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Invertible Linear Relations Generated by Integral Equations with
Operator Measures

Vladislav M. Bruka

aSaratov State Technical University, Saratov, Russia

Abstract. We define a minimal relation L0 generated by an integral equation with operators measures and
give a description of the relations L0 − λE, L∗0 − λE, where L∗0 is adjoint for L0, λ ∈ C. The obtained results
are applied to a description of relations T(λ) such that L0 − λE ⊂ T(λ) ⊂ L∗0 − λE and T−1(λ) are bounded
everywhere defined operators.

1. Introduction

In this paper, we consider the integral equation

y(t) = x0 − iJ
∫ t

a
dp(s)y(s) − iJ

∫ t

a
dm(s) f (s), (1)

where y is an unknown function, a 6 t 6 b; J is an operator in a separable Hilbert space H, J = J∗, J2 = E (E is
the identical operator); p, m are operator-valued measures defined on Borel sets ∆⊂ [a, b] and taking values
in the set of linear bounded operators acting in H; x0 ∈H, f ∈L2(H, dm; a, b). We assume that the measures
p, m have bounded variations and p is self-adjoint, m is non-negative.

We define a minimal relation L0 generated by equation (1) and give a description of the relations L0−λE,
L∗0 − λE, where L∗0 is adjoint for L0, λ ∈ C. We apply these results to a description of relations T(λ) such that
L0 − λE ⊂ T(λ) ⊂ L∗0 − λE and T−1(λ) are bounded everywhere defined operators and give an explicit form
of the operators T−1(λ).

If the measures p, m are absolutely continuous (i.e., p(∆) =
∫

∆
p(t)dt, m(∆) =

∫
∆

m(t)dt for all Borel sets
∆ ⊂ [a, b], where the functions

∥∥∥p(t)
∥∥∥, ‖m(t)‖ belong to L1(a, b) ), then integral equation (1) is transformed

to a differential equation with a non-negative weight operator function. Linear relations and operators
generated by such differential equations were considered in many works (see [14], [4], [5], further detailed
bibliography can be found, for example, in [13], [3]).

The study of integral equation (1) differs essentially from the study of differential equations by the
presence of the following features: i) a representation of a solution of equation (1) using an evolutional
family of operators is possible if the measures p, m have not common single-point atoms (see [6]); ii) the
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Lagrange formula contains summands relating to single-point atoms of the measures p, m (see [7]). Note
that this work partially corrects the errors made in the article [8]. Also note that equation (1) was considered
in [9], [10] under the assumption that m is the usual Lebesque measure on [a, b]. In [9], an explicit form of
operators T−1(λ) is given in the case when the set of single-point atoms of the measure p can be arranged as
an increasing sequence converging to b. In [9], L0, L∗0 are operators. In [10], a description of T−1(λ) is given
in terms of boundary values, i.e., necessary and sufficient conditions are obtained under which a boundary
value problem determines relations T(λ) such that T−1(λ) are bounded everywhere defined operators.

2. Preliminary assertions

Let H be a separable Hilbert space with a scalar product (·, ·) and a norm ‖·‖. We consider a function
∆→P(∆) defined on Borel sets ∆ ⊂ [a, b] and taking values in the set of linear bounded operators acting in
H. The function P is called an operator measure on [a, b] (see, for example, [2, ch. 5]) if it is zero on the empty
set and the equality P

(⋃∞
n=1 ∆n

)
=

∑
∞

n=1 P(∆n) holds for disjoint Borel sets ∆n, where the series converges
weakly. Further, we extend any measure P on [a, b] to a segment [a, b0] (b0>b) letting P(∆) = 0 for each Borel
set ∆⊂ (b, b0].

By V∆(P) we denote V∆(P) =ρP(∆) = sup
∑

n ‖P(∆n)‖, where the supremum is taken over all finite sums
of disjoint Borel sets ∆n⊂∆. The number V∆(P) is called the variation of the measure P on the Borel set ∆.
Suppose that the measure P has the bounded variation on [a, b]. Then for ρP-almost all ξ ∈ [a, b] there exists
an operator function ξ→ΨP(ξ) such that ΨP possesses the values in the set of linear bounded operators
acting in H, ‖ΨP(ξ)‖=1, and the equality

P(∆) =

∫
∆

ΨP(s)dρP (2)

holds for each Borel set ∆ ⊂ [a, b]. The function ΨP is uniquely determined up to values on a set of zero
ρP-measure. Integral (2) converges with respect to the usual operator norm ([2, ch. 5]).

Further,
∫ t

t0
stands for

∫
[t0t) if t0 < t, for −

∫
[t,t0) if t0 > t, and for 0 if t0 = t. This implies that y(a) = x0 in

equation (1). A function h is integrable with respect to the measure P on a set ∆ if there exists the Bochner
integral

∫
∆
ΨP(t)h(t)dρP =

∫
∆
(dP)h(t). Then the function y(t) =

∫ t

t0
(dP)h(s) is continuous from the left.

By SP denote a set of single-point atoms of the measure P (i.e., a set t ∈ [a, b] such that P({t}) , 0). The
set SP is at most countable. The measure P is continuous if SP = ∅, it is self-adjoint if (P(∆))∗=P(∆) for each
Borel set ∆⊂ [a, b], it is non-negative if (P(∆)x, x) > 0 for all Borel sets ∆⊂ [a, b] and for all elements x ∈ H.

In following Lemma 2.1, p1, p2, q are operator measures having bounded variations on [a, b] and taking
values in the set of linear bounded operators acting in H. Suppose that the measure q is self-adjoint. We
assume that these measures are extended on the segment [a, b0] ⊃ [a, b0) ⊃ [a, b] in the manner described
above.

Lemma 2.1. [7] Let f , 1 be functions integrable on [a, b0] with respect to the measure q and y0, z0 ∈ H. Then any
functions

y(t)= y0− iJ
∫ t

t0

dp1(s)y(s)− iJ
∫ t

t0

dq(s) f (s), z(t)=z0− iJ
∫ t

t0

dp2(s)z(s)− iJ
∫ t

t0

dq(s)1(s) (a 6 t0< b0, t06 t 6 b0)

satisfy the following formula (analogous to the Lagrange one):∫ c2

c1

(dq(t) f (t), z(t)) −
∫ c2

c1

(y(t), dq(t)1(t)) = (iJy(c2), z(c2)) − (iJy(c1), z(c1)) +

∫ c2

c1

(y(t), dp2(t)z(t))−

−

∫ c2

c1

(dp1(t)y(t), z(t)) −
∑

t∈Sp1∩Sp2∩[c1,c2)

(
iJp1({t})y(t),p2({t})z(t)

)
−

∑
t∈Sq∩Sp2∩[c1,c2)

(
iJq({t}) f (t),p2({t})z(t)

)
−

−

∑
t∈Sp1∩Sq∩[c1,c2)

(
iJp1({t})y(t),q({t})1(t)

)
−

∑
t∈Sq∩[c1,c2)

(
iJq({t}) f (t),q({t})1(t)

)
, t0 6 c1 < c2 6 b0. (3)
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Further we assume that measures p, m have bounded variations and p is self-adjoint, m is non-negative.
We consider the equation

y(t) = x0 − iJ
∫ t

a
dp(s)y(s) − iJ

∫ t

a
dm(s) f (s), (4)

where x0 ∈ H, f is integrable with respect to the measure m on [a, b], a 6 t 6 b0.
We construct a continuous measure p0 from the measure p in the following way. We set p0({tk})=0 for

tk ∈Sp and we set p0(∆) = p(∆) for all Borel sets such that ∆ ∩ Sp =∅. Similarly, we construct a continuous
measure m0 from the measure m. We denote p̂ = p − p0, m̂ = m −m0. Then p̂({tk}) = p({tk}) for all tk ∈ Sp
and p̂(∆) = 0 for all Borel sets ∆ such that ∆ ∩ Sp =∅. The similar equalities hold for the measure m̂. The
measures p0, p̂, m0, m̂ are self-adjoint and the measures m0, m̂ are non-negative.

We replace p by p0 and m by m0 in (4). Then we obtain the equation

y(t) = x0 − iJ
∫ t

a
dp0(s)y(s) − iJ

∫ t

a
dm0(s) f (s). (5)

Equations (4), (5) have unique solutions (see [6]).
By W(t, λ) denote an operator solution of the equation

W(t, λ)x0 = x0 − iJ
∫ t

a
dp0(s)W(s, λ)x0 − iJλ

∫ t

a
dm0(s)W(s, λ)x0, (6)

where x0 ∈ H, λ ∈ C (C is the set of complex numbers). Using Lemma 2.1, we get

W∗(t, λ)JW(t, λ) = J (7)

by the standard method (see [9]). The functions t→W(t, λ) and t→W−1(t, λ) = JW∗(t, λ)J are continuous
with respect to the uniform operator topology. Consequently there exist constants ε1 > 0, ε2 > 0 such that
the inequality

ε1 ‖x‖2 6 ‖W(t, λ)x‖2 6 ε2 ‖x‖2 (8)

holds for all x ∈ H, t ∈ [a, b0], λ ∈ C ⊂ C (C is a compact set).

