# Some Norm Inequalities for Upper Sector Matrices 

Dengpeng Zhang ${ }^{\text {a }}$, Ning Zhang ${ }^{\text {b }}$<br>${ }^{\text {a }}$ School of statistics and mathematics, Guangdong University of Finance and Economics, Guangzhou, China<br>${ }^{b}$ Department of Fundamental Course, Shandong University of Science and Technology, Taian, China


#### Abstract

We generalize some norm inequalities for $2 \times 2$ block accretive-dissipative matrices and positive semi-definite matrices that compare the diagonal blocks with the off-diagonal blocks. Moreover, we partially extend a norm inequality of $n \times n$ block accretive-dissipative matrices.


## 1. Introduction

Let $\mathbb{M}_{n}(\mathbb{C})$ be the set of all $n \times n$ complex matrices and $I_{n}$ be the identity matrix in $\mathbb{M}_{n}(\mathbb{C})$. For any $T \in \mathbb{M}_{n}(\mathbb{C})$, $T^{*}$ stands for the conjugate transpose of $T$. Every matrix $T$ has the Cartesian (or Toeptliz) decomposition,

$$
\begin{equation*}
T=A+i B \tag{1}
\end{equation*}
$$

in which $A=\frac{1}{2}\left(T+T^{*}\right), B=\frac{1}{2 i}\left(T-T^{*}\right)$ are Hermitian. We say that $T$ is called accretive-dissipative if $\mathrm{A}, \mathrm{B}$ are positive semidefinite. In this paper, we will always represent the decomposition (1) as follows,

$$
\left(\begin{array}{ll}
T_{11} & T_{12}  \tag{2}\\
T_{21} & T_{22}
\end{array}\right)=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)+i\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right)
$$

where $T_{j k} \in \mathbb{M}_{n}(\mathbb{C}), \mathrm{j}, \mathrm{k}=1,2$.
Recall that a norm $\|\cdot\|$ on $\mathbb{M}_{n}$ is unitarily invariant if $\|U A V\|=\|A\|$ for any $A \in \mathbb{M} M_{n}(\mathbb{C})$ and unitarily matrices $U, V \in \mathbb{M}_{n}(\mathbb{C})$. For $p \geq 1$ and $A \in \mathbb{M}_{n}(\mathbb{C})$, let $\|A\|_{p}=\left(\sum_{j=1}^{n} s_{j}^{p}(A)\right)^{\frac{1}{p}}$, where $s_{1}(A) \geq s_{2}(A) \geq \cdots \geq s_{n}(A)$ are the singular values of $A$. This is the Schatten p-norm of A . If A is Hermitian, then all eigenvalues of A are real and ordered as $\lambda_{1}(A) \geq \lambda_{2}(A) \geq \cdots \geq \lambda_{n}(A)$. We denote $s(A)=\left(s_{1}(A), s_{2}(A), \ldots, s_{n}(A)\right)$ and $\lambda(A)=\left(\lambda_{1}(A), \lambda_{2}(A), \ldots, \lambda_{n}(A)\right)$.

Let $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$. We rearrange the components of $x$ and $y$ in nonincreasing order: $x_{1}^{\downarrow} \geq \cdots \geq x_{n}^{\downarrow} ; y_{1}^{\downarrow} \geq \cdots \geq y_{n}^{\downarrow}$. If $\sum_{i=1}^{k} x_{i}^{\downarrow} \leq \sum_{i=1}^{k} y_{i}^{\downarrow}\left(\prod_{i=1}^{k} x_{i}^{\downarrow} \leq \prod_{i=1}^{k} y_{i}^{\downarrow}\right), k=1, \ldots, n$. We say that $x$ is

[^0]weakly $(\log )$ majorized by $y$, denoted by $x<_{\omega} y\left(x<_{\omega} \log y\right)$. If, in addition, the last inequality is an equality, i.e. $\sum_{i=1}^{n} x_{i}^{\downarrow}=\sum_{i=1}^{n} y_{i}^{\downarrow}\left(\prod_{i=1}^{n} x_{i}^{\downarrow}=\prod_{i=1}^{n} y_{i}^{\downarrow}\right)$, we say that $x$ is (log) majorized by $y$, written as $x<y\left(x<_{\log } y\right)$. Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be $m \times n$ matrices, the Hadamard product of $\mathrm{A}, \mathrm{B}$ is the entry-wise product: $A \circ B=\left(a_{i j} b_{i j}\right)$.

