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Abstract. In this paper, a new form of separation axioms called r-fuzzy soft Ti; (i = 0, 1, 2, 3, 4), r-fuzzy soft
regular and r-fuzzy soft normal axioms are introduced in a fuzzy soft topological space based on the paper
Aygünoǧlu et al. [7]. Also, the relations of these axioms with each other are investigated with the help of
examples. Furthermore, some fuzzy soft invariance properties, namely fuzzy soft topological property and
hereditary property are specified.

1. Introduction and Preliminaries

The concept of soft set theory has been initiated by Molodtsov [18] as a general mathematical tool
for modeling uncertainties. By a soft set we mean a pair (F,E), where E is a set interpreted as the set of
parameters and the mapping F : E −→ P(X) is referred to as the soft structure on X. After the introduction
of the notion of soft sets several researchers improved this concept. Soft sets theory received the attention
of the topologists who always seeking to generalize and apply the topological notions. One of the most
important characteristics of qualitative properties of spatial data and probably the most essential aspect
of space is topology and topological relationships. Topological relations between spatial objects such as
meet and overlap are the relationships that are invariant with respect to particular transformations due to
homeomorphism. Hassan and Ghareeb [11] gave the fundamental concepts and properties of a soft spatial
region. They provided a theoretical framework for both dominant ontologies used in GIS. It should be
noted that a rich potential for applications of soft set theory to topology in several directions leads to rapid
progress of research (see, for example, [3,4,5]). Maji et al. [16] introduced the concept of fuzzy soft set
which combines fuzzy sets [22] and soft sets [18]. Soft set and fuzzy soft set theories have a rich potential
for applications in several directions. So far, lots of spectacular and creative researches about the theories
of soft set and fuzzy soft set have been considered by some scholars [1,2,6-8,13,14,19]. Also, Aygünoǧlu et
al. [7] studied the topological structure of fuzzy soft sets based on Šostak’s paper [21]. Shabir et al. [20] and
Georgiou et al. [10] defined some soft separation axioms, soft θ-continuity and soft connectedness in soft
topological spaces using (ordinary) points of a topological space X. Hussain and Ahmad [12] introduced
and studied soft separation axioms using soft points defined by Zorlutuna et al. [24]. Later, Zakari et
al. [23] introduced the notion of soft weak structures as a generalization of soft topology, generalized soft
topology and soft minimal structures and discussed some of its properties with some separation axioms
and compactness in it.
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In this work, the concepts of r-fuzzy soft Ti; (i = 0, 1, 2, 3, 4), r-fuzzy soft regular and r-fuzzy soft normal
axioms are introduced in a fuzzy soft topological space based on the paper of Aygünoǧlu et al. [7]. Also,
some fuzzy soft invariance properties namely fuzzy soft topological property and fuzzy soft hereditary
property are specified. Moreover, the relations of these axioms with each other are investigated with the
help of examples. Throughout this paper, X refers to an initial universe, E is the set of all parameters for
X and A ⊆ E , IX is the set of all fuzzy sets on X (where, I = [0, 1], I0 = (0, 1]) and for α ∈ I, α(x) = α, for
all x ∈ X. A fuzzy point xt for t ∈ I0 is an element of IX such that xt(y) = t, if y=x and xt(y)=0, if y, x. The
family of all fuzzy points in X is denoted by Pt(X). For λ ∈ IX a fuzzy point xt ∈ λ if and only if t < λ(x).

Definition 1.1. ([7]) A fuzzy soft set fA over X is a mapping from E into IX such that fA(e) is a fuzzy set on
X, for each e ∈ A and fA(e) = 0, if e < A, where 0 is zero function on X. The fuzzy set fA(e), for each e ∈ E,
is called an element of the fuzzy soft set fA. (̃X,E) denotes the collection of all fuzzy soft sets on X and is
called a fuzzy soft universe [15].

Definition 1.2. ([17]) A fuzzy soft point ext over X is a fuzzy soft set defined as follows: ext (k) = xt, if k = e
and ext (k) = 0, if k ∈ E − {e}, where xt is a fuzzy point. A fuzzy soft point ext is said to belong to a fuzzy soft
set fA, denoted by ext ∈̃ fA if t < fA(e)(x). Two fuzzy soft points ext and kys are said to be distinct, denoted by
ext , kys if x , y or e , k. The family of all fuzzy soft points in X is denoted by P̃t(X).

Definition 1.3. ([7]) A mapping τ : E −→ [0, 1](̃X,E) is called a fuzzy soft topology on X if it satisfies the
following conditions for each e ∈ E:

(O1) τe(Φ) = τe(Ẽ) = 1.
(O2) τe( fA u 1B) ≥ τe( fA) ∧ τe(1B), ∀ fA, 1B ∈ (̃X,E).
(O3) τe(

⊔
i∈∆( fA)i) ≥

∧
i∈∆ τe(( fA)i),∀( fA)i ∈ (̃X,E), i ∈ ∆.