Lemma 2.2. Suppose that a function f is integrable with respect to the measure m. A function y is a solution of the
equation

y(t) = x0 − iJ
∫ t

a
dp0(s)y(s)x − iJλ

∫ t

a
dm0(s)y(s) − iJ

∫ t

a
dm(s) f (s), x0 ∈ H, a 6 t 6 b0, (9)

if and only if y has the form

y(t) = W(t, λ)x0 −W(t, λ)iJ
∫ t

a
W∗(ξ, λ)dm(ξ) f (ξ). (10)

Proof. We denote p̃0 = p0−λm0. The measure p̃0 is continuous. Equation (9) has a unique solution (see [6]).
It is enough to prove that if we substitute the function from the right side (10) instead y in the equation (9),
then we get the identity. With this substitution, the right side (9) takes the form

x0 − iJ
∫ t

a
dp0(s)

(
W(s, λ)x0 −W(s, λ)iJ

∫ s

a
W∗(ξ, λ)dm(ξ) f (ξ)

)
−

− iJλ
∫ t

a
dm0(s)

(
W(s, λ)x0 −W(s, λ)iJ

∫ s

a
W∗(ξ, λ)dm(ξ) f (ξ)

)
− iJ

∫ t

a
dm(s) f (s) =

= x0 − iJ
∫ t

a
dp̃0(s)

(
W(s, λ)x0 −W(s, λ)iJ

∫ s

a
W∗(ξ, λ)dm(ξ) f (ξ)

)
− iJ

∫ t

a
dm(s) f (s) =

= x0 − iJ
∫ t

a
dp̃0(s)W(s, λ)x0 − J

∫ t

a
dp̃0(s)W(s, λ)J

∫ s

a
W∗(ξ, λ)dm(ξ) f (ξ) − iJ

∫ t

a
dm(s) f (s). (11)
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We change the limits of integration in the third term of the right-hand side (11). Then the third term
takes the form

J
∫ t

a
dp̃0(s)W(s, λ)J

∫ s

a
W∗(ξ, λ)dm(ξ) f (ξ)= J

∫
[a,t)

( ∫
(ξ,t)

dp̃0(s)W(s, λ)
)

JW∗(ξ, λ)dm(ξ) f (ξ) =

= J
∫

[a,t)

( ∫
[ξ,t)

dp̃0(s)W(s, λ)
)

JW∗(ξ, λ)dm(ξ) f (ξ) − J
∫

[a,t)

( ∫
{ξ}

dp̃0(s)W(s, λ)
)

JW∗(ξ, λ)dm(ξ) f (ξ). (12)

The last term in (12) is equal to zero since the measure p̃0 is continuous. Using (6), we continue equality (11)

W(t, λ)x0 −

∫ t

a
J
(∫ t

ξ
dp̃0(s)W(s, λ)

)
JW∗(ξ, λ)dm(ξ) f (ξ) − iJ

∫ t

a
dm(s) f (s). (13)

It follows from (6) that (13) is equal to

W(t, λ)x0 −

∫ t

a
i((W(t, λ) − E) − (W(ξ, λ) − E))JW∗(ξ, λ)dm(ξ) f (ξ) − iJ

∫ t

a
dm(s) f (s) =

= W(t, λ)x0 − i
∫ t

a
W(t, λ)JW∗(ξ, λ)dm(ξ) f (ξ) + i

∫ t

a
W(ξ, λ)JW∗(ξ, λ)dm(ξ) f (ξ) − iJ

∫ t

a
dm(s) f (s).

Taking into account (7), we continue the last equality

W(t, λ)x0 − iW(t, λ)J
∫ t

a
W∗(ξ, λ)dm(ξ) f (ξ) + iJ

∫ t

a
dm(ξ) f (ξ) − iJ

∫ t

a
dm(s) f (s)= y(t).

The Lemma is proved.

3. Linear relations generated by the integral equation

Let B be a Hilbert space. A linear relation T is understood as any linear manifold T ⊂ B × B. The
terminology on the linear relations can be found, for example, in [11], [1]. In what follows we make use of
the following notations: {·, ·} is an ordered pair; D(T) is the domain of T; R(T) is the range of T; ker T is a
set of elements x ∈ B such that {x, 0} ∈ T; T−1 is the relation inverse for T, i.e., the relation formed by the
pairs {x′, x}, where {x, x′} ∈ T. A relation T is called surjective if R(T) = B. A relation T is called invertible or
injective if ker T = {0} (i.e., the relation T−1 is an operator); it is called continuously invertible if it is closed,
invertible, and surjective (i.e., T−1 is a bounded everywhere defined operator). A relation T∗ is called adjoint
for T if T∗ consists of all pairs {y1, y2} such that equality (x2, y1) = (x1, y2) holds for all pairs {x1, x2} ∈ T. A
relation T is called symmetric if T ⊂ T∗.

It is known (see, for example, [12, ch.3], [11, ch.1]) that the graph of an operator T :D(T)→B is the set
of pairs {x,Tx} ∈ B × B, where x ∈ D(T) ⊂ B. Consequently, the linear operators can be treated as linear
relations; this is why the notation {x1, x2} ∈T is used also for the operator T. Since all considered relations
are linear, we shall often omit the word ”linear”.

Let m is a non-negative operator measure defined on Borel sets ∆ ⊂ [a, b] and taking values in the set of
linear bounded operators acting in the space H. The measure m is assumed to have a bounded variation

on [a, b]. We introduce the quasi-scalar product (x, y)m =

∫ b0

a
((dm)x(t), y(t)) on a set of step-like functions

with values in H defined on the segment [a, b0]. Identifying with zero functions y obeying (y, y)m = 0 and
making the completion, we arrive at the Hilbert space denoted byL2(H, dm; a, b)=H. The elements of H are
the classes of functions identified with respect to the norm

∥∥∥y
∥∥∥

m
= (y, y)1/2

m . In order not to complicate the
terminology, the class of functions with a representative y is indicated by the same symbol and we write
y ∈ H. The equality of the functions in H is understood as the equality for associated equivalence classes.
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Let us define a minimal relation L0 in the following way. The relation L0 consists of pairs {ỹ, f̃0} ∈ H × H
satisfying the condition: for each pair {ỹ, f̃0} there exists a pair {y, f0} such that the pairs {ỹ, f̃0}, {y, f0} are
identical in H × H and {y, f0} satisfies equation (4) and the equalities

y(a) = y(b0) = y(α) = 0, α ∈ Sp; m({β}) f0(β) = 0, β ∈ Sm. (14)

Further, without loss of generality it can be assumed that if {y, f0} ∈ L0, then equalities (4), (14) hold for this
pair. In general, the relation L0 is not an operator since a function y can happen to be identified with zero
in H, while f is non-zero. It follows from Lemma 2.1 that the relation L0 is symmetric.

Lemma 3.1. If a pair {y, f } ∈ L0 − λE, then

y(t) = −iJ
∫ t

a
dp0(s)y(s) − iJλ

∫ t

a
dm0(s)y(s) − iJ

∫ t

a
dm0(s) f (s). (15)

Proof. Let {y, f } ∈ L0 − λE. It follows from the definition of the relation L0 that the pair {y, f } satisfies the
equation

y(t) = −iJ
∫ t

a
dp(s)y(s) − iJλ

∫ t

a
dm(s)y(s) − iJ

∫ t

a
dm(s) f (s). (16)

Consequently,

y(t) = −iJ
∫ t

a
d(p0(s) + p̂(s))y(s) − iJλ

∫ t

a
d(m0(s) + m̂(s))y(s) − iJ

∫ t

a
d(m0(s) + m̂(s)) f (s). (17)

The pair {y, f + λy} belongs to L0. Equalities (14) imply m({β})(λy(β) + f (β)) = 0, y(α) = 0, where α ∈ Sp,
β∈Sm. Using (17), we obtain (15). The Lemma is proved.

Corollary 3.2. Equalities (15),(16) hold together for any pairs {y, f } ∈ L0 − λE.

Lemma 3.3. A pair {ỹ, f̃ }∈H×H belongs to the relation L0 − λE if and only if there exists a pair {y, f } such that the
pairs {ỹ, f̃ }, {y, f } are identical in H × H and the equalities

y(t)=−W(t, λ)iJ
∫ t

a
W∗(s, λ)dm0(s) f (s), (18)

y(α)=W(α, λ)iJ
∫ α

a
W∗(s, λ)dm0(s) f (s)=0, α ∈ Sp ∪ {b0}, (19)

m({β})(λy(β) + f (β)) = 0, β∈Sm (20)

hold.

Proof. The desired assertion follows from (14) and Lemmas 2.2, 3.1 and Corollary 3.2.

