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Abstract. Let R be a noncommutative prime ring of char (R) , 2 with Utumi quotient ring U and extended
centroid C and I a nonzero two sided ideal of R. Suppose that F(, 0), G and H are three generalized
derivations of R and f (x1, . . . , xn) is a multilinear polynomial over C, which is not central valued on R. If

F(G( f (r)) f (r) − f (r)H( f (r))) = 0

for all r = (r1, . . . , rn) ∈ In, then we obtain information about the structure of R and describe the all possible
forms of the maps F, G and H. This result generalizes many known results recently proved by several
authors ([1], [4], [5], [8], [9], [13], [15]).

1. Introduction

Throughout this paper R always denotes an associative prime ring and U be its Utumi quotient ring.
The center C = Z(U) is called the extended centroid of R. By d, we mean a nonzero derivation of R. For
x, y ∈ R, [x, y] = xy − yx is the commutator of x and y. The s4 denotes the standard polynomial in four
variables, which is s4(x1, x2, x3, x4) =

∑
σ∈S4

(−1)σxσ(1)xσ(2)xσ(3)xσ(4), where (−1)σ is +1 or −1 according to σ being

an even or odd permutation in symmetric group S4. Let S be a nonempty subset of R. An additive mapping
f : R→ R is said to be commuting (respectively, centralizing) on S, if [ f (x), x] = 0 for all x ∈ S (respectively,
[ f (x), x] ∈ Z(R) for all x ∈ S). Two additive mappings f , 1 : R→ R are said to be co-commuting (respectively,
co-centralizing) on S, if f (x)x − x1(x) = 0 for all x ∈ S (respectively, f (x)x − x1(x) ∈ Z(R) for all x ∈ S).

A good number of results on co-centralizing and co-commuting maps have been obtained by a number
of authors. A well known result of Posner [24] states that if [d(x), x] ∈ Z(R) for all x ∈ R, then R must be
commutative. This result further is generalized in many directions by a number of authors. For instance,
Brešar proved in [3] that if d and δ are two derivations of R such that d(x)x − xδ(x) ∈ Z(R) for all x ∈ R, then
either d = δ = 0 or R is commutative. Later Lee and Wong [20] consider the situation d(x)x − xδ(x) ∈ Z(R)
for all x ∈ L, where L is a noncentral Lie ideal of R, and obtained that either d = δ = 0 or R satisfies s4.

We know the fact that a noncentral Lie ideal L of a prime ring contains all the commutators [x1, x2] for
x1, x2 in some nonzero ideal of R, except when char (R) , 2 and R satisfies s4. So, it is natural to consider
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the above situation for all commutators x = [x1, x2] or more general case x = f (x1, . . . , xn) where f (x1, . . . , xn)
is a multilinear polynomial.

In [25], Wong proved that if d and δ are two derivations of R such that d(x)x − xδ(x) ∈ Z(R) for all
x ∈ { f (x1, . . . , xn)|x1, . . . , xn ∈ I}, where I is a nonzero ideal of R and f (x1, . . . , xn) is a multilinear polynomial
which is not central valued on R, then either d = δ = 0, or δ = −d and f (x1, . . . , xn)2 is central valued on R,
except when char (R) = 2 and R satisfies s4.

In [12], De Filippis and Di Vincenzo considered the situation δ([d(x), x]) = 0 for all x ∈ { f (x1, . . . , xn)|x1, . . . , xn ∈

R}, where d and δ are two derivations of R.
Further in [11], De Filippis generalized the above result and proved the following:
Let R be a prime ring of char (R) , 2, C be the extended centroid of R and let f (x1, . . . , xn) be a multilinear

polynomial over C not central-valued on R. Suppose that d, 1 and δ(, 0) are derivations of R such that

δ(d( f (r1, . . . , rn)) f (r1, . . . , rn) − f (r1, . . . , rn)1( f (r1, . . . , rn))) = 0

for all r1, . . . , rn ∈ R. Then d and 1 are both inner derivations on R and one of the following holds: (1) d = 1 = 0; (2)
d = −1 and f (x1, . . . , xn)2 is central-valued on R.

The main purpose of the present paper is to generalize the above result replacing derivations d, 1 and δ
with three generalized derivations G, H and F respectively, that is,

F
(
G( f (r1, . . . , rn)) f (r1, . . . , rn) − f (r1, . . . , rn)H( f (r1, . . . , rn))

)
= 0

for all r1, . . . , rn ∈ R and then to determined the all possible forms of the maps. The generalized derivation
means an additive mapping F : R→ R such that F(xy) = F(x)y + xd(y) for all x, y ∈ R, where d is a derivation
of R. The d is called as an associated derivation to F. For some fixed a, b ∈ R, the map F : R→ R defined by
F(x) = ax + xb for all x ∈ R is an example of generalized derivations. This kind of generalized derivations
are called as inner generalized derivations of R. Obviously, any derivation is a generalized derivation, but
the converse need not be true in general.

Our result generalize many known recent results in literature. In particular, when F(x) = ax for all x ∈ R,
then the situation becomes a(G(x)x − xH(x)) = 0 for all x ∈ { f (x1, . . . , xn)|x1, . . . , xn ∈ R}, which was studied
by De Filippis et al. in [8].

In [9], De Filippis and Vincenzo studied the situation d([G(x), x]) = 0 for all x ∈ { f (x1, . . . , xn)|x1, . . . , xn ∈

R}, which is a special case of our result, when F = d is a derivation and G = H is a generalized derivation of
R.

Recently in [13], the author of this paper studied the situation F([G(x), x]) = 0 for all x ∈ { f (x1, . . . , xn)|x1, . . . , xn ∈

R}, which is a special case of our main theorem.

Moreover, Carini and De Filippis [5] studied the case δ(G(x)x) = 0 for all x ∈ { f (x1, . . . , xn)|x1, . . . , xn ∈ R}.
This result is a particular case of our result, when F = δ a derivation of R and H = 0. This result farther
extended by Dhara and Argac [14] by replacing derivation δ with a generalized derivation F of R, which is
the particular result of our main result when H = 0.

In [1], Argac and De Fillipis proved the following theorem when F is identity map.
Theorem A. Let R be a noncommutative prime ring with Utumi quotient ring U and extended centroid C, I a

nonzero two sided ideal of R and f (x1, . . . , xn) be a multilinear polynomial over C, which is not central valued on R.
Suppose that G and H are two nonzero generalized derivations of R such that G( f (r)) f (r) − f (r)H( f (r)) = 0 for all
r = (r1, . . . , rn) ∈ In, then one of the following holds:
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1. there exists a ∈ U such that G(x) = xa, H(x) = ax for all x ∈ R;
2. f (x1, . . . , xn)2 is central valued on R, there exists a, b ∈ U such that G(x) = ax + xb, H(x) = bx + xa for all

x ∈ R;
3. char (R) = 2 and R satisfies s4 (standard identity of degree 4).

In [15], Dhara et al. considered the situation when F is a derivation. More precisely, authors proved the
following:

Theorem B. Let R be a noncommutative prime ring of char (R) , 2 with Utumi quotient ring U and extended
centroid C, and f (x1, . . . , xn) be a multilinear polynomial over C, which is not central valued on R. Suppose that G and
H are two generalized derivations of R and d is a nonzero derivation of R such that d(G( f (r)) f (r) − f (r)H( f (r))) = 0
for all r = (r1, . . . , rn) ∈ Rn, then one of the following holds:

1. there exist a, p, q, c ∈ U and λ ∈ C such that G(x) = ax + xp + λx, H(x) = px + xq and d(x) = [c, x] for all
x ∈ R, with [c, a − q] = 0 and f (x1, . . . , xn)2 is central valued on R;

2. there exists a ∈ U such that G(x) = xa and H(x) = ax for all x ∈ R;
3. there exist a, b ∈ U and λ ∈ C such that G(x) = λx + xa− bx and H(x) = ax + xb for all x ∈ R, with b + αc ∈ C

for some α ∈ C;
4. R satisfies s4 and there exist a, b ∈ U and λ ∈ C such that G(x) = λx + xa− bx and H(x) = ax + xb for all x ∈ R;
5. there exist a′, b, c ∈ U and δ a derivation of R such that G(x) = a′x+xb−δ(x), H(x) = bx+δ(x) and d(x) = [c, x]

for all x ∈ R, with [c, a′] = 0 and f (x1, . . . , xn)2 is central valued on R.

