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Abstract. In this paper, we prove theorems on the existence of solutions in Lp (R+), 1 ≤ p < ∞, for some
functional integral equations. The basic tool used in the proof is the fixed point theorem due to Darbo with
respect to so called measure of noncompactness. The obtained results generalize and extend several ones
obtained earlier in many papers and monographs. An example which shows the applicability of our results
is also included.

1. Introduction

Integral equation have a lot of applications in many branches of mathematical physics, engineering,
mechanics, biology and economics see [24] and references therein. Several different techniques were
proposed to study the existence of solutions of the functional integral equations in appropriate function
spaces. Although all of these techniques have the same goal, they differ in the function spaces and the fixed
point theorems to be applied.

Many papers in the field of functional integral equations give different sets of conditions for the existence
of solutions of such equations, see for instance [2, 7, 10, 13, 16, 18] . Apart from that, integral equations
are often investigated in research papers and monographs (cf. [6, 8, 11, 12, 15, 17]) and the references cited
therein.

Agarwal and O’Regan [4] in 2004, proved the existence of the solutions for the nonlinear integral
equation

x(t) =

∫ +∞

0
k(t, s) f (t, x(s))ds, t ∈ R+

in Cl[0,+∞), where Cl[0,+∞), denotes the space of bounded and continuous functions on R+ which have
limit at infinity.
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In [23], the author gave the existence of an integrable solutions of the following functional integral
equation

x(t) = f (t, x(t)) + 1

(
t,
∫ +∞

0
k(t, s) f (t, x(s))ds

)
, t ∈ R+.

In [20], the authors discussed the solvability the functional integral equation of convolution type

x(t) = f (t, x(t)) +

∫ +∞

0
k(t − s)(Qx)(s)ds

using a new construction of a measure of noncompactness in Lp(R+).
Next, the authors in [3] study the existence of solutions to the following general functional integral

equation

x(t) = f (t, x(t)) + 1

(
t,
∫ +∞

0
k(t − s)(Qx)(s)ds

)
using the same new construction of a measure of noncompactness in Lp(R+).

In this paper, we consider the following more general integral equation

x(t) = f1(t, x(t)) + f2

(
t, (Q1x)(t),

∫ +∞

0
u(t, s, (Q2x)(s))ds

)
. (1)

This equation includes many important integral and functional equations that arise in nonlinear analysis
and its applications. We look for solutions to (1) in Lp (R+), 1 ≤ p < ∞. The main tool used in our
considerations is the conjunction of the techniques of measure of noncompactness with Darbo fixed point
theorem. An example is presented to show the importance and the applicability of our results.

2. Notation, Definitions and Auxiliary Facts

Definition 2.1. The function f (t, x, y) = f : R+ × R × R → R is said to have the Carathéodory property if f is
measurable in t for any

(
x, y

)
∈ R ×R and continuous in x, y for almost all t ∈ R+.

Now, we are going to recall some notion about the continuity of the linear integral operator on the space
Lp = Lp(R+). Let ∆ = {(t, s) : 0 ≤ s ≤ t} and k : ∆ → R be the linear Fredholm operator K : Lp(R+)→ Lp(R+)
defined by (Kx)(t) =

∫ +∞

0 k(t, s)x(s)ds. It is a continuous operator, and ‖Kx‖p ≤ ‖K‖ ‖x‖p. The norm of the
operator is majorized by

‖K‖ = sup
(
‖Kx‖Lp(R+) ; ‖x‖Lp(R+) ≤ 1

)
and hence ‖K‖ < ∞.

Remark 2.2. Observe that if Ω is a nonempty and mesurable subset of R+, then we can also consider the linear
Volterra integral operator (Kx) (t) =

∫ t

0 k(t, s)x(s)ds associated with the Lebesque space Lp(Ω), 1 ≤ p ≤ ∞. Namely, if
x ∈ Lp(Ω), 1 ≤ p ≤ ∞, then we can extend x to be the whole half axisR+ by putting x(t) = 0 for t ∈ R+\Ω. Then we
can treat the operator K in the usual way (see [21]).