Corollary 3.4. If y ∈ D(L0), then y is continuous and y(b) = 0.

Corollary 3.5. Suppose a pair {y, f } satisfies equality (18). The function f ∈ H belongs to the range R(L0 − λE) if
and only if f satisfies the conditions∫ α

a
W∗(s, λ)dm0(s) f (s) = 0, m({β})(λy(β) + f (β)) = 0, (21)

where α ∈ Sp ∪ {b0}, β∈Sm.
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Remark 3.6. The first equality in (21) is equivalent to the following∫ α2

α1

W∗(s, λ)dm0(s) f (s) = 0, α1, α2 ∈ Sp ∪ {a} ∪ {b0}. (22)

Remark 3.7. It follows from Lemma 3.3, Corollary 3.4 that we can replace b0 by b in (19), (21), (22).

Lemma 3.8. The relation L0 is closed.

Proof. Suppose {yn, fn} ∈ L0. Using (18) – (20) for λ = 0, we obtain

yn(t)=−W(t, 0)iJ
∫ t

a
W∗(s, 0)dm0(s) fn(s), (23)

yn(α)= W(α, 0)iJ
∫ α

a
W∗(s, 0)dm0(s) fn(s) = 0, m({β}) fn(β) =0, (24)

where α ∈ Sp∪{b0}, β∈Sm. Suppose that the sequences {yn}, { fn} converge in H to y, f , respectively. We note
that if a sequence converges inH=L2(H, dm; a, b), then this sequence converges in L2(H, dm0; a, b). Moreover,∥∥∥ fn− f

∥∥∥2

H
> (m({β})( fn(β) − f (β)), fn(β) − f (β))= (m({β}) f (β), f (β)),

where β∈Sm. Passing to the limit as n→∞ in (23), (24), we obtain equalities (18) – (20) for λ = 0. It follows
from Lemma 3.3 that the pair {y, f } ∈ L0. The Lemma is proved.

By XA = XA(t) denote an operator characteristic function of a set A, i.e., XA(t) = E if t ∈ A and XA(t) = 0
if t < A. We shall often omit the argument t in the notation XA.

Remark 3.9. Equality (20) means that the function X{β}(λy(β) + f (β)) is identified with zero in the space H.

By Sp denote the closure of the set Sp. Let S0 be the set t ∈ [a, b] such that y(t) = 0 for all y ∈D(L0). It
follows from (14) and Corollary 3.4 that a, b∈S0 and Sp⊂S0. Corollary 3.4 implies that the set S0 is closed.
Therefore, Sp ∪ {a} ∪ {b} ⊂ S0.

Lemma 3.10. Suppose {y, f } ∈ L0. Then f (t) = 0 for m-almost all t ∈ S0.

Proof. Using Corollary 3.5 (for λ = 0) and Remark 3.7, we get∫ α

a
(dm0(s) f (s),W(s, 0)x) = 0, m({β}) f (β) =0

for all x ∈ H and for all α ∈ S0, β ∈ Sm. Hence equality (2) implies∫ α

a
(Ψm0 (s) f (s),W(s, 0)x)dρm0 (s) = 0, m({β}) f (β) = 0. (25)

We denote

ϕx(t) = (Ψm0 (t) f (t),W(t, 0)x), Φx(t) =

∫ t

a
ϕx(s)dρm0 (s).

The function Φx is continuous. Hence it follows from (25) that Φx(t) = 0 for all t ∈ S0. Therefore, ϕx(t) = 0
for ρm0 -almost all t ∈ S0.

Let {xn} be a countable everywhere dense set in H and let Xn be a set t ∈ S0 such that ϕxn (t) = 0. Then
%m0 (Xn) = %m0 (S0). We denote X = ∩nXn. Then %m0 (X) = %m0 (S0) and ϕxn (t) = 0 for all n. If a sequence
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{zn}, zn ∈ H, converges to z in H, then the sequence {W(t, 0)zn} converges to W(t, 0)z for fixed t. Therefore,
ϕx(t)=0 for all x∈H and for all t∈X. The operator W(t, 0) has a bounded inverse for all t. This implies that
Ψm0 (t) f (t) = 0 for all t ∈ X. Consequently, Ψm0 (t) f (t) = 0 for ρm0 -almost all t ∈ S0. It follows from (2) that∫ b

a
(dm0(t) f (t), f (t)) =

∫ b

a
(Ψm0 (t) f (t), f (t))dρm0 (t) = 0.

Hence using (14), we obtain f (t) = 0 for m-almost all t ∈ S0. The Lemma is proved.

By H0 (by H1) denote a subspace of functions that vanish on [a, b] \ S0 (on S0, respectively) with respect
to the norm in H. The subspaces H0, H1 are orthogonal and H = H0 ⊕H1. We note that H0 = {0} if and only if
m(S0) = 0. We denote L10 = L0 ∩ (H1 ×H1). ThenD(L10) ⊂ H1, R(L10) ⊂ H1. It follows from Lemma 3.10 that

L∗0 = (H0 × H0) ⊕ L∗10, (26)

i.e., the relation L∗0 consists of all pairs {y, f } ∈ H of the form

{y, f }= {u, v} + {z, 1}= {u + z, v + 1},

where u, v ∈ H0, {z, 1} ∈ L∗10.
The setTp = (a, b)\S0 is open and it is the union of at most a countable number of disjoint open intervals

Jk, i.e., Tp =
⋃k1

k=1Jk and Jk ∩ J j = ∅ for k , j, where k1 is a natural number (equal to the number of
intervals if this number is finite) or the symbol∞ (if the number of intervals is infinite). By J denote the set
of these intervals Jk.

Remark 3.11. The boundaries αk, βk of any interval Jk = (αk, βk) ∈ J belong to S0.

We denote

wk(t, λ) = X[αk,βk)W(t, λ)W−1(αk, λ), (27)

where (αk, βk) = Jk ∈ J. Using (7), we get

w∗k(t, λ)Jwk(t, λ) = J, αk 6 t < βk. (28)

Lemma 3.12. Let 1 ∈ H1 and let a function Go be given by the following equality

Go(t) = −X[a,b]\Sm wk(t, λ)iJ
∫ t

αk

w∗k(s, λ)dm(s)1(s),

where (αk, βk) = Jk ∈ J. Then the pair {Go, 1} ∈ L∗10 − λE if 1 vanishes outside of [αk, βk).

Proof. We denote

G(t) = −wk(t, λ)iJ
∫ t

αk

w∗k(s, λ)dm(s)1(s).

Equalities (27), (7) imply

G(t) = −X[αk ,βk)W(t, λ)iJ
∫ t

αk

W∗(s, λ)dm(s)1(s).

It follows from Lemma 2.2 that the function G is a solution of equation (9) on the segment [αk, γ], γ < βk
(for a = αk, y = G, f = 1, x0 = 0).
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Suppose a pair {y, f } ∈ L0 − λE. The pair {y, f } satisfies equation (16) in which λ is replaced by λ.
Therefore we can apply formula (3) to the functions y, f , G, 1 for c1 = αk, c2 = γ, q = m, p1 = p0 + λm,
p2 = p0 +λm0. Since the measures p0, m0 is continuous, self-adjoint, m = m0 + m̂, and (20) holds, we obtain∫ γ

αk

(dm(s) f (s),G(s)) −
∫ γ

αk

(y, dm(s)1(s)) = (iJy(γ),G(γ)) −
∫ γ

αk

λ(dm̂(s)y(s),G(s)).

Using the equality Go(t) = G(t) − XSm G(t) and (20), we get∫ γ

αk

(dm(s) f (s),Go(s)) −
∫ γ

αk

(y, dm(s)1(s)) = (iJy(γ),G(γ))−

−

∑
s∈Sm∩[αk ,γ)

λ(m̂({s})y(s),G(s)) −
∑

s∈Sm∩[αk ,γ)

(m̂({s}) f (s),G(s)) = (iJy(γ),G(γ)). (29)

The function y is continuous from the left and y(βk) = 0 (also see Corollary 3.4). Hence passing to the limit
as γ→ βk−0 in (29), we obtain∫ βk

αk

(dm(s) f (s),Go(s)) =

∫ βk

αk

(y(s), dm(s)1(s)).

This implies the desired statement. The Lemma is proved.

By H10 (by H11) denote a subspace of functions that belong to H1 and vanish on Sm (on [a, b] \ Sm,
respectively) with respect to the norm in H. So, H10 (H11) consists of functions of the form X[a,b]\(S0∪Sm)h (of
the form XSm\S0 h, respectively), where h ∈ H is an arbitrary function. Therefore,

H1 = H10 ⊕ H11, H = H0 ⊕ H10 ⊕ H11.

Obviously, the space H11 is the closure in H of the linear span of functions that have the form X{τ}(·)x, where
x ∈ H, τ ∈ Sm \ S0. By (14), it follows that H11 ⊂ ker L∗10.