The numerical range of $A \in \mathbb{M}_{n}(\mathbb{C})$ is defined by

$$
W(A)=\left\{x^{*} A x \mid x \in \mathbb{C}^{n}, x^{*} x=1\right\} .
$$

For $\alpha \in\left[0, \frac{\pi}{2}\right), S_{\alpha}$ denotes the sector in the complex plane given by

$$
S_{\alpha}=\{z \in \mathbb{C}|\Re z \geq 0,|\Im z| \leq(\Re z) \tan (\alpha)\}
$$

and let

$$
S_{\alpha}^{\prime}=\{z \in \mathbb{C} \mid \Re z \geq 0, \mathfrak{J} z \geq 0, \mathfrak{J} z \leq(\Re z) \tan (\alpha)\}
$$

Clearly, A is positive definite if and only if $W(A) \subseteq S_{0}$, and if $W(A), W(B) \subseteq S_{\alpha}$ for some $\alpha \in\left[0, \frac{\pi}{2}\right)$, then $W(A+B) \subseteq S_{\alpha}$. As $0 \notin S_{\alpha}$, then A is nonsingular. Some recent studies of sector matrices can be found in [6, 12, 14-17].
Recent research interest in this class of matrices starts with a resolution of a problem from numerical analysis [3].

Lin and Zhou [13, Theorem 3.3, Theorem 3.11] proved the following unitarily invariant norm inequalities:
Theorem 1.1. [13, Theorem 3.3] Let $T \in \mathcal{B}(\mathscr{H})$ be accretive-dissipative and partitioned as in (2). Then

$$
\begin{equation*}
\left\|T_{12}\right\|\left\|T_{21}\right\| \leq \max \left\{\left\|T_{12}\right\|^{2},\left\|T_{21}\right\|^{2}\right\} \leq 4\left\|T_{11}\right\|\left\|T_{22}\right\| \tag{3}
\end{equation*}
$$

for any unitarily invariant norm $\|\cdot\|$.
Theorem 1.2. [13, Theorem 3.11] Let $T \in \mathcal{B}(\mathscr{H})$ be accretive-dissipative and partitioned as in (2). Then

$$
\begin{equation*}
\|T\| \leq \sqrt{2}\left\|T_{11}\right\|+\left\|T_{22}\right\| \tag{4}
\end{equation*}
$$

for any unitarily invariant norm || \|. Furthermore, if $T_{12}=T_{21}$, then

$$
\begin{equation*}
\|T\| \leq \sqrt{2}\left\|T_{11}+T_{22}\right\| \tag{5}
\end{equation*}
$$

Gumus et al. [7, Theorem 4.2] proved the following Schatten p-norm and quasinorm inequalities.
Theorem 1.3. [7, Theorem 4.2] Let $T \in \mathbb{M}_{n}(\mathbb{C})$ be accretive-dissipative partitioned as in (2). Then

$$
\left\|T_{12}\right\|_{p}^{p}+\left\|T_{21}\right\|_{p}^{p} \leq 2^{P-1}\left\|T_{11}\right\|_{p}^{p / 2}\left\|T_{22}\right\|_{p}^{p / 2}, \quad \text { for } p \geq 2
$$

and

$$
\left\|T_{12}\right\|_{p}^{p}+\left\|T_{21}\right\|_{p}^{p} \leq 2^{3-p}\left\|T_{11}\right\|_{p}^{p / 2}\left\|T_{22}\right\|_{p}^{p / 2}, \quad \text { for } 0<p \leq 2
$$

Basing on the above theorem, Kittaneh and Sakkijha [10, Theorem 2.4] presented the following norm inequalities, which compares the Schatten p-norms and the quasinorms of the off diagonal blocks and those of the diagonal blocks, respectively.

Theorem 1.4. [10, Theorem 2.4] For $i, j=1,2, \cdots, n$, let $T_{i j}$ be square matrices of the same size such that the block matrix

$$
T=\left(\begin{array}{cccc}
T_{11} & T_{12} & \cdots & T_{1 n}  \tag{6}\\
T_{21} & T_{22} & \cdots & T_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
T_{n 1} & T_{n 2} & \cdots & T_{n n}
\end{array}\right)
$$

$$
\sum_{i \neq j}\left\|T_{i j}\right\|_{p}^{p} \leq(n-1) 2^{|p-2|} \sum_{i=1}^{n}\left\|T_{i i}\right\|_{p}^{p} \quad(p \geq 0)
$$