Now, we will collect some definitions and basic results which will be used further on throughout the
paper.
First, we denote by Lp(R+) the space of Lebesgue p− integrable functions onR+ equipped with the standard
norm, x ∈ Lp(R+), ‖x‖pp =

∫ +∞

0 |x(t)|p dt
Next, we recall some basic facts concerning measure of noncompactness. Assume that (E, ‖.‖) is a real

Banach space with zero element θ. Let B (x, r) denote the closed ball centered at x and with radius r. The
symbol Br stands for the ball B (θ, r). If X is a subset of E, then X and ConvX denote the closure and convex
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closure of X, respectively. By the symbols λX and X + Y, we denote the standard algebraic operations on
sets. Moreover, we denote by ME the familiy of all nonempty and bounded subsets of E and NE its subfamily
consisting of all relatively compact subsets.The definition of the concept of a measure of noncompactness
presented bellow comes from [9].

Definition 2.3. [9] A mapping µ : ME → R+ = [0,+∞[ is said to be a measure of noncompactness in E if it satisfies
following conditions

1. The family kerµ =
{
X ∈ME : µ(X) = 0

}
is nonempty and kerµ ⊂ NE.

2. X ⊂ Y =⇒ µ(X) ≤ µ(Y)
3. µ(X) = µ(ConvX) = µ(X)
4. µ(λX + (1 − λ)Y) ≤ λµ(X) + (1 − λ)Y, for λ ∈ [0, 1]
5. If {Xn} is a sequence of nonempty, bounded, closed subsets of E such that Xn+1 ⊂ Xn, (n = 1, 2, . . .) and

lim
n→∞

µ(Xn) = 0, then the set X∞ = ∩∞n=1Xn is nonempty.
Observe that the intersection set X∞ belongs to kerµ. Indeed, since µ(X∞) ≤ µ(Xn) for any n, then we infer
µ(X∞) = 0, so X∞ ∈ kerµ. For other facts concerning measures of noncompactness we refer to [9], [19].
In the following, we give a nonempty X ⊂ Lp(R+) bounded, ε > 0, and T > 0. For arbitrary function x ∈ X,
we let

ω(x, ε) = sup


(∫

∞

0
|x(t + h) − x(t)|p dt

) 1
p

, |h| < ε


ω(X, ε) = sup {ω(x, ε) : x ∈ X}

and

ω0(X) = lim
ε→0

ω(X, ε).

Also, let

dT(X) = sup


(∫

∞

T
|x(t)|p dt

) 1
p

, x ∈ X


and

d(X) = lim
T→∞

dT(X).

Then, the function µ : MLp(R+) → R+ given by µ(X) = ω0(X)+d(X) is a measure of noncompactness on Lp(R+)
, see ([20]) .

Darbo’s fixed point theorem is a very important generalization of Schauder’s fixed point theorem and
includes the existence part of Banach’s theorem.

Theorem 2.4. Schauder (see [5]) Let Ω be a nonempty, bounded, closed, and convex subset of a Banach space E,
Then every compact continuous map T : Ω→ Ω has at least one fixed point.

In the following, we state a fixed point theorem of Darbo type proved by Banas and Goebel [9]

Theorem 2.5. (See [15], [9]) Let Ω be a nonempty, bounded, closed, and convex subset of a Banach space E, and let
T : Ω→ Ω be a continuous mapping such that a constant k ∈ [0, 1) exists with the property

µ(TX) ≤ kµ(X)

for any nonempty X of Ω. Then T has a fixed point in the set Ω.
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Now, we need to characterize the compact subsets of Lp(R+).

Theorem 2.6. [20] Let F be a bounded set in Lp(RN) with 1 ≤ p < +∞. Then, F has a compact closure in Lp(RN)
if and only if lim

h→0

∥∥∥τh f − f
∥∥∥

p = 0 uniformly in f ∈ F , where τh f (x) = f (x + h) for all x ∈ RN. In addition, for ε > 0,

there is a bounded and measurable subset Ω of RN such that
∥∥∥ f

∥∥∥
Lp(RN\Ω)

< ε for all f ∈ F .

Corollary 2.7. Let F be a bounded set in Lp(RN) with 1 ≤ p < +∞. The closure of F in Lp(RN) is compact if and

only if lim
h→0

(∫
∞

0

∣∣∣ f (x) − f (x + h)
∣∣∣p dx

) 1
p

= 0 uniformly in f ∈ F . Also, for ε > 0, there is a constant T > 0 such that(∫
∞

T

∣∣∣ f (x)
∣∣∣p dx

) 1
p < ε for all f ∈ F .