Remark 3.13. Suppose τ ∈ Sm∩S0. Then X{τ}(·)x ∈ H0 for x ∈ H. Hence (26) implies that the pair {0,X{τ}(·)x}∈L∗0.
In particular, Remark 3.11 implies that this is true for τ ∈ Sm ∩ (∪k1

k=1{αk, βk} ∪ {a, b}), where αk, βk are boundaries of
intervals (αk, βk) = Jk ∈ J.

We define an operatorUk(λ) :H1→H1 by the equation

(Uk(λ) f )(t) = −X[a,b]\Sm wk(t, λ)iJ
∫ t

a
w∗k(s, λ)dm(s)λ f (s), f ∈ H1. (30)

The operatorUk(λ) is bounded. Obviously,Uk(0) = 0. Taking into account (27) and Lemma 3.12, we obtain
that the pair {Uk(λ) f ,X[αk,βk)λ f } ∈ L∗10 − λE.

Let uk(t, λ, τ) :H→H1 be an operator acting by the formula

uk(t, λ, τ)x = (Uk(λ)X{τ}x)(t) = −X[a,b]\Sm wk(t, λ)iJ
∫ t

a
w∗k(s, λ)dm(s)λX{τ}(s)x, (31)

where x ∈ H, τ ∈ (αk, βk) ∩ Sm, (αk, βk) = Jk ∈ J. Then the pair {uk(·, λ, τ)x, λX{τ}x} ∈ L∗10 − λE. The definition
of L0 implies that the function X{τ}x∈ker L∗0. Consequently, {X{τ}x,−λX{τ}x} ∈L∗10 − λE. Thus, for any x ∈ H
the function

uk(·, λ, τ)x + X{τ}(·)x ∈ ker(L∗10 − λE). (32)
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Using (31), we get

‖uk(·, λ, τ)x‖H 6 |λ|γ
∥∥∥X{τ}(·)x∥∥∥H = |λ|γm1/2({τ})x, (33)

where γ > 0, x ∈ H, τ ∈ (αk, βk) ∩ Sm.
The linear span of functions of the form X{τ}(·)x (x ∈ H, τ ∈ Sm \ S0) is dense in the space H11. It follows

from (31), (32) that for any the function z1 ∈ H11

Uk(λ)z1 + z1 ∈ ker(L∗10 − λE). (34)

Lemma 3.14. The linear span of functions of the form X[a,b]\Sm wk(·, λ)x is dense in H10∩ker(L∗10−λE). Here x ∈ H;
k = 1, ...,k1 if k1 is finite and k is any natural number if k1 is infinite.

Proof. Suppose that h0 ∈ H10 ∩ ker(L∗10 − λE) and

(h0,X[a,b]\Sm wk(·, λ)x)H =

∫ b

a
(dm(s)h0(s),X[a,b]\Sm wk(s, λ)x) = 0 (35)

for all x ∈ H and for all k. Let us prove that h0(t) = 0 m-almost everywhere. We denote

y(t)=−W(t, λ)iJ
∫ t

a
W∗(s, λ)dm0(s)h0(s). (36)

We define the function h as follows. We put h(t) = h0(t) for t ∈ [a, b]\ Sm, and h(t) = −λ
−1

y(t) for t ∈ Sm,
λ , 0, and h(t) = 0 for t ∈ Sm, λ = 0. The function y will not change if h0 is replaced by h in (36). Moreover,
equality (35) will remain with this replacement. Then it follows from Lemma 3.3 and Corollary 3.5 that the
pair {y, h} ∈ L10 −λE. Hence (h0, h)H = 0 since h0 ∈ ker(L∗10 −λE). On the other hand, (h0, h)H = (h0, h0)H. This
implies h0 = 0. The Lemma is proved.

Lemma 3.15. The linear span of functions of the form X[a,b]\Sm wk(·, λ)x0 and uk(·, λ, τ)xk + X{τ}(·)xk is dense in
ker(L∗10 − λE). Here xk, x0 ∈ H; τ ∈ (αk, βk) ∩ Sm; k = 1, ...,k1 if k1 is finite and k is any natural number if k1 is
infinite.

Proof. Let z ∈ ker(L∗10 − λE). Then z = z0 + z1, where z0 ∈ H10, z1 ∈ H11. Suppose that the function
z is orthogonal to the functions listed in the condition of the Lemma. We claim that z = 0. The pair
{z1,−λz1} ∈ L∗10 − λE since z1 ∈ ker L∗10. Therefore, {z0, λz1} ∈ L∗10 − λE. We denote zk = X[α,β)z, z0k = X[α,β)z0,
z1k = X[α,β)z1. Using Lemma 3.12, we get

z0k(t) = −X[a,b]\Sm wk(t, λ)iJ
∫ t

a
w∗k(s, λ)dm(s)λz1k(s) + h0(t), (37)

where h0∈ker(L∗10−λE). Moreover, h0∈H10 since z0k∈H10 and the first term in (37) belongs toH10. According
to Lemma 3.14, h0 belongs to the closure of linear span of functions that have the form X[αk,βk)\Sm wk(·, λ)x′,
x′ ∈H. Using (30), (37), we obtain zk = Uk(λ)z1k + z1k + h0. By assumption, (zk,Uk(λ)z1k + z1k)H = 0 and
(zk, h0)H = 0. Hence, (zk, zk)H = 0 for all k. Therefore, (z, z)H = 0. The Lemma is proved.

Remark 3.16. The Lemma 3.15 remains true if functions of the form uk(·, λ, τ)xk +X{τ}(·)xk are replaced by functions
uk(·, λ, τ)wk(τ, λ)xk + X{τ}(·)wk(τ, λ)xk. Indeed, by (8), (27), it follows that the operator wk(τ, λ) is continuously
invertible for τ ∈ Jk = (αk, βk). Hence the linear spans of the noted above functions coincide.

LetM be a set consisting of intervals J ∈ J and single-point sets {τ}, where τ ∈ Sm \ S0. The setM is
at most countable. Let k be the number of elements inM. We arrange the elements ofM in the form of a
finite or infinite sequence and denote these elements by Ek, where k is any natural number if the number of
elements inM is infinite, and 1 6 k 6 k if the number of elements inM is finite.
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We shall assign an operator function vk to each element Ek ∈M in the following way. If Ek is the interval,
Ek = Jk = (αk, βk) ∈ J, then

vk(t, λ) = X[αk ,βk)\Sm wk(t, λ). (38)

If Ek is a single-point set, Ek = {τk}, τk∈Sm \ S0, and τk ∈ Jn = (αn, βn)∈J, then

vk(t, λ) = un(t, λ, τk)wn(τk, λ) + X{τk}(t)wn(τk, λ). (39)

Remark 3.17. It follows from (27) that equality (38) is equivalent to the following: vk(t, λ) = X[a,b]\Sm wk(t, λ).

Lemma 3.18. The linear span of functions t→vk(t, λ)ξk (ξk ∈ H) is dense in ker(L∗10 − λE). (Here k ∈N if k = ∞,
and 1 6 k 6 k if k is finite.)

Proof. The required statement follows from Remark 3.16 and Lemma 3.15 immediately.

Corollary 3.19. A function f ∈ H1 belongs to the range R(L10 −λE) if and only if the equality ( f , vk(·, λ))H=0 holds
for all k. (Here k ∈N if k = ∞, and 1 6 k 6 k if k is finite.)

Proof. The proof follows from the equality R(L10 − λE) ⊕ ker(L∗10 − λE) = H1 and Lemma 3.18.

Further, we denote vk(t, 0) = vk(t). We note that uk(t, 0, τ)=0 (see (31)).
Let Qk,0 be a set x ∈ H such that the functions t→ vk(t)x are identical with zero inH. We put Qk = H	Qk,0.

On the linear space Qk we introduce a norm ‖·‖− by the equality

‖ξk‖− = ‖vk(·)ξk‖H , ξk ∈ Qk. (40)

We note that if vk has form (38) with λ = 0, then

‖ξk‖− =

( ∫
[a,b]\Sm

(dm(s)wk(s, 0)ξk,wk(s, 0)ξk)
)1/2

=

( ∫
[a,b]

(dm0(s)wk(s, 0)ξk,wk(s, 0)ξk)
)1/2

, ξk ∈ Qk.

If vk has form (39) with λ = 0, then

‖ξk‖−= (m({τk})wn(τk, 0)ξk,wn(τk, 0)ξk)1/2 =
∥∥∥m1/2({τk})wn(τk, 0)ξk

∥∥∥ , ξk ∈ Qk.

By Q−k denote the completion of Qk with respect to norm (40). This norm (40) is generated by the scalar
product

(ξk, ηk)− = (vk(·)ξk, vk(·)ηk)H, (41)

where ξk, ηk ∈ Qk. From formula (2) in which the measure P is replaced by m, it follows that

‖ξk‖− 6 γ ‖ξk‖ , ξk ∈ Qk, (42)

where γ > 0 is independent of ξk ∈ Qk.
It follows from (42) that the space Q−k can be treated as a space with a negative norm with respect to Qk

([2, ch. 1], [11, ch.2]). By Q+
k denote the associated space with a positive norm. The definition of spaces with

positive and negative norms implies that Q+
k ⊂ Qk ⊂ Q−k . By (·, ·)+ and ‖·‖+ we denote the scalar product

and the norm in Q+
k , respectively.

