Invertible Linear Relations Generated by Integral Equations with Operator Measures

Vladislav M. Bruk ${ }^{\text {a }}$
a Saratov State Technical University, Saratov, Russia

Abstract

We define a minimal relation L_{0} generated by an integral equation with operators measures and give a description of the relations $L_{0}-\lambda E, L_{0}^{*}-\lambda E$, where L_{0}^{*} is adjoint for $L_{0}, \lambda \in \mathbb{C}$. The obtained results are applied to a description of relations $T(\lambda)$ such that $L_{0}-\lambda E \subset T(\lambda) \subset L_{0}^{*}-\lambda E$ and $T^{-1}(\lambda)$ are bounded everywhere defined operators.

1. Introduction

In this paper, we consider the integral equation

$$
\begin{equation*}
y(t)=x_{0}-i J \int_{a}^{t} d \mathbf{p}(s) y(s)-i J \int_{a}^{t} d \mathbf{m}(s) f(s), \tag{1}
\end{equation*}
$$

where y is an unknown function, $a \leqslant t \leqslant b$; J is an operator in a separable Hilbert space $H, J=J^{*}, J^{2}=E(E$ is the identical operator); \mathbf{p}, \mathbf{m} are operator-valued measures defined on Borel sets $\Delta \subset[a, b]$ and taking values in the set of linear bounded operators acting in $H ; x_{0} \in H, f \in L_{2}(H, d \mathbf{m} ; a, b)$. We assume that the measures \mathbf{p}, \mathbf{m} have bounded variations and \mathbf{p} is self-adjoint, \mathbf{m} is non-negative.

We define a minimal relation L_{0} generated by equation (1) and give a description of the relations $L_{0}-\lambda E$, $L_{0}^{*}-\lambda E$, where L_{0}^{*} is adjoint for $L_{0}, \lambda \in \mathbb{C}$. We apply these results to a description of relations $T(\lambda)$ such that $L_{0}-\lambda E \subset T(\lambda) \subset L_{0}^{*}-\lambda E$ and $T^{-1}(\lambda)$ are bounded everywhere defined operators and give an explicit form of the operators $T^{-1}(\lambda)$.

If the measures \mathbf{p}, \mathbf{m} are absolutely continuous (i.e., $\mathbf{p}(\Delta)=\int_{\Delta} p(t) d t, \mathbf{m}(\Delta)=\int_{\Delta} m(t) d t$ for all Borel sets $\Delta \subset[a, b]$, where the functions $\|p(t)\|,\|m(t)\|$ belong to $\left.L_{1}(a, b)\right)$, then integral equation (1) is transformed to a differential equation with a non-negative weight operator function. Linear relations and operators generated by such differential equations were considered in many works (see [14], [4], [5], further detailed bibliography can be found, for example, in [13], [3]).

The study of integral equation (1) differs essentially from the study of differential equations by the presence of the following features: i) a representation of a solution of equation (1) using an evolutional family of operators is possible if the measures \mathbf{p}, \mathbf{m} have not common single-point atoms (see [6]); ii) the

[^0]Lagrange formula contains summands relating to single-point atoms of the measures \mathbf{p}, \mathbf{m} (see [7]). Note that this work partially corrects the errors made in the article [8]. Also note that equation (1) was considered in [9], [10] under the assumption that \mathbf{m} is the usual Lebesque measure on [a, b]. In [9], an explicit form of operators $T^{-1}(\lambda)$ is given in the case when the set of single-point atoms of the measure \mathbf{p} can be arranged as an increasing sequence converging to b. In [9], L_{0}, L_{0}^{*} are operators. In [10], a description of $T^{-1}(\lambda)$ is given in terms of boundary values, i.e., necessary and sufficient conditions are obtained under which a boundary value problem determines relations $T(\lambda)$ such that $T^{-1}(\lambda)$ are bounded everywhere defined operators.