In the present paper, we prove the following theorem:
Main Theorem: Let R be a noncommutative prime ring of char (R) , 2 with Utumi quotient ring U and extended

centroid C and I a nonzero two sided ideal of R. Suppose that F(, 0), G and H are three generalized derivations of R
and f (x1, . . . , xn) is a multilinear polynomial over C, which is not central valued on R. If

F(G( f (r)) f (r) − f (r)H( f (r))) = 0

for all r = (r1, . . . , rn) ∈ In, then one of the following holds:
1. f (x1, . . . , xn)2 is central valued on R and there exist a, b, c, c′,u ∈ U such that F(x) = cx+xc′, G(x) = ax− [u, x]

and H(x) = [u, x] + xb for all x ∈ R, with c(a − b) + (a − b)c′ = 0;
2. f (x1, . . . , xn)2 is central valued on R and there exist p, q ∈ U such that G(x) = px + xq and H(x) = qx + xp for

all x ∈ R and F is any generalized derivation of R;
3. there exists a ∈ U such that G(x) = xa and H(x) = ax for all x ∈ R and F is any generalized derivation of R;
4. there exist b, c, p, q ∈ U such that F(x) = cx, G(x) = px + xq and H(x) = bx for all x ∈ R, with c(p + q − b) = 0

and q − b ∈ C;
5. there exist a, c,u, v ∈ U such that F(x) = xc, G(x) = xa and H(x) = ux + xv with a−u ∈ C and (a−u−v)c = 0;
6. there exist 0 , λ ∈ C and a, c, c′,u, v ∈ U such that a + λc, v + λc′ ∈ C and F(x) = cx + xc′, G(x) = ax + xu

and H(x) = ux + xv for all x ∈ R. Moreover, in this case for some α ∈ C either αc − λc2 = −αc′ − λc′2 ∈ C or
αc − λc2 = −αc′ − λc′2, f (x1, . . . , xn)2 is central valued;

7. R satisfies s4 and there exist c, c′, p,u, v ∈ U such that F(x) = cx + xc′, G(x) = px + xu and H(x) = ux + xv for
all x ∈ R;

8. there exist a′, b, c ∈ U and δ a derivation of R such that F(x) = [c, x], G(x) = a′x + xb − δ(x), H(x) = bx + δ(x)
for all x ∈ R, with [c, a′] = 0 and f (x1, . . . , xn)2 is central valued on R.

Note that recently Carini et al. [4] studied the case F(G(u)u − uH(u)) = 0 for all u in a noncentral Lie
ideal in prime ring R.

Corollary: Let R be a noncommutative prime ring of char (R) , 2 with Utumi quotient ring U and extended
centroid C and I a nonzero two sided ideal of R. Suppose that F(, 0), G and H are three generalized derivations of R.
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If
F(G(x)x − xH(x)) = 0

for all x ∈ I, then one of the following holds:

1. there exists a ∈ U such that G(x) = xa and H(x) = ax for all x ∈ R and F is any generalized derivation of R;
2. there exist b, c, p, q ∈ U such that F(x) = cx, G(x) = (p+λ)x+xb and H(x) = bx for all x ∈ R, with F(p+λ) = 0;
3. there exist a, c,u, v ∈ U such that F(x) = xc, G(x) = x(u + λ) and H(x) = ux + xv with F(λ − v) = 0;
4. there exist 0 , λ ∈ C and a, c, c′,u, v ∈ U such that a + λc, v + λc′ ∈ C and F(x) = cx + xc′, G(x) = ax + xu

and H(x) = ux + xv for all x ∈ R. Moreover, in this case for some α ∈ C either αc − λc2 = −αc′ − λc′2 ∈ C.
5. R satisfies s4 and there exist c, c′, p,u, v ∈ U such that F(x) = cx + xc′, G(x) = px + xu and H(x) = ux + xv for

all x ∈ R.

2. Some Results

The following facts are frequently used to prove our results.

Fact 2.1. Let R be a prime ring and I a two-sided ideal of R. Then R, I and U satisfy the same generalized polynomial
identities (GPIs) with coefficients in U ([6]).

Fact 2.2. Let R be a prime ring and I a two-sided ideal of R. Then R, I and U satisfy the same differential identities
([21]).

Fact 2.3. [1, Lemma 3] Let R be a noncommutative prime ring with Utumi quotient ring U and extended centroid
C, and f (x1, . . . , xn) be a multilinear polynomial over C, which is not central valued on R. Suppose that there exist
a, b, c, q ∈ U such that (a f (r) + f (r)b) f (r) − f (r)(c f (r) + f (r)q) = 0 for all r = (r1, . . . , rn) ∈ Rn. Then one of the
following holds:

(1) a, q ∈ C and q − a = b − c = α ∈ C;
(2) f (x1, . . . , xn)2 is central valued on R and there exists α ∈ C such that q − a = b − c = α;
(3) char (R) = 2 and R satisfies s4.

Fact 2.4. (See [18], [21]) Denote by Der(U) the set of all derivations on U. By a derivation word ∆ of R we mean
an additive map in End(U,+, .) of the form ∆ = d1d2d3 . . . dm for some derivations di ∈ Der(U) of R. For x ∈ R,
we denote by x∆ the image of x under ∆, that is x∆ = (· · · (xd1 )d2 · · · )dm . By a differential polynomial, we mean a
generalized polynomial, with coefficients in U, of the form Φ(x∆ j

i ) involving noncommutative indeterminates xi on

which the derivations words ∆ j act as unary operations. Φ(x∆ j

i ) = 0 is said to be a differential identity on a subset T
of U if it vanishes for any assignment of values from T to its indeterminates xi.

Now let Dint be the C-subspace of Der(U) consisting of all inner derivations on U.
Let R be a prime ring and d, d′ and δ be derivations of R. If d, d′ and δ are linearly C-independent modulo Dint

and Φ(x∆ j

i ) is a differential identity on R, where ∆ j ∈ {d, d′, δ}, then Φ(y ji) is a generalized polynomial identity of R,
where y ji are distinct indeterminates.