Lemma 3.20. There exist constants γ1k, γ2k > 0 such that the inequality

γ1k ‖vk(·)x‖H 6 ‖vk(·, λ)x‖H 6 γ2k ‖vk(·)x‖H (43)

holds for all x ∈ H.
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Proof. Using Lemma 2.2 and (6), we get

W(t, λ)x0 = W(t, 0)x0 −W(t, 0)iJ
∫ t

a
W∗(s, 0)dm0(s)λW(s, λ)x0, x0 ∈ H, (44)

W(t, 0)x0 = W(t, λ)x0 + W(t, λ)iJ
∫ t

a
W∗(ξ, λ)dm0(s)λW(s, 0)x0, x0 ∈ H. (45)

Suppose that vk has form (38). Using (27), (44), (45), we obtain

vk(t, λ)x0 = vk(t, 0)x0 − vk(t, 0)iJ
∫ t

αk

v∗k(s, 0)dm0(s)λvk(s, λ)x0, x0 ∈ H, (46)

vk(t, 0)x0 = vk(t, λ)x0 + vk(t, λ)iJ
∫ t

αk

v∗k(ξ, λ)dm0(s)λvk(s, 0)x0, x0 ∈ H. (47)

Equalities (8), (46), (47) imply (43) in the case when vk has form (38). Suppose that vk has form (39). Using
(39), (31), we get

‖vk(·, λ)x‖2H = ‖un(·, λ, τk)wn(τk, λ)x‖2H +
∥∥∥X{τk}(·)wn(τk, λ)x

∥∥∥2

H
>

∥∥∥X{τk}(·)wn(τk, λ)x
∥∥∥2

H
= ‖vk(·)x‖2H .

On the other hand, using (31), (33), we obtain

‖vk(·, λ)x‖H6 ‖un(·, λ, τk)wn(τk, λ)x‖H+
∥∥∥X{τk}(·)wn(τk, λ)x

∥∥∥
H
6 γ3

∥∥∥X{τk}(·)wn(τk, λ)x
∥∥∥
H

= γ3 ‖vk(·)x‖H ,

where γ3 > 0. The Lemma is proved.

Remark 3.21. By (43), it follows that the set Qk,0 will not change if the function vk(·) = vk(·, 0) is replaced by vk(·, λ)
in the definition of Qk,0. Moreover, with such a replacement, the space Q−k will not change in the following sense: the
set Q−k will not change, and the norm in it will be replaced by the equivalent one. The similar statement holds for the
space Q+

k .

Suppose that a sequence {xkn}, xkn ∈ Qk, converges in the space Q−k to x0 ∈ Q−k as n→∞. It follows from
Lemma 3.20 that the sequence {vk(·, λ)xkn} is fundamental in H. Therefore this sequence converges to some
element in H. By vk(·, λ)x0 we denote this element.

Let Q̃−N =Q−1× ...×Q−N (Q̃+
N =Q+

1× ...×Q+
N) be the Cartesian product of the first n sets Q−k (Q+

k , respectively)
and let VN(t, λ) = (v1(t, λ), ..., vN(t, λ)) be the operator one-row matrix. It is convenient to treat elements
from Q̃−N as one-column matrices, and to assume that VN(t, λ)ξ̃N =

∑N
k=1 vk(t, λ)ξk, where we denote ξ̃N =

col(ξ1, ..., ξN) ∈ Q̃−N, ξk ∈ Q−k .
Let kerk(λ) be a linear space of functions t→ vk(t, λ)ξk, ξk ∈ Q−k . By (40) and Lemma 3.20, it follows

that kerk(λ) is closed in H. The spaces kerk(0) and ker j(0) are orthogonal for k , j. We denote KN(λ) =
ker1(λ)+̇...+̇ kerN(λ). Obviously,KN1 (λ) ⊂ KN2 (λ) for N1 < N2.

Lemma 3.22. The set ∪NKN(λ) is dense in ker(L∗10 − λE).

Proof. The required statement follows from Lemma 3.18 immediately.

ByVN(λ) denote the operator ξ̃N→VN(·, λ)ξ̃N, where ξ̃N ∈Q̃−N. The operatorVN(λ) maps continuously
and one-to-one Q̃−N ontoKN(λ) ⊂ H1 ⊂ H. Hence the adjoint operatorV∗N(λ) maps H onto Q̃+

N continuously.
We find the form of the operatorV∗N. For all ξ̃N ∈ Q̃N = Q1 × ...QN, f ∈H, we have

( f ,VN(λ) ξ̃N)H =

∫ b0

a
(dm(s) f (s),VN(s, λ)ξ̃N) =

∫ b0

a
(V∗N(s, λ)dm(s) f (s), ξ̃N) = (V∗N(λ) f , ξ̃N).
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Since Q̃N is dense in Q̃−N, we obtain

V
∗

N(λ) f =

∫ b0

a
V∗N(s, λ)dm(s) f (s). (48)

Thus, we have proved the following statement.

Lemma 3.23. The operatorVN(λ) maps continuously and one-to-one Q̃−N onto Kn(λ). The adjoint operatorV∗N(λ)
maps continuously H onto Q̃+

N and acts by formula (48). Moreover,V∗N(λ) maps one-to-oneKN(λ) onto Q̃+
N.

Let Q−, Q+, Q be linear spaces of sequences, respectively, η̃ = {ηk}, ϕ̃ = {ϕk}, ξ̃ = {ξk}, where ηk ∈ Q−k ,
ϕk ∈ Q+

k , ξk ∈ Qk; k ∈N if k = ∞, and 1 6 k 6 k if k is finite; k is the number of elements inM. We assume

that the series
∑
∞

k=1

∥∥∥ηk

∥∥∥2

−
,
∑
∞

k=1

∥∥∥ϕk

∥∥∥2

+
,
∑
∞

k=1 ‖ξk‖
2 converge if k = ∞. These spaces become Hilbert spaces if

we introduce scalar products by the formulas

(η̃, ζ̃)−=

k∑
k=1

(ηk, ζk)−, η̃, ζ̃∈Q−; (ϕ̃, ψ̃)+ =

k∑
k=1

(ϕk, ψk)+, ϕ̃, ψ̃∈Q+; (ξ̃, σ̃) =

k∑
k=1

(ξk, σk), ξ̃, σ̃ ∈ Q .

In these spaces, the norms are defined by the equalities

∥∥∥η̃∥∥∥2

−
=

k∑
k=1

∥∥∥ηk

∥∥∥2

−
,

∥∥∥ϕ̃∥∥∥2

+
=

k∑
k=1

∥∥∥ϕk

∥∥∥2

+
,

∥∥∥∥ξ̃∥∥∥∥2
=

k∑
k=1

‖ξk‖
2 .

The spaces Q+,Q−can be treated as spaces with positive and negative norms with respect to Q ([2, ch. 1],
[11, ch.2]). So Q+ ⊂ Q ⊂ Q− and γ1

∥∥∥ϕ̃∥∥∥
−
6

∥∥∥ϕ̃∥∥∥6 γ2

∥∥∥ϕ̃∥∥∥
+

, where ϕ̃ ∈ Q+, γ1, γ2 > 0. The ”scalar product”
(η̃, ϕ̃) is defined for all ϕ̃ ∈ Q+, η̃ ∈ Q−. If η̃ ∈ Q, then (η̃, ϕ̃) coincides with the scalar product in Q.

LetM ⊂ Q− be a set of sequences vanishing starting from a certain number (its own for each sequence).
The setM is dense in the spaceQ−. The operatorVN(λ) is the restriction ofVN+1(λ) to Q̃−N. ByV′(λ) denote
an operator in M such that V′(λ)η̃ = VN(λ)η̃N for all N ∈ N, where η̃ = (η̃N, 0, ...), η̃N ∈ Q̃−N. It follows
from (40), (43) thatV′(λ) admits an extension by continuity to the space Q−. ByV(λ) denote the extended
operator. This operator maps continuously and one-to-one Q− onto ker(L∗10 − λE) ⊂ H1 ⊂ H. Moreover, we
denote Ṽ(t, λ)η̃ = (V(λ)η̃)(t), where η̃ = {ηk} ∈ Q−. Using (41), we get

(V(0)η̃,V(0)ζ̃)H = (η̃, ζ̃)−; η̃ = {ηk}, ζ̃ = {ζk}; η̃, ζ̃ ∈ Q−.

