x − x0|

m +
|x − x0|

m+1

(m + 1) δ

]
, δ > 0, (48)

for all x ∈ R, δ > 0.
If 0 < m < 1, then we do not need initial conditions.

We make

Remark 5.12. Let LN, N ∈ N, be a sequence of positive sublinear operators from C+ (R) into CB+ (R). Here all are
as in Theorem 5.11 for x = x0 and we can rewrite (48) as follows:

∣∣∣ f (·) − f (x)
∣∣∣ ≤ ω1

(
Dm

x f , δ
)
R

Γ (m + 1)

[
|· − x|m +

|· − x|m+1

(m + 1) δ

]
, (49)

valid over R. Assume that LN (1) = 1, ∀ N ∈N.
By (8) we obtain∣∣∣LN

(
f
)

(x) − f (x)
∣∣∣ ≤

ω1
(
Dm

x f , δ
)
R

Γ (m + 1)

LN (|· − x|m) (x) +
LN

(
|· − x|m+1

)
(x)

(m + 1) δ

 =: (ξ) . (50)

We also assume that LN

(
|· − x|m+1

)
(x) > 0, ∀ N ∈N.

By (9) we get that

LN (|· − x|m) (x) ≤
(
LN

(
|· − x|m+1

)
(x)

) m
m+1 . (51)

Choose

δ :=
(
LN

(
|· − x|m+1

)
(x)

) 1
m+1 > 0, (52)

i.e.

δm+1 = LN

(
|· − x|m+1

)
(x) .
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Therefore we have

(ξ) ≤
ω1

(
Dm

x f ,
(
LN

(
|· − x|m+1

)
(x)

) 1
m+1

)
R

Γ (m + 1)

[
δm +

δm+1

(m + 1) δ

]
= (53)

(m + 2)
Γ (m + 2)

ω1

(
Dm

x f ,
(
LN

(
|· − x|m+1

)
(x)

) 1
m+1

)
R

(
LN

(
|· − x|m+1

)
(x)

) m
m+1 ,

∀ N ∈N.

We have proved

Theorem 5.13. Let m > 0, m < N, λ = dme, x ∈ R, f ∈ ACλ ([a, b] ,R+), ∀ [a, b] ⊂ R, and f (λ)
∈ L∞ (R).

Furthermore we assume that f (k) (x) = 0, k = 1, ..., λ−1. We assume that Dm
x− f , Dm

∗x f are either bounded or uniformly
continuous over (−∞, x], [x,+∞), respectively. Let LN (N ∈ N) be a sequence of positive sublinear operators from
C+ (R) into CB+ (R). Assume that LN (1) = 1, and LN

(
|· − x|m+1

)
(x) > 0, ∀ N ∈N. Then

∣∣∣LN
(

f
)

(x) − f (x)
∣∣∣ ≤ (m + 2)

Γ (m + 2)
ω1

(
Dm

x f ,
(
LN

(
|· − x|m+1

)
(x)

) 1
m+1

)
R(

LN

(
|· − x|m+1

)
(x)

) m
m+1 , ∀ N ∈N. (54)

If LN

(
|· − x|m+1

)
(x)→ 0, then LN

(
f
)

(x)→ f (x), as N→ +∞.

Next we specialize for LN = PN, ∀ N ∈N, where PN is as in (34), see Section 5.1 for the full description.
We give

Corollary 5.14. All are as in Theorem 5.13 regarding f .
Assume that (SL)

∫
R
|t|m+1 dµN (t) > 0, and PN

(
f
)
∈ CB+ (R), ∀ N ∈N. Then

∣∣∣PN
(

f
)

(x) − f (x)
∣∣∣ =

∣∣∣∣∣(SL)
∫
R

f (x + t) dµN (t) − f (x)
∣∣∣∣∣ ≤

(m + 2)
Γ (m + 2)

ω1

Dm
x f ,

(
(SL)

∫
R

|t|m+1 dµN (t)
) 1

m+1

R(

(SL)
∫
R

|t|m+1 dµN (t)
) m

m+1

, ∀ N ∈N. (55)

If (SL)
∫
R
|t|m+1 dµN (t)→ 0, then PN

(
f
)

(x)→ f (x), as N→ +∞.