As a particular case, we have:
If d is a nonzero derivation on R and Φ(x1, . . . , xn, xd

1, . . . , x
d
n) is a differential identity on a prime ring R, then one

of the following holds:
(i) either d ∈ Dint

or (ii) R satisfies the generalized polynomial identity Φ(x1, . . . , xn, y1, . . . , yn)

Fact 2.5. ([9, Lemma 1]) Let C be an infinite field and m ≥ 2. If A1, . . . ,Ak are not scalar matrices in Mm(C) then
there exists some invertible matrix P ∈Mm(C) such that any matrices PA1P−1, . . . ,PAkP−1 have all non-zero entries.
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Fact 2.6. Let f (r1, . . . , rn) be the multilinear polynomial over the field C and d, δ are derivations on R.
We shall use the notation

f (r1, . . . , rn) = r1r2 · · · rn +
∑

σ∈Sn,σ,id

ασrσ(1)rσ(2) · · · rσ(n)

for some ασ ∈ C, and Sn denotes the symmetric group of degree n.
Then we have

d( f (r1, . . . , rn)) = f d(r1, . . . , rn) +
∑

i

f (r1, . . . , d(ri), . . . , rn),

where f d(r1, . . . , rn) be the polynomials obtained from f (r1, . . . , rn) replacing each coefficients ασ with δ(ασ). Similarly,
by calculation, we have

d2( f (r1, . . . , rn)) = f d2
(r1, . . . , rn) + 2

∑
i

f d(r1, . . . , d(ri), . . . , rn)

+
∑

i

f (r1, . . . , d2(ri), . . . , rn)

+
∑

i

f (r1, . . . , d(ri), . . . , d(r j), . . . , rn),

and

dδ( f (r1, . . . , rn)) = f dδ(r1, . . . , rn) +
∑

i

f δ(r1, . . . , d(ri), . . . , rn)

+
∑

i

f d(r1, . . . , δ(ri), . . . , rn) +
∑

i

f (r1, . . . , dδ(ri), . . . , rn)

+
∑

i

f (r1, . . . , d(ri), . . . , δ(r j), . . . , rn).

Fact 2.7. Let R satisfies a nontrivial GPI Φ(x1, . . . , xn) = 0. Then by [6], U also satisfies the same GPI i.e.,
Φ(x1, . . . , xn) = 0. In case C is infinite, we know that U ⊗C C satisfies Φ(x1, . . . , xn) = 0, where C is the algebraic
closure of C. Since both U and U ⊗C C are prime and centrally closed [16, Theorems 2.5 and 3.5], we may replace R
by U or U ⊗C C according to C finite or infinite and assume that R is centrally closed over C. Then R (by [23]) is a
primitive ring with nonzero socle soc(R) with C as its associated division ring. Hence R is isomorphic to a dense ring
of linear transformations of a vector space V over C (By Jacobson’s theorem [17, p.75]).

Fact 2.8. Let R be a prime ring and U be its Utumi ring of quotients and C = Z(U) is the center of U. In [19], Lee
proved that any generalized derivation of R can be uniquely extended to a generalized derivation of U and its form
will be 1(x) = ax + d(x) for some a ∈ U, where d is the associated derivation.

3. The Case: Inner Generalized Derivations

We dedicate this section, when all the generalized derivations are inner and then obtain the conclusions
of the Main Theorem.

We need the following known results.

Lemma 3.1. ([10, Proposition 2.5]) Let R be a prime ring with char (R) , 2. Assume that R does not embed in M2(K),
the algebra of 2 × 2 matrices over a field K. If there exist a, b, c, q, v,w ∈ R such that a(cs + sq) + (cs + sq)b = vs + sw
for all s ∈ [R,R], then one of the following holds:

1. c and q are central;
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2. a and b are central;
3. b, q and w are central;
4. a, c and v are central;
5. there exists 0 , α ∈ K such that a + αc and b − αq are central.

In particular, from above lemma, when v = w = 0, we have the following:

Lemma 3.2. Let R be a prime ring with char (R) , 2. Assume that R does not embed in M2(K), the algebra of 2 × 2
matrices over a field K. If there exist a, b, c, q ∈ R such that a(cs + sq) + (cs + sq)b = 0 for all s ∈ [R,R], then one of
the following holds:

1. c = −q ∈ C;
2. b, q ∈ C with (a + b)(c + q) = 0;
3. a, b ∈ C with a + b = 0;
4. a, c ∈ C with (c + q)(a + b) = 0;
5. there exists 0 , λ ∈ C such that c + λa and q − λb are central.

Proof. Then by Lemma 3.1, one of the following holds:
(i) c and q are central. In this case, identity reduces to a(c + q)s + s(c + q)b = 0 for all s ∈ [R,R]. Then

(c + q)b ∈ C with a(c + q) + (c + q)b = 0. If c + q = 0, then conclusion (1) is obtained. If c + q , 0, then b ∈ C
and so (a + b)(c + q) = 0. Thus the conclusion (2) is obtained.

(ii) a and b are central. In this case (a + b)(cs + sq) = 0 for all s ∈ [R,R]. Then q ∈ C and (a + b)(c + q) = 0.
If a + b , 0, then c + q = 0, this is conclusion (1). If a + b = 0, then conclusion (3) follows.

(iii) b and q are central. In this case (a + b)(c + q)s = 0 for all s ∈ [R,R]. This implies (a + b)(c + q) = 0,
which is conclusion (2).

(iv) a and c are central. In this case s(c + q)(a + b) = 0 for all s ∈ [R,R], which implies (c + q)(a + b) = 0.
Thus conclusion (4) is obtained.

(v) there exists 0 , α ∈ C such that a + αc and b − αq are central. Therefore, c + λa and q − λb are central,
where λ = α−1.

Lemma 3.3. Let R be a noncommutative prime ring with char (R) , 2, a, b, c, q ∈ U, p(x1, . . . , xn) be any polynomial
over C, which is not an identity for R. If c(ap(r) − p(r)q) + (ap(r) − p(r)q)b = 0 for all r = (r1, . . . , rn) ∈ Rn, then one
of the following holds:

1. c(a − q) + (a − q)b = 0 and p(x1, . . . , xn) is central valued on R;
2. a = q ∈ C;
3. a, b ∈ C with a + b = 0;
4. b, q ∈ C with (b + c)(a − q) = 0;
5. a, c ∈ C with (a − q)(b + c) = 0;
6. there exists 0 , λ ∈ C such that a + λc and q + λb are central;
7. R satisfies s4.

Proof. If p(x1, . . . , xn) is central valued on R, then our assumption c(ap(r) − p(r)q) + (ap(r) − p(r)q)b = 0
yields {c(a − q) + (a − q)b}p(r) = 0 for all r = (r1, . . . , rn) ∈ Rn. Since p(r1, . . . , rn) is nonzero valued on R,
c(a − q) + (a − q)b = 0 and hence we obtain our conclusion (1).

Hence, assume next that p(x1, . . . , xn) is not central valued on R. Let G be the additive subgroup of R
generated by the set S = {p(x1, . . . , xn)|x1, . . . , xn ∈ R}. Then S , {0}, since p(x1, . . . , xn) is nonzero valued
on R. By our assumption we get c(ax − xq) + (ax − xq)b = 0 for any x ∈ G. By [7], either G ⊆ Z(R) or char
(R) = 2 and R satisfies s4, except when G contains a noncentral Lie ideal L of R. Since p(x1, . . . , xn) is not
central valued on R, the first case can not occur. Since char (R) , 2, second case also can not occur. Then
G contains a noncentral Lie ideal L of R. By [2, Lemma 1], there exists a noncentral two sided ideal I of R
such that [I,R] ⊆ L. In particular, c(a[x1, x2] − [x1, x2]q) + (a[x1, x2] − [x1, x2]q)b = 0 for all x1, x2 ∈ I. By [6],
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c(a[x1, x2] − [x1, x2]q) + (a[x1, x2] − [x1, x2]q)b = 0 is a generalized polynomial identity for R and for U. Thus
by Lemma 3.2, if R does not satisfy s4, then one of the following holds:

(i) a = q ∈ C;
(ii) b, q ∈ C with (b + c)(a − q) = 0;
(iii) a, b ∈ C with a + b = 0;
(iv) a, c ∈ C with (a − q)(b + c) = 0;
(v) there exists 0 , λ ∈ C such that a + λc and q + λb are central.
Therefore, all the conclusions are obtained.

