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Abstract. In this paper, we introduce a new technical method for the study of the Dp,q-classical orthogonal
polynomials where Dp,q is the (p, q)-difference operator, using basically an algebraic approach. Some new
characterizations are given. The approach has been illustrated with three examples.

1. Introduction

In recent years, Corcino [4] studied the (p, q)-extension of the binomial coefficients and also derived
some properties. Duran et al [8] considered (p, q)-analogues of Bernoulli polynomials, Euler polynomials
and Genocchi polynomials and acquired the (p, q)-analogues of known earlier formulae. Duran and Acikgoz
[7] gave (p, q)-analogues of the Apostol-Bernoulli, Euler and Genocchi polynomials and derived their some
properties. See also [2, 6]. In [18], the authors introduceeneral (p, q)-Sturm-Liouville difference equation
whose solutions are (p, q)-analogues of classical orthogonal polynomials.
In this paper, we establish some new characterizations concerning the Dp,q-classical orthogonal polynomials
with the method of the dual sequence.

The structure of this paper is as follows: Section 2 is devoted to preliminary results and notations to
be used in the sequel. In section 3, we present four properties concerning the Dp,q-classical orthogonal
polynomials. The first one is a Dp,q-distributional equation of Pearson type fulfilled by its associated
form. The second is a second order (p, q)-difference equation satisfied by this sequence. The third is the
so-called Rodrigues formula involving the form itself which allows us to determine the coefficients of the
second-order recurrence relation fulfilled by the Dp,q-classical orthogonal sequences. The fourth, we obtain
the coefficients in the three-term recurrence relation for the orthogonal polynomials solutions of the Dp,q-
distributional equation. Finally, in the last section, we illustrate our results applying them to some known
families of Dp,q-classical orthogonal polynomials.
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2. Preliminaries and notations

Let P be the vector space of polynomials with complex coefficients and let P′ be its dual. We denote
by

〈
u, f

〉
the action of u ∈ P′ on f ∈ P. In particular, we denote by (u)n := 〈u, xn

〉 ,n ≥ 0 , the moments of u.
For instance, for any form u, any polynomial 1 and any a ∈ C\{0}, we let Du = u′ , 1u, hau and x−1u be the
forms defined by duality 〈

u′, f
〉

= −
〈
u, f ′

〉
,
〈
1u, f

〉
=

〈
u, 1 f

〉
,
〈
hau, f

〉
=

〈
u, ha f

〉
,〈

x−1u, f
〉

=
〈
u, θ0 f

〉
, f ∈ P,

where (ha f )(x) = f (ax) and
(
θ0 f

)
(x) =

f (x) − f (0)
x

.

Let {Pn}n≥0 be a sequence of monic polynomials with deg(Pn) = n, n ≥ 0 and let {un}n≥0 be its dual
sequence, un ∈ P

′ defined by
< un,Pm >:= δn,m ,n , m ≥ 0 .

Let us recall some results [17].
Lemma 1.1. For any u ∈ P′ and any integer m ≥ 1 , the following statements are equivalent

(i) < u,Pm−1 >, 0 , < u,Pn >= 0 , n ≥ m .

(ii) ∃λν ∈ C , 0 ≤ ν ≤ m − 1 , λm−1 , 0 such that u =

m−1∑
ν=0

λνuν .

As a consequence, the dual sequence {u[1]
n }n≥0 of {P[1]

n }n≥0 where P[1]
n (x) = (n + 1)−1P′n+1(x) ,n ≥ 0 is given

by

(u[1]
n )

′

= −(n + 1)un+1 , n ≥ 0 . (1)

Similarly, the dual sequence {ũn}n≥0 of {P̃n}n≥0 where P̃n(x) = a−nPn(ax),n ≥ 0, a , 0 is given by

ũn = an(ha−1 un) , n ≥ 0 .

The form u is called regular if we can associate with it a sequence {Pn}n≥0 such that

< u,PmPn >= rnδn,m , n , m ≥ 0 ; rn , 0 , n ≥ 0 . (2)

The sequence {Pn}n≥0 is then said orthogonal with respect to u. In this case, we have

un = r−1
n Pnu0 , n ≥ 0 . (3)

According to Favard’s Theorem, a MOPS is characterized by the following three-term recurrence relation
[3]

P0(x) = 1 , P1(x) = x − β0 ,

Pn+2(x) = (x − βn+1)Pn+1(x) − γn+1Pn(x) , n ≥ 0 .
(4)

Let us introduce the (p, q)-difference operator [15]

(Dp,q f )(x) =
(hp f )(x) − (hq f )(x)

(p − q)x
, f ∈ P , 0 < |q| < |p| ≤ 1 .

Remark 1. When p −→ 1, we again meet the Hahn’s operator [10].
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From the definition, we obtain

Dp,q =
1

p − q
θ0 ◦ (hp − hq) .

On account of the last equation we have,

tDp,q =
1

p − q
(hp − hq)x−1 ,

where tDp,q denotes the transposed of Dp,q. We can define Dp,q from P′ to P′ by Dp,q := −tDp,q

so that
〈Dp,qu, f 〉 = −〈u,Dp,q f 〉, f ∈ P , u ∈ P′ .

In particular, this yields
(Dp,qu)n = −[n](u)n−1 , n ≥ 0 ,

where

(u)−1 = 0 and [n] :=
pn
− qn

p − q
.