Proof. By Theorem 5.13. Notice also that
PN

(
|· − x|m+1

)
(x) = (SL)

∫
R
|t|m+1 dµN (t) , ∀ N ∈N.

We need

Definition 5.15. (see [1], p. 24, and [2], p. 334) Let x, x0 ∈ R be such that x ≥ x0, ν > 0, ν <N, such that p = [ν],
[·] the integral part, α = ν − p (0 < α < 1).

Let f ∈ Cp (R) and define

(
Jx0
ν f

)
(x) :=

1
Γ (ν)

∫ x

x0

(x − t)ν−1 f (t) dt, x0 ≤ x < +∞. (56)
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the left generalized Riemann-Liouville fractional integral.
Let x, x0 ∈ R be such that x ≤ x0, ν > 0, ν <N, such that p = [ν], α = ν − p (0 < α < 1).
Let f ∈ Cp (R) and define

(
Jνx0−

f
)

(x) :=
1

Γ (ν)

∫ x0

x
(z − x)ν−1 f (z) dz, −∞ < x ≤ x0. (57)

the right generalized Riemann-Liouville fractional integral.

We need

Definition 5.16. (see also [6]) Let x, x0 ∈ R, x ≥ x0, ν > 0, ν <N, p = [ν], α = ν − p.

Let f ∈ Cp
b (R), i.e. f ∈ Cp (R) with

∥∥∥∥ f (p)
∥∥∥∥
∞

< +∞, where ‖·‖∞ is the supremum norm.

Here
(
Jx0
ν f

)
(x) is defined via (56) over [x0,+∞).

We define the subspace Cνx0+ (R) of Cp
b (R) :

Cνx0+ (R) :=
{

f ∈ Cp
b (R) : Jx0

1−α f (p) ∈ C1 ([x0,+∞))
}
.

For f ∈ Cνx0+ (R), we define the left generalized ν-fractional derivative of f over [x0,+∞) as

Dν
x0+

f =
(
Jx0
1−α f (p)

)′
. (58)

We need

Definition 5.17. (see also [2], p. 345) Let x, x0 ∈ R, x ≤ x0, ν > 0, ν <N, p = [ν], α = ν − p. Let f ∈ Cp
b (R). Here(

Jνx0−
f
)

(x) is defined via (57) over (−∞, x0].
We define the subspace of Cνx0−

(R) of Cp
b (R) :

Cνx0−
(R) :=

{
f ∈ Cp

b (R) :
(
J1−α
x0−

f (p)
)
∈ C1 ((−∞, x0])

}
.

For f ∈ Cνx0−
(R), we define the right generalized ν-fractional derivative of f over (−∞, x0] as

D
ν

x0−
f = (−1)p−1

(
J1−α
x0−

f (p)
)′
. (59)

We make

Convention 5.18. Let a real number m > 1, from now on we assume that D
m
x0−

f is either bounded or uniformly
continuous function on (−∞, x0], similarly from now on we assume that Dm

x0+
f is either bounded or uniformly

continuous function on [x0,+∞).

We use

Definition 5.19. Let D
m
x0

f (real number m > 1) denote any of D
m
x0−

f , Dm
x0+ f and δ > 0. We set

ω1

(
D

m
x0

f , δ
)
R

:= max
{
ω1

(
D

m
x0−

f , δ
)

(−∞,x0]
, ω1

(
Dm

x0+ f , δ
)

[x0,+∞)

}
, (60)

where x0 ∈ R. Notice that ω1

(
D

m
x0

f , δ
)
R
< +∞.

We give
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Theorem 5.20. ([3], p. 113) Let m > 1, m < N, p = [m], x0 ∈ R, and f ∈ Cm
x0+ (R) ∩ Cm

x0−
(R). Assume that

f (k) (x0) = 0, k = 1, ..., p − 1, and
(
Dm

x0+
f
)

(x0) =
(
D

m
x0−

f
)

(x0) = 0. The Convention 5.18 is imposed. Then

∣∣∣ f (x) − f (x0)
∣∣∣ ≤ ω1

(
D

m
x0

f , δ
)
R

Γ (m + 1)

[
|x − x0|

m +
|x − x0|

m+1

(m + 1) δ

]
, δ > 0, (61)

for all x ∈ R.