Lemma 2.8. [14]. Let Ω be a Lebesque measurable subset of Rn and 1 ≤ p ≤ ∞. If
{
fn
}

is a sequence in Lp(Ω)
convergent to f ∈ Lp(Ω) in norm, then there exists a subsequence

{
fnk

}
of

{
fn
}

which converges to f a.e. in Ω and a
function 1 ∈ Lp(Ω), such that∣∣∣ fnk (x)

∣∣∣ ≤ 1(x), for all k ≥ 1, a.e. x ∈ Ω.

Also, we need the following result which is a classical result in Topology.

Lemma 2.9. Let E be a metric space and (xn) a sequence in E. If there exists x ∈ E such that any subsequence
(
xnk

)
of (xn) converges to x, then xn → x in E, as n→∞.

We shall study the existence of the solutions of eq.(1) assuming some conditions are satisfied.

3. Main Results

Theorem 3.1. Assume that the following conditions are satisfied.

1. The function f1 : R+ × R → R satisfies Carathéodory conditions, and there exist constant λ1 ∈ [0, 1)
and a1 ∈ Lp(R+) such that∣∣∣ f1(t, x) − f1(s, y)

∣∣∣ ≤ |a1(t) − a1(s)| + λ1

∣∣∣x − y
∣∣∣

for any x, y ∈ R and almost all s, t ∈ R+ with f1(., 0) ∈ Lp(R+).
2. The functions u : R+ ×R+ ×R→ R and k : R+ ×R+ → R+ satisfy Carathéodory conditions, and there

exist 11, 12 ∈ Lp(R+) and 1 ∈ Lq(R+) ( 1
p + 1

q = 1) such that

|u (t, s, x)| ≤ k (t, s) |x| ,
|u (t1, s, x) − u (t2, s, x)| ≤ 1(s)

∣∣∣12(t1) − 12(t2)
∣∣∣

k(t, s) ≤ 11(t)1(s) ∀ t, s ∈ R+,∀ x ∈ R.

3. The function f2 : R+×R×R→ R satisfies Carathéodory conditions, and there exist constantsλ2, λ3 ≥ 0
and a2 ∈ Lp(R+) such that∣∣∣ f2(t, x, y) − f2(s, z,w)

∣∣∣ ≤ |a2(t) − a2(s)| + λ2 |x − z| + λ3

∣∣∣y − w
∣∣∣

for any x, y, z,w ∈ R and almost all s, t ∈ R+. f2(., 0, 0) ∈ Lp(R+).
4. The operators Qi, i = 1, 2 act continuously from Lp(R+) into itself and constants bi ∈ R+, i = 1, 2 exist

such that
‖Qix‖Lp ≤ bi ‖x‖LP[T,+∞) for any x ∈ Lp(R+) and T ∈ R+.

5. There exists the nonnegative constant qr0 such that the inequality ω0(Q1X) ≤ qr0ω0(X) holds for all
nonempty and bounded subset X of of the ball Br0 where

r0 =

∥∥∥ f1 (., 0)
∥∥∥

p +
∥∥∥ f2 (., 0, 0)

∥∥∥
p

1 − (λ1 + λ2b1 + λ3b2 ‖K‖)
.
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6. M = max
{
λ1 + λ2b1 + λ3b2 ‖K‖ , λ1 + λ2qr0

}
< 1.

Then the nonlinear integral equation (1) have at least one solution in the space Lp(R+).

Proof. First, we define the operator F : Lp(R+)→ Lp(R+) by

(Fx)(t) = f1 (t, x(t)) +

f2
(
t, (Q1x)(t),

∫ +∞

0 u (t, s, (Q2x(s))) ds
)

.

Setting (F1x)(t) = f1 (t, x(t)) and (F2x)(t) = f2
(
t, (Q1x)(t),

∫ +∞

0 u(t, s, (Q2x)(s))ds
)
.

Further considering the Carathéodory conditions, we infer that Fx is measurable for any x ∈ Lp(R+). Now,
we prove that Fx ∈ Lp(R+) for any x ∈ Lp(R+). We have

|(Fx)(t)| ≤
∣∣∣ f1 (t, x) − f1 (t, 0)

∣∣∣ +
∣∣∣ f1 (t, 0)

∣∣∣
+

∣∣∣∣ f2 (
t, (Q1x)(t),

∫ +∞

0 u(t, s, (Q2x)(s))ds
)
− f2 (t, 0, 0)

∣∣∣∣
+

∣∣∣ f2 (t, 0, 0)
∣∣∣ .

