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Abstract. This paper considers the randomly weighted sums generated by some dependent subexponen-
tial primary random variables and some arbitrarily dependent random weights. To study the randomly
weighted sums with infinitely many terms, we establish a Kesten-type upper bound for their tail proba-
bilities in presence of subexponential primary random variables and under a certain dependence among
them. Our result extends the study of Chen [5] to the dependent case. As applications, we derive some
asymptotic formulas for the tail probability and the Value-at-Risk of total aggregate loss in a multivariate
operational risk cell model.

1. Introduction

Throughout this paper, let {Xk, k ∈ N} be a sequence of identically distributed real-valued random
variables (r.v.s) with common distribution F, called primary r.v.s, and let {θk, k ∈N} be another sequence of
nonnegative, arbitrarily dependent and uniformly bounded above r.v.s, called random weights. As usual,
{Xk, k ∈ N} and {θk, k ∈ N} are assumed to be mutually independent. In this study we are interested in the
randomly weighted sums

Sθn =

n∑
k=1

θkXk, n ∈N. (1)

Randomly weighted sums in (1) have been an attractive research topic in various areas particularly in
insurance and finance, since they have been widely used in many financial products, such as bond price,
insurance premium, stochastic present value of investment portfolio, ruin probability, and among many
others. After the pioneering work of Tang and Tsitsiashvili [19], more and more research attention has
focused on the tail behavior of randomly weighted sums of heavy-tailed primary r.v.s, most of which is
related to the case of finitely many terms. Under various assumptions, the asymptotic formula

P(Sθn > x) ∼
n∑

k=1

P(θkXk > x) (2)
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is established for every fixed n ∈ N, where the symbol ∼ means that the quotient of both sides tends to 1
as x→∞. Tang and Tsitsiashvili [20] firstly considered the case of independent and identically distributed
(i.i.d.) subexponential primary r.v.s {Xk, k ∈N} but required the random weights {θk, k ∈N} to be bounded
away from both 0 and∞, i.e. θk ∈ [a, b] for some 0 < a ≤ b < ∞ and all k ∈N. Under these conditions, they
established the asymptotic formula (2). Tang and Yuan [21] further relaxed the restriction on {θk, k ∈N} by
only requiring that they are nonnegative, non-degenerate at zero, and bounded above, i.e. 0 ≤ θk ≤ b for
some 0 < b < ∞ and all k ∈ N. Under the dependence structure, two similar results with subexponential
primary r.v.s were derived by Wang [23] and Yang et al. [25]. The former considered the case of dependent
primary r.v.s but the random weights being bounded from both sides as those in [20]; whereas the latter
dealt with the case allowing some certain dependence between each pair of the primary r.v. and the
corresponding bounded above random weight. More results on the asymptotic tail behavior of Sθn can be
found in [22], [31], [13], [30], [16], [8], [9], [14], [7], [29], [27], [24], and among many others. In the aspect of
randomly weighted sums with infinitely many terms, almost all literature is restricted to some extremely
heavy-tailed primary r.v.s, to our knowledge, such as the regularly varying tailed ones in [6], the extended
regularly varying tailed ones in [31], the consistently varying tailed ones in [13].

To solve some problems concerning infinitely many terms and subexponential primary r.v.s, Chen [5]
recently obtained a Kesten-type upper bound for the tail probability of randomly weighted sums in (1) under
the independence structure. However, due to the increasing complexity of insurance and financial products,
the independence assumption is not practical and modelling the dependence has become imperative.
Motivated by Chen [5], in this paper we aim to establish a Kesten-type inequality for the tail probability
of Sθn by allowing a certain dependence among the primary r.v.s. As applications, we can utilize such
an inequality to investigate some asymptotics for the tail probability and the Value-at-Risk (VaR) of total
aggregate loss in a multivariate operational risk cell model.

The rest of this paper is organized as follows. Section 2 states the main result of this paper, Section 3
presents its proof after preparing a series of lemmas, and Section 4 gives some applications in a multivariate
operational risk cell model.

2. Main result

Throughout the paper, all limit relationships are according to x → ∞ unless otherwise stated. For
two positive functions 11(·) and 12(·), we write 11(x) . 12(x) or 12(x) & 11(x) if lim sup 11(x)/12(x) ≤ 1, write
11(x) ∼ 12(x) if lim 11(x)/12(x) = 1, and write 11(x) = o(12(x)) if lim 11(x)/12(x) = 0.Moreover, for two positive
bivariate functions 11(·, ·) and 12(·, ·), we write 11(x, t) ∼ 12(x, t) uniformly for all t in a nonempty set A, if

lim
x→∞

sup
t∈A

∣∣∣∣∣11(x, t)
12(x, t)

− 1
∣∣∣∣∣ = 0.