Then the pair (X, τE) is called a fuzzy soft topological space. The value τe( fA) is interpreted as the degree
of openness of fA with respect to parameter e ∈ E.

All definitions and properties of fuzzy soft sets and fuzzy soft topology are found in [1,6,7,9,14,16].

2. Fuzzy Soft Ti; (i = 0, 1) Spaces

Definition 2.1. A fuzzy soft topological space (X, τE) is said to be r-fuzzy soft T0-space if for each ext , kys ∈

P̃t(X) such that ext , kys , there exist at least one fA or 1B ∈ (̃X,E) with τe( fA) ≥ r, τe(1B) ≥ r such that ext ∈̃ fA,
kys <̃ fA or kys ∈̃1B, ext <̃1B for each e ∈ E, r ∈ I0.

Definition 2.2. A fuzzy soft topological space (X, τE) is said to be r-fuzzy soft T1-space if for each ext , kys ∈

P̃t(X) such that ext , kys , there exist fA, 1B ∈ (̃X,E) with τe( fA) ≥ r, τe(1B) ≥ r such that ext ∈̃ fA, kys <̃ fA and
kys ∈̃1B, ext <̃1B for each e ∈ E, r ∈ I0.

Example 2.3. Let X = {x, y} be a classical set and E = {e1, e2} be the parameter set of X. Define fE, 1E,
hE, kE, pE and qE ∈ (̃X,E) as follows: fE = {(e1, { x

0.1 ,
y

0.9 }), (e2, { x
0.9 ,

y
0.1 })}, 1E = {(e1, { x

0.9 ,
y

0.1 }), (e2, { x
0.1 ,

y
0.9 })},

hE = {(e1, { x
0.9 ,

y
0.1 }), (e2, { x

0.9 ,
y

0.1 })}, kE = {(e1, { x
0.1 ,

y
0.9 }), (e2, { x

0.1 ,
y

0.9 })}, pE = {(e1, { x
0.1 ,

y
0.1 }), (e2, { x

0.1 ,
y

0.1 })}, qE =

{(e1, { x
0.9 ,

y
0.9 }), (e2, { x

0.9 ,
y

0.9 })}. Define fuzzy soft topology τE : E −→ [0, 1](̃X,E) as follows:

τe1 (wE) =



1 if wE ∈ {Φ, Ẽ},
1
4 if wE ∈ { fE, hE},
1
3 if wE ∈ {1E, kE},
1
2 if wE ∈ {pE, fE u hE, fE u kE, 1E u hE, 1E u kE},
2
3 if wE ∈ {qE, fE t hE, fE t kE, 1E t hE, 1E t kE},
0 otherwise,
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τe2 (wE) =



1 if wE ∈ {Φ, Ẽ},
1
5 if wE ∈ { fE, hE},
1
4 if wE ∈ {1E, kE},
1
3 if wE ∈ {pE, fE u hE, fE u kE, 1E u hE, 1E u kE},
1
2 if wE ∈ {qE, fE t hE, fE t kE, 1E t hE, 1E t kE},
0 otherwise.

Then for t, s ∈ (0.1, 0.9), (X, τE) is 1
6 -fuzzy soft T1-space and (X, τE) is 1

6 -fuzzy soft T0-space.

The following implication hold:
r-fuzzy soft T1-space ⇒ r-fuzzy soft T0-space.

In general the converse is not true.

Example 2.4. Let X = {x, y} be a classical set and E = {e1, e2} be the parameter set of X. Define fE, 1E,
hE, pE and qE ∈ (̃X,E) as follows: fE = {(e1, { x

0.1 ,
y

0.9 }), (e2, { x
0.9 ,

y
0.1 })}, 1E = {(e1, { x

0.1 ,
y

0.1 }), (e2, { x
0.9 ,

y
0.1 })}, hE =

{(e1, { x
0.1 ,

y
0.1 }), (e2, { x

0.1 ,
y

0.9 })}, pE = {(e1, { x
0.1 ,

y
0.1 }), (e2, { x

0.1 ,
y

0.1 })}, qE = {(e1, { x
0.1 ,

y
0.9 }), (e2, { x

0.9 ,
y

0.9 })}. Define fuzzy
soft topology τE : E −→ [0, 1](̃X,E) as follows:

τe1 (wE) =


1 if wE ∈ {Φ, Ẽ},
1
3 if wE ∈ { fE, 1E, hE},
1
2 if wE ∈ {pE, fE u 1E},
2
3 if wE ∈ {qE, fE t 1E, 1E t hE},
0 otherwise,

τe2 (wE) =


1 if wE ∈ {Φ, Ẽ},
1
4 if wE ∈ { fE, 1E, hE},
1
3 if wE ∈ {pE, fE u 1E},
1
2 if wE ∈ {qE, fE t 1E, 1E t hE},
0 otherwise.