2. Preliminary assertions

Let H be a separable Hilbert space with a scalar product (\cdot, \cdot) and a norm $\|\cdot\|$. We consider a function $\Delta \rightarrow \mathbf{P}(\Delta)$ defined on Borel sets $\Delta \subset[a, b]$ and taking values in the set of linear bounded operators acting in H. The function \mathbf{P} is called an operator measure on $[a, b]$ (see, for example, [2, ch. 5]) if it is zero on the empty set and the equality $\mathbf{P}\left(\bigcup_{n=1}^{\infty} \Delta_{n}\right)=\sum_{n=1}^{\infty} \mathbf{P}\left(\Delta_{n}\right)$ holds for disjoint Borel sets Δ_{n}, where the series converges weakly. Further, we extend any measure \mathbf{P} on $[a, b]$ to a segment $\left[a, b_{0}\right]\left(b_{0}>b\right)$ letting $\mathbf{P}(\Delta)=0$ for each Borel set $\Delta \subset\left(b, b_{0}\right]$.

By $\mathbf{V}_{\Delta}(\mathbf{P})$ we denote $\mathbf{V}_{\Delta}(\mathbf{P})=\rho_{\mathbf{P}}(\Delta)=\sup \sum_{n}\left\|\mathbf{P}\left(\Delta_{n}\right)\right\|$, where the supremum is taken over all finite sums of disjoint Borel sets $\Delta_{n} \subset \Delta$. The number $\mathbf{V}_{\Delta}(\mathbf{P})$ is called the variation of the measure \mathbf{P} on the Borel set Δ. Suppose that the measure \mathbf{P} has the bounded variation on $[a, b]$. Then for $\rho_{\mathbf{P}}$-almost all $\xi \in[a, b]$ there exists an operator function $\xi \rightarrow \Psi_{\mathbf{P}}(\xi)$ such that Ψ_{P} possesses the values in the set of linear bounded operators acting in $H,\left\|\Psi_{\mathbf{P}}(\xi)\right\|=1$, and the equality

$$
\begin{equation*}
\mathbf{P}(\Delta)=\int_{\Delta} \Psi_{\mathbf{P}}(s) d \rho_{\mathbf{P}} \tag{2}
\end{equation*}
$$

holds for each Borel set $\Delta \subset[a, b]$. The function Ψ_{P} is uniquely determined up to values on a set of zero $\rho_{\mathbf{P}}$-measure. Integral (2) converges with respect to the usual operator norm ([2, ch. 5]).

Further, $\int_{t_{0}}^{t}$ stands for $\int_{\left[t_{0} t\right)}$ if $t_{0}<t$, for $-\int_{\left[t, t_{0}\right)}$ if $t_{0}>t$, and for 0 if $t_{0}=t$. This implies that $y(a)=x_{0}$ in equation (1). A function h is integrable with respect to the measure \mathbf{P} on a set Δ if there exists the Bochner integral $\int_{\Delta} \Psi_{\mathbf{P}}(t) h(t) d \rho_{\mathbf{P}}=\int_{\Delta}(d \mathbf{P}) h(t)$. Then the function $y(t)=\int_{t_{0}}^{t}(d \mathbf{P}) h(s)$ is continuous from the left.

By $\mathcal{S}_{\mathbf{P}}$ denote a set of single-point atoms of the measure \mathbf{P} (i.e., a set $t \in[a, b]$ such that $\left.\mathbf{P}(\{t\}) \neq 0\right)$. The set $\mathcal{S}_{\mathbf{P}}$ is at most countable. The measure \mathbf{P} is continuous if $\mathcal{S}_{\mathbf{P}}=\varnothing$, it is self-adjoint if $(\mathbf{P}(\Delta))^{*}=\mathbf{P}(\Delta)$ for each Borel set $\Delta \subset[a, b]$, it is non-negative if $(\mathbf{P}(\Delta) x, x) \geqslant 0$ for all Borel sets $\Delta \subset[a, b]$ and for all elements $x \in H$.