Lin and Fu [14, Theorem 2.9] extended the above Theorem 1.4 to the sector matrices.
Theorem 1.5. [14, Theorem 2.9] Suppose that $T$ is a sector matrix represented as in (6). Then

$$
\sum_{i \neq j}\left\|T_{i j}\right\|_{p}^{p} \leq(n-1) \sec ^{p}(\alpha) \sum_{i=1}^{n}\left\|T_{i i}\right\|_{p}^{p} \quad \text { for } \quad p>0
$$

Gumus et al. [7, Definition 3.1] introduced the special class $C$ of all nonnegative increasing functions $h$ on $[0, \infty)$ satisfying the following condition: If $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ are two decreasing sequences of nonnegative real numbers such that $\prod_{j=1}^{k} x_{j} \leq \prod_{j=1}^{k} y_{j}(k=1,2, \ldots, n)$, then $\prod_{j=1}^{k} h\left(x_{j}\right) \leq$ $\prod_{j=1}^{k} h\left(y_{j}\right)(k=1,2, \ldots, n)$.

Afraz et al.[1, Theorem 17] extended Theorem 1.4 to the sector matrices involving the functions of class C.

Theorem 1.6. Suppose that $T$ is a sector matrix represented as in (6), $h \in C$ is submultiplicative and $\alpha \in\left[0, \frac{\pi}{2}\right)$. If $p$ is positive real number, then

$$
\sum_{i \neq j}\left\|h\left(\left|T_{i j}\right|^{2}\right)\right\|^{p} \leq(n-1) \sum_{i=1}^{n}\left\|h^{2}\left(\sec (\alpha)\left|T_{i i}\right|\right)\right\|^{p}
$$

for every unitarily invariant norm $\|\cdot\|$. In particular, we have

$$
\sum_{i \neq j}\left\|h\left(\left|T_{i j}\right|^{2}\right)\right\|_{p}^{p} \leq(n-1) \sum_{i=1}^{n}\left\|h^{2}\left(\sec (\alpha)\left|T_{i i}\right|\right)\right\|_{p}^{p}
$$

At last, Lee [11, Theorem 2.1] proved the following result which is considered as an extension of the classical Rotfel'd theorem.

Theorem 1.7. [11, Theorem 2.1] Let $f(t)$ be a non-negative concave function on $[0, \infty)$. Then, given an arbitrary partitioned positive semi-definite matrix,

$$
\left\|f\left(\begin{array}{cc}
A & X  \tag{7}\\
X^{*} & B
\end{array}\right)\right\| \leq\|f(A)\|+\|f(B)\|
$$

for all unitarily invariant norms.
What are we interested in the above theorem is whether the right-hand side of the inequality (7) can be placed in one norm. And we give a result under some conditions.

Besides, in this paper, we will extend inequalities (3), (4) and (5) to a larger class matrices, i.e. the upper sector matrices. And on the basis of the extension of (3), we partially generalize Theorem 1.4.

## 2. Main result

We begin this section with some lemmas which are useful to establish our main results.

Lemma 2.1. [2, p. 54] Let $x=\left(x_{1}, x_{2}, \cdots\right), y=\left(y_{1}, y_{2}, \cdots\right), \alpha=\left(\alpha_{1}, \alpha_{2}, \cdots\right)$ be sequence of real numbers with entries arranged in decreasing order. Moreover, we assume the entries of $\alpha$ are nonnegative. If $\sum_{j=1}^{k} x_{j} \leq \sum_{j=1}^{k} y_{j}$ for all $k=1,2, \cdots$, then

$$
\sum_{j=1}^{k} \alpha_{j} x_{j} \leq \sum_{j=1}^{k} \alpha_{j} y_{j}
$$

for all $k=1,2, \cdots$.
Lemma 2.2. Let $A, B \in \mathbb{M}_{n}, W(A+i B) \subseteq S_{\alpha}^{\prime}$ for some $\alpha \in\left[0, \frac{\pi}{2}\right)$ and $A+i B$ be the Cartesian decomposition of the full matrix like (1). Then

$$
\begin{equation*}
s_{j}(B) \leq \sin \alpha s_{j}(A+i B) \tag{8}
\end{equation*}
$$