By using the Minkowski inequality, we get(∫ +∞

0 |(Fx)(t)|p dt
) 1

P
≤

(∫ +∞

0

∣∣∣ f1 (t, x) − f1 (t, 0)
∣∣∣p dt

) 1
p

+
(∫ +∞

0

∣∣∣ f1 (t, 0)
∣∣∣p dt

) 1
P

+λ2

(∫ +∞

0 |(Q1x)(t)|p dt
) 1

p
+ λ3

(∫ +∞

0

∣∣∣∣∫ +∞

0 u(t, s, (Q2x)(s))ds
∣∣∣∣p dt

) 1
p

+
(∫ +∞

0

∣∣∣ f2 (t, 0, 0)
∣∣∣p dt

) 1
P .

Then, (∫ +∞

0 |(Fx)(t)|p dt
) 1

P
≤

(∫ +∞

0

∣∣∣ f1 (t, x) − f1 (t, 0)
∣∣∣p dt

) 1
p

+
(∫ +∞

0

∣∣∣ f1 (t, 0)
∣∣∣p dt

) 1
P

+λ2

(∫ +∞

0 |(Q1x)(t)|p dt
) 1

p
+ λ3

(∫ +∞

0

∣∣∣∣∫ +∞

0 k (t, s) Q2x)(s)ds
∣∣∣∣p dt

) 1
p

+
(∫ +∞

0

∣∣∣ f2 (t, 0, 0)
∣∣∣p dt

) 1
P .

So, By using assumptions (1),−, (6) we obtain

‖Fx‖p ≤ λ1 ‖x‖p +
∥∥∥ f1 (., 0)

∥∥∥
p +

∥∥∥ f2 (., 0, 0)
∥∥∥

p
+λ2b1 ‖x‖p + λ3b2 ‖K‖ ‖x‖p .

Therefore,

‖Fx‖p ≤
∥∥∥ f1 (., 0)

∥∥∥
p +

∥∥∥ f2 (., 0, 0)
∥∥∥

p
+ (λ1 + λ2b1 + λ3b2 ‖K‖) ‖x‖p .

(2)

Hence, F(x) ∈ Lp(R+) and F is well defined and also from (2), we have F(Br0 ) ⊂ Br0 , where r0 is

r0 =

∥∥∥ f1 (., 0)
∥∥∥

p +
∥∥∥ f2 (., 0, 0)

∥∥∥
p

1 − (λ1 + λ2b1 + λ3b2 ‖K‖)
.

Now, we prove that F is continuous in Lp(R+). It is enough to prove that F2 is continuous, Indeed, Let (xn)
be a sequence in Lp(R+) which converges to x ∈ Lp(R+), since Qi, i = 1, 2 are continuous for a.e. t ∈ R+ and
from lemma 2.8, it follows that up a subsequence that

xnk → x, Qixnk → Qix, for i = 1, 2
∃ϕ ≥ 0, ϕ ∈ Lp(R+) : max

{∣∣∣xnk (s)
∣∣∣ , ∣∣∣Qixnk (s)

∣∣∣} ≤ ϕ(s) a.e. on R+.
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Since u satisfies the Carathéodory conditions, Qixnk → Qix, almost everywhere on R+. It follows from
assumption (2) that

u
(
t, s,Q2xnk

)
−→ u (t, x,Q2x) for almost t, s ∈ R+ (3)

and ∣∣∣u (
t, s,Q2xnk

)∣∣∣ ≤ k (t, s)ϕ(s). (4)

Then we have by using the Lebesque’s Dominated Convergence Theorem

∫ +∞

0
u(t, s,

(
Q2xnk

)
(s))ds→

∫ +∞

0
u(t, s, (Q2x) (s))ds.

Hence for almost all t ∈ R+

f2

(
t,
(
Q1xnk

)
(s) ,

∫ +∞

0
u(t, s,

(
Q2xnk

)
(s))ds

)
(5)

→ f2

(
t, (Q1x) (s) ,

∫ +∞

0
u(t, s, (Q2x) (s)

)
ds.