In following Lemma 2.1, $\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{q}$ are operator measures having bounded variations on $[a, b]$ and taking values in the set of linear bounded operators acting in H. Suppose that the measure \mathbf{q} is self-adjoint. We assume that these measures are extended on the segment $\left[a, b_{0}\right] \supset\left[a, b_{0}\right) \supset[a, b]$ in the manner described above.

Lemma 2.1. [7] Let f, g be functions integrable on $\left[a, b_{0}\right]$ with respect to the measure \mathbf{q} and $y_{0}, z_{0} \in H$. Then any functions

$$
y(t)=y_{0}-i J \int_{t_{0}}^{t} d \mathbf{p}_{1}(s) y(s)-i J \int_{t_{0}}^{t} d \mathbf{q}(s) f(s), \quad z(t)=z_{0}-i J \int_{t_{0}}^{t} d \mathbf{p}_{2}(s) z(s)-i J \int_{t_{0}}^{t} d \mathbf{q}(s) g(s) \quad\left(a \leqslant t_{0}<b_{0}, t_{0} \leqslant t \leqslant b_{0}\right)
$$

satisfy the following formula (analogous to the Lagrange one):

$$
\begin{align*}
& \int_{\mathcal{c}_{1}}^{c_{2}}(d \mathbf{q}(t) f(t), z(t))-\int_{c_{1}}^{c_{2}}(y(t), d \mathbf{q}(t) g(t))=\left(i J y\left(c_{2}\right), z\left(c_{2}\right)\right)-\left(i J y\left(c_{1}\right), z\left(c_{1}\right)\right)+\int_{c_{1}}^{c_{2}}\left(y(t), d \mathbf{p}_{2}(t) z(t)\right)- \\
& -\int_{c_{1}}^{c_{2}}\left(d \mathbf{p}_{1}(t) y(t), z(t)\right)-\sum_{t \in \mathcal{S}_{\mathbf{p}_{1}} \cap \mathcal{S}_{\mathbf{p}_{2} \cap\left[c_{1}, c_{2}\right)}\left(i J \mathbf{p}_{1}(\{t\}) y(t), \mathbf{p}_{2}(\{t\}) z(t)\right)-\sum_{t \in \mathcal{S}_{\mathbf{q}} \cap \mathcal{S}_{\mathbf{p}_{2} \cap\left[c_{1}, c_{2}\right)}}\left(i J \mathbf{q}(\{t\}) f(t), \mathbf{p}_{2}(\{t\}) z(t)\right)-} \quad \begin{array}{l}
\quad-\sum_{t \in \mathcal{S}_{\mathbf{p}_{1}} \cap \mathcal{S}_{\mathbf{q}} \cap\left[c_{1}, c_{2}\right)}\left(i J \mathbf{p}_{1}(\{t\}) y(t), \mathbf{q}(\{t\}) g(t)\right)-\sum_{t \in \mathcal{S}_{\mathbf{q}} \cap\left[c_{1}, c_{2}\right)}(i J \mathbf{q}(\{t\}) f(t), \mathbf{q}(\{t\}) g(t)), \quad t_{0} \leqslant c_{1}<c_{2} \leqslant b_{0} .
\end{array} .
\end{align*}
$$

Further we assume that measures \mathbf{p}, \mathbf{m} have bounded variations and \mathbf{p} is self-adjoint, \mathbf{m} is non-negative. We consider the equation

$$
\begin{equation*}
y(t)=x_{0}-i J \int_{a}^{t} d \mathbf{p}(s) y(s)-i J \int_{a}^{t} d \mathbf{m}(s) f(s) \tag{4}
\end{equation*}
$$