Lemma 1.2. The following formulas hold

(Dp,q f1 f2)(x) = hp f1(Dp,q f2) + hq f2(Dp,q f1) , f1, f2 ∈ P , (5)

Dp,q ◦ hp−1q−1 = p−1q−1Dp−1,q−1 in P , (6)

Dp,q ◦ ha = aha ◦Dp,q in P , a ∈ C\{0} , (7)

hp−1q−1 ◦Dp,q = Dp−1,q−1 in P , (8)

hp−1q−1 ◦Dp,q = p−1q−1Dp−1,q−1 in P′ , (9)

Dp,q ◦ ha = a−1ha ◦Dp,q in P′ , a ∈ C\{0} , (10)

Dp,q ◦ hp−1q−1 = Dp−1,q−1 in P′ , (11)

Dp,q ◦Dp−1,q−1 = p−1q−1Dp−1,q−1 ◦Dp,q in P , (12)

Dp,q ◦Dp−1,q−1 = pqDp−1,q−1 ◦Dp,q in P′ , (13)

The operator Dp,q is injective in P′ , (14)

Dp,q(1u) = (hq−11)(Dp,qu) + q−1(Dp−1,q−11)(hpu), 1 ∈ P , u ∈ P′. (15)

Proof. The relation (5) is well known [14]. It is easy to prove (6) − (7), then (8) is a consequence of them.
From the definition of Dp,q, hp−1q−1 and (6), we obtain directly (9). Likewise, the relation (10) is obtained from
(7) and (11) from (8). It is easy to prove (12), then (13) is deduced. The property (14) is evident from the
definition. Finally, we have

〈Dp,q(1u), f > = −〈u, 1(Dp,q f )〉

= −〈u,Dp,q(hq−11) f − (hp f )Dp,q(hq−11)〉 f rom (5)

= 〈Dp,qu, (hq−11) f 〉 + q−1
〈hpu, f hp−1q−1 (Dp,q1)〉 f rom (7)

= 〈Dp,qu, (hq−11) f 〉 + q−1
〈hpu, f (Dp−1,q−11)〉 f rom (8)

Therefore, we obtain (15).

Now, consider a MOPS {Pn}n≥0 as above in section 1 and let

P[1]
n (x, p, q) :=

1
[n + 1]

(Dp,qPn+1)(x), n ≥ 0. (16)
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Denoting by {u[1]
n (p, q)}n≥0 the dual sequence of {P[1]

n (., p, q)}n≥0.
Lemma 1.3.

Dp,q(u[1]
n (p, q)) = −[n + 1]un+1 , n ≥ 0 . (17)

Proof. From the definition < u[1]
n ,P

[1]
m >= δn,m, n , m ≥ 0, we have

< Dp,q(u[1]
n (p, q)),Pm+1 >= −[m + 1]δn,m .

Therefore,

< Dp,q(u[1]
n (p, q)),Pn+1 > = −[n + 1] ,

< Dp,q(u[1]
n (p, q)),Pm > = 0 , m ≥ n + 2 , n ≥ 0 .

By virtue of Lemma 1.1, we have

Dp,q(u[1]
n (p, q)) =

n+1∑
ν=0

λn,νuν , n ≥ 0 .

But,
< Dp,q(u[1]

n (p, q)),Pµ >= λn,µ, 0 ≤ µ ≤ n + 1 ,

and

λn,µ = 0 , 0 ≤ µ ≤ n ,

λn,n+1 = −[n + 1] , n ≥ 0 .

Hence, the desired result follows.

Definition 1.4. An MOPS {Pn}n≥0 is called Dp,q-classical if {P[1]
n (., p, q)}n≥0 is also a MOPS. In this case, the form

u0 is called Dp,q-classical form.

3. The Dp,q-classical orthogonal polynomials

Teorem 2.1. For any MOPS {Pn}n≥0 the following statements are equivalent
(a) The sequence {Pn}n≥0 is Dp,q-classical.
(b) There exist two polynomials Φ (monic) and Ψ with deg(Φ) ≤ 2 and deg(Ψ) = 1 fulfilling

Ψ
′

(0) −
p1−n

2
[n]Φ

′′

(0) , 0 , n ≥ 0 , (18)

and such that the associated regular form u0 satisfies

Dp,q

(
hp−1 (Φu0)

)
+ Ψu0 = 0 . (19)

For the proof we need the following result.
Lemma 2.2. [16] Let be u a regular form and φ a polynomial such that φu = 0. Then necessarily φ = 0.



M. Sghaier et al. / Filomat 35:6 (2021), 1823–1839 1827

Proof. (of Theorem 2.1) (a)⇒ (b) From the assumption, we have

un = r−1
n Pnu0 , n ≥ 0 , (20)

and

u[1]
n (p, q) = (r[1]

n )−1P[1]
n (., p, q)u[1]

0 (p, q) , n ≥ 0 . (21)

Substitution of (20) and (21) into (17) gives

Dp,q

(
P[1]

n (., p, q)u[1]
0 (p, q)

)
= −XnPn+1u0 , n ≥ 0 , (22)

where

Xn =
r[1]

n

rn+1
[n + 1] , n ≥ 0 . (23)

Using formula (15), equation (22) can reads as for n ≥ 0(
hq−1 P[1]

n (., p, q)
)
Dp,qu[1]

0 (p, q)

+q−1
(
Dp−1,q−1 P[1]

n (., p, q)
)
hp

(
u[1]

0 (p, q)
)

= −XnPn+1u0 .
(24)

For n = 0 (respectively, for n = 1), equation (24) becomes

Dp,qu[1]
0 (p, q) = −γ−1

1 P1u0 , (25)

(
hq−1 P[1]

1 (., p, q)
)
Dp,qu[1]

0 (p, q) + q−1hpu[1]
0 (p, q) = −(p + q)

r[1]
1

r2
P2u0 . (26)

Substitution of (25) into (26) gives

hpu[1]
0 (p, q) = KΦu0 , (27)

where

KΦ(x) = qγ−1
1

(
hq−1 P[1]

1 (x, p, q)
)
P1 − q(p + q)

r[1]
1

r2
P2(x) .

(K is constant to make Φ monic)
Applying hp−1 to (27), we get

u[1]
0 (p, q) = hp−1 (KΦu0) . (28)

Substitution of (28) into (25) gives (19), where

Ψ(x) =
1
γ1K

P1(x) . (29)

Now, taking into account (25), (27) and (29), the equation (24) can be written as (for n ≥ 0){
q−1

(
Dp−1,p−1 P[1]

n (., p, q)
)
Φ + K−1XnPn+1 −Ψ

(
hq−1 P[1]

n (., p, q)
)}

u0 = 0 .