Proof. First, when $\alpha=0$, inequality (8) is trivial.
Label the eigenvectors of $B$ as $e_{1}, \cdots, e_{n}$ in such a way that

$$
s_{j}(B)=\left|\left\langle e_{j}, B e_{j}\right\rangle\right| .
$$

For $W(A+i B) \subseteq S_{\alpha}$, we get

$$
\begin{align*}
& B \leq A \tan (\alpha)  \tag{9}\\
& \begin{aligned}
\csc \alpha s_{j}(B)=\csc \alpha\left|\left\langle e_{j}, B e_{j}\right\rangle\right| & =\sqrt{1+\cot ^{2} \alpha}\left|\left\langle e_{j}, B e_{j}\right\rangle\right| \\
& =\left|\left\langle e_{j},(\cot \alpha B+i B) e_{j}\right\rangle\right| \\
& \leq\left|\left\langle e_{j},(A+i B) e_{j}\right\rangle\right| \quad b y(9) \\
& \leq\left\|e_{j}\right\|\left\|(A+i B) e_{j}\right\| .
\end{aligned}
\end{align*}
$$

Since $s_{j}(A)=\max _{\operatorname{dim}(\mathbb{M})=j} \min _{\substack{x \in \mathbb{M} \\\|x\|=1}}\|A x\|$ (see, e. g. [2, p.75]), where $\mathbb{M}$ represent a subspace of $\mathbb{C}^{n}$ for $A \in \mathbb{M}_{n}$, we deduce the inequality (8).

Lemma 2.3. [18, p. 352] Let $A, B, C$ be $n \times n$ complex matrices such that $\left(\begin{array}{ll}A & B \\ B^{*} & C\end{array}\right) \geq 0$. Then

$$
s(B) \prec_{\omega \log } \lambda^{\frac{1}{2}}(A) \circ \lambda^{\frac{1}{2}}(C)
$$

Lemma 2.4. $[4,9]$ Let $A, B \in \mathbb{M}_{n}^{+}$and $W(A+i B) \subseteq S_{\alpha}^{\prime}$ for some $\alpha \in\left[0, \frac{\pi}{2}\right)$. Then for any unitarily invariant norm $\|\cdot\|$,

$$
\|A+i B\| \leq\|A+B\| \leq a\|A+i B\|
$$

where $a=\min \{1+\tan (\alpha), \sqrt{2}\}$.
The first main result can be stated as follows.
Theorem 2.5. Let $T \in \mathbb{M}_{2 n}(\mathbb{C})$ be partitioned as in (2) and assume $W(T) \subseteq S_{\alpha}^{\prime}$ for some $\alpha \in\left[0, \frac{\pi}{2}\right)$. Then

$$
\begin{equation*}
\max \left\{\left\|T_{12}\right\|^{2},\left\|T_{21}\right\|^{2}\right\} \leq(1+\sin \alpha)^{2}\left\|T_{11}\right\|\left\|T_{22}\right\|, \tag{10}
\end{equation*}
$$

for any unitarily invariant norm $\|\cdot\|$.

Proof. Let $v=\left(v_{1}, v_{2}, \cdots, v_{n}\right)$ be a sequence with nonnegative entries and $v_{1} \geq v_{2} \geq \cdots \geq v_{n}$. Define $\|X\|_{v}=\sum_{k=1}^{n} v_{j} s_{j}(X)$ for $X \in \mathbb{M}_{n}$.

$$
\begin{aligned}
\left\|T_{12}\right\|_{v} & =\left\|\sum_{k=1}^{n} v_{j} s_{j}\left(T_{12}\right)\right\| \\
& =\sum_{k=1}^{n} v_{j} s_{j}\left(A_{12}+i B_{12}\right) \\
& \leq \sum_{k=1}^{n} v_{j}\left[s_{j}\left(A_{12}\right)+s_{j}\left(B_{12}\right)\right] \quad(\text { by Lemma 2.1) } \\
& \leq \sum_{k=1}^{n} v_{j}\left[s_{j}\left(A_{11}\right)^{1 / 2} s_{j}\left(A_{22}\right)^{1 / 2}+s_{j}\left(B_{11}\right)^{1 / 2} s_{j}\left(B_{22}\right)^{1 / 2}\right] \quad \quad \quad(\text { by Lemma 2.3 }) \\
& \leq \sum_{k=1}^{n} v_{j}\left[s_{j}\left(A_{11}\right)+s_{j}\left(B_{11}\right)\right]^{1 / 2}\left[s_{j}\left(A_{22}\right)+s_{j}\left(B_{22}\right)\right]^{1 / 2} \quad \quad \quad(\text { by Cauchy }- \text { Schwarz }) \\
& \leq \sum_{k=1}^{n} v_{j}\left[(1+\sin \alpha) s_{j}\left(A_{11}+i B_{11}\right)\right]^{1 / 2}\left[(1+\sin \alpha) s_{j}\left(A_{22}+i B_{22}\right)\right]^{1 / 2} \quad \quad \quad \text { (by }[2, \text { PropositionIII.5.1] and Lemma 2.2) } \\
& =(1+\sin \alpha) \sum_{k=1}^{n} v_{j} s_{j}\left(T_{11}\right)^{1 / 2} s_{j}\left(T_{22}\right)^{1 / 2} \\
& \leq(1+\sin \alpha)\left(\sum_{k=1}^{n} v_{j} s_{j}\left(T_{11}\right)\right)^{1 / 2}\left(\sum_{k=1}^{n} v_{j} s_{j}\left(T_{22}\right)\right)^{1 / 2} \quad \quad \quad(\text { by Cauchy - Schwarz }) \\
& =(1+\sin \alpha)\left\|T_{11}\right\|_{v}^{1 / 2}\left\|T_{22}\right\|_{v}^{1 / 2} .
\end{aligned}
$$