Lemma 3.4. [1] Let R be a non-commutative prime ring, a, b ∈ U, p(x1, . . . , xn) be any polynomial over C, which is
not an identity for R. If ap(r) − p(r)b = 0 for all r = (r1, . . . , rn) ∈ Rn, then one of the following holds:

1. a = b ∈ C;
2. a = b and p(x1, . . . , xn) is central valued on R;
3. char (R) = 2 and R satisfies s4.

Proposition 3.5. Let R be a noncommutative prime ring of char (R) , 2 with Utumi quotient ring U and extended
centroid C, I a nonzero two sided ideal of R and f (x1, . . . , xn) be a multilinear polynomial over C, which is not central
valued on R. Suppose that for some a, b, p, q,u, v ∈ U, F(x) = ax+xb, G(x) = px+xq and H(x) = ux+xv for all x ∈ R
are three inner generalized derivations of R such that F(G( f (r)) f (r) − f (r)H( f (r))) = 0 for all r = (r1, . . . , rn) ∈ Rn

and F is nonzero, then one of the following holds:

1. f (x1, . . . , xn)2 is central valued and F(x) = ax + xb, G(x) = (p + q)x − [u, x] and H(x) = [u, x] + x(u + v) for
all x ∈ R, with a(p + q − u − v) + (p + q − u − v)b = 0;

2. f (x1, . . . , xn)2 is central valued and F(x) = ax + xb, G(x) = px + xq and H(x) = qx + xp for all x ∈ R;
3. F(x) = ax + xb, G(x) = x(p + q) and H(x) = (p + q)x for all x ∈ R;
4. F(x) = (a + b)x, G(x) = px + xq and H(x) = (u + v)x for all x ∈ R, with (a + b)(p + q − u − v) = 0 and

q − u − v ∈ C;
5. F(x) = x(a + b), G(x) = x(p + q) and H(x) = ux + xv with p + q − u ∈ C and (p + q − u − v)(a + b) = 0;
6. there exists 0 , λ ∈ C such that p+q−u+λa and v+λb are in C. F(x) = ax+xb, G(x) = (p+q−u)x+xu and

H(x) = ux + xv for all x ∈ R; Moreover, in this case either αa−λa2 = −αb−λb2
∈ C or αa−λa2 = −αb−λb2,

f (x1, . . . , xn)2 is central valued, for some α ∈ C.
7. R satisfies s4 and F(x) = ax + xb, G(x) = (p + λ)x + xu and H(x) = ux + xv for all x ∈ R, and q − u = λ ∈ C.

By Fact 2.1, our hypothesis F(G(x)x − xH(x)) = 0 for all x ∈ f (I) gives

a(p f (r)2 + f (r)(q − u) f (r) − f (r)2v) + (p f (r)2 + f (r)(q − u) f (r) − f (r)2v)b = 0 (1)

that is,

ap f (r)2 + a f (r)(q − u) f (r) − a f (r)2v + p f (r)2b + f (r)(q − u) f (r)b − f (r)2vb = 0 (2)

for all r = (r1, . . . , rn) ∈ Rn.

Now we show that if a, b ∈ C or q − u ∈ C, then conclusions of Proposition 3.5 hold true and otherwise
contradiction arises. Thus we consider the following Lemmas.

Lemma 3.6. If a, b ∈ C, then conclusions (2) and (3) of Proposition 3.5 hold true.

Proof. Since a, b ∈ C, F(x) = (a + b)x for all x ∈ R. Since F , 0, 0 , a + b ∈ C and hence by (1)

p f (r)2 + f (r)(q − u) f (r) − f (r)2v = 0. (3)

for all r = (r1, . . . , rn) ∈ Rn. Then by [1, Lemma 3], one of the following holds:
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(1) p, v ∈ C and v − p = q − u ∈ C. In this case G(x) = px + xq = x(p + q) and H(x) = ux + xv = (u + v)x for
all x ∈ R, with p + q = u + v. This gives conclusion (3).

(2) f (x1, . . . , xn)2 is central valued on R and there exists α ∈ C such that v− p = q− u = α ∈ C. In this case
H(x) = ux + xv = (q − α)x + x(p + α) = qx + xp for all x ∈ R. This is conclusion (2).

Lemma 3.7. If q − u ∈ C, then conclusions (1), (3), (4), (5), (6) and (7) of Proposition 3.5 hold true.

Proof. Since q − u ∈ C, (2) reduces to

a((p + q − u) f (r)2
− f (r)2v) + ((p + q − u) f (r)2

− f (r)2v)b = 0 (4)

for all r = (r1, . . . , rn) ∈ Rn. Then by Lemma 3.3, one of the following holds:
(1) f (x1, . . . , xn)2 is central valued and a(p+q−u−v)+(p+q−u−v)b = 0. In this case, we have F(x) = ax+xb,

G(x) = px + xq = px + x(q− u) + xu = (p + q− u)x + xu = (p + q)x− [u, x] and H(x) = ux + xv = [u, x] + x(u + v)
for all x ∈ R, which is conclusion (1).

(2) p + q − u = v ∈ C. Since q − u ∈ C, p ∈ C. Thus we have, F(x) = ax + xb, G(x) = px + xq = x(p + q) and
H(x) = ux + xv = (u + v)x for all x ∈ R with p + q = u + v which is our conclusion (3).

(3) a, b ∈ C with a + b = 0. In this case, F(x) = ax + xb = (a + b)x = 0 for all x ∈ R, a contradiction.
(4) b, v ∈ C with (a + b)(p + q− u− v) = 0. In this case, F(x) = ax + xb = (a + b)x for all x ∈ R, G(x) = px + xq

and H(x) = ux + xv = (u + v)x for all x ∈ R, with (a + b)(p + q − u − v) = 0 and q − u − v ∈ C. This is our
conclusion (4).

(5) a, p+q−u ∈ C with (p+q−u−v)(a+b) = 0. Since q−u ∈ C, we have p ∈ C. Thus F(x) = ax+xb = x(a+b),
G(x) = px + xq = x(p + q) and H(x) = ux + xv with p + q− u ∈ C and (p + q− u− v)(a + b) = 0. Thus conclusion
(5) is obtained.

(6) there exists 0 , λ ∈ C such that p + q − u + λa and v + λb are in C. Then F(x) = ax + xb, G(x) =
px + xq = px + x(q− u) + xu = (p + q− u)x + xu and H(x) = ux + xv for all x ∈ R, with p + q− u +λa, v +λb ∈ C,
which is conclusion (6). Moreover, in this case assuming p + q − u + λa = µ ∈ C and v + λb = γ ∈ C,
we have by hypothesis, a{(µ − λa) f (r)2

− f (r)2(γ − λb)} + {(µ − λa) f (r)2
− f (r)2(γ − λb)}b = 0, which gives

{(µ − γ)a − λa2
} f (r)2 + f (r)2

{(µ − γ)b + λb2
} = 0 for all r = (r1, . . . , rn) ∈ Rn. Then by Lemma 3.4, one of the

following holds:
• (µ − γ)a − λa2 = −(µ − γ)b − λb2

∈ C;
• (µ − γ)a − λa2 = −(µ − γ)b − λb2 and f (x1, . . . , xn)2 is central valued.
(7) R satisfies s4. In this case, G(x) = px + xq = px + x(q− u) + xu = (p + q− u)x + xu = (p +λ)x + xu, where

q − u = λ ∈ C. This is our conclusion (7).

Now to complete the proof of Proposition 3.5, we assume a, b < C and q − u < C and then we show a
number of contradictions.

Lemma 3.8. If a, b < C and q − u < C, then (2) is a non-trivial generalized polynomial identity for R.