But, by the regulariry of u0, we have from the Lemma 2.2

q−1
(
Dp−1,q−1 P[1]

n (., p, q)
)
Φ + K−1XnPn+1 −Ψ

(
hq−1 P[1]

n (., p, q)
)

= 0 , n ≥ 0 .
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Taking into account that deg(Φ) ≤ 2 and deg(Ψ) = 1, we obtain (18) by identifying the highest degree
coefficients.
(b)⇒ (a) Let us prove that the sequence {P[1]

n (., p, q)}n≥0 is orthogonal with respect to

ϑ = hp−1 (Φu0) . (30)

Let m ≤ n − 1. From (16) and (15), we have

〈ϑ,Pm(x)P[1]
n (x, p, q)〉 = −

1
[n + 1]

〈Dp,q(Pmϑ),Pn+1(x)〉

= −
1

[n + 1]
〈

(
hq−1 Pm

)
Dp,qϑ + q−1

(
Dp−1,q−1 Pm

)
hpϑ,Pn+1〉 .

Taking into account that {Pn}n≥0 is orthogonal with respect to u0 and that

Dp,qϑ = −Ψu0 , (31)

where Ψ is a polynomial of first degree, we get

〈ϑ,PmP[1]
n (., p, q)〉 = −

q−1

[n + 1]
〈hpϑ, (Dp−1,q−1 Pm

)
(x)Pn+1(x)〉 .

Using (30), the orthogonality of {Pn}n≥0 with respect to u0 and the fact that deg(Φ) ≤ 2, we obtain

〈ϑ,Pm(x)P[1]
n (x, p, q)〉 = −

q−1

[n + 1]
〈u0,Φ(x)(Dp−1,q−1 Pm

)
(x)Pn+1(x)〉 = 0 .

For m = n, a second use of (15) gives

〈ϑ,Pn(x)P[1]
n (x, p, q)〉 = −

1
[n + 1]

〈

(
hq−1 Pn

)
Dp,qϑ + q−1

(
Dp−1,q−1 Pn

)
hpϑ,Pn+1(x)〉 . (32)

Using (31) and the fact that {Pn}n≥0 is orthogonal with respect to u0, we get

〈

(
hq−1 Pn

)
Dp,qϑ,Pn+1〉 = −q−nrn+1Ψ

′

(0) , (33)

where rn+1 is given in (3).
Owing to (30), we have

〈q−1
(
Dp−1,q−1 Pn

)
hpϑ,Pn+1〉 =

1
2

q−np1−nrn+1[n]Φ”(0) . (34)

Substitution of (33) and (34) into (32) gives

〈ϑ,PnP[1]
n (., p, q)〉 = −

q−n

[n + 1]

{p1−n

2
[n]Φ”(0) −Ψ

′

(0)
}
rn+1 .

On account of condition (18), the last equation implies that

〈ϑ,PnP[1]
n (., p, q)〉 , 0 , n ≥ 0 .

So, the sequence {P[1]
n (., p, q)}n≥0 is orthogonal with respect to the form ϑ.
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Corollary 2.3. If {Pn}n≥0 is Dp,q−classical, the sequence {P[m]
n (., p, q)}n≥0 is Dp,q−classical for any m ≥ 1 and we

have

Dp,q

(
hp−1 (Φmu[m]

0 (p, q))
)

+ Ψmu[m]
0 (p, q) = 0 , (35)

with

qmtΦm(x) =
(
hqmΦ

)
(x) , (36)

qmtΨm(x) = pm
(
hpmΨ

)
(x) − p

m−1∑
ν=0

(
Dp,q ◦ hqνpm−νΦ

)
(x) , (37)

u[m]
0 (p, q) = q−

1
2 m(m−1)tζm

( m−1∏
ν=0

hqνpm−νΦ
)
hp−m u0 , t = deg(Φ) , (38)

where ζm is defined by the condition (u[m]
0 (p, q))0 = 1.

Proof. Suppose m = 1. The form u0 satisfies (19). Multiplying both sides by Φ and on account of (15), we
get

Dp,q

((
hqΦ

)(
hp−1 (Φu0)

))
+

(
Ψ − q−1Dp−1,q−1 (hqΦ)

)
Φu0 = 0 .

Then, from (27) we obtain

Dp,q

((
hqΦ

)
u[1]

0 (p, q)
)

+
(
Ψ − q−1Dp−1,q−1 (hqΦ)

)(
hp(u[1]

0 (p, q))
)

= 0 .

Applying hp−1 to the previous equation and taking into account (7), (10) and the formula

ha(1u) = (ha−11)(hau) , 1 ∈ P , u ∈ P
′

, a ∈ C\{0} , (39)

we get
Dp,q

(
hp−1

(
hqΦ)u[1]

0 (p, q)
))

+ p
(
hpΨ −Dp,qΦ

)
u[1]

0 (p, q) = 0 .

Therefore (35) − (38) are valid for m = 1. By induction, we can easily obtain the general case.

Proposition 2.4. Let {Pn}n≥0 be orthogonal with respect to u0. The form u0 is a Dp,q-classical if and only if there
exist two polynomials Φ and Ψ with deg(Φ) ≤ 2, deg(Ψ) = 1 and a sequence {λn}n≥0, λn , 0 , n ≥ 0 such that

Φ(x)
(
Dp,q ◦Dp−1,q−1 Pn+1

)
(x) − p−1Ψ(x)

(
hp ◦Dp−1,q−1 Pn+1

)
(x)

= λnPn+1(x) , n ≥ 0 .
(40)

Proof. The condition is necessary. Then u0 fulfils (19). By Euclidean division, we get for n ≥ 0

Φ(x)
(
Dp,q ◦Dp−1,q−1 Pn+1

)
(x) − p−1Ψ(x)

(
hp ◦Dp−1,q−1 Pn+1

)
(x)

= λnPn+1(x) +

n∑
ν=0

θn,νP(x) .
(41)

From the assumption, one has λn , 0 and from (41), we have for 0 ≤ m ≤ n

〈u0,
(
Φ
(
Dp,q ◦Dp−1,q−1

)
Pn+1 − p−1Ψ

(
hp ◦Dp−1,q−1

)
Pn+1

)
Pm〉 = θn,m〈u0,P2

m〉 .