We have for almost everywhere in R+ the following estimate∣∣∣∣∣∣ f2(t,Q1xnk (t) ,
∫ +∞

0
u(t, s,

(
Q2xnk

)
(s))ds

∣∣∣∣∣∣ (6)

≤ λ11(t) + λ211(t)
∫ +∞

0
1(s)ϕ(s)ds +

∣∣∣ f (t, 0, 0)
∣∣∣

Regarding the assumptions on 1, 11 and
∣∣∣ f (t, 0, 0)

∣∣∣ we get

λ11(t) + λ211(t)
∫ +∞

0
1(s)ϕ(s)ds +

∣∣∣ f (t, 0, 0)
∣∣∣ ∈ Lp (R+) . (7)

Then from (5) , (6) , (7) and by using the Lebesgue’s Dominated Convergence Theorem, we get∥∥∥F2xnk − F2x
∥∥∥

Lp → 0.

Since any sequence {xn} converging to x in Lp has a subsequence
{
xnk

}
such that

∥∥∥F2xnk − F2x
∥∥∥

Lp → 0, we can
conclude that F2 is a continuous operator, Further, we will show that

ω0(FX) ≤ (λ1 + λ2b1 + λ3b2 ‖K‖)ω0(X)

for any nonempty set X ⊂ Br0 . To this end, we fix an arbitrary ε > 0. Let us choose x ∈ X and t, h ∈ R+ with
|h| ≤ ε. we have

|(Fx)(t) − (Fx)(t + h)| ≤
∣∣∣ f1 (t, x(t)) − f1(t + h, x(t))

∣∣∣
+

∣∣∣ f1 (t + h, x(t)) − f1 (t + h, x(t + h))
∣∣∣

+
∣∣∣∣ f2 (

t, (Q1x)(t),
∫ +∞

0 u(t, s, (Q2x)(s))ds
)

− f2
(
t + h, (Q1x)(t),

∫ +∞

0 u(t, s, (Q2x)(s))ds
)∣∣∣∣

+
∣∣∣∣ f2 (

t + h, (Q1x)(t),
∫ +∞

0 u(t, s, (Q2x)(s))ds
)

− f2
(
t + h, (Q1x) (t + h),

∫ +∞

0 u(t, s, (Q2x)(s))ds
)∣∣∣∣

+
∣∣∣∣ f2 (

t + h, (Q1x) (t + h),
∫ +∞

0 u(t, s, (Q2x)(s))ds
)

− f2
(
t + h, (Q1x) (t + h),

∫ +∞

0 u(t + h, s, (Q2x)(s))ds
)∣∣∣∣ .
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Therefore

|(Fx)(t) − (Fx)(t + h)| ≤ |a1(t) − a1(t + h)| + λ1 |x(t) − x(t + h)|
+λ2 |(Q1x)(t + h) − (Q1x)(t)| + |a2(t) − a2(t + h)|

+λ3

∣∣∣∣∫ +∞

0 [u(t + h, s, (Q2x)(s) − u(t, s, (Q2x)(s)] ds
∣∣∣∣ .

By Minkowki’s inequality, we get(∫
∞

0 |(Fx)(t) − (Fx)(t + h)|p dt
) 1

p

≤

(∫
∞

0 |a1(t) − a1(t + h)|p dt
) 1

p
+ λ1

(∫
∞

0 |x(t) − x(t + h)|p dt
) 1

p

+
(∫
∞

0 |a2(t) − a2(t + h)|p dt
) 1

p

+ λ2

(∫ +∞

0 |(Q1x)(t) − (Q1x) (t + h)|p dt
) 1

p

+ λ3

(∫
∞

0

∣∣∣∣∫ +∞

0
(u(t, s, (Q2x)(s)) − u(t, s, (Q2x)(s))) ds

∣∣∣∣p dt
) 1

p

.