Then for t, s ∈ (0.1, 0.9), (X, τE) is 1
5 -fuzzy soft T0-space and (X, τE) is not 1

5 -fuzzy soft T1-space.

Definition 2.5. Let (X, τE) be a fuzzy soft topological space, Y ⊆ X and F ⊆ E. Define a mapping = : F −→
[0, 1](̃Y,F) as follows:

= f (1F) =
∨
{τ f ( fE) : fE ∈ (̃X,E) , fE|Y = 1F}, ∀ 1F ∈ (̃Y,F), f ∈ F.

Then=F is said to be the fuzzy soft relative topology on Y. The pair (Y,=F) is called a fuzzy soft subspace
of (X, τE).

Theorem 2.6. Let (X, τE) be a fuzzy soft topological space, Y ⊆ X and F ⊆ E. If (X, τE) is r-fuzzy soft T0-space, then
(Y,=F) is r-fuzzy soft T0-space.

Proof. Let ext , kys ∈ P̃t(Y) such that ext , kys . Then ext , kys ∈ P̃t(X) such that ext , kys . Since (X, τE) is r-fuzzy
soft T0-space, there exist at least one fE or 1E ∈ (̃X,E) with τe( fE) ≥ r, τe(1E) ≥ r such that ext ∈̃ fE, kys <̃ fE or
kys ∈̃1E, ext <̃1E for all e ∈ E and r ∈ I0. Therefore ext ∈̃ fE|Y = hF with = f (hF) ≥ r and kys <̃ fE|Y = hF. Thus (Y,=F)
is r-fuzzy soft T0-space.

We state the following result without proof in view of above theorem.

Corollary 2.7. Let (X, τE) be a fuzzy soft topological space, Y ⊆ X and F ⊆ E. If (X, τE) is r-fuzzy soft T1-space,
then (Y,=F) is r-fuzzy soft T1-space.
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Definition 2.8. Let (X, τE) and (Y, τ∗F) be fuzzy soft topological space,s. Then a fuzzy soft mapping ϕψ from
(̃X,E) into (̃Y,F) is called a fuzzy soft open if τe( fA) ≤ τ∗ψ(e)(ϕψ( fA)) for all fA ∈ (̃X,E) and e ∈ E.

Theorem 2.9. Let (X, τE) and (Y, τ∗F) be fuzzy soft topological space,s. If a fuzzy soft mapping ϕψ from (̃X,E) into
(̃Y,F) is fuzzy soft open, bijective and (X, τE) is r-fuzzy soft T1-space, then (Y, τ∗F) is r-fuzzy soft T1-space.

Proof. Let (X, τE) be r-fuzzy soft T1-space and k1
xt
, k2

ys
∈ P̃t(Y) such that k1

xt
, k2

ys
. Thenϕ−1

ψ (k1
xt

), ϕ−1
ψ (k2

ys
) ∈ P̃t(X)

such that ϕ−1
ψ (k1

xt
) , ϕ−1

ψ (k2
ys

) (by ϕψ is bijective mapping). Since (X, τE) is r-fuzzy soft T1-space, there exist fE
and 1E ∈ (̃X,E) with τe( fE) ≥ r and τe(1E) ≥ r such that ϕ−1

ψ (k1
xt

)∈̃ fE, ϕ−1
ψ (k2

ys
)<̃ fE and ϕ−1

ψ (k2
ys

)∈̃1E, ϕ−1
ψ (k1

xt
)<̃1E

for all e ∈ E and r ∈ I0. This implies k1
xt
∈̃ϕψ( fE), k2

ys
<̃ϕψ( fE) and k2

ys
∈̃ϕψ(1E), k1

xt
<̃ϕψ(1E). Since ϕψ is fuzzy soft

open mapping, τ∗ψ(e)(ϕψ( fE)) ≥ r and τ∗ψ(e)(ϕψ(1E)) ≥ r. Thus (Y, τ∗F) is r-fuzzy soft T1-space.

We state the following result without proof in view of above theorem.

Corollary 2.10. Let (X, τE) and (Y, τ∗F) be fuzzy soft topological space,s. If a fuzzy soft mapping ϕψ from (̃X,E) into
(̃Y,F) is fuzzy soft open, bijective and (X, τE) is r-fuzzy soft T0-space, then (Y, τ∗F) is r-fuzzy soft T0-space.

Proposition 2.11. Let (X, τE) be a fuzzy soft topological space. Then a mapping τe for each e ∈ E, defines a fuzzy
topology on X, denoted by =e and defined as follows: =e( fA(e)) = τe( fA) ∀ fA ∈ (̃X,E), e ∈ E. The pair (X,=e) is
called a fuzzy topological space in the sense of Šostak.