The adjoint operatorV∗(λ) maps continuously H ontoQ+. Let us find the form ofV∗(λ). Suppose f ∈ H,
η̃ ∈ M, η̃ = {η̃N, 0, ...}. Then

(η̃,V∗(λ) f )= (V(λ)η̃, f )H=

∫ b0

a
(dm(t)Ṽ(t, λ)η̃, f (t)) =

∫ b0

a
(η̃, Ṽ∗(t, λ)dm(t) f (t)).

SinceV∗(λ) f ∈ Q+ and the setM is dense in Q−, we get

V
∗(λ) f =

∫ b0

a
Ṽ∗(t, λ)dm(t) f (t). (49)

Taking into account Lemmas 3.22,3.23, we obtain the following statement.

Lemma 3.24. The operatorV(λ) maps Q− onto ker(L∗10 −λE) continuously and one to one. A function z belongs to
ker(L∗10 − λE) if and only if there exists an element η̃= {ηk}∈Q− such that z(t)= (V(λ)η̃)(t)= Ṽ(t, λ)η̃. The operator
V
∗(λ) maps H ontoQ+ continuously, and acts by formula (49), and kerV∗(λ)=H0⊕R(L10−λE). Moreover,V∗(λ)

maps ker(L∗10 − λE) onto Q+ one to one.
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Theorem 3.25. A pair {ỹ, f̃ } ∈ H × H belongs to L∗0 − λE if and only if there exist a pair {y, f } ∈ H × H, functions
y0, y′0 ∈ H0, ŷ, f̂ ∈ H1 and an element η̃ ∈ Q− such that the pairs {ỹ, f̃ }, {y, f } are identical in H×H and the equalities

y= y0 + ŷ, f = y′0 + f̂ , (50)

ŷ(t)= Ṽ(t, λ)η̃ −
k1∑

k=1

X[a,b]\Sm wk(t, λ)iJ
∫ t

a
w∗k(s, λ)dm(s) f̂ (s) (51)

hold, where the series in (51) converges in H, k1 is the number of intervals Jk ∈ J.

Proof. Equalities (50) follow from (26). Let us prove that equality (51) holds. It follows from Lemma 3.24 that
V(λ)η̃ ∈ ker(L∗10−λE). We prove that if the functions ŷ, f̂ satisfy equality (51), then the pair {ŷ, f̂ } ∈ L∗10−λE.
If k1 is finite, then this statement follows from Lemmas 3.12,3.24. We assume that k1 = ∞ and first prove
that the series in (51) converges in H for each function f̂ ∈ H1.

The function

ŷk(t)=−X[a,b]\Sm wk(t, λ)iJ
∫ t

a
w∗k(s, λ)dm(s) f̂ (s) = −X[a,b]\Sm wk(t, λ)iJ

∫ t

αk

w∗k(s, λ)Ψm(s) f̂ (s)dρm(s) (52)

vanishes outside the interval [αk, βk). (Here Ψm, ρm are functions from formula (2) in which the measure P
is replaced by m.) We denote f̂k(t)=χ[αk ,βk) f̂ (t). Using (52), (8), (2), we get

∥∥∥ŷk(t)
∥∥∥ 6 ε1 ‖wk(t, λ)‖

∫ βk

αk

∥∥∥w∗k(s, λ)
∥∥∥ ∥∥∥∥Ψ1/2

m (s) f̂k(s)
∥∥∥∥ dρm(s) 6

6 ε

( ∫ βk

αk

∥∥∥∥Ψ1/2
m (s) f̂k (s)

∥∥∥∥2
dρm(s)

)1/2

= ε
∥∥∥∥ f̂k

∥∥∥∥
H
, ε1, ε > 0.

This implies

∥∥∥ŷk

∥∥∥2

H
=

∫ βk

αk

(Ψm(t)ŷk(t), ŷk(t))dρm(t) 6 ε2ρm([αk, βk))
∥∥∥∥ f̂k

∥∥∥∥2

H
. (53)

We denote Sn(t) =
∑n

k=1 ŷk(t) and prove that the sequence {Sn} converges in H. From (53), we get

‖Sn‖
2
H =

n∑
k=1

∥∥∥ŷk

∥∥∥2

H
6 ε2

n∑
k=1

ρm([αk, βk))
∥∥∥∥ f̂k

∥∥∥∥2

H
6 ε2ρm([a, b])

∥∥∥∥ f̂
∥∥∥∥2

H
.

Hence the sequence {Sn} converges to some function S ∈ H and

S(t) = −

∞∑
k=1

X[a,b]\Sm wk(t, λ)iJ
∫ t

a
w∗k(s, λ)dm(s) f̂ (s), ‖S‖H 6 ε2

∥∥∥∥ f̂
∥∥∥∥
H
, ε2>0. (54)

It follows from Lemma 3.12 that the pair {Sn,
∑n

k=1 f̂k} ∈ L∗10 − λE. The relation L∗10 is closed. Therefore,

{S, f̂ } ∈ L∗10 − λE and {ŷ, f̂ }∈L∗10 − λE.

Now we assume that a pair {ŷ, f̂ } ∈ L∗10 − λE. For the function f̂ , we find a function S by formula (54).

Then {S, f̂ } ∈L∗10 − λE. Hence ŷ − S∈ ker(L∗10 − λE). By Lemma 3.24, it follows that there exists an element
η̃ ∈ Q− such that ŷ − S = V(λ)η̃. Therefore ŷ has form (51). Now (26) implies the desired assertion. The
Theorem is proved.
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4. Continuously invertible extensions of the relation L0 − λE

We denote

yk(t, λ) = −X[αk,βk)\(Sm∩S0)wk(t, λ)iJ
∫ t

a
w∗k(s, λ)dm(s)X[a,b]\Sm f̂ (s) =

= −X[αk ,βk)\(Sm∩S0)wk(t, λ)iJ
∫ t

a
w∗k(s, λ)dm0(s) f̂ (s),

ỹk(t, λ) = X[αk,βk)\(Sm∩S0)wk(t, λ)iJ
∫ b

t
w∗k(s, λ)dm(s)X[a,b]\Sm f̂ (s) =

= X[αk,βk)\(Sm∩S0)wk(t, λ)iJ
∫ b

t
w∗k(s, λ)dm0(s) f̂ (s).

It follows from Remark 3.11 that X[αk,βk)\(Sm∩S0) = X[αk ,βk) if αk < Sm and X[αk,βk)\(Sm∩S0) = X(αk ,βk) if αk ∈ Sm (see
also Remark 3.13).

Lemma 4.1. Let λ , 0. Equality (51) hold if and only if

ŷ(t)= Ṽ(t, λ)ζ̃ + 2−1
k1∑

k=1

[yk(t, λ) − XSm∩(αk,βk)yk(t, λ) − XSm∩(αk ,βk)λ
−1 f̂ (t)]+

+ 2−1
k1∑

k=1

[̃yk(t, λ) − XSm∩(αk ,βk)ỹk(t, λ) − XSm∩(αk ,βk)λ
−1 f̂ (t)], (55)

where ζ̃ ∈ Q−.

Proof. By standard transformations, equality (51) is reduced to the form

ŷ(t)= Ṽ(t, λ)ϑ̃ − 2−1
k1∑

k=1

X[a,b]\Sm wk(t, λ)iJ
∫ t

a
w∗k(s, λ)dm(s) f̂ (s)+

+ 2−1
k1∑

k=1

X[a,b]\Sm wk(t, λ)iJ
∫ b

t
w∗k(s, λ)dm(s) f̂ (s), (56)

where ϑ̃= {ϑk} ∈ Q−, and ϑk = ηk if vk has form (39), and ϑk = ηk−2−1iJ
∫ βk

αk
w∗k(s, λ)dm(s) f̂ (s) if vk has form (38).

Let us write the function

wk(t, λ) = −X[a,b]\Sm wk(t, λ)iJ
∫ t

a
w∗k(s, λ)dm(s) f̂ (s) (57)

in a different form. Using (57), (30), we get

wk(t, λ) = X[a,b]\Smyk(t, λ) − X[a,b]\Sm wk(t, λ)iJ
∫ t

a
w∗k(s, λ)dm(s)XSm f̂ (s) =

= yk(t, λ)−[XSm∩(αk,βk)yk(t, λ)+XSm∩(αk ,βk)λ
−1 f̂ (t)] +[XSm∩(αk,βk)λ

−1 f̂ (t) +(Uk(λ)λ−1XSm∩(αk ,βk) f̂ )(t)].

Using (34), we get

vk = XSm∩(αk ,βk)λ
−1 f +Uk(λ)λ−1XSm∩(αk ,βk) f̂ ∈ ker(L∗10 − λE).
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Therefore,

wk(t, λ) = yk(t, λ) − [XSm∩(αk,βk)yk(t, λ) + XSm∩(αk ,βk)λ
−1 f̂ (t)] + vk(t). (58)

Similarly, we transform the function

ŵk(t, λ) = X[a,b]\Sm wk(t, λ)iJ
∫ b

t
w∗k(s, λ)dm(s) f̂ (s)

to the form

w̃k(t, λ) = ỹk(t, λ) − [XSm∩(αk,βk )̃yk(t, λ) + XSm∩(αk ,βk)λ
−1 f̂ (t)]+

+ [XSm∩(αk ,βk)λ
−1 f (t) + (Uk(λ)λ−1XSm∩(αk,βk) f̂ )(t)] + X[a,b]\Sm wk(t, λ)iJ

∫ b

a
w∗k(s, λ)dm(s)XSm f̂ (s).