For a non-decreasing function 1 : R 7→ R, denote by 1← the general inverse, that is, for y ∈ R, 1←(y) =
inf{x ∈ R : 1(x) ≥ y}, where inf ∅ = ∞ by convention. For any x ∈ R and any set A, denote by x+ = max{x, 0}
and by 1A the indicator function of A.

A distribution V on R+ = [0,∞) is said to be subexponential, written as V ∈ S, if V(x) = 1 − V(x) > 0
for all x ≥ 0 and V∗n(x) ∼ nV(x) holds for all (or, equivalently, for some) n ≥ 2, where V∗n is the n-fold
convolution of V. More generally, a distribution V on R is still said to be subexponential if the distribution
V(x)1{x≥0} is subexponential. By Lemma 1.3.5(a) of [11], if a distribution V on R is subexponential, then it
holds that

V(x + y) ∼ V(x), (3)

for any fixed y ∈ R, which defines the class of long-tailed distributions, denoted by L. Automatically,
relation (3) holds uniformly on every compact set of y. Hence, it is easy to see that there exists some positive
function h(·), with h(x) = o(x) and h(x) ↑ ∞, such that relation (3) holds uniformly for all |y| ≤ h(x). One
of the most useful subclass of subexponential distributions is that of regularly varying tailed distributions.
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Recall that a positive measurable function h on R+ is said to be regularly varying at ∞ with index α ∈ R,
written as h ∈ RVα, if h(xy) ∼ yαh(x) for any y > 0. Closely related is the rapid variation. A positive
measurable function h on R+ is said to be rapidly varying, denoted by h ∈ RV−∞, if h(xy) = o(h(x)) for
any y > 1, In particular, a distribution V on R is said to be regularly (or rapidly) varying tailed if its tail
distribution V ∈ RV−α for some α > 0 (or V ∈ RV−∞), denoted also by V ∈ R−α (or V ∈ R−∞). The reader is
referred to [11] and [12] for reviews of subexponential and regularly (rapidly) varying tailed distributions
with applications to insurance and finance.

Under the independence structure, Chen [5] established a Kesten-type upper bound for the tail proba-
bility of randomly weighted infinite sums with subexponential primary r.v.s.

Theorem A Let {Xk, k ∈N} be a sequence of i.i.d. real-valued r.v.s with common distribution F ∈ S, and {θk, k ∈N}
be another sequence of nonnegative and uniformly bounded above r.v.s independent of {Xk, k ∈ N}. Then, for any
ε > 0, there exists a positive constant Cε such that

P
(
Sθn > x

)
≤ Cε(1 + ε)n

n∑
k=1

P(θkXk > x) (4)

holds for all n ∈N and all x ≥ 0.

Our main result extends Theorem A to the following dependence assumption, which is proposed by Ko
and Tang [17], see also Yang et al. [26].

Assumption 2.1. There exist two positive constants M and large x0 such that

sup
x≥x0

sup
n≥1

sup
y∈[x0,x]

P
(∑n

k=1 Xk > x − y|Xn+1 = y
)

P
(∑n

k=1 Xk > x − y
) ≤M.

This assumption can be satisfied by most of negative dependence structures but the extremely positive
dependence structures are excluded. Thus, the dependence structure above allows both positive and
negative dependence among an infinite number of r.v.s to a certain extent.

Now we are ready to state our main result.

Theorem 2.1. Let {Xk, k ∈ N} be a sequence of identically distributed real-valued r.v.s with common distribution
F ∈ S and satisfying Assumption 2.1, and {θk, k ∈ N} be another sequence of nonnegative and uniformly bounded
above r.v.s independent of {Xk, k ∈N}. Then, for any ε > 0, there exists a positive constant Cε such that (4) holds for
all n ∈N and all x ≥ 0.

3. Proof of main result

Before proving our main result, we firstly cite a series of lemmas. The first one gives a Kesten-type
upper bound for the (non-weighted) sums of subexponential primary r.v.s, which is derived from [26].