Consequentle we get(∫
∞

0 |(Fx)(t) − (Fx)(t + h)|p dt
) 1

p
≤(∫

∞

0 |a1(t) − a1(t + h)|p dt
) 1

p
+ λ1

(∫
∞

0 |x(t) − x(t + h)|p dt
) 1

p

+
(∫
∞

0 |a2(t) − a2(t + h)|p dt
) 1

p

+λ2

(∫ +∞

0 |(Q1x)(t) − (Q1x) (t + h)|p dt
) 1

p

λ3

(∫ +∞

0

(∫ +∞

0

∣∣∣12(t) − 12(t + h)
∣∣∣q ∣∣∣1(s)

∣∣∣q ds
) p

q dt
) 1

p

‖Q2x‖Lp(R+)

Hence, we obtain(∫
∞

0 |(Fx)(t) − (Fx)(t + h)|p dt
) 1

p
≤

+λ1 ‖x − τhx‖L1(R)
‖a1 − τha1‖Lp(R+) + ‖a2 − τha2‖Lp(R+) +

λ2 ‖(Q1x) − τh (Q1x)‖
Lp (R+ )

+

λ3

∥∥∥1∥∥∥Lq(R+)
‖Q2x‖Lp(R+)

(∫ +∞

0

∣∣∣12(t) − 12(t + h)
∣∣∣p) 1

p dt.

Therefore, we obtain

ω(FX, ε) ≤ ω(a1, ε) + λ1ω(X, ε) + ω(a2, ε)
+λ2ω(Q1X, ε) + λ3b2r0

∥∥∥1∥∥∥Lq(R+)
ω(12, ε). (8)

Since {a1} , {a2} ,
{
12

}
are compacts set in Lp(R+), we have ω(a1, ε) −→ 0, ω(a2, ε) −→ 0 and ω(12, ε) −→ 0 as

ε −→ 0. Then, by going to the limit in (8) as ε −→ 0 and from assumption (5), we obtain

ω0(FX) ≤
(
λ1 + λ2qr0

)
ω0(X). (9)

In the following, we fix an arbitrary number T > 0. Then, for an arbitrary function x ∈ X, we have(∫
∞

T |F(x)(t)|p dt
) 1

p

≤

(∫
∞

T

∣∣∣ f1(t, x) − f1(t, 0)
∣∣∣p dt

) 1
p

+
(∫
∞

T

∣∣∣ f1(t, 0)
∣∣∣p dt

) 1
p(∫

∞

T

∣∣∣∣ f2 (
t, (Q1x)(t),

∫
∞

0 u(t, s, (Q2x)(s))ds
)
− f2(t, 0, 0)

∣∣∣∣p dt
) 1

p

+
(∫
∞

T

∣∣∣ f2(t, 0, 0)
∣∣∣p dt

) 1
p .



M. Bousselsal / Filomat 35:6 (2021), 1841–1850 1848

Therefore (∫
∞

T |F(x)(t)|p dt
) 1

p

≤ λ1

(∫
∞

T |x(t)|p dt
) 1

p
+

(∫
∞

T

∣∣∣ f1(t, 0)
∣∣∣p dt

) 1
p

+ λ2

(∫
∞

T |(Q1x)(t)|p dt
) 1

p

λ3

(∫
∞

T

∣∣∣∫ ∞
0 k(t, s)(Q2x)(s)ds

∣∣∣p dt
) 1

p
+

(∫
∞

T

∣∣∣ f2(t, 0, 0)
∣∣∣p dt

) 1
p .

Then we have(∫
∞

T |F(x)(t)|p dt
) 1

p
≤ λ1

(∫
∞

T |x(t)|p dt
) 1

p
+

(∫
∞

T

∣∣∣ f1(t, 0)
∣∣∣p dt

) 1
p

+λ2b1

(∫
∞

T |x(t)|p dt
) 1

p
+ λ3b2 ‖K‖

(∫
∞

T |x(t)|p dt
) 1

p

+
(∫
∞

T

∣∣∣ f2(t, 0, 0)
∣∣∣p dt

) 1
p .

Since
{
f1(t, 0)

}
and

{
f2(t, 0, 0)

}
are compacts in Lp(R+), then, as T goes to +∞, we obtain

(∫
∞

T

∣∣∣ f1(t, 0)
∣∣∣p dt

) 1
p and(∫

∞

T

∣∣∣ f2(t, 0, 0)
∣∣∣p dt

) 1
p go to 0.

Hence,

d(FX) ≤ (λ1 + λ2b1 + λ3b2 ‖K‖) d(X). (10)

So, from (9) and (10) it follows

µ(FX) ≤ max
{
λ1 + λ2b1 + λ3b2 ‖K‖ , λ1 + λ2qr0

}
µ(X). (11)

By (11) , assumption (6) and Theorem 2.5, we deduce that the operator F has a fixed point x in Br0 and
consequently, eq.(1) has at least one solution in Lp(R+).

