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Abstract. In this paper, we introduce new classes of proximal multi-valued contractions in a metric space
and proximal multi-valued nonexpansive mappings in a Banach space and show the existence of best
proximity points for both classes. Further, for proximal multi-valued nonexpansive mappings, we prove a
best proximity point theorem on starshape sets. As a consequence, we also obtain some new fixed point
theorems. Finally, we give some examples to illustrate our main results.

1. Introduction

Fixed point theory is one of the most powerful and prolific tools of mathematics and it is an important
part of nonlinear analysis which can be applied to many important problems such as optimization, image
and signal processing, machine learning, engineering and economics. One of the most well known fixed
point theorems for multi-valued contractions was first proved by Nadler [1] which states that every multi-
valued contractive mapping from a complete metric space X into nonempty closed bounded subsets of X
always has a fixed point.

However, the best proximity point problem is to consider the question of what happen when T is a
non-self mapping.

Let A,B be nonempty disjoint subsets of a metric space (X, d) and T : A→ 2B be a multi-valued mapping,
where 2B is the family of all nonempty subsets of B. It is noted that the fixed point equation x ∈ Tx has no
any solution because d(x,Tx) > D(A,B) for all x ∈ A, where D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}. So, it natural
to ask the following question:

Find a point x ∈ A such that d(x,Tx) = D(A,B),

where such a point x is known as a best proximity point of T.
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The best proximity point problem for non-self nonlinear mappings is an interesting topic in optimization
theory (see [2–5]) and best proximity point theorems can be applied to study equilibrium point in economics
(see [6–9]). Thus this topic attracts attentions of many mathematicians.

The existence of best proximity points of single-valued mappings have been studied by many authors
(see [10–18]). In 2011, the concept of the proximal contraction was first introduced by Basha [2]. Later,
Gabeleh [19] introduced a new concept of proximal nonexpansive mappings and proved the existence of
best proximity points of such mappings. In 2015, Chen [20] proved an interesting existence theorem of
proximity points for proximal nonexpansive mappings under starshape sets A and B.

For multi-valued mappings, the existence of best proximity points was established by many authors
(see, for instance, [21–27]). Recently, Sarnmeta [28] introduced a new concept of proximal multi-valued
mappings and proved the existence of best proximity points for such mappings when A0 is a nonempty
weakly compact convex set.

In this paper, we show the existence of a best proximity point theorem for our new concept of the
proximal multi-valued mapping, which is called the proximal multivalued contraction with respect A0 and
the proximal multi-valued nonexpansive mapping with respect A0 under starshape sets A0 and B0. Our results
extend and improve some results in fixed point theory and best proximity point theory given by some
authors.

2. Preliminaries

Let (X, d) be a metric space and 2X, CB(X), P(X) and K(X) denote the families of nonempty subsets,
nonempty closed bounded subsets, nonempty proximinal bounded subsets and nonempty compact subsets
of X, respectively. For each A,B ∈ CB(X) and x ∈ X, define

d(x,A) = inf{d(x, y) : y ∈ A},

D(A,B) = inf{d(x, y) : x ∈ A, y ∈ B},

H(A,B) = max
{

sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}
.

The mapping H is called the Pompeiu-Hausdorff metric or Hausdorf metric on CB(X).
Let A and B be nonempty subsets of a metric space (X, d). Further, we denote by A0 and B0 the following

sets:
A0 = {x ∈ A : d(x, y) = D(A,B) for some y ∈ B},

B0 = {y ∈ B : d(x, y) = D(A,B) for some x ∈ A}.

A nonempty subset A of a linear space X is called a p-starshape set if there exists a point p in A such that

αp + (1 − α)x ∈ A for all x ∈ A and α ∈ [0, 1]

and p is called a center of A.

Notice that, in a normed space (X, ‖ · ‖), if both of A and B are closed and A0 is nonempty, then A0 is a
closed set. In a starshape set, if A is a p-starshape set, B is a q-starshaped set and ‖p − q‖ = D(A,B), then A0
is a p-starshape set and B0 is a q-starshaped set (see [20]).

Definition 2.1. [30] Let (A,B) be a pair of nonempty subsets of a metric space (X, d). The pair (A,B) is said
to be a semi-sharp proximinal pair if, for each x ∈ A, there exists at most one x∗ in B such that

d(x, x∗) = D(A,B).