Lemma 3.1. Let {Xk, k ∈ N} be a sequence of identically distributed real-valued r.v.s with common distribution
F ∈ S and satisfying Assumption 2.1. Then, for any ε > 0, there exists a positive constant Cε such that

P

 n∑
k=1

Xk > x

 ≤ Cε(1 + ε)nF(x)

holds for all n ∈N and all x ≥ 0.

The second lemma can also be found in [28]. For the sake of self-containedness, we present its proof
below.
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Lemma 3.2. Let X⊥1 , . . . ,X
⊥
n be n i.i.d. nonnegative r.v.s with common distribution F ∈ S. Then, for any function

h(x) ↑ ∞, any k = 1, . . . ,n, and 0 < a ≤ b < ∞, it holds that uniformly for all ci ∈ [a, b], i = 1, . . . ,n,

P

 n∑
i=1

ciX⊥i > x, h(x) < ckX⊥k ≤ x

 = o(1)
n∑

i=1

P(ciX⊥i > x). (5)

Proof. Clearly, the probability on the left-hand side of (5) is no more than∫ x

0
P

x − y <
n∑

i=1,i,k

ciX⊥i ≤ x

 P
(
ckX⊥k ∈ dy

)
+P

 n∑
i=1,i,k

ciX⊥i > x

 P
(
ckX⊥k > h(x)

)
= P

 n∑
i=1

ciX⊥i > x

 −
P

 n∑
i=1,i,k

ciX⊥i > x

 P
(
ckX⊥k ≤ x

)
+ P

(
ckX⊥k > x

)
+P

 n∑
i=1,i,k

ciX⊥i > x

 P
(
ckX⊥k > h(x)

)
=: I1 − I2 + I3.

By Lemma 1 of [21], we have that uniformly for all ci ∈ [a, b], i = 1, . . . ,n,

I1 ∼

n∑
i=1

P(ciX⊥i > x).

Again by Lemma 1 of [21], uniformly for all ci ∈ [a, b], i = 1, . . . ,n,

I3 .
n∑

i=1

P(ciX⊥i > x) · F
(

h(x)
b

)

= o(1)
n∑

i=1

P(ciX⊥i > x).

Similarly, uniformly for all ci ∈ [a, b], i = 1, . . . ,n,

I2 ∼

n∑
i=1

P(ciX⊥i > x).

Therefore, relation (5) follows from the above estimates. �

We now establish a uniform Kesten-type inequality for the tail probability of deterministically weighted
sums, which plays an important role in the proof of Theorem 2.1.

Lemma 3.3. Let {Xk, k ∈ N} be a sequence of identically distributed real-valued r.v.s with common distribution
F ∈ S and satisfy Assumption 2.1. Then, for 0 < a ≤ b < ∞ and for any ε > 0, there exists a positive constant Cε
such that

P

 n∑
k=1

ckXk > x

 ≤ Cε(1 + ε)n
n∑

k=1

P(ckXk > x) (6)

holds for all ck ∈ [a, b], k = 1, . . . ,n, all n ∈N and all x ≥ 0.
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Proof. For each n ∈ N, denote by cn = (c1, . . . , cn) ∈ [a, b]n and c(n) = max{c1, . . . , cn}. Due to the fact that
P
(∑n

k=1 ckXk > x
)
≤ P

(∑n
k=1 ckX+

k > x
)

for all x ≥ 0, without loss of generality we can assume that {Xk, k ∈N}
are nonnegative. Write

αn = sup
cn∈[a,b]n

sup
x≥0

P
(∑n

k=1 ckXk > x
)∑n

k=1 P(ckXk > x)
. (7)

We can assume αn ≥ 1. Let h(·) be a function such that h(x) = o(x), h(x) ↑ ∞ and relation (3) holds uniformly
for all |y| ≤ h(x)

a because of F ∈ S ⊂ L. Consider the tail probability of the weighted sum
∑n+1

k=1 ckXk and split
it as

P

n+1∑
k=1

ckXk > x

 = P

n+1∑
k=1

ckXk > x, cn+1Xn+1 ≤ h(x)


+P

n+1∑
k=1

ckXk > x, h(x) < cn+1Xn+1 ≤ x − h(x)


+P

n+1∑
k=1

ckXk > x, cn+1Xn+1 > x − h(x)


=: I1 + I2 + I3. (8)