where $x_{0} \in H, f$ is integrable with respect to the measure \mathbf{m} on $[a, b], a \leqslant t \leqslant b_{0}$.
We construct a continuous measure \mathbf{p}_{0} from the measure \mathbf{p} in the following way. We set $\mathbf{p}_{0}\left(\left\{t_{k}\right\}\right)=0$ for $t_{k} \in \mathcal{S}_{\mathbf{p}}$ and we set $\mathbf{p}_{0}(\Delta)=\mathbf{p}(\Delta)$ for all Borel sets such that $\Delta \cap \mathcal{S}_{\mathrm{p}}=\varnothing$. Similarly, we construct a continuous measure \mathbf{m}_{0} from the measure \mathbf{m}. We denote $\widehat{\mathbf{p}}=\mathbf{p}-\mathbf{p}_{0}, \widehat{\mathbf{m}}=\mathbf{m}-\mathbf{m}_{0}$. Then $\widehat{\mathbf{p}}\left(\left\{t_{k}\right\}\right)=\mathbf{p}\left(\left\{t_{k}\right\}\right)$ for all $t_{k} \in \mathcal{S}_{\mathbf{p}}$ and $\widehat{\mathbf{p}}(\Delta)=0$ for all Borel sets Δ such that $\Delta \cap \mathcal{S}_{\mathrm{p}}=\varnothing$. The similar equalities hold for the measure $\widehat{\mathbf{m}}$. The measures $\mathbf{p}_{0}, \widehat{\mathbf{p}}, \mathbf{m}_{0}, \widehat{\mathbf{m}}$ are self-adjoint and the measures $\mathbf{m}_{0}, \widehat{\mathbf{m}}$ are non-negative.

We replace \mathbf{p} by \mathbf{p}_{0} and \mathbf{m} by \mathbf{m}_{0} in (4). Then we obtain the equation

$$
\begin{equation*}
y(t)=x_{0}-i J \int_{a}^{t} d \mathbf{p}_{0}(s) y(s)-i J \int_{a}^{t} d \mathbf{m}_{0}(s) f(s) \tag{5}
\end{equation*}
$$

Equations (4), (5) have unique solutions (see [6]).
By $W(t, \lambda)$ denote an operator solution of the equation

$$
\begin{equation*}
W(t, \lambda) x_{0}=x_{0}-i J \int_{a}^{t} d \mathbf{p}_{0}(s) W(s, \lambda) x_{0}-i J \lambda \int_{a}^{t} d \mathbf{m}_{0}(s) W(s, \lambda) x_{0} \tag{6}
\end{equation*}
$$

where $x_{0} \in H, \lambda \in \mathbb{C}$ (\mathbb{C} is the set of complex numbers). Using Lemma 2.1, we get

$$
\begin{equation*}
W^{*}(t, \bar{\lambda}) J W(t, \lambda)=J \tag{7}
\end{equation*}
$$

by the standard method (see [9]). The functions $t \rightarrow W(t, \lambda)$ and $t \rightarrow W^{-1}(t, \lambda)=J W^{*}(t, \bar{\lambda}) J$ are continuous with respect to the uniform operator topology. Consequently there exist constants $\varepsilon_{1}>0, \varepsilon_{2}>0$ such that the inequality

$$
\begin{equation*}
\varepsilon_{1}\|x\|^{2} \leqslant\|W(t, \lambda) x\|^{2} \leqslant \varepsilon_{2}\|x\|^{2} \tag{8}
\end{equation*}
$$

holds for all $x \in H, t \in\left[a, b_{0}\right], \lambda \in C \subset \mathbb{C}(C$ is a compact set $)$.
Lemma 2.2. Suppose that a function f is integrable with respect to the measure \mathbf{m}. A function y is a solution of the equation

$$
\begin{equation*}
y(t)=x_{0}-i J \int_{a}^{t} d \mathbf{p}_{0}(s) y(s) x-i J \lambda \int_{a}^{t} d \mathbf{m}_{0}(s) y(s)-i J \int_{a}^{t} d \mathbf{m}(s) f(s), \quad x_{0} \in H, \quad a \leqslant t \leqslant b_{0} \tag{9}
\end{equation*}
$$

if and only if y has the form

$$
\begin{equation*}
y(t)=W(t, \lambda) x_{0}-W(t, \lambda) i J \int_{a}^{t} W^{*}(\xi, \bar{\lambda}) d \mathbf{m}(\xi) f(\xi) \tag{10}
\end{equation*}
$$