Proof. Let (X, τE) be a fuzzy soft topological space.
(1) Since τe(Φ) = τe(Ẽ) = 1, from the definition of =e we have the following: =e(Φ(e)) = τe(Φ) = 1 and

=e(Ẽ(e)) = τe(Ẽ) = 1. This implies =e(0) = =e(1) = 1.
(2) Let fA(e), 1B(e) ∈ IX for some fA, 1B ∈ (̃X,E), e ∈ E. Then τe( fAu1B) ≥ τe( fA)∧τe(1B), ∀ fA, 1B ∈ (̃X,E)

and ( fA u 1B)(e) = fA(e) ∧ 1B(e). From the definition of =e we have the following, =e(( fA u 1B)(e)) ≥
=e( fA(e)) ∧ =e(1B(e)). Hence =e( fA(e) ∧ 1B(e)) ≥ =e( fA(e)) ∧ =e(1B(e)).

(3) Let {( fA)i(e) : ( fA)i(e) ∈ IX, i ∈ ∆} be a collection of fuzzy sets in X for some ( fA)i ∈ (̃X,E), i ∈ ∆ and
e ∈ E. Then τe(

⊔
i∈∆( fA)i) ≥

∧
i∈∆ τe(( fA)i), ∀( fA)i ∈ (̃X,E), i ∈ ∆ and (

⊔
i∈∆( fA)i)(e) =

∨
i∈∆( fA)i(e). From the

definition of =e we have, =e((
⊔

i∈∆( fA)i)(e)) ≥
∧

i∈∆=e(( fA)i(e)). This implies

=e(
∨
i∈∆

( fA)i(e)) ≥
∧
i∈∆

=e(( fA)i(e)).

Then a mapping τe for each e ∈ E, defines a fuzzy topology in Šostak’s sense.

Theorem 2.12. Let (X, τE) be a fuzzy soft topological space, e ∈ E and r ∈ I0. If (X, τE) is r-fuzzy soft T0-space, then
(X, τe) is r-fuzzy T0-space.

Proof. Let (X, τE) be a fuzzy soft topological space and ext , kys ∈ P̃t(X) such that ext , kys . Then xt, ys ∈ Pt(X)
such that xt , ys and for any e ∈ E, τe is a fuzzy topology on X. Since (X, τE) is r-fuzzy soft T0-space, there
exist at least one fE or 1E ∈ (̃X,E) with τe( fE) ≥ r, τe(1E) ≥ r such that ext ∈̃ fE, kys <̃ fE or kys ∈̃1E, ext <̃1E for all
e ∈ E and r ∈ I0. This implies xt ∈ fe, ys < fe or ys ∈ 1e, xt < 1e with τe( fe) ≥ r, τe(1e) ≥ r. Thus (X, τe) is r-fuzzy
T0-space, for each e ∈ E, r ∈ I0.

We state the following result without proof in view of above theorem.

Corollary 2.13. Let (X, τE) be a fuzzy soft topological space, e ∈ E and r ∈ I0. If (X, τE) is r-fuzzy soft T1-space, then
(X, τe) is r-fuzzy T1-space.
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3. Fuzzy Soft Hausdorff Spaces

Definition 3.1. Two fuzzy soft sets fA, 1B in (̃X,E) are said to be fuzzy soft disjoint, written fA u 1B = Φ, if
fe ∧ 1e = 0, for each e ∈ E.

Definition 3.2. A fuzzy soft topological space (X, τE) is said to be r-fuzzy soft Hausdorff space or r-fuzzy
soft T2-space if for each ext , kys ∈ P̃t(X) such that ext , kys , there exist fA, 1B ∈ (̃X,E) with τe( fA) ≥ r, τe(1B) ≥ r
such that ext ∈̃ fA, kys ∈̃1B and fA u 1B = Φ for each e ∈ E, r ∈ I0.

Example 3.3. Let X = {x, y} be a classical set and E = {e1, e2} be the parameter set of X. Define fE, 1E,
hE, kE and qE ∈ (̃X,E) as follows: fE = {(e1, { x

0.0 ,
y

0.9 }), (e2, { x
0.9 ,

y
0.0 })}, 1E = {(e1, { x

0.9 ,
y

0.0 }), (e2, { x
0.0 ,

y
0.9 })}, hE =

{(e1, { x
0.9 ,

y
0.0 }), (e2, { x

0.9 ,
y

0.0 })}, kE = {(e1, { x
0.0 ,

y
0.9 }), (e2, { x

0.0 ,
y

0.9 })}, qE = {(e1, { x
0.9 ,

y
0.9 }), (e2, { x

0.9 ,
y

0.9 })}. Define fuzzy
soft topology τE : E −→ [0, 1](̃X,E) as follows:

τe1 (wE) =



1 if wE ∈ {Φ, Ẽ},
1
4 if wE ∈ { fE, hE},
1
3 if wE ∈ {1E, kE},
1
2 if wE ∈ { fE u hE, fE u kE, 1E u hE, 1E u kE},
2
3 if wE ∈ {qE, fE t hE, fE t kE, 1E t hE, 1E t kE},
0 otherwise,

τe2 (wE) =



1 if wE ∈ {Φ, Ẽ},
1
5 if wE ∈ { fE, hE},
1
4 if wE ∈ {1E, kE},
1
2 if wE ∈ { fE u hE, fE u kE, 1E u hE, 1E u kE},
2
3 if wE ∈ {qE, fE t hE, fE t kE, 1E t hE, 1E t kE},
0 otherwise.