Definition 2.2. [31] Let (A,B) be a pair of nonempty subsets of a metric space (X, d) with A , ∅. Then the
pair (A,B) is said to have the weak P-property if, for all x1, x2 ∈ A0 and y1, y2 ∈ B0,

d(x1, y1) = D(A,B)
d(x2, y2) = D(A,B)

}
=⇒ d(x1, x2) ≤ d(y1, y2).



N. Bunlue et al. / Filomat 35:6 (2021), 1889–1897 1891

In Definition 2.2, if d(x1, x2) = d(y1, y2), then (A,B) have the P-property (see [32]). It is clear that the
weak P-property is weaker than the P-property and (A,B) has the P-property if and only if both (A,B) and
(B,A) have the weak P-property. Moreover, if a pair (A,B) has the weak P-property, then (B,A) must be a
semi-sharp proximinal pair. Obviously, a semi-sharp proximinal pair (A,B) is not necessarily to have the
weak P-property.

3. The Proximal Multi-valued Contraction

In this section, we first introduce a new concept of contraction multi-valued mapping, called proximal
multivalued contraction with respect A0, and give an example of this type of mapping.

Definition 3.1. Let (A,B) be a pair of nonempty subsets of a metric space (X, d). A mapping T : A → 2B is
said to be a proximal multi-valued contraction with respect to A0 if there exists α ∈ (0, 1) such that, for each
x1, x2 ∈ A0, two sets Ux1 := {y ∈ A0 : d(y,Tx1) = D(A,B)} and Ux2 := {y ∈ A0 : d(y,Tx2) = D(A,B)} are
nonempty closed and bounded and

H(Ux1 ,Ux2 ) ≤ αd(x1, x2).

Remark 1. In Definition 3.1, if B = A and T : A → CB(A) is a multi-valued mapping, then Ux = Tx for all
x ∈ A. It follows that T is a multi-valued contraction.

The following example is an example of proximal multi-valued contraction with respect to A0 which is
not a proximal multi-valued contraction with respect to A:

Example 3.2. Let X = R2 with the usual norm,

A = {(0, y) : y ∈ [−2,−1] ∪ [0, 2]},
B = ((1,∞) × (−3, 3)) ∪ {(1, y) : y ∈ [0, 1]}

and T : A→ 2B be a multi-valued mapping defined by

T(0, y) =

[1,∞) ×
{ y

2

}
, if y ∈ [0, 2],

(1,∞) ×
[ y

2 − 1, y
4 − 1

]
, if y ∈ [−2,−1].

It is not hard to see that, A0 = {(0, y) : y ∈ [0, 1]} and B0 = {(1, y) : y ∈ [0, 1]}.
Now, we can show that T is a proximal multi-valued contraction with respect to A0. Let x1, x2 ∈ {0}×[0, 2].

Then Ux1 = {(0, x1
2 )} and Ux2 = {(0, x2

2 )}. It follows that

H(Ux1 ,Ux2 ) ≤
1
2

d(x1, x2).

We note that, if x1 = (0, 1
2 ) and x2 = (0,−1), then

Vx1 = {x ∈ A : d(x,Tx1) = D(A,B)} =
{(

0,
1
4

)}
and

Vx2 = {x ∈ A : d(x,Tx2) = D(A,B)} =
{
(0, y) : y ∈

[−3
2
,
−5
4

]}
.

We know that d(x1, x2) = 3
2 <

7
6 = H(Vx1 ,Vx2 ). Therefore, T is not a proximal multi-valued contraction with

respect to A.

To prove the our main results, we need the following lemmas:
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Lemma 3.3. Let (A,B) be a pair of nonempty subsets of a metric space (X, d) such that A0 is nonempty. Suppose that
T : A→ 2B is a mapping such that, for each x ∈ A0, Tx ∩ B0 is nonempty. Then we have the following:

(1) for all x ∈ A0, Ux is a nonempty set;
(2) if A0 is closed and x ∈ A0, then Ux is closed;
(3) for each x ∈ A0, Tx ∩ B0 is bounded if and only if Ux is bounded.

Proof. (1) Let x ∈ A0. Since Tx ∩ B0 is nonempty, there exist v ∈ Tx ∩ B0 and u ∈ A0 such that

d(u, v) = D(A,B).

It follows that d(u,Tx) = D(A,B) and hence Ux is a nonempty set.
(2) To show that Ux is closed, let {yn} be a sequence in Ux such that yn → y. From yn ∈ A0 and

d(yn,Tx) = D(A,B) for each n ∈ N, we have d(yn,Tx) → D(A,B) as n → ∞. Therefore, d(y,Tx) = D(A,B).
Since A0 is closed, we have y ∈ A0, which implies y ∈ Ux and so Ux is closed.