Proof. We denote $\widetilde{\mathbf{p}}_{0}=\mathbf{p}_{0}-\lambda \mathbf{m}_{0}$. The measure $\widetilde{\mathbf{p}}_{0}$ is continuous. Equation (9) has a unique solution (see [6]). It is enough to prove that if we substitute the function from the right side (10) instead y in the equation (9), then we get the identity. With this substitution, the right side (9) takes the form

$$
\begin{align*}
& x_{0}-i J \int_{a}^{t} d \mathbf{p}_{0}(s)\left(W(s, \lambda) x_{0}-W(s, \lambda) i J \int_{a}^{s} W^{*}(\xi, \bar{\lambda}) d \mathbf{m}(\xi) f(\xi)\right)- \\
& -i J \lambda \int_{a}^{t} d \mathbf{m}_{0}(s)\left(W(s, \lambda) x_{0}-W(s, \lambda) i J \int_{a}^{s} W^{*}(\xi, \bar{\lambda}) d \mathbf{m}(\xi) f(\xi)\right)-i J \int_{a}^{t} d \mathbf{m}(s) f(s)= \\
& =x_{0}-i J \int_{a}^{t} d \widetilde{\mathbf{p}}_{0}(s)\left(W(s, \lambda) x_{0}-W(s, \lambda) i J \int_{a}^{s} W^{*}(\xi, \bar{\lambda}) d \mathbf{m}(\xi) f(\xi)\right)-i J \int_{a}^{t} d \mathbf{m}(s) f(s)= \\
& \quad=x_{0}-i J \int_{a}^{t} d \widetilde{\mathbf{p}}_{0}(s) W(s, \lambda) x_{0}-J \int_{a}^{t} d \widetilde{\mathbf{p}}_{0}(s) W(s, \lambda) J \int_{a}^{s} W^{*}(\xi, \bar{\lambda}) d \mathbf{m}(\xi) f(\xi)-i J \int_{a}^{t} d \mathbf{m}(s) f(s) . \tag{11}
\end{align*}
$$

We change the limits of integration in the third term of the right-hand side (11). Then the third term takes the form

$$
\begin{align*}
& J \int_{a}^{t} d \widetilde{\mathbf{p}}_{0}(s) W(s, \lambda) J \int_{a}^{s} W^{*}(\xi, \bar{\lambda}) d \mathbf{m}(\xi) f(\xi)=J \int_{[a, t)}\left(\int_{(\xi, t)} d \widetilde{\mathbf{p}}_{0}(s) W(s, \lambda)\right) J W^{*}(\xi, \bar{\lambda}) d \mathbf{m}(\xi) f(\xi)= \\
& \quad=J \int_{[a, t)}\left(\int_{[\xi, t)} d \widetilde{\mathbf{p}}_{0}(s) W(s, \lambda)\right) J W^{*}(\xi, \bar{\lambda}) d \mathbf{m}(\xi) f(\xi)-J \int_{[a, t)}\left(\int_{\{\xi\}} d \widetilde{\mathbf{p}}_{0}(s) W(s, \lambda)\right) J W^{*}(\xi, \bar{\lambda}) d \mathbf{m}(\xi) f(\xi) \tag{12}
\end{align*}
$$

The last term in (12) is equal to zero since the measure $\widetilde{\mathbf{p}}_{0}$ is continuous. Using (6), we continue equality (11)

$$
\begin{equation*}
W(t, \lambda) x_{0}-\int_{a}^{t} J\left(\int_{\xi}^{t} d \widetilde{\mathbf{p}}_{0}(s) W(s, \lambda)\right) J W^{*}(\xi, \bar{\lambda}) d \mathbf{m}(\xi) f(\xi)-i J \int_{a}^{t} d \mathbf{m}(s) f(s) . \tag{13}
\end{equation*}
$$