But,
〈u0,

(
Φ
(
Dp,q ◦Dp−1,q−1 Pn+1

))
Pm〉

= 〈hp−1

(
Φu0

)
, hp

((
Dp,q ◦Dp−1,q−1 Pn+1

))
hpPm〉 .
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Then, from (7) we get

〈u0,
(
Φ
(
Dp,q ◦Dp−1,q−1 Pn+1

))
Pm〉

= p−1
〈hp−1

(
Φu0

)
,Dp,q

((
hpoDp−1,q−1 Pn+1

))
hpPm〉 ,

what implies from (5) and (7) − (8)

〈u0,
(
Φ
(
Dp,q ◦Dp−1,q−1 Pn+1

))
Pm〉

= −p−1
{〈Dp,q

(
hp−1

(
Φu0

))
,
((

hpoDp−1,q−1 Pn+1

))
Pm〉

+〈hp−1

(
Φu0

)
,
(
Dp,qPn+1

)(
Dp,qPm)〉} .

Therefore, from (19) we have

−p−1
〈hp−1

(
Φu0

)
,
(
Dp,qPn+1

)(
Dp,qPm〉 = θn,m〈u0,P2

m〉 , 0 ≤ m ≤ n .

Hence θn,m = 0 , 0 ≤ m ≤ n, since the sequence {P[1]
n (., p, q)}n≥0 is orthogonal with respect to hp−1 (Φu0). Here

each Pn+1 fulfils (40).
Conversely, let {Pn}n≥0 be orthogonal with respect to u0 and such that Pn+1 fulfils (40). Then, we have

〈u0,Φ
(
Dp,q ◦Dp−1,q−1 Pn+1

)
− p−1Ψ

(
hp ◦Dp−1,q−1 Pn+1

)
〉 = 0 , n ≥ 0 ,

or,
〈Dp,q

(
hp−1Φu0

)
+ Ψu0,

(
hp ◦Dp−1,q−1 Pn+1

)
〉 = 0 , n ≥ 0 ,

what implies
〈Dp−1,q−1

(
Dp,q

(
hp−1Φu0

)
+ Ψu0

)
, hpPn+1〉 = 0 , n ≥ 0 .

Hence,
Dp−1,q−1

(
Dp,q

(
hp−1Φu0

)
+ Ψu0

)
= 0 .

Thus, u0 verifies (19) and {Pn}n≥0 is Dp,q-classical sequence.

Corollary 2.5. [12] Let {Pn}n≥0 be orthogonal with respect to u0. The form u0 is a Dp,q-classical if and only if there
exist two polynomials σ and τ with deg(σ) ≤ 2, deg(τ) = 1 and a sequence {%n}n≥0, %n , 0 , n ≥ 0 such that

σ(x)
(
D2

p,qPn+1

)
(x) + τ(x)

(
hp ◦Dp,qPn+1

)
(x) = %n

(
hpqPn+1

)
(x) , n ≥ 0 ,

with
σ(x) = (pq)−tΦ(pqx) , τ(x) = −q(pq)−tΨ(pqx) , %n = (pq)−tλn .

Proof. Taking into account the relation (8), the equation (40) is reduced to

Φ(x)
(
Dp,q ◦ hp−1q−1 ◦Dp,qPn+1

)
(x) − p−1Ψ(x)

(
hq−1 ◦Dp,qPn+1

)
(x)

= λnPn+1(x) , n ≥ 0 .

Then, from (7) the last equation becomes (for n ≥ 0)

p−1q−1Φ(x)
(
hp−1q−1 ◦D2

p,qPn+1

)
(x) − p−1Ψ(x)

(
hq−1 ◦Dp,qPn+1

)
(x) = λnPn+1(x) .

What implies
hp−1q−1 {

(
hpqΦ

)
(x)

(
D2

p,qPn+1

)
(x) − q

(
hpqΨ

)
(x)

(
hp ◦Dp,qPn+1

)
(x)}

= λnPn+1(x) , n ≥ 0 .

Hence, the desired result.



M. Sghaier et al. / Filomat 35:6 (2021), 1823–1839 1831

Lemma 2.6. Consider the sequence {P̃n}n≥0 obtained by shifting Pn i.e. P̃n(x) = a−nPn(ax) = a−n(haPn)(x) , n ≥
0 , a , 0. If u0 satisfies (19), then ũ0 = ha−1 u0 fulfils the equation

Dp,q

(
hp−1 (Φ̃ũ0)

)
+ Ψ̃ũ0 = 0 , (42)

where Φ̃(x) = a−tΦ(ax) , Ψ̃(x) = a1−tΨ(ax) , t = deg(Φ).

Proof. From (10) and (39), we have

Dp,q

(
hp−1 (Φu0)

)
= Dp,q

(
hp−1 (Φ(haũ0)

)
= a−1ha

(
Dp,q

(
hp−1 (Φ(ax)ũ0)

))
.

Further

Ψu0 = Ψ(haũ0)

= ha

(
Ψ(ax)ũ0

)
.

Then, the equation (19) becomes

ha

(
Dp,q

(
hp−1 (Φ(ax)ũ0)

)
+ Ψ(ax)ũ0

)
= 0 .

Hence, the desired result.

The following result allows us to characterize the Dp,q-classical sequences through the so-called Rodrigues
formula. See [1, 9, 11, 13, 16, 19].
Proposition 2.7. The orthogonal sequence {Pn}n≥0 is Dp,qclassical if and only if there exist a monic polynomial Φ,
deg(Φ) ≤ 2 and a sequence {Vn}n≥0,Vn , 0 , n ≥ 0 such that

Pnu0 =VnDn
p,q

(( n−1∏
ν=0

hqνpn−νΦ
)
hp−n u0

)
, n ≥ 0 (43)

with
−1∏
ν=0

= 1.