4. Example

Consider the functional integral equation

x(t) =
cos x(t)

t + 2
+

|x(t)|
21 (1 + |x(t)|)

e−t +
1

10

∫ +∞

0

sin
(
|x(s)| e−|x(s)|

)
e(t + 3)2(s + 2)2 ds (12)

Eq. (12) is a special case of Eq. (1) with

f1(t, x) =
cos x(t)

t+2 , f2(t, x, y) = 1
3 x + 1

10 y, (Q1x)(s) =
|x(s)|

7(1+|x(s)|) e
−s,

k(t, s) = 1
e(t+3)2(s+2)2 , (Q2x)(s) = e−|x(s)|

|x(s)| , |(Q1x)(s)| ≤ 1
7 |x(s)| ,

|(Q2x)(s)| ≤ |x(s)| .

In this example, hypothesis (1) holds with a1(t) = 1
t+2 and λ1 = 1

2 , indeed, we have∣∣∣ f1(t, x) − f1(s, y)
∣∣∣ =

∣∣∣ cos x
t+2 −

cos y
s+2

∣∣∣
≤

∣∣∣ 1
t+2 −

1
s+2

∣∣∣ + 1
2

∣∣∣x − y
∣∣∣ .

In addition,
∣∣∣ f1(t, 0)

∣∣∣ = 1
t+2 ∈ Lp(R+), indeed,

∥∥∥ f1(t, 0)
∥∥∥p

Lp(R+)
=

∫ +∞

0
dx

(1+x)p = 1
p−1 for all p > 1. Thus, we have∥∥∥ f1(t, 0)

∥∥∥
Lp(R+)

=
(

1
p−1

) 1
p . Further we have

∣∣∣ f2(t, x, y) − f2(s, z,w)
∣∣∣ ≤ 1

3
|x − z| +

1
10

∣∣∣y − w
∣∣∣ .



M. Bousselsal / Filomat 35:6 (2021), 1841–1850 1849

a2(t) = 0, λ2 = 1
3 and λ3 = 1

10 , f2(t, 0, 0) = 0 ∈ Lp(R+).
We have

u(t, s, x) = k (t, s) sin x
|u(t, s, x)| ≤ k(t, s) |x|

|u(t1, s, x) − u(t2, s, x)| ≤ |k(t1, s) − k(t2, s)| 1(s)

and

k(t, s) ≤
1

e(t+3)2 ×
1

(s+2)2

11(t) = 1
e(t+3)2

12(s) = 1(s) = 1
(s+2)2

|k(t1, s) − k(t2, s)| ≤
∣∣∣∣ 1

e(t1+3)2 −
1

e(t2+3)2

∣∣∣∣ 1
(s+2)2

Q1 and Q2 satisfied assumption (4) of theorem 3.1 with b2 = 1, b1 = 1
7 . By using theorem 3.4 in [1], we have

‖K‖ ≤ 1
e .

Further, for ε ≥ 0, ‖x‖ ≤ r0, |h| < ε and by the Mean theorem, we get(∫ +∞

0
|(Q1x) (t + h) − (Q1x) (t + h)|p dt

) 1
p

≤
1
7

(∫ +∞

0
|x (t + h) − x (t + h)|p dt

) 1
p

+
|h|
7

e−θh
(∫ +∞

0
e−ptdt

) 1
p

, 0 < θ < 1

≤
1
7

(∫ +∞

0
|x (t + h) − x (t + h)|p dt

) 1
p

+
ε
7

e−θh
(∫ +∞

0
e−ptdt

) 1
p

1
7

(∫ +∞

0
|x (t + h) − x (t + h)|p dt

) 1
p

+
ε
7

M,

where M =
(∫ +∞

0 e−ptdt
) 1

p

. Hence, from the last estimate, we get as ε goes to 0

ω0(Q1X) ≤
1
7
ω0(X). (13)

Thus, according to assumption (5) we may put qr0 = 1
7 . Further we get λ1 +λ2b1 +λ3b2 ‖K‖ ≤ 1

2 + 1
21 + 1

10e < 1
and λ1 + λ2qr0 = 1

2 + 1
49 = 0, 52 < 1. The inequality of assumption (6) is satisfied with the constant M < 1.

Since all of the assumptions of Theorem 3.1 are fullfilled, we deduce that the functional integral equation
(12) has at least one solution belonging to the ball Br0

of the space Lp(R+).
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