By Lemma 3.15 and (34), it follows that here the last two terms belong to ker(L∗10 − λE). Consequently,

w̃k(t, λ) = ỹk(t, λ) − [XSm∩(αk ,βk )̃yk(t) + XSm∩(αk ,βk)λ
−1 f̂ (t)] + ṽk(t), (59)

where ṽk ∈ ker(L∗10 − λE). Now the desired statement follows from (56), (58), (59) and Lemma 3.24. The
Lemma is proved.

Lemma 4.2. Let λ = 0. Equality (51) hold if and only if

ŷ(t)= Ṽ(t, 0)ζ̃ + 2−1
k1∑

k=1

[yk(t, 0) − X[a,b]\Sm wk(t, 0)iJ
∫ t

a
w∗k(s, 0)dm(s)XSm f̂ (s)]+

+ 2−1
k1∑

k=1

[̃yk(t, 0) + X[a,b]\Sm wk(t, 0)iJ
∫ b

t
w∗k(s, 0)dm(s)XSm f̂ (s))]. (60)

Proof. Equality (56) holds for λ = 0. We transform the function wk(t, 0) (see (57)) in the following way:

wk(t, 0)=−X[a,b]\Sm wk(t, 0)iJ
∫ t

a
w∗k(s, 0)dm(s) f̂ (s) = yk(t, 0) − XSm∩(αk ,βk)yk(t, 0)−

−X[a,b]\Sm wk(t, 0)iJ
∫ t

a
w∗k(s, 0)dm(s)XSm f̂ (s).

Similarly, we transform the function w̃k(t, 0). Since XSm∩(αk ,βk)yk(·, 0) ∈ ker L∗10, XSm∩(αk ,βk )̃yk(·, 0) ∈ ker L∗10,

X[a,b]\Sm wk(t, 0)iJ
∫ b

a w∗k(0, λ)dm(s)XSm f̂ (s)∈ker L∗10, we obtain the required statement.The Lemma is proved.

Theorem 4.3. Let T(λ) be a linear relation such that L10−λE⊂T(λ)⊂L∗10− λE. The relation T(λ) is continuously
invertible in the space H1 if and only if there exists a bounded operator M(λ) :Q+→Q− such that equalities (61) (for
λ , 0) and (62) (for λ = 0) (see equalities below) hold for any pair {y, f̂ } ∈ T(λ)

ŷ(t) =

∫ b

a
Ṽ(t, λ)M(λ)Ṽ∗(s, λ)dm(s) f̂ (s)+

+ 2−1
k1∑

k=1

∫ b

a
X[αk,βk)\(Sm∩S0)(t)wk(t, λ)sgn(s − t)iJw∗k(s, λ)dm(s)X[a,b]\Sm (s) f̂ (s)−

− 2−1
k1∑

k=1

∫ b

a
XSm∩(αk ,βk)(t)wk(t, λ)sgn(s − t)iJw∗k(s, λ)dm(s)X[a,b]\Sm (s) f̂ (s) − λ−1

k1∑
k=1

XSm∩(αk ,βk)(t) f̂ (t), (61)



V. M. Bruk / Filomat 35:5 (2021), 1589–1607 1604

ŷ(t) =

∫ b

a
Ṽ(t, 0)M(0)Ṽ∗(s, 0)dm(s) f̂ (s)+

+ 2−1
k1∑

k=1

∫ b

a
X[αk,βk)\(Sm∩S0)(t)wk(t, 0)sgn(s − t)iJw∗k(s, 0)dm(s)X[a,b]\Sm (s) f̂ (s)+

+ 2−1
k1∑

k=1

∫ b

a
X[a,b]\Sm (t)wk(t, 0)sgn(s − t)iJw∗k(s, 0)dm(s)XSm (s) f̂ (s). (62)

Proof. First note that the range R(L10−λE) is closed and ker(L10−λE)= {0}. This follows from the Lemma 3.3.
Suppose that the relation T−1(λ) is a boundary everywhere defined operator and ŷ = T−1(λ) f̂ . Then ŷ has
form (55) for λ , 0 and (60) for λ = 0. In this equalities, ζ̃ ∈ Q− is uniquely determined by f̂ and λ, i.e.,
ζ̃ = ζ̃( f̂ , λ). Indeed, if f̂ = 0, then Ṽ(t, λ)ζ̃ = T−1(λ)0 = 0. It follows from Lemma 3.24 that ζ̃ = 0. Moreover,
ζ̃ depends on f̂ linearly. Consequently, ζ̃= S(λ) f̂ , where S(λ) :H1→Q− is a linear operator for fixed λ. We
claim that the operator S(λ) is bounded. Indeed, if a sequence { f̂n} converges to zero in the space H1 as
n→∞, then the sequence {ŷn}={T−1(λ) f̂n} converges to zero in H1. Hence the sequence {V(λ)ζ̃n} (where
ζ̃n = S(λ) f̂n) converges to zero in H1. By Lemma 3.24, it follows that the sequence {S(λ) f̂n} converges to zero
in the space Q−. Therefore S(λ) is the bounded operator.

Now we prove that ζ̃( f̂ , λ) is uniquely determined by the element V∗(λ) f̂ ∈Q+. Suppose V∗(λ) f̂ = 0.
The application of Lemma 3.24 yields f̂ ∈ R(L10 − λE).

Suppose λ , 0. Taking into account Lemma 3.3, we determine a function ŷ by equality (55) in which

XSm∩(αk ,βk)yk(t, λ) + XSm∩(αk,βk)λ
−1 f̂ (t) = 0, XSm∩(αk ,βk)ỹk(t, λ) + XSm∩(αk,βk)λ

−1 f̂ (t) = 0.

By Lemma 3.3 and Remark 3.9, it follows that the pairs {yk,X(α,β) f̂ }, {̃yk,X(α,β) f̂ } ∈ L10 − λE. This and the
invertibility of T(λ) imply that ζ̃( f̂ , λ) = 0 for λ , 0.

Let λ = 0. Using Lemma 3.3 (for λ = 0) and Remark 3.9, we determine a function y by equality (60) in
which X{τ} f̂ (τ) = 0 for τ ∈ Sm. Then equality (60) will take the form

ŷ(t)= Ṽ(t, 0)ζ̃( f̂ , 0) + 2−1
k1∑

k=1

yk(t, 0) + 2−1
k1∑

k=1

ỹk(t, 0).

It follows from Lemma 3.3 and Remark 3.9 that {yk,X[α,β) f̂ }, {̃yk,X[α,β) f̂ } ∈ L10. This and the invertibility of
T(0) imply that ζ̃( f̂ , 0) = 0.

Thus S(λ) f̂ = M(λ)V∗(λ) f̂ , where M(λ) :Q+→Q− is an everywhere defined operator. Let V∗0(λ) be a
restriction of V∗(λ) to ker(L∗10 − λE). By Lemma 3.24, it follows that M(λ) = S(λ)(V∗0(λ))−1. Hence M(λ) is
the bonded operator and equalities (61) (for λ , 0) and (62) (for λ = 0) hold.

Conversely, suppose that equalities (61) (for λ , 0) and (62) (for λ = 0) hold. Then ŷ = 0 if f̂ = 0 in (61),
(62). Therefore, T−1(λ) is an operator. We claim that the operator T−1(λ) is bounded. Indeed, suppose that
pairs {ŷn, f̂n} satisfy the equality (61) or (62) and the sequence { f̂n} converges to zero in H1. It follows from
Lemma 3.24 and equalities (61), (62) that the sequence {ŷn} converges to zero. So, T−1(λ) is the boundary
everywhere defined operator. The Theorem is proved.

Corollary 4.4. Let T̃(λ) ⊂ H × H be a linear relation and L0 − λE ⊂ T̃(λ) ⊂ L∗0 − λE. Then T̃(λ) is continuously
invertible in the space H if and only if T̃(λ) has the form T̃(λ) = T0 ⊕ T(λ), where T0 ⊂ H0 ×H0, T(λ) ⊂ H1 ×H1 are
linear relations, L10 − λE ⊂ T(λ) ⊂ L∗10 − λE, T(λ) is continuously invertible in H1 (i.e., T(λ) satisfies Theorem 4.3),
T0 is any continuously invertible relation in H0.

Proof. The desired statement follows from (26).
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Remark 4.5. It follows from Lemma 3.24 that the operator M(λ) is uniquely determined by the relation T(λ) and by
the choice of functions vk.