Proof. Necessity. Consider < Dn
p,qu[n]

0 (p, q),Pm >= (−1)n < u[n]
0 (p, q),Dn

p,qPm >, n,m ≥ 0,
For 0 ≤ m ≤ n − 1, n ≥ 1, we have Dn

p,qPm = 0. For m ≥ n, put m = n + µ, µ ≥ 0. Then

< u[n]
0 (p, q),Dn

p,qPn+µ >=

n∏
µ=1

[µ + ν] < u[n]
0 (p, q),P[n]

µ (., p, q) >= [n]!δ0,µ ,

where [0]! := 1, [n]! :=
n∏
ν=1

[ν], n ≥ 1. Consequently, we have

Dn
p,qu[n]

0 (p, q) = (−1)n[n]!un , n ≥ 0 .

But, from the assumption un = (< u0,P2
n >)−1Pnu0, n ≥ 0 so that, in accordance with (38), we obtain (43)

where

Vn = (−1)nq−
1
2 (n−1)ntζn

< u0,P2
n >

[n]!
, n ≥ 0 . (44)
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Sufficiency. Making n = 1 in (43), we get

P1u0 =V1Dp,q

(
hp−1

(
Φu0

))
= −V1Ψu0 . (45)

Therefore, the form u0 is Dp,q-classical, since it is regular.

The Rodrigues formula can serve for describing the Dp,q-classical sequences which are completely deter-
mined by the knowledge of the sequences {βn}n≥0 and {γn+1}n≥0. It doubles the shortest way for obtaining
them. Indeed, on account of (43), the recurrence relation (4) is equivalent to

Vn+2Dn+2
p,q

(( n+1∏
ν=0

hqνpn+2−νΦ
)
hp−n−2 u0

)
=Vn+1(x − βn+1)Dn+1

p,q

(( n∏
ν=0

hqνpn+1−νΦ
)
hp−n−1 u0

)
−Vnγn+1Dn

p,q

(( n−1∏
ν=0

hqνpn−νΦ
)
hp−n u0

)
, n ≥ 0.

(46)

Proposition 2.8. The sequences {Vn}n≥0, {βn}n≥0 and {γn+1}n≥0 respectively fulfil the equations

pVn+2{p2n+1
V
−1
1 + 1

2 Φ
′′

(0)[2n + 2]}{p2n
V
−1
1 + 1

2 Φ
′′

(0)[2n + 1]}

−qn+1pn+1
Vn+1{pn−1

V
−1
1 + 1

2 Φ
′′

(0)[n]} = 0 , n ≥ 0 ,
(47)

βn+1 = 1
p2nV−1

1 +
p
2 Φ′′ (0)[2n]

{
pVn+2
Vn+1
{pn
V
−1
1 β0 −Φ

′

(0)[n + 1]}{p2n
V
−1
1 (1 + pq−1)

+ 1
2 Φ

′′

(0)
(
p[2n] + q−1[2n + 2]

)
} − pnqn

V
−1
1 β0

}
, n ≥ 0 ,

(48)

Vnγn+1 =Vn+1

{
βn+1{pn

V
−1
1 β0 − pΦ

′

(0)[n]} − pΦ(0)[n]
}

−pVn+2

{
{Φ

′

(0)[n + 1] − pn
V
−1
1 β0}{pΦ

′

(0)[n] − pn
V
−1
1 β0}

+q−1Φ(0){p2n+1
V
−1
1 + 1

2 Φ
′′

(0)[2n + 2]}
}
, n ≥ 0 .

(49)

For the proof we need the following lemmas.
Lemma 2.9. For any a , b ∈ C and u ∈ P′, we have

(ax + b)Dn
p,qu = Dn

p,q

(
(aqnx + b)u

)
− a[n]Dn−1

p,q ◦ hpu , n ≥ 1 . (50)

Proof. It is easy to prove this Lemma by induction on account of (15).

Lemma 2.10. We have for n ≥ 0

Dp−1,q−1

( n∏
ν=0

(
hqνpn+1−νΦ

))
=

( n−1∏
ν=0

(
hqνpn−νΦ

)) n∑
ν=0

(
Dp−1,q−1 ◦ hqνpn+1−ν

)
Φ . (51)

Proof. We proceed by induction. For n = 1, we get from (5)(
Dp−1,q−1

(
hp2ΦhpqΦ

))
(x) =

(
hpΦ

)
(x)

(
Dp−1,q−1

(
hp2Φ

)
+ Dp−1,q−1

(
hpqΦ

))
(x) .
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We assume (51) for 0 ≤ m ≤ n. Therefore, according to (5), (7) and (51), we have

Dp−1,q−1

( n+1∏
ν=0

(
hqνpn+2−νΦ

))
= Dp−1,q−1 ◦ hp

{( n∏
ν=0

(
hqνpn+1−νΦ

))(
hqn+1Φ

)}
= p

{
hp ◦Dp−1,q−1

{( n∏
ν=0

(
hqνpn+1−νΦ

))(
hqn+1Φ

)}}
= p

{
hp

{(
hqnΦ

)
Dp−1,q−1

n∏
ν=0

(
hqνpn+1−νΦ

))
+hp−1

( n∏
ν=0

(
hqνpn+1−νΦ

))(
Dp−1,q−1 ◦ hqn+1

)
Φ
}}

= p
{

hp

{(
hqnΦ

)( n−1∏
ν=0

(
hqνpn−νΦ

)) n∑
ν=0

(
Dp−1,q−1 ◦ hqνpn+1−ν

)
Φ

+hp−1

( n∏
ν=0

(
hqνpn+1−νΦ

))(
Dp−1,q−1 ◦ hqn+1

)
Φ
}}

=
( n∏
ν=0

(
hqνpn+1−νΦ

)) n+1∑
ν=0

(
Dp−1,q−1 ◦ hqνpn+2−ν

)
Φ .