Then for t, s ∈ (0.0, 0.9), (X, τE) is 1
6 -fuzzy soft Hausdorff space.

The following implications hold:
r-fuzzy soft T2-space ⇒ r-fuzzy soft T1-space ⇒ r-fuzzy soft T0-space.

In general the converses are not true.

Example 3.4. Let X = {x, y} be a classical set and E = {e1, e2} be the parameter set of X. Define fE, 1E,
hE, kE, pE and qE ∈ (̃X,E) as follows: fE = {(e1, { x

0.1 ,
y

0.9 }), (e2, { x
0.9 ,

y
0.1 })}, 1E = {(e1, { x

0.9 ,
y

0.1 }), (e2, { x
0.1 ,

y
0.9 })},

hE = {(e1, { x
0.9 ,

y
0.1 }), (e2, { x

0.9 ,
y

0.1 })}, kE = {(e1, { x
0.1 ,

y
0.9 }), (e2, { x

0.1 ,
y

0.9 })}, pE = {(e1, { x
0.1 ,

y
0.1 }), (e2, { x

0.1 ,
y

0.1 })}, qE =

{(e1, { x
0.9 ,

y
0.9 }), (e2, { x

0.9 ,
y

0.9 })}. Define fuzzy soft topology τE : E −→ [0, 1](̃X,E) as follows:

τe1 (wE) =



1 if wE ∈ {Φ, Ẽ},
1
4 if wE ∈ { fE, hE},
1
3 if wE ∈ {1E, kE},
1
2 if wE ∈ {pE, fE u hE, fE u kE, 1E u hE, 1E u kE},
2
3 if wE ∈ {qE, fE t hE, fE t kE, 1E t hE, 1E t kE},
0 otherwise,

τe2 (wE) =



1 if wE ∈ {Φ, Ẽ},
1
5 if wE ∈ { fE, hE},
1
4 if wE ∈ {1E, kE},
1
3 if wE ∈ {pE, fE u hE, fE u kE, 1E u hE, 1E u kE},
2
3 if wE ∈ {qE, fE t hE, fE t kE, 1E t hE, 1E t kE},
0 otherwise.

Then for t, s ∈ (0.1, 0.9), (X, τE) is 1
5 -fuzzy soft T1-space and (X, τE) is not 1

5 -fuzzy soft T2-space.
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Theorem 3.5. Let (X, τE) be a fuzzy soft topological space, e ∈ E and r ∈ I0. If (X, τE) is r-fuzzy soft Hausdorff space,
then (X, τe) is r-fuzzy Hausdorff space.

Proof. Let (X, τE) be a fuzzy soft topological space and ext , kys ∈ P̃t(X) such that ext , kys . Then xt, ys ∈ Pt(X)
such that xt , ys and for any e ∈ E, τe is a fuzzy topology on X. Since (X, τE) is r-fuzzy soft Hausdorff space,
there exist fA, 1B ∈ (̃X,E) with τe( fA) ≥ r, τe(1B) ≥ r such that ext ∈̃ fA, kys ∈̃1B and fA u 1B = Φ for all e ∈ E and
r ∈ I0. This implies xt ∈ fA(e), ys ∈ 1B(k) with τe( fA(e)) ≥ r, τe(1B(k)) ≥ r such that fA(e)

∧
1B(k) = 0. This

proves that (X, τe) is r-fuzzy Hausdorff space, for each e ∈ E and r ∈ I0.

Theorem 3.6. A fuzzy soft subspace (Y,=F) of r-fuzzy soft Hausdorff space (X, τE) is r-fuzzy soft Hausdorff.

Proof. Let ext , kys ∈ P̃t(Y) such that ext , kys . Then ext , kys ∈ P̃t(X) such that ext , kys . Since (X, τE) is r-fuzzy soft
Hausdorff space, there exist fE, 1E ∈ (̃X,E) with τe( fE) ≥ r, τe(1E) ≥ r such that ext ∈̃ fE, kys ∈̃1E and fE u 1E = Φ
for all e ∈ E and r ∈ I0. Therefore ext ∈̃ fE|Y = mF with = f (mF) ≥ r and kys ∈̃1E|Y = nF with = f (nF) ≥ r and
mF u nF = Φ. Thus (Y,=F) is r-fuzzy soft Hausdorff space.

Theorem 3.7. Let (X, τE) and (Y, τ∗F) be fuzzy soft topological space,s. If a fuzzy soft mapping ϕψ from (̃X,E)
into (̃Y,F) is fuzzy soft continuous, injective and (Y, τ∗F) is r-fuzzy soft Hausdorff space, then (X, τE) is r-fuzzy soft
Hausdorff.