We give

Theorem 5.21. Let m > 1, m < N, p = dme, x ∈ R, f : R → R+ with f ∈ Cm
x+ (R) ∩ Cm

x− (R). Assume that
f (k) (x) = 0, k = 1, ..., p − 1, and

(
Dm

x+ f
)

(x) =
(
D

m
x− f

)
(x) = 0. We assume that D

m
x− f , Dm

x+ f are either bounded or
uniformly continuous over (−∞, x], [x,+∞), respectively.

Let LN (N ∈N) be a sequence of positive sublinear operators from C+ (R) into CB+ (R). Assume that LN (1) = 1,
and LN

(
|· − x|m+1

)
(x) > 0, ∀ N ∈N. Then

∣∣∣LN
(

f
)

(x) − f (x)
∣∣∣ ≤ (m + 2)

Γ (m + 2)
ω1

(
D

m
x f ,

(
LN

(
|· − x|m+1

)
(x)

) 1
m+1

)
R(

LN

(
|· − x|m+1

)
(x)

) m
m+1 , ∀ N ∈N. (62)

If LN

(
|· − x|m+1

)
(x)→ 0, then LN

(
f
)

(x)→ f (x), as N→ +∞.

Proof. Similar to the proof of Theorem 5.13, by using (61).

We have

Corollary 5.22. All are as in Theorem 5.21 regarding f , with LN = PN,∀N ∈N.Assume that (SL)
∫
R
|t|m+1 dµN (t) >

0, and PN
(

f
)
∈ CB+ (R), ∀ N ∈N. Then

∣∣∣PN
(

f
)

(x) − f (x)
∣∣∣ =

∣∣∣∣∣(SL)
∫
R

f (x + t) dµN (t) − f (x)
∣∣∣∣∣ ≤

(m + 2)
Γ (m + 2)

ω1

D
m
x f ,

(
(SL)

∫
R

|t|m+1 dµN (t)
) 1

m+1

R(

(SL)
∫
R

|t|m+1 dµN (t)
) m

m+1

, ∀ N ∈N. (63)

If (SL)
∫
R
|t|m+1 dµN (t)→ 0, then PN

(
f
)

(x)→ f (x), as N→ +∞.

Proof. By Theorem 5.21.

5.3. Iterated Fractional Approximation

Here Dα
∗x0
,Dα

x0−
stand for the Caputo left and right fractional derivatives, see (43), (44). For n ∈ N,

denote the iterated left and right fractional derivatives as Dnα
∗x0

= Dα
∗x0

Dα
∗x0
...Dα

∗x0
and Dnα

x0−
= Dα

x0−
Dα

x0−
...Dα

x0−

(n-times).
We make
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Remark 5.23. Let f : R → R such that f ′ ∈ L∞ (R), x0 ∈ R, 0 < α < 1. The left Caputo fractional derivative(
Dα
∗x0

f
)

(x) is given for x ≥ x0. Clearly it holds
(
Dα
∗x0

f
)

(x0) = 0, and we define
(
Dα
∗x0

f
)

(x) = 0, for x < x0.

Let us assume that Dkα
∗x0

f ∈ C ([x0,+∞)), k = 0, 1, ...,n + 1; n ∈N.
The right Caputo fractional derivative

(
Dα

x0−
f
)

(x) is given for x ≤ x0. Clearly it holds
(
Dα

x0−
f
)

(x0) = 0, and

define
(
Dα

x0−
f
)

(x) = 0, for x > x0.

Let us assume that Dkα
x0−

f ∈ C ((−∞, x0]), k = 0, 1, ...,n + 1.
Here we restrict ourselves to 1

n+1 < α < 1, that is λ := (n + 1)α > 1. We denote Dλ
∗x0

f := D(n+1)α
∗x0

f , and
Dλ

x0−
f := D(n+1)α

x0−
f .