Proof. Let w = q − u. By hypothesis, we have

ζ(x1, . . . , xn) = ap f (x1, . . . , xn)2 + a f (x1, . . . , xn)w f (x1, . . . , xn) − a f (x1, . . . , xn)2v + p f (x1, . . . , xn)2b
+ f (x1, . . . , xn)w f (x1, . . . , xn)b − f (x1, . . . , xn)2vb = 0 (5)

for all x1, . . . , xn ∈ R. By Fact 2.1, U satisfies ζ(x1, . . . , xn) = 0. Suppose that ζ(x1, . . . , xn) is a trivial GPI for U.
Let T = U ∗C C{x1, x2, . . . , xn}, the free product of U and C{x1, . . . , xn}, the free C-algebra in noncommuting
indeterminates x1, x2, . . . , xn. Then, ζ(x1, . . . , xn) is zero element in T = U ∗C C{x1, . . . , xn}. This implies that
{ap, a, p, 1} is linearly C-dependent. Then there exists α1, α2, α3, α4 ∈ C such that α1ap+α2a+α3p+α4.1 = 0. If
α1 = α3 = 0, then α2 , 0 and so a = −α−1

2 α4 ∈ C, a contradiction. Therefore, either α1 , 0 or α3 , 0. Without
loss of generality, we assume that α1 , 0. Then ap = αa + βp +γ, where α = −α−1

1 α2, β = −α−1
1 α3, γ = −α−1

1 α4.
Then U satisfies

(αa + βp + γ) f (x1, . . . , xn)2 + a f (x1, . . . , xn)w f (x1, . . . , xn) − a f (x1, . . . , xn)2v + p f (x1, . . . , xn)2b
+ f (x1, . . . , xn)w f (x1, . . . , xn)b − f (x1, . . . , xn)2vb = 0. (6)
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This implies that {a, p, 1} is linearly C-dependent. Then there exist β1, β2, β3 ∈ C such that β1a + β2p + β3 = 0.
By same argument as before, since a < C, we have β2 , 0 and hence p = α′a + β′ for some α′, β′ ∈ C. Thus
our identity becomes

(αa + βα′a + ββ′ + γ) f (x1, . . . , xn)2 + a f (x1, . . . , xn)w f (x1, . . . , xn) − a f (x1, . . . , xn)2v
+(α′a + β′) f (x1, . . . , xn)2b + f (x1, . . . , xn)w f (x1, . . . , xn)b − f (x1, . . . , xn)2vb = 0. (7)

Since {a, 1} is linearly C-independent, we have that U satisfies

(α + βα′)a f (x1, . . . , xn)2 + a f (x1, . . . , xn)w f (x1, . . . , xn) − a f (x1, . . . , xn)2v + α′a f (x1, . . . , xn)2b = 0, (8)

that is

a f (x1, . . . , xn)
(
(α + βα′) f (x1, . . . , xn) + w f (x1, . . . , xn) − f (x1, . . . , xn)v + α′ f (x1, . . . , xn)b

)
= 0 (9)

for all x1, . . . , xn ∈ U. Moreover, since w < C, the term a f (x1, . . . , xn)w f (x1, . . . , xn) can not be canceled and
hence a f (x1, . . . , xn)w f (x1, . . . , xn) = 0 which implies a = 0 or q − u = w = 0, a contradiction.

Similarly, we can prove that either b ∈ C or w = q − u ∈ C, a contradiction.

Lemma 3.9. For R = Mm(C), the ring of all m × m matrices over the field C, if a, b < C and q − u < C such that R
satisfies (2), then no conclusion of Proposition 3.5.

Proof. By our hypothesis, R satisfies the generalized polynomial identity

ap f (x1, . . . , xn)2 + a f (x1, . . . , xn)(q − u) f (x1, . . . , xn) − a f (x1, . . . , xn)2v + p f (x1, . . . , xn)2b
+ f (x1, . . . , xn)(q − u) f (x1, . . . , xn)b − f (x1, . . . , xn)2vb = 0. (10)

Case-1: When C is infinite field.

Since a < Z(R) and q − u < Z(R), by Fact 2.5 there exists a C-automorphism φ of Mm(C) such that the
matrices φ(a) and φ(q−u) have all non-zero entries. Clearly, R satisfies the generalized polynomial identity

φ(ap) f (x1, . . . , xn)2 + φ(a) f (x1, . . . , xn)φ(q − u) f (x1, . . . , xn) − φ(a) f (x1, . . . , xn)2φ(v)
+φ(p) f (x1, . . . , xn)2φ(b) + f (x1, . . . , xn)φ(q − u) f (x1, . . . , xn)φ(b) − f (x1, . . . , xn)2φ(vb) = 0. (11)

By ei j, we mean the usual matrix unit with 1 in (i, j)-entry and zero elsewhere. Since f (x1, . . . , xn) is
not central valued, by [21] (see also [22]), there exist matrices x1, . . . , xn ∈ Mm(C) and γ ∈ C − {0} such that
f (x1, . . . , xn) = γei j, with i , j. Substituting this value in (11), we have

φ(a)ei jφ(q − u)ei j + ei jφ(q − u)ei jφ(b) = 0 (12)

and then left multiplying by ei j, it follows ei jφ(a)ei jφ(q − u)ei j = 0, which is a contradiction, since φ(a) and
φ(q − u) have all non-zero entries.

Moreover, as b < Z(R) and q − u < Z(R), then by same argument as above we have a contradiction with
the fact ei jφ(q − u)ei jφ(b)ei j = 0 obtained from (12).

Case-2: When C is finite field.
Let K be an infinite field which is an extension of the field C. Let R = Mm(K) � R ⊗C K. Notice that the

multilinear polynomial f (x1, . . . , xn) is central-valued on R if and only if it is central-valued on R. Consider
the generalized polynomial

Ψ(x1, . . . , xn) =

ap f (x1, . . . , xn)2 + a f (x1, . . . , xn)(q − u) f (x1, . . . , xn) − a f (x1, . . . , xn)2v + p f (x1, . . . , xn)2b
+ f (x1, . . . , xn)(q − u) f (x1, . . . , xn)b − f (x1, . . . , xn)2vb (13)

which is a generalized polynomial identity for R.
Moreover, it is a multi-homogeneous of multi-degree (2, . . . , 2) in the indeterminates x1, . . . , xn.
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Hence the complete linearization of Ψ(x1, . . . , xn) yields a multilinear generalized polynomial Θ(x1, . . . , xn, y1, . . . , yn)
in 2n indeterminates, moreover

Θ(x1, . . . , xn, x1, . . . , xn) = 2nΨ(x1, . . . , xn).

Clearly the multilinear polynomial Θ(x1, . . . , xn, y1, . . . , yn) is a generalized polynomial identity for R and R
too. Since char(C) , 2 we obtain Ψ(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ R and then conclusion follows from
case-1 as above.

Lemma 3.10. Let R be a prime ring of char (R) , 2, C the extended centroid of R and f (x1, . . . , xn) a non-central
multilinear polynomial over C. If R satisfies (2) and a, b < C and q − u < C, then no conclusion of Proposition 3.5.

Proof. Let w = q − u. By hypothesis, we have

ap f (x1, . . . , xn)2 + a f (x1, . . . , xn)w f (x1, . . . , xn) − a f (x1, . . . , xn)2v + p f (x1, . . . , xn)2b
+ f (x1, . . . , xn)w f (x1, . . . , xn)b − f (x1, . . . , xn)2vb = 0 (14)

for all x1, . . . , xn ∈ R. By Fact 2.1, U satisfies (14). By Lemma 3.8, (14) is a non-trivial GPI for U. In this case
by Fact 2.7, R is isomorphic to a dense ring of linear transformations of a vector space V over C.