Proof. Let (Y, τ∗F) be r-fuzzy soft Hausdorff space and ext , kys ∈ P̃t(X) such that ext , kys . Then ϕψ(ext ), ϕψ(kys )
∈ P̃t(Y) such that ϕψ(ext ) , ϕψ(kys ) (by ϕψ is injective mapping). Since (Y, τ∗F) is r-fuzzy soft Hausdorff
space, there exist fF and 1F ∈ (̃Y,F) with τ∗f ( fF) ≥ r and τ∗f (1F) ≥ r such that ϕψ(ext )∈̃ fF, ϕψ(kys )∈̃1F and

fF u 1F = Φ. This implies ext ∈̃ϕ
−1
ψ ( fF), kys ∈̃ϕ

−1
ψ (1F) and ϕ−1

ψ ( fF)uϕ−1
ψ (1F) = ϕ−1

ψ ( fF u 1F) = Φ. Since ϕψ is fuzzy
soft continuous, τe(ϕ−1

ψ ( fF)) ≥ r and τe(ϕ−1
ψ (1F)) ≥ r. Thus (X, τE) is r-fuzzy soft Hausdorff.

Theorem 3.8. Let (X, τE) be a fuzzy soft topological space. If (X, τE) is r-fuzzy soft Hausdorff space and for any
ext , eys ∈ P̃t(X) such that ext , eys and t, s ∈ [0.5, 1), there exist fA, 1B ∈ (̃X,E) with τe( f c

A) ≥ r, τe(1c
B) ≥ r such that

ext ∈̃ fA, eys <̃ fA and eys ∈̃1B, ext <̃1B with fA t 1B = Ẽ for all e ∈ E, r ∈ I0.

Proof. Since (X, τE) is r-fuzzy soft Hausdorff space and ext , eys ∈ P̃t(X) such that ext , eys , there exist hE, kE

∈ (̃X,E) with τe(hE) ≥ r, τe(kE) ≥ r such that ext ∈̃hE, eys ∈̃kE and hE u kE = Φ for all e ∈ E and r ∈ I0. Since
hE v kc

E and kE v hc
E, hence ext ∈̃kc

E and eys ∈̃hc
E. Put kc

E = fA, this gives ext ∈̃ fA, eys <̃ fA. Also, put hc
E = 1B, this

gives eys ∈̃1B, ext <̃1B. Moreover, fA t 1B = kc
E t hc

E = Ẽ.

Theorem 3.9. Let (X, τE) and (Y, τ∗F) be fuzzy soft topological space,s. If a fuzzy soft mapping ϕψ from (̃X,E) into
(̃Y,F) is fuzzy soft open, bijective and (X, τE) is r-fuzzy soft Hausdorff space, then (Y, τ∗F) is r-fuzzy soft Hausdorff
space.

Proof. Let (X, τE) be r-fuzzy soft Hausdorff space and k1
xt
, k2

ys
∈ P̃t(Y) such that k1

xt
, k2

ys
. Thenϕ−1

ψ (k1
xt

), ϕ−1
ψ (k2

ys
)

∈ P̃t(X) such that ϕ−1
ψ (k1

xt
) , ϕ−1

ψ (k2
ys

) (by ϕψ is bijective mapping). Since (X, τE) is r-fuzzy soft Hausdorff

space, there exist fE and 1E ∈ (̃X,E) with τe( fE) ≥ r and τe(1E) ≥ r such that ϕ−1
ψ (k1

xt
)∈̃ fE, ϕ−1

ψ (k2
ys

)∈̃1E and
fEu1E = Φ for all e ∈ E and r ∈ I0. This implies k1

xt
∈̃ϕψ( fE), k2

ys
∈̃ϕψ(1E) and ϕψ( fE)uϕψ(1E) = ϕψ( fEu1E) = Φ.

Since ϕψ is fuzzy soft open, τ∗ψ(e)(ϕψ( fE)) ≥ r and τ∗ψ(e)(ϕψ(1E)) ≥ r. Thus (Y, τ∗F) is r-fuzzy soft Hausdorff.
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4. Fuzzy Soft Regular, Normal and Ti; (i = 3, 4) Spaces

Definition 4.1. A fuzzy soft topological space (X, τE) is said to be r-fuzzy soft regular space if for each
ext ∈ P̃t(X) and hC ∈ (̃X,E) with τe(hc

C) ≥ r such that ext <̃hC, there exist fA, 1B ∈ (̃X,E) with τe( fA) ≥ r, τe(1B) ≥ r
such that ext ∈̃ fA, hC v 1B and fA u 1B = Φ for each e ∈ E, r ∈ I0.