We shall write equalities (61), (62) in a short form. We denote W̃(t, λ) =
∑k1

k=1 X[αk ,βk)\(Sm∩S0)wk(t, λ), i.e.,
W̃(t, λ) = wk(t, λ) for t ∈ (αk, βk), and W̃(αk, λ) = wk(αk, λ) if αk < Sm, and W̃(αk, λ) = 0 if αk ∈ Sm. In (61),
(62), the series converge in H1 for any function f̂ ∈ H1. We denote

K(t, s, λ) = Ṽ(t, λ)M(λ)Ṽ∗(s, λ) + 2−1W̃(t, λ)sgn(s − t)iJW̃∗(s, λ)X[a,b]\Sm (s)−

− 2−1XSm (t)W̃(t, λ)sgn(s − t)iJW̃∗(s, λ)X[a,b]\Sm (s), λ , 0;

K(t, s, 0) = Ṽ(t, 0)M(0)Ṽ∗(s, 0) + 2−1W̃(t, 0)sgn(s − t)iJW̃∗(s, 0)X[a,b]\Sm (s)+

+ 2−1X[a,b]\Sm (t)W̃(t, 0)sgn(s − t)iJW̃∗(s, 0)XSm (s).

Then the equalities (61), (62) can be written as

ŷ(t) = (T−1(λ) f̂ )(t) =

∫ b

a
K(t, s, λ)dm(s) f̂ (s) − λ−1XSm\S0 f̂ (t), λ , 0, f̂ ∈ H1; (63)

y(t) = (T−1(0) f̂ )(t) =

∫ b

a
K(t, s, 0)dm(s) f̂ (s), f̂ ∈ H1. (64)

Let us consider some examples.

Example 4.6. Suppose p = p0 is a continuous measure, m = µ is the usual Lebesque measure on [a, b] (i.e.,
µ([α, β)) = β − α, where a 6 α < β 6 b (we write ds instead of dµ(s)) ). In this case, L0,L∗0 are operators, k1 =k= 1,
H0 = {0}, Q1,0 = {0}, Q1 = H = Q− = Q+, Ṽ(t, λ) = W(t, λ). Equality (51) has the form

y(t) = W(t, λ)η −W(t, λ)iJ
∫ t

a
W∗(s, λ) f (s)ds, f = (L∗0 − λE)y, η ∈ H.

For any λ, equalities (63), (64) take the form

y(t) = (T−1(λ) f )(t) =

∫ b

a
K(t, s, λ) f (s)ds, (65)

where K(t, s, λ) = W(t, λ)(M(λ) + 2−1sgn(s − t)iJ)W∗(s, λ).

Example 4.7. We assume that measures p, m are continuous. Then L0, L∗0 are not operators, generally. In this case,
k1 =k= 1, H0 = {0}. In general, Q1 , H, Q1 , Q−1 . In this case, Q− = Q−1 , V(λ) = W(λ) is an extension of the
operator ξ→W(·, λ)ξ (ξ ∈ Q1 ⊂ H) to the set Q−, Ṽ(t, λ)η = W̃(t, λ)η = (W(λ)η)(t) (η ∈ Q−). Equality (51) has
the form

y(t) = W̃(t, λ)η − W̃(t, λ)iJ
∫ t

a
W̃∗(s, λ)dm(s) f (s), {y, f } ∈ L∗0 − λE, η ∈ Q−.

For any λ, equalities (63), (64) take the form

y(t) = (T−1(λ) f )(t) =

∫ b

a
K(t, s, λ)dm(s) f (s),

where K(t, s, λ) = W̃(t, λ)(M(λ) + 2−1sgn(s − t)iJ)W̃∗(s, λ).

Example 4.8. Suppose that m=µ is the usual Lebesque measure and the set Sp of single-point atoms of the measure
p can be arranged as an increasing sequence converging to b. In this case, the description of T−1(λ) is obtained in [9].
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Example 4.9. Suppose that Sm , ∅ and m = µ + m̂, where µ = m0 is the usual Lebesque measure on [a, b] and
µ(∆) = m(∆) for all Borel sets such that ∆ ∩ Sm = ∅. So, Sm = Sm̂ and m({β}) = m̂({β}) for all β ∈ Sm. We
arrange the elements of Sm in the form of a finite or infinite sequence {τk}. Let k2 be the number of elements in Sm.
We denote Q̂k,0 = ker m({τk}), Q̂k = H 	 Q̂k,0, where τk ∈ Sm. Let mk be the restriction of the operator m({τk})
to Q̂k. The operator mk is self-adjoint and R(mk) ⊂ Q̂k. By Q̂−k denote the completion of Q̂k with respect to norm

‖ξ‖− = (mkξ, ξ)1/2, where ξ ∈ Q̂k. Let Q̂− be linear space of sequences η̃= {ηk} such that ηk ∈ Q̂−k (k ∈ N if k2 = ∞,

and 1 6 k 6 k2 if k2 is finite) and the series
∑
∞

k=1

∥∥∥ηk

∥∥∥2

−
converges if k2 = ∞. Then H = L2(H; a, b) ⊕ Q̂−.

Suppose p = 0 and a < Sm, b < Sm . (The case of an arbitrary continuous measure p can be considered similarly.)
Then H0 = {0}, k1 = 1, W(t, 0) = E, and Q− = H ⊕ Q̂−. It follows from Lemma 3.3 and (14) that a pair {y, f } ∈ L0 if
and only if

y(t) = −iJ
∫ t

a
f (s)ds, y(b) = 0, m(β) f (β) = 0 (β ∈ Sm).

Using Theorem 3.25 for λ = 0, we obtain that a pair {y, f } ∈ L∗0 if and only if

y(t) = η0 +
∑
τk6t

X{τk}(t)ηk − iJ
∫ t

a
dm(s) f (s), (66)

where η0 ∈ H, τk ∈ Sm, ηk ∈ Q̂−k , and the sequence η̃ = {η0, ηk} belongs to Q− (here k ∈N if k2 = ∞, and 1 6 k 6 k2

if k2 is finite). It follows from Lemma 3.15 (forλ = 0) that the function XSm (t)
∫ t

a dm(s) f (s) ∈ ker L∗0. Therefore,
equality (66) can be written as

y(t) = ξ0 +
∑
τk6t

X{τk}ξk − X[a,b]\Sm (t)iJ
∫ t

a
dm(s) f (s), ξ0 ∈ H, ξk ∈ Q̂−k , ξ̃ = {ξ0, ξk} ∈ Q−.

By (6), it follows that W(t, λ) = exp(−iJλt). Using (31), we get

u1(t, λ, τ)x = −X[a,b]\Sm W(t, λ)iJ
∫ t

a
W∗(s, λ)dm(s)λX{τ}(s)x, x ∈ H, τ ∈ Sm.

Hence, u1(t, λ, τ)x + X{τ}(t)x is equal to zero if t < τ, and X{τ}(t)x if t = τ, and −λX[a.b]\Sm W(t, λ)iJW∗(τ, λ)m({τ})x
if t > τ. We denote v0 (t, λ) = X[a,b]\Sm W(t, λ), vk(t, λ) = u1(t, λ, τk)W(τk, λ)x + X{τk}(t)W(τk, λ)x (k ∈N if k2 = ∞,
and 1 6 k 6 k2 if k2 is finite). By Lemma 3.18, it follows that the linear span of functions v0(·, λ)ξ0, vk(·, λ)ξk
(ξ0, ξk ∈ H) is dense in ker(L∗10 − λE). The operator VN(t, λ) has the form VN(t, λ) = (v0(t, λ), ..., vN−1(t, λ)). As
above, byV(λ) we denote the operatorV(λ) : Q−→H such thatV(λ)η̃ = VN(λ)η̃N for all N ∈ N, whereVN(λ) is
the operator ξ̃N→VN(·, λ)ξ̃N, ξ̃ = (ξ̃N, 0, ...), ξ̃N ∈ Q̃−N.

Thus, in this example, equalities (61), (62) will take form (67), (68), respectively, (see equalities below)

y(t) = (T−1(λ) f )(t) =

∫ b

a
Ṽ(t, λ)M(λ)Ṽ∗(s, λ)dm(s) f (s) + 2−1

∫ b

a
W(t, λ)sgn(s − t)iJW∗(s, λ) f (s)ds−

− 2−1
∫ b

a
XSm (t)W(t, λ)sgn(s − t)iJW∗(s, λ) f (s)ds − λ−1XSm (t) f (t), λ , 0, f ∈ H, (67)

y(t) = (T−1(0) f )(t)=

∫ b

a
Ṽ(t, 0)M(0)Ṽ∗(s, 0)dm(s) f (s) + 2−1

∫ b

a
W(t, 0)sgn(s − t)iJW∗(s, 0) f (s)ds+

+ 2−1
∫ b

a
X[a,b]\Sm (t)W(t, 0)sgn(s − t)iJW∗(s, 0)dm(s)XSm (s) f (s), f ∈ H. (68)

We note that if Sm = ∅, then equalities (67), (68) coincide with (65) for all λ.
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