Hence, the desired result (51).

Proof. (of Proposition 2.8) The proof will be carried out in three steps.
First step. From (50) we may write

Dn+1
p,q

{
(qn+1x − βn+1)

( n∏
ν=0

hqνpn+1−νΦ
)
hp−n−1 u0

}
= (x − βn+1)Dn+1

p,q

{( n∏
ν=0

hqνpn+1−νΦ
)
hp−n−1 u0

}
+[n + 1]Dn

p,q

{( n∏
ν=0

hqνpn−νΦ
)
hp−n u0

}
, n ≥ 0 .

(52)

Then, (46) becomes

Dn
p,q

{
Vn+2D2

p,q

(( n+1∏
ν=0

hqνpn+2−νΦ
)
hp−n−2 u0

)
−Vn+1Dp,q

(
(qn+1x − βn+1)

( n∏
ν=0

hqνpn+1−νΦ
)
hp−n−1 u0

)
+Vn+1[n + 1]

( n∏
ν=0

hqνpn−νΦ
)
hp−n u0

+Vnγn+1

( n−1∏
ν=0

hqνpn−νΦ
)
hp−n u0

}
= 0 , n ≥ 0 .
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Hence, the next result

Dp,q

{
Vn+2Dp,q

(( n+1∏
ν=0

hqνpn+2−νΦ
)
hp−n−2 u0

)
−Vn+1(qn+1x − βn+1)

( n∏
ν=0

hqνpn+1−νΦ
)
hp−n−1 u0

}
+Vn+1[n + 1]

( n∏
ν=0

hqνpn−νΦ
)
hp−n u0

+Vnγn+1

( n−1∏
ν=0

hqνpn−νΦ
)
hp−n u0 = 0 , n ≥ 0 .

(53)

Second step. We may write

Dp,q

{ n+1∏
ν=0

(
hqνpn+2−νΦ

)
hp−n−2 u0

}
= Dp,q

{
hpq

( n∏
ν=0

hqνpn−νΦ
)
hp−n−2 (Φu0)

}
=

( n∏
ν=0

hqνpn+1−νΦDp,q

(
hp−n−2 (Φu0)

)
+q−1Dp−1,q−1

{
hpq

( n∏
ν=0

hqνpn−νΦ
)}

hp−n−1 (Φu0) f rom (15)

=
( n∏
ν=0

hqνpn+1−νΦ
)
Dp,q

(
hp−n−2 (Φu0)

)
+pDp,q

{( n∏
ν=0

hqνpn−νΦ
)}

hp−n−1 (Φu0) f rom (6)

= pn+1
{( n∏

ν=0

hqνpn+1−νΦ
)}{

hp−n−1

(
Dp,q

(
hp−1Φu0

))}
+pDp,q

{( n∏
ν=0

hqνpn−νΦ
)}

hp−n−1 (Φu0) f rom (10)

= pn+1
V
−1
1

{( n∏
ν=0

hqνpn+1−νΦ
)}(

hp−n−1 (P1u0)
)

+pDp,q

{( n∏
ν=0

hqνpn−νΦ
)}

hp−n−1 (Φu0) f rom (43) .

Then, from (53) we obtain

Dp,q

(
Ωnhp−n−1

(
Φu0

))
+

( n−1∏
ν=0

hqνpn−νΦ
){
Vn+1[n + 1]

(
hqnΦ

)
+Vnγn+1

}
hp−n u0 = 0 , n ≥ 0 ,

(54)
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with

Ωn =Vn+2

{
pn+1
V
−1
1

(
hpn+1 P1

)( n−1∏
ν=0

hqν+1pn−νΦ
)

+pDp,q

( n∏
ν=0

hqνpn−νΦ
)}

−Vn+1

(
qn+1x − βn+1

)( n−1∏
ν=0

hqν+1pn−νΦ
)
.

(55)

Further, in accordance with (10), (15) and (43), we get

Dp,q

(
Ωnhp−n−1

(
Φu0

))
=

(
hq−1Ωn

)
Dp,q

(
hp−n−1

(
Φu0

))
+ q−1

(
Dp−1,q−1Ωn

)
hp−n

(
Φu0

)
= pn

V
−1
1

(
hpn P1

)(
hq−1Ωn

)(
hp−n u0

)
+ q−1

(
Dp−1,q−1Ωn

)(
hpnΦ

)(
hp−n u0

)
.

Since hp−n u0 is regular and taking into account the last equation, (54) and the Lemma 2.2, we can deduce

pn
V
−1
1

(
hpn P1

)(
hq−1Ωn

)
+ q−1

(
Dp−1,q−1Ωn

)(
hpnΦ

)
+
( n−1∏
ν=0

hqνpn−νΦ
){
Vn+1[n + 1]

(
hqnΦ

)
+Vnγn+1

}
= 0 , n ≥ 0 .

(56)

Third step. From (7) − (8) and (55), we have

hq−1 (Ωn) =Vn+2

{
pn+1
V
−1
1

(
hq−1pn+1 P1

)
(x)

( n−1∏
ν=0

(
hqνpn−νΦ

)
(x)

)
+Dp−1,q−1

( n∏
ν=0

(
hqνpn+1−νΦ

)
(x)

)}
−Vn+1(qnx − βn+1)

( n−1∏
ν=0

(
hqνpn−νΦ

)
(x)

)
, n ≥ 0 .

(57)

On account of (51), the relation (57) becomes

(hq−1Ωn)(x) =
( n−1∏
ν=0

(
hqνpn−νΦ

)
(x)

){
Vn+2{pn+1

V
−1
1

(
hq−1pn+1 P1

)
(x)

+

n∑
ν=0

(
Dp−1,q−1 ◦ hqνpn+1−νΦ

)
(x)} − Vn+1(qnx − βn+1)

}
, n ≥ 0 .