Example 4.2. Let X = {x, y, z} and E = {e1, e2} be the parameter set of X. Define fE, 1E ∈ (̃X,E) as follows:
fE = {(e1, { x

1.0 ,
y

0.0 ,
z

1.0 }), (e2, { x
0.0 ,

y
1.0 ,

z
0.0 })}, 1E = {(e1, { x

0.0 ,
y

1.0 ,
z

0.0 }), (e2, { x
1.0 ,

y
0.0 ,

z
1.0 })}. Define fuzzy soft topology

τE : E −→ [0, 1](̃X,E) as follows:

τe1 (mE) =


1 if mE ∈ {Φ, Ẽ},
1
2 if mE = fE,
2
3 if mE = 1E,
0 otherwise,

τe2 (mE) =


1 if mE ∈ {Φ, Ẽ},
1
3 if mE = fE,
1
2 if mE = 1E,
0 otherwise.

Then (X, τE) is 1
4 -fuzzy soft regular space.

Theorem 4.3. A fuzzy soft subspace (Y,=F) of r-fuzzy soft regular space (X, τE) is r-fuzzy soft regular.

Proof. Let ext ∈ P̃t(Y) and mF ∈ (̃Y,F) with = f (mc
F) ≥ r such that ext <̃mF. Then ext ∈ P̃t(X) and mF ∈ (̃X,E)

with τe(mc
F) ≥ r such that ext <̃mF. Since (X, τE) is r-fuzzy soft regular space, there exist fE, 1E ∈ (̃X,E) with

τe( fE) ≥ r, τe(1E) ≥ r such that ext ∈̃ fE, mF v 1E and fE u 1E = Φ for all e ∈ E and r ∈ I0. Therefore ext ∈̃ fE|Y = hF
with = f (hF) ≥ r and mF v 1E|Y = kF with = f (kF) ≥ r and hF u kF = Φ. Thus (Y,=F) is r-fuzzy soft regular
space.

Theorem 4.4. Let (X, τE) and (Y, τ∗F) be fuzzy soft topological space,s. If a fuzzy soft mapping ϕψ from (̃X,E) into
(̃Y,F) is fuzzy soft open, bijective and (X, τE) is r-fuzzy soft regular space, then (Y, τ∗F) is r-fuzzy soft regular space.

Proof. Let (X, τE) be r-fuzzy soft regular space, kxt ∈ P̃t(Y) and hF ∈ (̃Y,F) with τ∗f (h
c
F) ≥ r such that kxt <̃hF.

Then ϕ−1
ψ (kxt ) ∈ P̃t(X) and ϕ−1

ψ (hF) ∈ (̃X,E) such that ϕ−1
ψ (kxt )<̃ϕ

−1
ψ (hF) (by ϕψ is bijective mapping). Since

(X, τE) is r-fuzzy soft regular space, there exist fE and 1E ∈ (̃X,E) with τe( fE) ≥ r and τe(1E) ≥ r such that
ϕ−1
ψ (kxt )∈̃ fE, ϕ−1

ψ (hF) v 1E and fE u 1E = Φ for all e ∈ E and r ∈ I0. This implies kxt ∈̃ϕψ( fE), hF v ϕψ(1E) and
ϕψ( fE) u ϕψ(1E) = ϕψ( fE u 1E) = Φ. Since ϕψ is fuzzy soft open, then τ∗ψ(e)(ϕψ( fE)) ≥ r and τ∗ψ(e)(ϕψ(1E)) ≥ r.
Thus, (Y, τ∗F) is r-fuzzy soft regular.

Definition 4.5. A fuzzy soft topological space (X, τE) is said to be r-fuzzy soft T3-space if it is r-fuzzy soft
regular space and r-fuzzy soft T1-space.

The following corollary follows form Corollary 2.7 and Theorem 4.3.

Corollary 4.6. A fuzzy soft subspace (Y,=F) of r-fuzzy soft T3-space (X, τE) is r-fuzzy soft T3.

Definition 4.7. A fuzzy soft topological space (X, τE) is said to be r-fuzzy soft normal space if for each
hC, kD ∈ (̃X,E) with τe(hc

C) ≥ r, τe(kc
D) ≥ r such that hC u kD = Φ, there exist fA, 1B ∈ (̃X,E) with τe( fA) ≥ r,

τe(1B) ≥ r such that hC v fA, kD v 1B and fA u 1B = Φ for each e ∈ E, r ∈ I0.
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Example 4.8. Let X = {x, y, z,w} be a classical set and E = {e1, e2} be the parameter set of X. Define fE, 1E ∈

(̃X,E) as follows: fE = {(e1, { x
1.0 ,

y
0.0 ,

z
0.0 ,

w
1.0 }), (e2, { x

0.0 ,
y

1.0 ,
z

1.0 ,
w

0.0 })},1E = {(e1, { x
0.0 ,

y
1.0 ,

z
1.0 ,

w
0.0 }), (e2, { x

1.0 ,
y

0.0 ,
z

0.0 ,
w

1.0 })}.
Define fuzzy soft topology τE : E −→ [0, 1](̃X,E) as follows:

τe1 (mE) =


1 if mE ∈ {Φ, Ẽ},
2
3 if mE = fE,
1
3 if mE = 1E,
0 otherwise,

τe2 (mE) =


1 if mE ∈ {Φ, Ẽ},
1
3 if mE = fE,
2
3 if mE = 1E,
0 otherwise.