We start with I1 and I3. By F ∈ S ⊂ L and (7), for any ε > 0, there exists some sufficiently large x1 such that
for all x ≥ x1 and uniformly for cn+1 ∈ [a, b]n+1,

I1 ≤ P

 n∑
k=1

ckXk > x − h(x)


≤ αn

n∑
k=1

P(ckXk > x − h(x))

≤

(
1 +

ε
2

)
αn

n∑
k=1

P(ckXk > x), (9)

and

I3 ≤ P(cn+1Xn+1 > x − h(x))

≤

(
1 +

ε
2

)
P(cn+1Xn+1 > x)

≤

(
1 +

ε
2

)
αnP(cn+1Xn+1 > x). (10)

We next deal with I2. Conditioning on Xn+1, there exists some sufficiently large x2 ≥ x1 with h(x2)
b ≥ x0, such

that for all x ≥ x2 and all cn+1 ∈ [a, b]n+1,

I2 =

∫ x−h(x)
cn+1

h(x)
cn+1

P

 n∑
k=1

ckXk > x − cn+1y

∣∣∣∣∣∣Xn+1 = y

 P(Xn+1 ∈ dy)

≤

∫ x−h(x)
cn+1

h(x)
cn+1

P

 n∑
k=1

Xk >
x − cn+1y

c(n)

∣∣∣∣∣∣Xn+1 = y

 P(Xn+1 ∈ dy)

≤ M
∫ x−h(x)

cn+1

h(x)
cn+1

P

 n∑
k=1

Xk >
x − cn+1y

c(n)

 P(Xn+1 ∈ dy),
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where in the last step we used Assumption 2.1. By Lemma 3.1, there exists some positive constant C̃ε such
that for all x ≥ 0 and all cn+1 ∈ [a, b]n+1,

I2 ≤ C̃ε
(
1 +

ε
2

)n ∫ x−h(x)
cn+1

h(x)
cn+1

P
(
X1 >

x − cn+1y
c(n)

)
P(Xn+1 ∈ dy)

= C̃ε
(
1 +

ε
2

)n
P
(
c(n)X⊥1 + cn+1X⊥n+1 > x, h(x) < cn+1X⊥n+1 ≤ x − h(x)

)
,

where X⊥1 and X⊥n+1 are two i.i.d. r.v.s with common distribution F. Then, by Lemma 3.2, there exists some
large x3 ≥ x2, irrespective of n, such that for all x ≥ x3 and all cn+1 ∈ [a, b]n+1,

I2 ≤ εC̃ε
(
1 +

ε
2

)n (
P(c(n)X1 > x) + P(cn+1Xn+1 > x)

)
≤ εC̃ε

(
1 +

ε
2

)n n+1∑
k=1

P(ckXk > x). (11)

Plugging (9), (10) and (11) into (8) yields that for all x ≥ x3 and all cn+1 ∈ [a, b]n+1,

P

n+1∑
k=1

ckXk > x

 ≤ ((
1 +

ε
2

)
αn + εC̃ε

(
1 +

ε
2

)n) n+1∑
k=1

P(ckXk > x).

This proves that

sup
cn+1∈[a,b]n+1

sup
x≥x3

P
(∑n+1

k=1 ckXk > x
)

∑n+1
k=1 P(ckXk > x)

≤

(
1 +

ε
2

)
αn + εC̃ε

(
1 +

ε
2

)n
.

When x < x3, it holds uniformly for cn+1 ∈ [a, b]n+1 that

P
(∑n+1

k=1 ckXk > x
)

∑n+1
k=1 P(ckXk > x)

≤
1

F
(

x3
a

) .
Then, by the recursive inequality,

αn+1 =

 sup
cn+1∈[a,b]n+1

sup
x≥x3

+ sup
cn+1∈[a,b]n+1

sup
x<x3

 P
(∑n+1

k=1 ckXk > x
)

∑n+1
k=1 P(ckXk > x)

≤

(
1 +

ε
2

)
αn + εC̃ε

(
1 +

ε
2

)n
+

1

F
(

x3
a

)
≤

1 + nεC̃ε +
2

εF
(

x3
a

)  (1 +
ε
2

)n
.

Therefore, there exists some large n0 ∈N such that αn+1 ≤ (1 + ε)n holds for all n ≥ n0; and when n < n0,

αn+1 ≤

1 + n0εC̃ε +
2

εF
(

x3
a

)  (1 + ε)n .