Let dimCV = m. By density of R, then R � Mm(C). Since f (r1, . . . , rn) is not central valued on R, R must
be noncommutative and so m ≥ 2. In this case, by Lemma 3.9, we get no conclusion of Proposition 3.5.

Let dimCV = ∞. Then by Lemma 2 in [26], the set f (R) is dense on R. Thus by hypothesis, R satisfies

apx2 + ax(q − u)x − ax2v + px2b + x(q − u)xb − x2vb = 0. (15)

By Proposition 16 in [4], we conclude that either a, b ∈ C or q − u ∈ C, a contradiction. Hence there is no
conclusion of Proposition 3.5.

Proof of Proposition 3.5. In case a, b ∈ C or q − u ∈ C, then by Lemma 3.6 and Lemma 3.7, we have our
conclusions (1)- (7), otherwise we have no conclusion by Lemma 3.10.

In particular, we have the following Corollary which we need to prove our Main Theorem in next
section.

Corollary 3.11. Let R be a prime ring of char (R) , 2, U be its Utumi ring of quotients, C be the extended centroid
of R and f (x1, . . . , xn) a non-central multilinear polynomial over C which is not central valued on R. If for some
a, b, p, q,u, v ∈ U, R satisfies

a
{
(p f (r) + f (r)q) f (r) − f (r)(u f (r) + f (r)v)

}
+
{
(p f (r) + f (r)q) f (r) − f (r)(u f (r) + f (r)v)

}
b = 0

for all r = (r1, . . . , rn) ∈ Rn, then either a, b ∈ C or q − u ∈ C.

4. Proof of Main Theorem

In this section, R always be a prime ring of char (R) , 2, U be its Utumi ring of quotients and C = Z(U)
be the extended centroid of R. Let f (x1, . . . , xn) be a noncentral multilinear polynomial over C. By [19,
Theorem 3], F(x) = cx + d(x), G(x) = ax + d′(x) and H(x) = bx + δ(x) for some a, b, c ∈ U and d, d′ and δ are
three derivations of U.

By hypothesis, we have

c
(
a f (r)2 + d′( f (r)) f (r) − f (r)b f (r) − f (r)δ( f (r))

)
+ d

(
a f (r)2 + d′( f (r)) f (r) − f (r)b f (r) − f (r)δ( f (r))

)
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for all r = (r1, . . . , rn) ∈ In. By Fact 2.1 and Fact 2.2, we have

c
(
a f (r)2 + d′( f (r)) f (r) − f (r)b f (r) − f (r)δ( f (r))

)
+ d

(
a f (r)2 + d′( f (r)) f (r) − f (r)b f (r) − f (r)δ( f (r))

)
= 0 (16)

for all r = (r1, . . . , rn) ∈ Un.

Moreover, if d, d′ and δ are all inner derivations, then by Proposition 3.5, we have our conclusions of
Main Theorem. Thus, to prove our Main Theorem, we need to consider the following cases.

• d′, δ are inner, d is outer.

• d, δ are inner, d′ is outer.

• d, d′ are inner, δ is outer.

• d is inner, d′, δ are outer.

• d′ is inner, d, δ are outer.

• δ is inner, d, d′ are outer.

• d, d′ and δ all are outer.

Case-1: d′, δ are inner, d is outer.

Let d′(x) = [p, x] and δ(x) = [q, x] for all x ∈ R and for some p, q ∈ U. By (16), U satisfies

c((a + p) f (r)2
− f (r)(p + q + b) f (r) + f (r)2q) + d((a + p) f (r)2

− f (r)(p + q + b) f (r) + f (r)2q) = 0 (17)

that is

c((a + p) f (r)2
− f (r)(p + q + b) f (r) + f (r)2q) + d(a + p) f (r)2 + (a + p)d( f (r)) f (r) + (a + p) f (r)d( f (r))

−d( f (r))(p + q + b) f (r) − f (r)d(p + q + b) f (r) − f (r)(p + q + b)d( f (r)) + d( f (r)) f (r)q + f (r)d( f (r))q
+ f (r)2d(q) = 0. (18)

By Fact 2.4 and Fact 2.6, we can replace d( f (r1, . . . , rn)) by f d(r1, . . . , rn) +
∑
i

f (r1, . . . , yi, . . . , rn) in (18) and

then U satisfies blended component

(a + p)
∑
i

f (r1, . . . , yi, . . . , rn) f (r1, . . . , rn) + (a + p) f (r1, . . . , rn)
∑
i

f (r1, . . . , yi, . . . , rn)

−
∑
i

f (r1, . . . , yi, . . . , rn)(p + q + b) f (r1, . . . , rn) − f (r1, . . . , rn)(p + q + b)
∑
i

f (r1, . . . , yi, . . . , rn)

+
∑
i

f (r1, . . . , yi, . . . , rn) f (r1, . . . , rn)q + f (r1, . . . , rn)
∑
i

f (r1, . . . , yi, . . . , rn)q = 0.

In particular, for y1 = r1 and y2 = · · · = yn = 0 we have that

(a + p) f (r)2
− f (r)(p + q + b) f (r) + f (r)2q = 0

which is nothing but the identity
G( f (r)) f (r) − f (r)H( f (r)) = 0
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for all r = (r1, . . . , rn) ∈ Un. Then by Theorem A, we have conclusions (2) and (3).

Case-2: d, δ are inner, d′ is outer.

Let d(x) = [p, x] and δ(x) = [q, x] for all x ∈ R and for some p, q ∈ U. By (16), U satisfies

c(a f (r)2 + d′( f (r)) f (r) − f (r)b f (r) − f (r)[q, f (r)]) + [p, a f (r)2 + d′( f (r)) f (r) − f (r)b f (r) − f (r)[q, f (r)]] = 0. (19)

Since d′ is outer, by Fact 2.4 and Fact 2.6 we can replace d′( f (r1, . . . , rn)) by f d′ (r1, . . . , rn)+
∑
i

f (r1, . . . , yi, . . . , rn)

in (19) and then U satisfies blended component

c
∑
i

f (r1, . . . , yi, . . . , rn) f (r1, . . . , rn) + [p,
∑
i

f (r1, . . . , yi, . . . , rn) f (r1, . . . , rn)] = 0. (20)

Replacing yi with [a′, ri] for some a′ < C, U satisfies

c[a′, f (r1, . . . , rn)] f (r1, . . . , rn) + [p, [a′, f (r1, . . . , rn)] f (r1, . . . , rn)] = 0. (21)

Then by [14], we conclude that a′ ∈ C, a contradiction.

Case-3: d, d′ are inner, δ is outer.

Let d(x) = [p, x] and d′(x) = [q, x] for all x ∈ R and for some p, q ∈ U. By (16), U satisfies

c(a f (r)2 + [q, f (r)] f (r) − f (r)b f (r) − f (r)δ( f (r))) + [p, a f (r)2 + [q, f (r)] f (r) − f (r)b f (r) − f (r)δ( f (r))] = 0. (22)

Since δ is outer, by Fact 2.4 and Fact 2.6, we can replace δ( f (r1, . . . , rn)) by f δ(r1, . . . , rn)+
∑
i

f (r1, . . . , yi, . . . , rn)

in (22) and then U satisfies blended component

−c f (r1, . . . , rn)
∑

i

f (r1, . . . , yi, . . . , rn) + [p,− f (r1, . . . , rn)λ
∑

i

f (r1, . . . , yi, . . . , rn)] = 0. (23)

Replacing yi with [q′, yi] for some q′ < C, we obtain from above relation

c f (r)[q′, f (r)] + [p, f (r)[q′, f (r)]] = 0,

that is
F
(

f (r)[q′, f (r)]
)

= 0

for all r = (r1, . . . , rn) ∈ Un. By Corollary 3.11, either c, p ∈ C or q′ ∈ C. Since q′ < C, we have c, p ∈ C, which
implies F(x) = cx for all x ∈ R. Since F , 0, 0 , c ∈ C.