Similarly, we can get

$$
\left\|T_{21}\right\|_{v} \leq(1+\sin \alpha)\left\|T_{11}\right\|_{v}^{1 / 2}\left\|T_{22}\right\|_{v}^{1 / 2}
$$

As $v$ is arbitrarily chosen, the alleged inequality follows form [8, Corollary 3.5.9].
Seeing this result, we naturally want to make a comparison between the result of the above Theorem 2.5 and that of Lemma 2.6 in [14] (i.e. [17, Theorem 3.2] ). Whether $(1+\sin \alpha)^{2}$ can be less than $\sec ^{2} \alpha$ ? when $(1+\sin \alpha)^{2}$ is less than $\sec ^{2} \alpha$ ? Now we define a funciton

$$
f(\alpha)=\cos \alpha(1+\sin \alpha)-1 \quad \alpha \in\left(0, \frac{\pi}{2}\right)
$$

so

$$
\begin{equation*}
(1+\sin \alpha)^{2} \leq \sec ^{2} \alpha \Leftrightarrow f(\alpha) \leq 0 \tag{11}
\end{equation*}
$$

By the calculation of matlab, we get $f(\alpha) \leq 0$ on ( $0.9960, \frac{\pi}{2}$ ), i.e. $1+\sin \alpha \leq \sec \alpha, \alpha \in\left(0.9960, \frac{\pi}{2}\right)$ and $1+\sin \alpha>\sec \alpha, \alpha \in(0,0.9960)$.

For $p \geq 1$, since the Schatten p-norms are the examples of the unitarily invariant norms, we could get the following two results.

Corollary 2.6. Let $T \in \mathbb{M}_{2 n}(\mathbb{C})$ be partitioned as in (2) and assume $W(T) \subseteq S_{\alpha}^{\prime}$. Then

$$
\begin{equation*}
\max \left\{\left\|T_{12}\right\|_{p}^{p},\left\|T_{21}\right\|_{p}^{p}\right\} \leq(1+\sin \alpha)^{p}\left\|T_{11}\right\|_{p}^{p / 2}\left\|T_{22}\right\|_{p}^{p / 2}, \quad \text { for } p \geq 1 \tag{12}
\end{equation*}
$$

Theorem 2.7. Let $T \in \mathbb{M}_{2 n}(\mathbb{C})$ be partitioned as in (2) and $W(T) \subseteq S_{\alpha}^{\prime}$. Then

$$
\begin{equation*}
\left\|T_{12}\right\|_{p}^{p}+\left\|T_{21}\right\|_{p}^{p} \leq 2(1+\sin \alpha)^{p}\left\|T_{11}\right\|_{p}^{p / 2}\left\|T_{22}\right\|_{p}^{p / 2}, \quad \text { for } p \geq 1 \tag{13}
\end{equation*}
$$

Proof.

$$
\begin{align*}
\left\|T_{12}\right\|_{p}^{p}+\left\|T_{21}\right\|_{p}^{p} & \leq(1+\sin \alpha)^{p}\left\|T_{11}\right\|_{p}^{p / 2}\left\|T_{22}\right\|_{p}^{p / 2}+(1+\sin \alpha)^{p}\left\|T_{11}\right\|_{p}^{p / 2}\left\|T_{22}\right\|_{p}^{p / 2}  \tag{12}\\
& =2(1+\sin \alpha)^{p}\left\|T_{11}\right\|_{p}^{p / 2}\left\|T_{22}\right\|_{p}^{p / 2} .
\end{align*}
$$