(3) To show Ux is bounded, we suppose that Ux is unbounded. So, for each n ∈ N, there exist xn, yn in
Ux such that d(xn, yn) ≥ n. Since xn, yn ∈ Ux, there exist x′n, y′n ∈ Tx ∩ B0 such that d(xn, x′n) ≤ D(A,B) + 1

n and
d(yn, y′n) ≤ D(A,B) + 1

n for each n ∈N. From

n ≤ d(xn, yn) ≤ d(xn, x′n) + (x′n, y
′

n) + d(y′n, yn),

we have

n − 2D(A,B) −
2
n
≤ d(x′n, y

′

n) for each n ∈N.

Thus Tx ∩ B0 is unbounded, which is a contradiction. Therefore, Ux is bounded.
Conversely, we want to show that Tx∩ B0 is bounded. Suppose that Tx∩ B0 is unbounded. So, for each

n ∈ N, there exist xn, yn ∈ Tx ∩ B0 such that d(xn, yn) ≥ n. Since xn, yn ∈ Tx ∩ B0, there exist x′n, y′n ∈ Ux such
that d(xn, x′n) = D(A,B) and d(yn, y′n) = D(A,B) for all n ∈N. From

n ≤ d(xn, yn) ≤ d(xn, x′n) + (x′n, y
′

n) + d(y′n, yn),

we have

n − 2D(A,B) ≤ d(x′n, y
′

n) for each n ∈N.

Therefore, Ux is unbounded, which is a contradiction. Hence Tx ∩ B0 is bounded. This completes the
proof.

First, we prove the existence of a best proximity point for the proximal multi-valued contraction map-
ping.

Theorem 3.4. Let (X, d) be a complete metric space and (A,B) a pair of nonempty subsets of X such that A0 nonempty
and closed. Assume that T : A→ 2B satisfies the following conditions:

(i) T is an α-proximal multi-valued contraction with respect to A0;
(ii) for each x ∈ A0, Tx ∩ B0 is nonempty and bounded.

Then there exists x∗ ∈ A0 such that d(x∗,Tx∗) = D(A,B).

Proof. Let x0 ∈ A0. By Lemma 3.3 (1), we have Ux0 is a nonempty set. Let x1 ∈ Ux0 . Then x1 ∈ A0 an so Ux1

is nonempty. By Lemma 3.3 (2), (3), Ux is closed and bounded for each x ∈ A0. Choose x2 ∈ Ux1 such that

d(x2, x1) ≤ H(Ux1 ,Ux0 ) + α.
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Continuing this process, we get a sequence {xn} in A0 such that d(xn+1,Txn) = D(A,B) and

d(xn+1, xn) ≤ H(Uxn ,Uxn−1 ) + αn for all n ∈N.

Next, we show that {xn} is a Cauchy sequence and its limit is a best proximity point of T. By the definition
of T, we have

d(xn+1, xn) ≤ H(Uxn ,Uxn−1 ) + αn

≤ αd(xn, xn−1) + αn

≤ α(H(Uxn−1 ,Uxn−2 ) + αn−1) + αn

= αH(Uxn−1 ,Uxn−2 ) + 2αn

· · ·

≤ αnd(x1, x0) + nαn.

Since Σ∞n=0α
n < ∞ and Σ∞n=0nαn < ∞, it follows that {xn} is a Cauchy sequence in A0. Since A0 is closed, there

exists x∗ ∈ A0 such that xn → x∗ as n → ∞. By Lemma 3.3 (1), it follows that Ux∗ is nonempty. Thus there
exists x′n ∈ Ux∗ such that

d(xn+1, x′n) ≤ H(Uxn ,Ux∗ ) +
1
n
≤ αd(xn, x∗) +

1
n
,

which implies that

lim
n→∞

d(xn+1, x′n) = 0.

Therefore, x′n → x∗. Since Ux∗ is closed, it follows that x∗ ∈ Ux∗ , that is, d(x∗,Tx∗) = D(A,B). This completes
the proof.

Obviously, If T is a mapping from A to CB(A) then we have a fixed point theorem which is directly
derived from Theorem 3.4.

Corollary 3.5. Let A be a nonempty closed subset of a complete metric space (X, d) and T : A → CB(A) be a
multi-valued contraction. Then T has a fixed point.

4. The Proximal Multi-valued Nonexpansive Mapping

In this section, we introduce a proximal multi-valued nonexpansive mapping with respect to A0 and
prove the existence of best proximity points for such mapping on starshape sets in Banach spaces.