(58)

Hence, (
hpn+1Φ

)
(x)

(
Ωn

)
(x) =

( n∏
ν=0

(
hqνpn+1−νΦ

)
(x)

)
Λn(x) , n ≥ 0 ,

with

Λn(x) =Vn+2

{
pn+1
V
−1
1

(
hpn+1 P1

)
(x) + p

n∑
ν=0

(
Dp,q ◦ hqνpn−νΦ

)
(x)

}
−Vn+1(qn+1x − βn+1) , n ≥ 0 .
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According to (5), this yields for n ≥ 0

Dp−1,q−1

((
hpn+1Φ

)
(x)Ωn(x)

)
= hq−1 (Ωn)(x)Dp−1,q−1

(
hpn+1Φ

)
(x)

+
(
hpnΦ

)
(x)Dp−1,q−1 (Ωn)(x) ,

Dp−1,q−1

{( n∏
ν=0

(
hqνpn+1−νΦ

)
(x)

)
Λn(x)

}
=

( n∏
ν=0

(
hqνpn−νΦ

)
(x)

)
Dp−1,q−1 (Λn)(x)

+
(
hq−1Λn

)
(x)Dp−1,q−1

( n∏
ν=0

(
hqνpn+1−νΦ

)
(x)

)
.

Comparing and in accordance with (51) and (58), we can deduce(
hpnΦ

)
(x)Dp−1,q−1Ωn(x) =

( n−1∏
ν=0

(
hqνpn−νΦ

)
(x)

){(
hqnΦ

)
(x)Dp−1,q−1Λn(x)

+
(
hq−1Λn

)
(x)

n∑
ν=1

(
Dp−1,q−1 ◦ hqνpn+1−νΦ

)
(x)

}
, n ≥ 0 .

Taking into account of ( for n ≥ 0)(
hq−1Λn

)
(x) =Vn+2

{
pn+1
V
−1
1

(
hq−1pn+1 P1

)
(x)

+

n∑
ν=0

(
Dp−1,q−1 ◦ hqνpn+1−νΦ

)
(x)

}
−Vn+1(qnx − βn+1) ,

Dp−1,q−1Λn(x) =Vn+2

{
p2n+2

V
−1
1 + p

n∑
ν=0

(
Dp−1,q−1 ◦Dp,q ◦ hqνpn−νΦ

)
(x)

}
− qn+1

Vn+1 ,

the relation (56) becomes

Vnγn+1 +
(
hqnΦ

)
(x)

{
pq−1
Vn+2{

n∑
ν=0

(
Dp−1,q−1 ◦Dp,q ◦ hqνpn−νΦ

)
(x)

+p2n+1
V
−1
1 } + pVn+1[n]

}
+ {pn

V
−1
1

(
hpn P1

)
(x)

+q−1
n∑
ν=1

(
Dp−1,q−1 ◦ hqνpn+1−νΦ

)
(x)}

{
Vn+2{pn+1

V
−1
1

(
hq−1pn+1 P1

)
(x)

+

n∑
ν=0

(
Dp−1,q−1 ◦ hqνpn+1−νΦ

)
(x)} − Vn+1(qnx − βn+1)

}
= 0 , n ≥ 0 .

(59)

Lastly, writing Φ(x) = 1
2 Φ”(0)x2 + Φ

′

(0)x + Φ(0) and with

q−1
n∑
ν=1

(
Dp−1,q−1 ◦ hqνpn+1−νΦ

)
(x) = p

(1
2

Φ
′′

(0)[2n]x + Φ
′

(0)[n]
)
, n ≥ 0 ,

n∑
ν=0

(
Dp−1,q−1 ◦ hqνpn+1−νΦ

)
(x) = p

(q−1

2
Φ
′′

(0)[2n + 2]x + Φ
′

(0)[n + 1]
)
, n ≥ 0 ,

n∑
ν=0

(
Dp−1,q−1 ◦Dp,q ◦ hqνpn−νΦ

)
(x) =

1
2

Φ”(0)[2n + 2] , n ≥ 0 ,

an easy computation leads to (47) − (49).
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Corollary 2.11. [18] The sequences {βn}n≥0 and {γn+1}n≥0 of the three-term recurrence relation (4) are explicity
given by

βn = $1,n − $1,n+1 , n ≥ 0 ,
γn+1 = $2,n − $2,n+1 − βn+1$1,n+1 , n ≥ 0 ,

(60)

where

$1,n = −[n] Bn−1
A2n−2

, n ≥ 0 ,

$2,n = −[n] pq$1,n+1Bn−1−Φ(0)[n+1]
(p+q)A2n−1

, n ≥ 0 ,
An = pn−1

V
−1
1 + 1

2 Φ
′′

(0)[n] , n ≥ 0 ,
Bn = pn−1

V
−1
1 β0 −Φ

′

(0)[n] , n ≥ 0 .

(61)

Proof. From (47), we have
Vn+1

Vn
= qnpn−1 An−1

A2nA2n−1
, n ≥ 0 .

Then, from the previous equation, the relations (48) and (49) become

βn = qn−1pn−1 (p+q)An−1Bn

A2nA2n−2
− qn−1pn−2V

−1
1 β0

A2n−2
, n ≥ 0 ,

γn+1 = qnpn An−1Bnβn+1

A2nA2n−1
− qnpn An−1[n]

A2n−1A2n
Φ(0)

−q2n+1p2n+1 AnAn−1BnBn+1
A2n−1A2nA2n+1A2n+2

− q2np2n An−1An
A2n−1A2nA2n+1

Φ(0) , n ≥ 0 .

After some straightforward calculation, we obtain

qn−1pn−1 (p+q)An−1Bn

A2nA2n−2
= Bn{

[n+1]
A2n
−

[n−1]
A2n−2
} ,

qnpn An−1Bnβn+1

A2nA2n−1
= [n] Bnw1,n+2

A2n−1
− [n] Bnw1,n+1

A2n−1
− βn+1w1,n+1 ,

q2n+1p2n+1 AnAn−1BnBn+1
A2n−1A2nA2n+1A2n+2

= [n] Bnw1,n+2

A2n−1
− pq[n + 1] Bnw1,n+2

(p+q)A2n+1
− [n] Bn+1w1,n+1

(p+q)A2n−1
,

q2np2n An−1An
A2n−1A2nA2n+1

= [n+1][n+2]
(p+q)A2n+1

+
pq[n][n−1]
(p+q)A2n−1

−
[n][n+1]

A2n
,

qnpn An−1
A2n−1A2n

= [n+1]
A2n
−

[n]
A2n−1

.