In view of the above results, we give a generalization of the Theorem 1.4 in the case $p \geq 1$.
Theorem 2.8. For $i, j=1,2, \cdots, n$, let $T_{i j}$ be square matrices of the same size such that

$$
T=\left(\begin{array}{cccc}
T_{11} & T_{12} & \cdots & T_{1 n} \\
T_{21} & T_{22} & \cdots & T_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
T_{n 1} & T_{n 2} & \cdots & T_{n n}
\end{array}\right)
$$

and assume $W(T) \subseteq S_{\alpha}^{\prime}$. Then

$$
\sum_{i \neq j}\left\|T_{i j}\right\|_{p}^{p} \leq(n-1)(1+\sin \alpha)^{p} \sum_{i=1}^{n}\left\|T_{i i}\right\|_{p}^{p} \quad \text { for } p \geq 1
$$

Proof. It is easy to obtain that a principal submatrix $\left(\begin{array}{cc}T_{i i} & T_{i j} \\ T_{j i} & T_{j j}\end{array}\right)$ of T is also accretive-dissipative and its numerical range is contained in $S_{\alpha}^{\prime}$. Now, applying (13) to $\left(\begin{array}{cc}T_{i i} & T_{i j} \\ T_{j i} & T_{j j}\end{array}\right)$, we get

$$
\left\|T_{i j}\right\|_{p}^{p}+\left\|T_{j i}\right\|_{p}^{p} \leq 2(1+\sin \alpha)^{p}\left\|T_{i i}\right\|_{p}^{p / 2}\left\|T_{j j}\right\|_{p}^{p / 2}
$$

for $i \neq j$ and $p \geq 1$.
Consequently, using the arithmetic-geometric mean inequality, we have

$$
\left\|T_{i j}\right\|_{p}^{p}+\left\|T_{j i}\right\|_{p}^{p} \leq(1+\sin \alpha)^{p}\left(\left\|T_{i i}\right\|_{p}^{p}+\left\|T_{j j}\right\|_{p}^{p}\right)
$$

for $i \neq j$ and $p \geq 1$.
Adding up the previous inequalities for $i, j=1,2, \cdots, n$, we get

$$
\sum_{i \neq j}\left\|T_{i j}\right\|_{p}^{p} \leq(n-1)(1+\sin \alpha)^{p} \sum_{i=1}^{n}\left\|T_{i i}\right\|_{p}^{p}
$$

which proves the inequality.
Remark 2.9. From inequality (11), we know that the results of Theorem 2.7 and Theorem 2.8 are tigher than that of [14, Theorem 2.8, 2.9], correspondingly, when $\alpha \in\left(0.9960, \frac{\pi}{2}\right)$, for $p \geq 1$.

Next, we extend Theorem 1.2 to the upper sector matrices.

Theorem 2.10. Let $T \in \mathbb{M}_{2 n}(\mathbb{C})$ be partitioned as in (2) and assume $W(T) \subseteq S_{\alpha}^{\prime}$. Then

$$
\begin{equation*}
\|T\| \leq a\left(\left\|T_{11}\right\|+\left\|T_{22}\right\|\right) \tag{14}
\end{equation*}
$$

for any unitarily invariant norm $\|\cdot\|$. Furthermore, if the off diagonal blocks of $\mathfrak{R} T$ and $\mathfrak{I} T$ are Hermitian or skew-Hermitian, then

$$
\begin{equation*}
\|T\| \leq a\left(\left\|T_{11}+T_{22}\right\|\right) \tag{15}
\end{equation*}
$$

where $a=\min \{1+\tan (\alpha), \sqrt{2}\}$.
Proof. Consider the Cartesian decomposition $T=A+i B$, where A and B are positive semi-definite. Compute

$$
\begin{aligned}
\|T\| & =\|A+i B\| \\
& \leq\|A+B\| \quad(\text { by Lemma } 2.4) \\
& \leq\left\|A_{11}+B_{11}\right\|+\left\|A_{22}+B_{22}\right\| \quad(\text { by }(7)) \\
& \left.\leq a\left(\left\|A_{11}+i B_{11}\right\|+\left\|A_{22}+i B_{22}\right\|\right) \quad \text { (by Lemma } 2.4\right) \\
& =a\left(\left\|T_{11}\right\|+\left\|T_{22}\right\|\right),
\end{aligned}
$$

which prove the first inequality.
Now we prove the second inequality. we assume that $A+B=\left(\begin{array}{ll}A_{11}+B_{11} & A_{12}+B_{12} \\ A_{21}+B_{21} & A_{22}+B_{22}\end{array}\right)$ is positive with Hermitian off diagonal blocks and using the simple fact that $T^{*} T \cong T T^{*}$ (unitarily congruent) we then deduce