Definition 4.1. Let (A,B) be a pair of nonempty subsets of a normed space X. A mapping T : A → 2B

is said to be proximal multi-valued nonexpansive with respect to A0. If, for each x1, x2 ∈ A0, two sets
Ux1 := {y ∈ A0 : d(y,Tx1) = D(A,B)} and Ux2 := {y ∈ A0 : d(y,Tx2) = D(A,B)} are nonempty closed
and bounded and

H(Ux1 ,Ux2 ) ≤ ‖x1 − x2‖.

Remark 2. In Definition 4.1, If B = A and T : A → CB(A) is a multi-valued mapping, then Ux = Tx for all
x ∈ A. So, T is a multi-valued nonexpansive mapping.

Theorem 4.2. Let X be a Banach space, (A,B) be a pair of nonempty subsets of X such that A0 is a p−starshaped
set, B0 is a q-starshaped set with ‖p − q‖ = D(A,B). Assume that A0 is a compact set and (B0,A0) is a semi-sharp
proximinal pair. Suppose that a multi-valued mapping T : A→ P(B) satisfies the following conditions:

(i) T is proximal multivalued nonexpansive with respect to A0;
(ii) for each x ∈ A0, Tx ∩ B0 is nonempty.
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Then there exists x∗ in A0 such that d(x∗,Tx∗) = D(A,B).

Proof. For each n ∈N, define Tn : A0 → P(B) by

Tnx = anq + (1 − an)Tx for each x ∈ A0,

where {an} is a sequence in (0, 1) such that limn→∞ an = 0. Let x ∈ A0. From (ii), there exist x′ ∈ Tx and
x′ ∈ B0. Then there exists w ∈ A0 such that

‖w − x′‖ = D(A,B).

Set w∗n = anp + (1 − an)w and x∗n = anq + (1 − an)x′. Then x∗n ∈ Tnx and

‖w∗n − x∗n‖ = ‖anp + (1 − an)w − anq − (1 − an)x′‖
≤ an‖p − q‖ + (1 − an)‖w − x′‖
= D(A,B),

which implies x∗n ∈ B0. Therefore, Tnx ∩ B0 is nonempty. Now, define

Un
x = {w ∈ A0 : d(w,Tnx) = D(A,B)}.

Now, we show that, for each x ∈ A0,

Un
x = anp + (1 − an)Ux for each n ∈N.

To show this, let n ∈ N be fixed and w ∈ Un
x . Since Tnx is a proximinal subset of B, there exist y in Tnx

such that

‖w − y‖ = d(w,Tnx) = D(A,B). (1)

Hence y ∈ B0. Since x′ ∈ B0, there exist w′ ∈ A0 such that

‖w′ − x′‖ = d(w′,Tx) = D(A,B).

So, w′ ∈ Ux. Set v = anq + (1 − an)w′, we obtain

‖v − y‖ = ‖anp + (1 − an)w′ − anq − (1 − an)x′‖
≤ an‖p − q‖ + (1 − an)‖w′ − x′‖
= D(A,B). (2)

Since (B,A) is a semi-sharp proximinal pair, it follows from (1) and (2) that

w = v = anp + (1 − an)w′.

So, wn ∈ anp + (1 − an)Ux and hence Un
x ⊆ anp + (1 − an)Ux.

Now, let yn ∈ anp + (1− an)Ux. Then we have yn = anp + (1− an)y′ for some y′ ∈ Ux. Since y′ ∈ Ux and Tx
is proximinal, there exist x′ ∈ Tx such that

‖y′ − x′‖ = d(y′,Tx) = D(A,B).

Set x∗n = anq + (1 − an)x′ ∈ Tnx, we have

d(yn,Tnx) ≤ ‖yn − x∗n‖
= ‖anp + (1 − an)y′ − (anq + (1 − an)x′)‖
≤ an‖p − q‖ + (1 − an)‖y′ − x′‖
= D(A,B),
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which implies d(yn,Tnx) = D(A,B). So, yn ∈ Un
x and hence

anp + (1 − an)Ux ⊆ Un
x .

Therefore, Un
x = anp + (1− an)Ux for each n ∈N. By the compactness of A0, it follows that Un

x is also compact.
From Lemma 3.3 (3), Tnx ∩ B0 is bounded. Let x1, x2 ∈ A0. Since T is proximal multi-valued nonexpansive
with respect A0, we have

H(Un
x1
,Un

x2
) = (1 − an)H(Ux1 ,Ux2 ) ≤ (1 − an)‖x1 − x2‖.