Hence our hypothesis reduces to the identity G( f (r)) f (r) − f (r)H( f (r)) = 0 for all r = (r1, . . . , rn) ∈ Un.
Then by Theorem A, we have conclusions (2) and (3).

Case-4: d is inner, d′, δ are outer.

Let d(x) = [p, x] for all x ∈ R and for some p ∈ U. By (16),

c(a f (r)2 + d′( f (r)) f (r) − f (r)b f (r) − f (r)δ( f (r))) + [p, a f (r)2 + d′( f (r)) f (r) − f (r)b f (r) − f (r)δ( f (r))] = 0 (24)
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for all r = (r1, . . . , rn) ∈ Un.
Sub-case-i: Assume next that d′ and δ are C-independent modulo inner derivations of U. Then by Fact

2.4 and Fact 2.6, we can replace d′( f (r1, . . . , rn)) by f d′ (r1, . . . , rn) +
∑
i

f (r1, . . . , xi, . . . , rn) and δ( f (r1, . . . , rn)) by

f δ(r1, . . . , rn) +
∑
i

f (r1, . . . , yi, . . . , rn) in (24) and then U satisfies blended components

c
∑

i

f (r1, . . . , xi, . . . , rn) f (r1, . . . , rn) + [p,
∑

i

f (r1, . . . , xi, . . . , rn) f (r1, . . . , rn)] = 0. (25)

This is same as (20) and then by same argument it leads to a contradiction.
Sub-case-ii: Assume that d′ and δ are C-dependent modulo inner derivations of U, say αd′ + βδ = ad′q,

where α, β ∈ C, q′ ∈ U and ad′q(x) = [q′, x] for all x ∈ R.

Since δ is outer, α , 0 and hence d′(x) = λδ(x) + [q, x] for all x ∈ U, where λ = −βα−1 and q = α−1q′.
From (24), we obtain

c(a f (r)2 + λδ( f (r)) f (r) + [q, f (r)] f (r) − f (r)b f (r) − f (r)δ( f (r)))
+[p, a f (r)2 + λδ( f (r)) f (r) + [q, f (r)] f (r) − f (r)b f (r) − f (r)δ( f (r))] = 0 (26)

By Fact 2.4 and Fact 2.6, we can replace δ( f (r1, . . . , rn)) by f δ(r1, . . . , rn) +
∑
i

f (r1, . . . , yi, . . . , rn) in (26) and

then U satisfies blended components

c
{
λ
∑
i

f (r1, . . . , yi, . . . , rn) f (r1, . . . , rn) − f (r1, . . . , rn)
∑
i

f (r1, . . . , yi, . . . , rn)
}

+
[
p, λ

∑
i

f (r1, . . . , yi, . . . , rn) f (r1, . . . , rn) − f (r1, . . . , rn)
∑
i

f (r1, . . . , yi, . . . , rn)
]

= 0. (27)

Replacing yi with [c′, yi] for some c′ < C, we obtain from above relation that

c
{
λ[c′, f (r)] f (r) − f (r)[c′, f (r)]

}
+

[
p, λ[c′, f (r)] f (r) − f (r)[c′, f (r)]

]
= 0,

By Corollary 3.11, either c, p ∈ C or λc′ + c′ = (λ + 1)c′ ∈ C.
If c, p ∈ C, then F(x) = cx for all x ∈ R. Since F , 0, c , 0 and so our hypothesis reduces to (G( f (r)) f (r) −

f (r)H( f (r))) = 0 for all r = (r1, . . . , rn) ∈ Un. Then again by Theorem A, we have conclusions (2) and (3).
On the other hand, if (λ + 1)c′ ∈ C, then since c′ < C, it yields that λ = −1.
Then (27) yields

c
{
−

∑
i

f (r1, . . . , yi, . . . , rn) f (r1, . . . , rn) − f (r1, . . . , rn)
∑
i

f (r1, . . . , yi, . . . , rn)
}

+
[
p,−

∑
i

f (r1, . . . , yi, . . . , rn) f (r1, . . . , rn) − f (r1, . . . , rn)
∑
i

f (r1, . . . , yi, . . . , rn)
]

= 0. (28)

In particular, for y1 = r1 and y2 = · · · = yn = 0, U satisfies

c f (r1, . . . , rn)2 + [p, f (r1, . . . , rn)2] = 0

that is
(c + p) f (r1, . . . , rn)2

− f (r1, . . . , rn)2p = 0.

Then by Lemma 3.4, one of the following holds: (i) c + p = p ∈ C. In this case, p ∈ C and c = 0 implying
F = 0, a contradiction. (ii) c + p = p and f (r1, . . . , rn)2

∈ C. In this case c = 0 and hence F(x) = [p, x] for all
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x ∈ R is an inner derivation of R. In this case, as d′, δ are outer derivations of R, by Theorem B, we have
conclusion (8) of Main Theorem.

Case-5: d′ is inner, d, δ are outer.

Let d′(x) = [p, x] for all x ∈ R and for some p ∈ U. By (16), U satisfies

c(a f (r)2 + [p, f (r)] f (r) − f (r)b f (r) − f (r)δ( f (r))) + d(a f (r)2 + [p, f (r)] f (r) − f (r)b f (r)
− f (r)δ( f (r))) = 0. (29)

Sub-case-i: Let δ and d be C-independent modulo inner derivations of U.
By Fact 2.4 and Fact 2.6, in (29), we can replace d( f (r1, . . . , rn)) with f d(r1, . . . , rn) +

∑
i

f (r1, . . . , yi, . . . , rn)

and dδ( f (r1, . . . , rn)) with

f dδ(r1, . . . , rn) +
∑
i

f δ(r1, . . . , si, . . . , rn) +
∑
i

f d(r1, . . . , yi, . . . , rn)

+
∑
i

f (r1, . . . , ti, . . . , rn) +
∑
i

f (r1, . . . , si, . . . , y j, . . . , rn)

in (29) and then U satisfies blended component

f (r1, . . . , rn)
∑

i

f (r1, . . . , ti, . . . , rn) = 0. (30)

In particular, for t1 = r1 and t2 = · · · = tn = 0, we have f (r1, . . . , rn)2 = 0 which implies f (r1, . . . , rn) = 0, a
contradiction.

Sub-case-ii: Let δ and d be C-dependent modulo inner derivations of U. Then δ(x) = αd(x) + [q, x] for all
x ∈ U, for some 0 , α ∈ C. From (29), U satisfies

c(a f (r)2 + [p, f (r)] f (r) − f (r)b f (r) − α f (r)d( f (r)) − f (r)[q, f (r)])
+d(a f (r)2 + [p, f (r)] f (r) − f (r)b f (r) − α f (r)d( f (r)) − f (r)[q, f (r)]) = 0. (31)

Applying Fact 2.4 and Fact 2.6 to (31), we can replace d( f (r1, . . . , rn)) with f d(r1, . . . , rn)+
∑
i

f (r1, . . . , yi, . . . , rn)

and d2( f (r1, . . . , rn)) with

f d2
(r1, . . . , rn)

+2
∑
i

f d(r1, . . . , yi, . . . , rn) +
∑
i

f (r1, . . . , ti, . . . , rn) +
∑
i

f (r1, . . . , yi, . . . , y j, . . . , rn)

in (31) and then U satisfies blended component

α f (r1, . . . , rn)
∑

i

f (r1, . . . , ti, . . . , rn) = 0. (32)

In particular, for t1 = r1 and t2 = · · · = tn = 0, we have α f (r1, . . . , rn)2 = 0 which implies f (r1, . . . , rn) = 0, a
contradiction.