$$
A+B \cong J(A+B) J^{*}=\left(\begin{array}{cc}
\frac{A_{11}+B_{11}+A_{22}+B_{22}}{2} & \star \\
\star & \frac{A_{11}+B_{11}+A_{22}+B_{22}}{2}
\end{array}\right)
$$

where $J=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}i I & -I \\ i I & I\end{array}\right)$ is a unitary matrix, I is an identity matrix in $I_{n}$ and $\star$ stands for the unspecified matrices. Then

$$
\begin{aligned}
\|T\| & =\|A+i B\| \\
& \leq\|A+B\| \quad(\text { by Lemma 2.4 }) \\
& =\left\|\left(\begin{array}{cc}
\frac{A_{11}+B_{11}+A_{22}+B_{22}}{\star} & \star \\
\star & \frac{A_{11}+B_{11}+A_{22}+B_{22}}{2}
\end{array}\right)\right\| \\
& \leq\left\|\frac{A_{11}+B_{11}+A_{22}+B_{22}}{2}\right\|+\left\|\frac{A_{11}+B_{11}+A_{22}+B_{22}}{2}\right\| \quad(b y(7)) \\
& =\left\|A_{11}+B_{11}+A_{22}+B_{22}\right\| \\
& \leq a\left\|A_{11}+A_{22}+i\left(B_{11}+B_{22}\right)\right\| \quad(\text { by Lemma } 2.4) \\
& =a\left\|A_{11}+i B_{11}+A_{22}+i B_{22}\right\| \\
& =a\left\|T_{11}+T_{22}\right\| .
\end{aligned}
$$

Similarly, if $A+B=\left(\begin{array}{ll}A_{11}+B_{11} & A_{12}+B_{12} \\ A_{21}+B_{21} & A_{22}+B_{22}\end{array}\right)$ is positive with skew Hermitian off diagonal blocks and still using the simple fact that $T^{*} T \cong T T^{*}$ (unitarily congruent), $T=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}I & -I \\ I & I\end{array}\right)$ we then deduce the same result.
Remark 2.11. It is clear, when $a \leq \sqrt{2}$, i.e. $0 \leq \alpha \leq \arctan (\sqrt{2}-1)$, the result in Theorem 2.10 is tigher than that of Theorem 1.2.
For example, we take $\alpha=15^{\circ}$, i.e. $W(T) \subseteq S_{15^{\circ}}^{\prime}$, we can get

$$
\|T\| \leq 1.268\left(\left\|T_{11}\right\|+\left\|T_{22}\right\|\right)
$$

Inequality (15) correspondingly becomes

$$
\|T\| \leq 1.268\left(\left\|T_{11}+T_{22}\right\|\right)
$$

At the end, we generalize the Theorem 1.7, as follows.
Theorem 2.12. Let $A, B \in \mathbb{M}_{n}$, and $\left(\begin{array}{cc}A & X \\ X^{*} & B\end{array}\right) \geq 0$ with Hermitian or skew-Hermitian off diagonal blocks. If $f(t)$ is a non-negative concave function on $[0, \infty)$, then

$$
\left\|f\left(\left(\begin{array}{cc}
A & X  \tag{16}\\
X^{*} & B
\end{array}\right)\right)\right\| \leq 2\left\|f\left(\frac{1}{2} A\right)+f\left(\frac{1}{2} B\right)\right\|
$$

for all unitarily invariant norm.
Proof. If $X=X^{*}$

$$
\left(\begin{array}{cc}
A & X \\
X^{*} & B
\end{array}\right) \cong J\left(\begin{array}{cc}
A & X \\
X^{*} & B
\end{array}\right) J^{*}=\left(\begin{array}{cc}
\frac{A+B}{2} & \star \\
\star & \frac{A+B}{2}
\end{array}\right)
$$

where $J=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}i I & -I \\ i I & I\end{array}\right)$ is a unitary matrix, I is an identity matrix in $I_{n}$ and $\star$ stands for the unspecified matrices. Then

$$
\begin{aligned}
\| f\left(\left(\begin{array}{cc}
A & X \\
X^{*} & B
\end{array}\right) \|\right. & =f\left(J\left(\begin{array}{cc}
A & X \\
X^{*} & B
\end{array}\right) J^{*}\right) \\
& \leq 2\left\|f\left(\frac{A+B}{2}\right)\right\| \quad b y(7) \\
& \leq 2\left\|f\left(\frac{1}{2} A\right)+f\left(\frac{1}{2} B\right)\right\| .
\end{aligned}
$$

The last inequality is by [5, theorem 1.1]. Similarly, if $X^{*}=-X$, let $T=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}I & -I \\ I & I\end{array}\right)$, we still deduce the same result.