Hence, the desired result (60).

Remark 2. (i) If Φ
′′

(0) = 0, then from (47) − (49), we get

Vn =Vn
1

q
n(n−1)

2

pn(n−1) , n ≥ 0 ,

βn =
qn

pn β0 −
qn

p2n−1 (1 + pq−1)V1Φ
′

(0)[n] , n ≥ 0 ,

γn+1 =
qn

p2nV1[n + 1]{ qn

p2n−1V1

(
Φ
′

(0)
)2
−

qn

pn β0Φ
′

(0) −Φ(0)} , n ≥ 0 .

(62)

(ii) If Φ(x) = (x − c)(x − d), then from (47) − (49), we obtain

Vn =
q

n(n−1)
2

p
n(n+1)

2

Γ(p−1
V
−1
1 +p2−n[n−1])

Γ(p−1V−1
1 +p2−2n[2n−1]) , n ≥ 0 ,

βn =
qn−1pn−2R(n,c,d)

{p2n−3V−1
1 +[2n−2]}{p2n−1V−1

1 +[2n]} , n ≥ 0 ,

γn+1 =
qnpn[n+1]{pn−2

V
−1
1 +[n−1]}C(n,c,d)D(n,c,d)

{p2n−2V−1
1 +[2n−1]}{p2n−1V−1

1 +[2n]}2{p2nV−1
1 +[2n+1]} , n ≥ 0 ,

(63)
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where (for n ≥ 0)

C(n, c, d) = c(q − p)[n]2 + {pn(c − d) + pn−1(q − p)β0V
−1
1 }[n]

+p2n−1
V
−1
1 (β0 − d) ,

D(n, c, d) = −d(q − p)[n]2 + {pn(c − d) − pn−1(q − p)β0V
−1
1 }[n]

−p2n−1
V
−1
1 (β0 − c) ,

R(n, c, d) = (p + q){pn−1
V
−1
1 + p[n − 1]}{pn−1

V
−1
1 β0 + (c + d)[n]}

−V
−1
1 β0{p2n−1

V
−1
1 + [2n]} .

(64)

4. Examples

Example 1. Φ(x) = 1
With the choiceV1 = −(p + q)−1 and β0 = 0, we get from (62) the following canonical case

βn = 0 , γn+1 =
qn

(p+q)p2n [n + 1] , n ≥ 0 ,

Dp,q

(
hp−1 u0

)
+ (p + q)xu0 = 0 .

We have obtained the (p, q)-Hermite polynomials [5].
On the other hand, from (43) and (62) we have

Pnu0 = (−1)n(p + q)−n q
n(n−1)

2

pn(n−1)
Dn

p,q

(
hp−n u0

)
, n ≥ 0 .

Example 2. Φ(x) = x
With the choiceV1 = qd−1 and β0 = pqd−1(p−q)−1(1−pα+1q−α−1), we obtain from (62) the following canonical
case

βn = d−1(p − q)−1qnp1−2n
{qn(p + q) − pn+1(pαq−α + 1)} ,

γn+1 = d−2(p − q)−2p1−4nq2n+1−α(pn+1
− qn+1)(pn+α+1

− qn+α+1) ,

Dp,q

(
hp−1 (xu0)

)
− {(q−1dx − p(p − q)−1(1 − pα+1q−α−1)}u0 = 0 .

We have obtained the (p, q)-Laguerre polynomials [18].
On the other hand, from (43) and (62) we get

Pnu0 =
qn2

dnp
n(n−3)

2

Dn
p,q

(
xnhp−n u0

)
, n ≥ 0 .

Example 3. Φ(x) = x(x − c)

With the choice c = p2, V−1
1 = −

p
p−q (1 − pα+β+2q−α−β−2) and β0 =

p2(1−pβ+1q−β−1)
1−pα+β+2q−α−β−2 , we obtain from (63) − (64) the

following canonical case

βn =
pn+2qn+α+1

(p2n+α+β−q2n+α+β)(p2n+α+β+2−q2n+α+β+2)

×{(pβ + qβ)(p2n+α+β+1 + q2n+α+β+1) − (p + q)(pα + qα)pn+βqn+β
} ,

γn+1 = p2n+β+5q2n+2α+β+3 (pn+1
−qn+1)(pn+α+1

−qn+α+1)(pn+β+1
−qn+β+1)

(p2n+α+β+1−q2n+α+β+1)(p2n+α+β+2−q2n+α+β+2)2

×
(pn+α+β+1

−qn+α+β+1)
(p2n+α+β+3−q2n+α+β+3) ,

Dp,q

(
hp−1 (x(x − p2)u0)

)
+

p
p−q (1 − pα+β+2q−α−β−2)

(
x − p2(1−pβ+1q−β−1)

1−pα+β+2q−α−β−2

)
u0 = 0 .



M. Sghaier et al. / Filomat 35:6 (2021), 1823–1839 1839

We have obtained the (p, q)-shifted Jacobi polynomials [18].
Moreover, from (43) and (63), we have

Pnu0 = (−1)nqn(n−1)p2n
Γ

(
(p−q)−1(pα+β+2q−α−β−2

−1)+p2−n[n−1]
)

Γ

(
(p−q)−1(pα+β+2q−α−β−2−1)+p2−2n[2n−1]

)
×Dn

p,q

(
xn(pn−2x, q

p )n

)
, n ≥ 0 ,

with (a, q)0 = 0 , (a, q)n =

n−1∏
ν=0

(1 − aqν) , n ≥ 1.
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