We can choose Cε = 1 + n0εC̃ε + 2
εF( x3

a ) to derive the Kesten-type upper bound (6). �

Proof of Theorem 2.1. By using Lemma 3.3 we can prove Theorem 2.1 along the lines of the proof of
Theorem 1.2 in [5]. �



Y. Gong et al. / Filomat 35:6 (2021), 1879–1888 1885

4. Applications to operational risk

The Basel II accord imposes new methods of calculating regulatory capital, among which operational risk
is defined as the risk of losses resulting from inadequate or failed internal processes, people and systems,
or from external events. According to Basel II accord, banks should allocate losses from operational
risk to more than one business line or loss event type, which leads to the core problem of the multivariate
modelling encompassing all different risk type/business line cells. In this section, we consider a multivariate
operational risk model with d cells, in which all the loss severities {X(i)

k , k ∈ N}i=1,...,d are dependent and
identically distributed with common distribution F; the random weights {θ(i)

k , k ∈ N}i=1,...,d, considered as
the discount factors when calculating the present values of loss severities, are also identically distributed
but arbitrarily dependent; and the number of loss events in the time interval [0, t] for t ≥ 0 are described by
some counting processes {Ni(t), t ≥ 0}i=1,...,d, called frequency processes. Assume that the severity processes
{X(i)

k , k ∈ N}i=1,...,d, the random weights {θ(i)
k , k ∈ N}i=1,...,d, and the frequency processes {Ni(t), t ≥ 0}i=1,...,d are

mutually independent. However, arbitrary dependence may exist among N1(t), . . . ,Nd(t). In this model,
for each business line i = 1, . . . , d, the aggregate loss process Si(t) in [0, t] constitutes a process

Si(t) =

Ni(t)∑
k=1

θ(i)
k X(i)

k , t ≥ 0,

and the bank’s total aggregate loss process is defined as

S(t) =

d∑
i=1

Si(t), t ≥ 0, (12)

with distribution Gt(x) = P(S(t) ≤ x).
Such a multivariate operational risk model is to meet the requirements for the Advanced Measurement

Approach, which is proposed by Basel Committee on Banking Supervision [2]. One of the most popular
frequency/severity approaches satisfying the Advanced Measurement Approach standards, called Loss
Distribution Approach, is widely used in banks and insurance companies, see, e.g. [1] and [32].

In this section, we will use the Loss Distribution Approach to investigate some asymptotics for the tail
probability and the risk measure VaR of total aggregate loss S(t) in (12). Some similar results can be found
in [15]. The following result presents an asymptotic formula for the former. Denote by H the distribution
of θ(1)

1 X(1)
1 .

Theorem 4.1. Consider the total aggregate loss (12) under the multivariate operational risk cell model. Assume
that the nonnegative loss severities {X(i)

k , k ∈ N}i=1,...,d are dependent according to Assumption 2.1 and identically
distributed with common distribution F ∈ S; the random weights {θ(i)

k , k ∈ N}i=1,...,d are identically distributed,
bounded above and non-degenerate at 0; the frequency processes {Ni(t), t ≥ 0}i=1,...,d satisfy E

[
(1 + ε0)Ni(t)

]
< ∞ for

some ε0 > 0, i = 1, . . . , d; and the loss severities, the random weights and the frequency processes are mutually
independent. Then, regardless of arbitrary dependence among {Ni(t), t ≥ 0}i=1,...,d and among {θ(i)

k , k ∈ N}i=1,...,d, it
holds that

P(S(t) > x) ∼ H(x)
d∑

i=1

E [Ni(t)] . (13)

Remark 4.2. Since the random weights {θ(i)
k , k ∈ N}i=1,...,d are bounded above, denoting the upper bound by b > 0,
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by F ∈ S, Theorem 2.1 of [10] implies H ∈ S. In addition, if F ∈ R−∞ then for any y > 1,

H(xy) =

∫ b

0

F
( xy

u

)
F
(

x
u

) F
(x

u

)
P(θ(1)

1 ∈ du)

= o(1)
∫ b

0
F
(x

u

)
P(θ(1)

1 ∈ du)

= o(H(x)),

implying H ∈ R−∞.