Corollary 2.13. Let $A, B \in \mathbb{M}_{n}$, and $\left(\begin{array}{cc}A & X \\ X^{*} & B\end{array}\right) \geq 0$ with Hermitian or skew-Hermitian off diagonal blocks. Then for all unitarily invariant norm $\|\cdot\|$

$$
\begin{aligned}
& \left\|\left(\begin{array}{cc}
A & X \\
X^{*} & B
\end{array}\right)^{p}\right\| \leq 2^{1-p}\left\|A^{p}+B^{p}\right\| \quad(0<p \leq 1) \\
& \| \log \left(I+\left(\begin{array}{cc}
A & X \\
X^{*} & B
\end{array}\right)\|\leq 2\| \log (I+A / 2)+\log (I+B / 2) \|\right.
\end{aligned}
$$

## Acknowledgements

The authors are grateful to the referee for many valuable remarks and suggestions.

## References

[1] D. Afraz, R. Lashkaripour and M. Bakherad, Norm inequalities involving a special class of functions for sector matrices, J. Inequal. Appl. (2020) 122.
[2] R. Bhatia, Matrix Analysis, GTM 169, New York, Springer-Verlag, 1997.
[3] R. Bhatia and JAR. Holbrook, On the Clarkson-McCarthy inequalities, Math. Ann. 281 (1988) 7-12.
[4] R. Bhatia and F. Kittaneh, Norm inequalities for positive operators, Lett. Math. Phys. 43 (1998) 225-231.
[5] J.-C. Bourin and M. Uchiyam, A matrix subadditivity inequality for $f(A+B)$ and $f(A)+f(B)$, Linear Algebra Appl. 423 (2007) 512-518.
[6] S. Drury and M. Lin, Singular value inequalities for matrices with numerical ranges in a sector, Oper. Matrices 8 (2014) $1143-1148$.
[7] I. H. Gumus, O. Hirzallah and F. Kittaneh, Norm inequalities involving accretive-dissipative $2 \times 2$ block matrices, Linear Algebra Appl. 528 (2017) 76-93.
[8] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.
[9] L. Hou and D. Zhang, Concave functions of partitioned matrices with numerical ranges in a sector, Math. Inequal. Appl. 20 (2017) 583-589.
[10] F. Kittaneh and M. Sakkijha, Inequalities for accretive-dissipative matrices, Linear Multilinear Algebra 67 (2019) 1037-1042.
[11] EY. Lee, Extension of Rotfel'd theorem, Linear Algebra Appl. 435 (2011) 735-741.
[12] M. Lin, Some inequalities for sector matrices, Operators and Matrices 10 (2016) 915-921.
[13] M. Lin and D. Zhou, Norm inequalities for accretive-dissipative operator matrices, J. Math. Anal. Appl. 407 (2013) 436-442.
[14] S. Lin and X. Fu, On some inequalities for sector matrices, Linear Multilinear Algebra DOI:10.1080/03081087.2019.1600466.
[15] F. Tan and A. Xie, On the logarithmic mean of accretive matrices, Filomat 33 (2019) 4747-4752.
[16] D. Zhang, L. Hou, L. Ma, Properties of matrices with numerical ranges in a sector, Bull. Iranian Math. Soc. 43 (2017) $1699-1707$.
[17] F. Zhang, A matrix decomposition and its application, Linear Multilinear Algebra 63 (2015) 2033-2042.
[18] F. Zhang, Matrix Theory: Basic Results and Techniques, Universitext, New York, Springer, 1999.


[^0]:    2010 Mathematics Subject Classification. Primary 15A60; Secondary 15A45
    Keywords. Accretive-dissipative matrix; schatten p-norm; numerical range; upper sector matrix
    Received: 02 May 2020; 27 December 2020; Revised: Accepted: 07 January 2021
    Communicated by Fuad Kittaneh
    Corresponding author: Dengpeng Zhang
    Research supported by the Youth Science Foundation Project of China (Grant No. 11805114) and the Big data and Educational Statistics Application Laboratory (2017WSYS001)

    Email addresses: zhangdengpeng@sina.cn (Dengpeng Zhang), zhangningsdust@126.com (Ning Zhang)