Case-6: δ is inner, d, d′ are outer.

Let δ(x) = [p, x] for all x ∈ R, for some p ∈ U. By (16), U satisfies

c(a f (r)2 + d′( f (r)) f (r) − f (r)b f (r) − f (r)[p, f (r)])
+d(a f (r)2 + d′( f (r)) f (r) − f (r)b f (r) − f (r)[p, f (r)]) = 0. (33)
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Sub-case-i: Let d and d′ be C-independent modulo inner derivations of U. By applying Fact 2.4 and
Fact 2.6 to the above relation, we can replace d( f (r1, . . . , rn)) with f d(r1, . . . , rn) +

∑
i

f (r1, . . . , yi, . . . , rn) and

dd′( f (r1, . . . , rn)) with

f dδ(r1, . . . , rn) +
∑
i

f δ(r1, . . . , si, . . . , rn) +
∑
i

f d(r1, . . . , yi, . . . , rn)

+
∑
i

f (r1, . . . , ti, . . . , rn) +
∑
i

f (r1, . . . , si, . . . , y j, . . . , rn)

in (33) and then U satisfies blended component∑
i

f (r1, . . . , ti, . . . , rn) f (r1, . . . , rn) = 0. (34)

In particular, for t1 = r1 and t2 = · · · = tn = 0, we have f (r1, . . . , rn)2 = 0 which implies f (r1, . . . , rn) = 0, a
contradiction.

Sub-case-ii: Let δ and d be C-dependent modulo inner derivations of U. Then d′(x) = αd(x) + [q, x] for
all x ∈ U, for some 0 , α ∈ C. From (33), U satisfies

c(a f (r)2 + αd( f (r)) f (r) + [q, f (r)] f (r) − f (r)b f (r) − f (r)[p, f (r)])
+d(a f (r)2 + αd( f (r)) f (r) + [q, f (r)] f (r) − f (r)b f (r) − f (r)[p, f (r)]) = 0. (35)

By applying Fact 2.4 and Fact 2.6 to (35), we can replace d( f (r1, . . . , rn)) with f d(r1, . . . , rn)+
∑
i

f (r1, . . . , yi, . . . , rn)

and d2( f (r1, . . . , rn)) with

f d2
(r1, . . . , rn)

+2
∑
i

f d(r1, . . . , yi, . . . , rn) +
∑
i

f (r1, . . . , ti, . . . , rn) +
∑
i

f (r1, . . . , yi, . . . , y j, . . . , rn)

in (35) and then U satisfies blended component

α
∑

i

f (r1, . . . , ti, . . . , rn) f (r1, . . . , rn) = 0. (36)

In particular, for t1 = r1 and t2 = · · · = tn = 0, we have α f (r1, . . . , rn)2 = 0 which implies f (r1, . . . , rn) = 0, a
contradiction.

Case-7: d, d′ and δ all are outer.

Sub-case-i: Let d, d′ and δ be C-independent modulo inner derivations of U. In this case we rewrite (16)
as

c(a f (r)2 + d′( f (r)) f (r) − f (r)b f (r) − f (r)δ( f (r))) + d(a) f (r)2 + ad( f (r)) f (r) + a f (r)d( f (r)) + dd′( f (r)) f (r)
+d′( f (r))d( f (r)) − d( f (r))b f (r) − f (r)d(b) f (r) − f (r)bd( f (r)) − d( f (r))δ( f (r)) − f (r)dδ( f (r)) = 0 (37)

for all r = (r1, . . . , rn) ∈ Un.
By Fact 2.4 and Fact 2.6, we can replace dd′( f (x1, . . . , xn)) by

f dd′ (r1, . . . , rn) + Σ
i

f d′ (r1, . . . , xi, . . . , rn) + Σ
i

f d(r1, . . . , ti, . . . , rn)

+ Σ
i, j

f (r1, . . . , ti, . . . , x j . . . , rn) + Σ
i

f (r1, . . . ,wi, . . . , rn)

in above equality and then U satisfies the blended component

Σ
i

f (r1, . . . ,wi, . . . , rn) f (r1, . . . , rn) = 0.
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This is same as (34) and hence by same argument as above, it leads to a contradiction.
Sub-case-ii: Let d, d′ and δ be C-dependent modulo inner derivations of U i.e., α1d + α2d′ + α3δ = ada′

for some α1, α2, α3 ∈ C and a′ ∈ U. Then at least one of α1, α2, α3 must be nonzero. Let α1 , 0. Then we can
write d = β1d′ + β2δ + ada′′ for some β1, β2 ∈ C and a′′ ∈ U. Then by (16), we have

c(a f (r)2 + d′( f (r)) f (r) − f (r)b f (r) − f (r)δ( f (r))) + β1d′(a f (r)2 + d′( f (r)) f (r) − f (r)b f (r) − f (r)δ( f (r)))
+β2δ(a f (r)2 + d′( f (r)) f (r) − f (r)b f (r) − f (r)δ( f (r)))

+[a′′, a f (r)2 + d′( f (r)) f (r) − f (r)b f (r) − f (r)δ( f (r))] = 0 (38)

for all r = (r1, . . . , rn) ∈ Un.
Using Fact 2.4 and Fact 2.6, we substitute the following values in (38) d′( f (r1, . . . , rn)) by

f d′ (r1, . . . , rn) + Σ
i

f (r1, . . . , yi, . . . , rn),

δ( f (r1, . . . , rn)) by
f δ(r1, . . . , rn) + Σ

i
f (r1, . . . , ti, . . . , rn),

d′δ( f (r1, . . . , rn)) by
f d′δ(r1, . . . , rn) + Σ

i
f d′ (r1, . . . , ti, . . . , rn)

+Σ
i

f δ(r1, . . . , yi, . . . , rn) + Σ
i, j

f (r1, . . . , yi, . . . , t j . . . , rn)

+Σ
i

f (r1, . . . ,wi, . . . , rn),

δd′( f (r1, . . . , rn)) by
f δd′ (r1, . . . , rn) + Σ

i
f δ(r1, . . . , yi, . . . , rn)

+Σ
i

f d′ (r1, . . . , ti, . . . , rn) + Σ
i, j

f (r1, . . . , yi, . . . , t j . . . , rn)

+Σ
i

f (r1, . . . ,w′i , . . . , rn),

δ2( f (r1, . . . , rn)) by
f δ

2
(r1, . . . , rn) + 2Σ

i
f δ(r1, . . . , ti, . . . , rn)

+Σ
i

f (r1, . . . , zi, . . . , rn) + Σ
i, j

f (r1, . . . , ti, . . . , t j, . . . , rn),

and d′2( f (r1, . . . , rn)) by
f d′2 (r1, . . . , rn) + 2Σ

i
f d′ (r1, . . . , yi, . . . , rn)

+Σ
i

f (r1, . . . , z′i , . . . , rn) + Σ
i, j

f (r1, . . . , yi, . . . , y j, . . . , rn).

Therefore, U satisfies the blended component

β1Σ
i

f (r1, . . . , z′i , . . . , rn) f (r1, . . . , rn) = 0.

and

β2 f (r1, . . . , rn)Σ
i

f (r1, . . . ,wi, . . . , rn) = 0.

If β1 , 0, then from above, U satisfies

Σ
i

f (r1, . . . , z′i , . . . , rn) f (r1, . . . , rn) = 0.

This is same as (34) and hence by same argument as above, it leads to a contradiction. Thus we conclude
that β1 = 0. Similarly, from above relation, we conclude that β2 = 0. Then d is inner, a contradiction. This
completes the proof of the theorem. �
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