The risk measure VaR has been widely used as the minimum capital requirement or the reserve in banks
and financial institutions. It is more practical and tractable than the tail probability in reality. By definition,
the VaR of total aggregate loss can be defined as the q-quantile of Gt,

VaRq(S(t)) = G←t (q) = inf{x ∈ R : P(S(t) ≤ x) ≥ q},

for confidence level q ∈ (0, 1). Actually, a closed-form expression for Gt(x) is not available except for few
ideal distributional assumptions. Hence, in general, G←t (q) can not be analytically calculated. The next
result gives an asymptotic formula for VaRq(S(t)) as q ↑ 1.

Theorem 4.3. Under the conditions of Theorem 4.1, if further F ∈ S ∩ R−∞, then it holds that as q ↑ 1,

VaRq(S(t)) ∼ H←(q).

Furthermore, if θ(i)
k = e−rT, k ∈ N, i = 1, . . . , d, where r > 0 is the constant force of interest, and T > 0 is

the length of the period, then the following corollary is straightforward.

Corollary 4.4. Under the conditions of Theorem 4.3, if θ(i)
k = e−rT for some r > 0 and T > 0, k ∈ N, i = 1, . . . , d,

then it holds that as q ↑ 1,

VaRq(S(t)) ∼ e−rTF←(q).

To prove Theorems 4.1 and 4.3, we need the following two lemmas. The first one investigates the
asymptotic behavior of the randomly weighted sums, which is due to [14].

Lemma 4.5. Let X1, . . . ,Xn be n identically distributed nonnegative r.v.s with common distribution F ∈ S and
satisfying Assumption 2.1, and let θ1, . . . , θn be another n nonnegative, non-degenerate at 0, bounded above but
arbitrarily dependent r.v.s, which are independent of X1, . . . ,Xn. Then, it holds that

P

 n∑
k=1

θkXk > x

 ∼ n∑
k=1

P(θkXk > x).

The second lemma can be found in [4].

Lemma 4.6. Let F1 and F2 be two distributions satisfying F1(x) ∼ F2(x). If F1 ∈ R−α for some 0 < α ≤ ∞, then(
1

F1

)←
(x) ∼

(
1

F2

)←
(x).

Now we are ready to prove Theorems 4.1 and 4.3.

Proof of Theorem 4.1. Clearly, the tail probability P(S(t) > x) can be written as

P(S(t) > x) =

∞∑
n1=0

· · ·

∞∑
nd=0

P

 d∑
i=1

ni∑
k=1

θ(i)
k X(i)

k > x

 P(N1(t) = n1, . . . ,Nd(t) = nd).



Y. Gong et al. / Filomat 35:6 (2021), 1879–1888 1887

By using Lemma 4.5, we have that for any fixed ni ∈N, i = 1, . . . , d,

P

 d∑
i=1

ni∑
k=1

θ(i)
k X(i)

k > x

 ∼ H(x)
d∑

i=1

ni. (14)

For the ε = 1
2

(
(1 + ε0)

1
d − 1

)
> 0 and all x > 0, it holds that

P(S(t) > x)

H(x)
≤

∞∑
n1=0

· · ·

∞∑
nd=0

Cε(1 + ε)
∑d

i=1 ni

d∑
i=1

niP(N1(t) = n1, . . . ,Nd(t) = nd)

= CεE

(1 + ε)
∑d

i=1 Ni(t)
d∑

i=1

Ni(t)


≤ C̃εE

[
(1 + 2ε)

∑d
i=1 Ni(t)

]
≤ C̃ε

 d∏
i=1

E
[
(1 + 2ε)dNi(t)

]
1
d

= C̃ε

 d∏
i=1

E
[
(1 + ε0)Ni(t)

]
1
d

< ∞,

for some Cε > 0 and C̃ε > 0, where we used Theorem 2.1 in the first step, the generalized Hölder’s inequality
(see, e.g. [18]) in the fourth step, and the conditions E

[
(1 + ε0)Ni(t)

]
< ∞, i = 1, . . . , d in the last step. Then,

by (14), the dominated convergence theorem gives the desired relation (13). �

Proof of Theorem 4.3. By F ∈ R−∞ and Remark 4.2, we know H ∈ R−∞ implying
(

1
H

)←
∈ RV0 by Theorem

2.4.7(ii) of [3]. Then, it follows from Theorem 4.1 and Lemma 4.6 that as q ↑ 1,

VaRq(S(t)) =

(
1

Gt

)← (
1

1 − q

)
∼

(
1

H

)←  1
1 − q

d∑
i=1

E[Ni(t)]


∼

(
1

H

)← (
1

1 − q

)
= H←(q),

as claimed. �
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