Then (X, τE) is 1
4 -fuzzy soft normal space.

Theorem 4.9. A fuzzy soft subspace (Y,=F) of r-fuzzy soft normal space (X, τE) is r-fuzzy soft normal.

Proof. Let mF,nF ∈ (̃Y,F) with = f (mc
F) ≥ r, = f (nc

F) ≥ r such that mF u nF = Φ. Then mF,nF ∈ (̃X,E) with
τe(mc

F) ≥ r, τe(nc
F) ≥ r such that mF u nF = Φ. Since (X, τE) is r-fuzzy soft normal space, there exist fE, 1E

∈ (̃X,E) with τe( fE) ≥ r, τe(1E) ≥ r such that mF v fE, nF v 1E and fEu1E = Φ for all e ∈ E and r ∈ I0. Therefore
mF v fE|Y = hF with = f (hF) ≥ r and nF v 1E|Y = kF with = f (kF) ≥ r and hF u kF = Φ. Thus (Y,=F) is r-fuzzy
soft normal space.

Theorem 4.10. Let (X, τE) and (Y, τ∗F) be fuzzy soft topological space,s. If a fuzzy soft mapping ϕψ from (̃X,E) into
(̃Y,F) is fuzzy soft continuous, injective and (Y, τ∗F) is r-fuzzy soft normal space, then (X, τE) is r-fuzzy soft normal
space.

Proof. Let (Y, τ∗F) be r-fuzzy soft normal space and hE, kE ∈ (̃X,E) with τe(hc
E) ≥ r, τe(kc

E) ≥ r such that hEukE =

Φ. Then ϕψ(hE), ϕψ(kE) ∈ (̃Y,F) such that ϕψ(hE) u ϕψ(kE) = Φ (by ϕψ is injective mapping). Since (Y, τ∗F) is
r-fuzzy soft normal space, there exist fF and 1F ∈ (̃Y,F) with τ∗f ( fF) ≥ r and τ∗f (1F) ≥ r such that ϕψ(hE) v fF,

ϕψ(kE) v 1F and fFu1F = Φ. This implies hE v ϕ−1
ψ ( fF), kE v ϕ−1

ψ (1F) and ϕ−1
ψ ( fF)uϕ−1

ψ (1F) = ϕ−1
ψ ( fFu1F) = Φ.

Sinceϕψ is fuzzy soft continuous, then τe(ϕ−1
ψ ( fF)) ≥ r and τe(ϕ−1

ψ (1F)) ≥ r. Thus, (X, τE) is r-fuzzy soft normal
space.

Definition 4.11. A fuzzy soft topological space (X, τE) is said to be r-fuzzy soft T4-space if it is r-fuzzy soft
normal space and r-fuzzy soft T1-space.

The following corollary follows form Corollary 2.7 and Theorem 4.9.

Corollary 4.12. A fuzzy soft subspace (Y,=F) of r-fuzzy soft T4-space (X, τE) is r-fuzzy soft T4.

Theorem 4.13. Every r-fuzzy soft T4-space (X, τE) is r-fuzzy soft T2-space if τe(ec
xt

) ≥ r for each ext ∈ P̃t(X), e ∈ E,
r ∈ I0.

Proof. Let (X, τE) be r-fuzzy soft T4-space and ext , kys ∈ P̃t(X) such that ext , kys . Then for each ext , kys ∈ P̃t(X)
we have τe(ec

xt
) ≥ r, τe(kc

ys
) ≥ r and kys u ext = Φ. Since (X, τE) is r-fuzzy soft normal space, there exist fE, 1E

∈ (̃X,E) with τe( fE) ≥ r, τe(1E) ≥ r such that ext v fE, kys v 1E and fE u 1E = Φ for all e ∈ E and r ∈ I0. Thus,
ext ∈̃ fE, kys ∈̃1E. Therefore, (X, τE) is r-fuzzy soft T2-space.
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5. Conclusion

Hussain and Ahmad [12] defined and studied some soft separation axioms using soft points defined
by Zorlutuna et al. [24]. In the present work, the concepts of r-fuzzy soft Ti; (i = 0, 1, 2, 3, 4), r-fuzzy soft
regular and r-fuzzy soft normal axioms are introduced, which are generalization of the concepts introduced
in [12] and the relations of these axioms with each other are investigated with the help of examples.
Moreover, some fuzzy soft invariance properties are specified. These separation axioms would be useful
for the development of the theory of fuzzy soft topology to solve the complicated problems containing
uncertainties in engineering, medical, environment and in general man-machine systems of various types.
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