Hence Tn is proximal multi-valued contraction with respect A0. By Theorem 3.4, there exist x∗n ∈ A0 such
that

d(x∗n,Tnx∗n) = D(A,B).

Since A0 is compact, without loss of generality, we assume that there exist x∗ ∈ A0 such that x∗n → x∗ as
n→∞. Since x∗n ∈ Un

x∗n
, we have

x∗n = anp + (1 − an)x′n for some x′n ∈ Ux∗n ,

which implies

‖x∗n − x′n‖ = an‖x′n − p‖ → 0 as n→∞

since an → 0. Thus it follows that limn→∞ x′n = x∗. By Lemma 3.3 (1), Ux∗ is nonempty. Then there exist
un ∈ Ux∗ such that

‖x′n − un‖ = d(x′n,Ux∗ ) ≤ H(Ux∗n ,Ux∗ ) ≤ ‖x∗n − x∗‖ → 0 as n→∞.

It follows that un → x∗. Since Ux∗ is closed, x∗ ∈ Ux∗ . Therefore, d(x∗,Tx∗) = D(A,B). This completes the
proof.

It is clear that, if a pair (A,B) has the weak P-property, then (B,A) is a semi-sharp proximinal pair. So,
we have the following result:

Corollary 4.3. Let X be a Banach space, (A,B) be a pair of nonempty subsets of X such that A0 is a p-starshaped set,
B0 is a q-starshaped set and ‖p − q‖ = D(A,B). Assume that A0 is a compact set and (A,B) has the weak P-property.
Suppose that a multi-valued mapping T : A→ P(B) satisfies the following conditions:

(i) T is proximal multi-valued nonexpansive with respect to A0;
(ii) for each x ∈ A0, Tx ∩ B0 is nonempty.

Then there exists x∗ in A0 such that d(x∗,Tx∗) = D(A,B).

The following result is a fixed point theorem which is directly obtained by Theorem 4.2:

Corollary 4.4. Let A be a nonempty p-starshaped compact subset of a Banach space X and T : A → P(A) be a
multi-valued nonexpansive mapping. Then T has a fixed point.

The following example illustrates the preceding theorem:

Example 4.5. Let X = R3 with the norm ‖(x, y, z)‖ = |x| + |y| + |z|,

A = {(x, 0, 0) : x ∈ [0, 2]} ∪ {(0, y, 0) : y ∈ [−1, 1]},

B1 =
{
(x, y, 2) : x ∈

[
0,

3
2

]
, y ∈ [−2, 2]

}
,

B2 = {(x, y, z) : z − x = 2, x ∈ [−2, 0], y ∈ [−, 1, 1]},
B = B1 ∪ B2
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and T : A→ P(B) be a multi-valued mapping defined by

T(x, y, z) =

[ 2x
3 ,

3x
4 ] × [− x2

2 ,
x2

2 ] × {0}, if y = 0,{
(x′, y′, z′) ∈ B2 : x′ ∈ [−|y| − 1, |y|], y′ ∈

[
−

y2

2 ,
y2

2

]}
, if y , 0.

We see that the following properties are satisfied:
(1) A is a (0, 0, 0)-starshape set, and B is a (0, y, 2)-starshaped set, where y ∈ [−1, 1];
(2) A0 =

{
(x, 0, 0) : x ∈

[
0, 3

2

]}
∪ {(0, y, 0) : y ∈ [−1, 1]} is a compact set;

(3) B0 =
{
(x, 0, 0) : x ∈

[
0, 0, 3

2

]}
∪ B2;

(4) for each (x, y, z) ∈ A0, T(x, y, z) ∩ B0 is nonempty;
(5) (B0,A0) is a semi-sharp proximinal pair, (A0,B0) is not a semi-sharp proximinal pair from

‖(0, 0, 0) − (−1, 0,−1)‖ = D(A,B) = ‖(0, 0, 0) − (0, 0, 2)‖, but (−1, 0,−1) , (0, 0, 2);

(6) (0, 0, 0) is a best proximity point of T.

It can be shown that T is a proximal multi-valued nonexpansive mapping with respect to A0. It is easy
to see that, if x1 = (2, 0, 0) and x2 = (0, 0, 0), then

Tx1 = {(0, 0, 0)}, Tx2 =
[4
3
,

3
2

]
× [−2, 2] × {0}

and

‖x1 − x2‖ = 2, ‖Tx1 − Tx2‖ =
7
2
.

So, T is not a non-self nonexpansive mapping.
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