We make

Convention 5.24. We assume that Dλ
x0−

f is either bounded or uniformly continuous function on (−∞, x0], similarly
we assume that Dλ

∗x0
f is either bounded or uniformly continuous function on [x0,+∞).

We need

Definition 5.25. Let Dλ
x0

f denote any of Dλ
x0−

f , Dλ
∗x0

f and δ > 0. We set

ω1

(
Dλ

x0
f , δ

)
R

:= max
{
ω1

(
Dλ

x0−
f , δ

)
(−∞,x0]

, ω1

(
Dλ
∗x0

f , δ
)

[x0,+∞)

}
, (64)

where x0 ∈ R. Notice that ω1

(
Dλ

x0
f , δ

)
R
< +∞.

We mention

Theorem 5.26. ([3], p. 137) Let 1
n+1 < α < 1, n ∈ N, λ := (n + 1)α > 1, f : R → R, f ′ ∈ L∞ (R), x0 ∈ R.

Assume that Dkα
∗x0

f ∈ C ([x0,+∞)), k = 0, 1, ...,n + 1, and
(
Diα
∗x0

f
)

(x0) = 0, i = 2, 3, ...,n + 1. Suppose that

Dkα
x0−

f ∈ C ((−∞, x0]), for k = 0, 1, ...,n + 1, and
(
Diα

x0−
f
)

(x0) = 0, for i = 2, 3, ...,n + 1. Convention 5.24 is imposed.
Then

∣∣∣ f (x) − f (x0)
∣∣∣ ≤ ω1

(
Dλ

x0
f , δ

)
R

Γ
(
λ + 1

) |x − x0|
λ +
|x − x0|

λ+1(
λ + 1

)
δ

 , (65)

∀ x ∈ R, δ > 0.

We present

Theorem 5.27. Let 1
n+1 < α < 1, n ∈ N, λ := (n + 1)α > 1, f : R → R+, f ′ ∈ L∞ (R), x0 ∈ R. Assume that

Dkα
∗x f ∈ C ([x,+∞)), k = 0, 1, ...,n + 1, and

(
Diα
∗x f

)
(x) = 0, i = 2, 3, ...,n + 1. Suppose that Dkα

x− f ∈ C ((−∞, x]),

for k = 0, 1, ...,n + 1, and
(
Diα

x− f
)

(x) = 0, for i = 2, 3, ...,n + 1. We assume that Dλ
x− f , Dλ

∗x f are either bounded
or uniformly continuous over (−∞, x], [x,+∞), respectively. Let LN (N ∈ N) be a sequence of positive sublinear

operators from C+ (R) into CB+ (R). Assume that LN (1) = 1, and LN

(
|· − x|λ+1

)
(x) > 0, ∀ N ∈N. Then

∣∣∣LN
(

f
)

(x) − f (x)
∣∣∣ ≤ (

λ + 2
)

Γ
(
λ + 2

)ω1

(
Dλ

x f ,
(
LN

(
|· − x|λ+1

)
(x)

) 1
λ+1

)
R(

LN

(
|· − x|λ+1

)
(x)

) λ
λ+1
, ∀ N ∈N. (66)

If LN

(
|· − x|λ+1

)
(x)→ 0, then LN

(
f
)

(x)→ f (x), as N→ +∞.
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Proof. Similar to the proof of Theorem 5.13, by using (65).

We finish with

Corollary 5.28. All are as in Theorem 5.27 regarding f and LN = PN, ∀N ∈N.Assume that (SL)
∫
R
|t|λ+1 dµN (t) >

0, and PN
(

f
)
∈ CB+ (R), ∀ N ∈N. Then

∣∣∣PN
(

f
)

(x) − f (x)
∣∣∣ ≤ (

λ + 2
)

Γ
(
λ + 2

)ω1

Dλ
x f ,

(
(SL)

∫
R

|t|λ+1 dµN (t)
) 1
λ+1


R(

(SL)
∫
R

|t|λ+1 dµN (t)
) λ
λ+1

, ∀ N ∈N. (67)

If (SL)
∫
R
|t|λ+1 dµN (t)→ 0, then PN

(
f
)

(x)→ f (x), as N→ +∞.

Proof. By Theorem 5.27.
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