It follows from (6) that (13) is equal to

$$
\begin{aligned}
& W(t, \lambda) x_{0}-\int_{a}^{t} i((W(t, \lambda)-E)-(W(\xi, \lambda)-E)) J W^{*}(\xi, \bar{\lambda}) d \mathbf{m}(\xi) f(\xi)-i J \int_{a}^{t} d \mathbf{m}(s) f(s)= \\
& \quad=W(t, \lambda) x_{0}-i \int_{a}^{t} W(t, \lambda) J W^{*}(\xi, \bar{\lambda}) d \mathbf{m}(\xi) f(\xi)+i \int_{a}^{t} W(\xi, \lambda) J W^{*}(\xi, \bar{\lambda}) d \mathbf{m}(\xi) f(\xi)-i J \int_{a}^{t} d \mathbf{m}(s) f(s)
\end{aligned}
$$

Taking into account (7), we continue the last equality

$$
W(t, \lambda) x_{0}-i W(t, \lambda) J \int_{a}^{t} W^{*}(\xi, \bar{\lambda}) d \mathbf{m}(\xi) f(\xi)+i J \int_{a}^{t} d \mathbf{m}(\xi) f(\xi)-i J \int_{a}^{t} d \mathbf{m}(s) f(s)=y(t)
$$

The Lemma is proved.

3. Linear relations generated by the integral equation

Let \mathbf{B} be a Hilbert space. A linear relation T is understood as any linear manifold $T \subset \mathbf{B} \times \mathbf{B}$. The terminology on the linear relations can be found, for example, in [11], [1]. In what follows we make use of the following notations: $\{\cdot, \cdot\}$ is an ordered pair; $\mathcal{D}(T)$ is the domain of $T ; \mathcal{R}(T)$ is the range of T; ker T is a set of elements $x \in \mathbf{B}$ such that $\{x, 0\} \in T ; T^{-1}$ is the relation inverse for T, i.e., the relation formed by the pairs $\left\{x^{\prime}, x\right\}$, where $\left\{x, x^{\prime}\right\} \in T$. A relation T is called surjective if $\mathcal{R}(T)=\mathbf{B}$. A relation T is called invertible or injective if $\operatorname{ker} T=\{0\}$ (i.e., the relation T^{-1} is an operator); it is called continuously invertible if it is closed, invertible, and surjective (i.e., T^{-1} is a bounded everywhere defined operator). A relation T^{*} is called adjoint for T if T^{*} consists of all pairs $\left\{y_{1}, y_{2}\right\}$ such that equality $\left(x_{2}, y_{1}\right)=\left(x_{1}, y_{2}\right)$ holds for all pairs $\left\{x_{1}, x_{2}\right\} \in T$. A relation T is called symmetric if $T \subset T^{*}$.

It is known (see, for example, [12, ch.3], [11, ch.1]) that the graph of an operator $T: \mathcal{D}(T) \rightarrow \mathbf{B}$ is the set of pairs $\{x, T x\} \in \mathbf{B} \times \mathbf{B}$, where $x \in \mathcal{D}(T) \subset \mathbf{B}$. Consequently, the linear operators can be treated as linear relations; this is why the notation $\left\{x_{1}, x_{2}\right\} \in T$ is used also for the operator T. Since all considered relations are linear, we shall often omit the word "linear".

Let \mathbf{m} is a non-negative operator measure defined on Borel sets $\Delta \subset[a, b]$ and taking values in the set of linear bounded operators acting in the space H. The measure \mathbf{m} is assumed to have a bounded variation on $[a, b]$. We introduce the quasi-scalar product $(x, y)_{\mathbf{m}}=\int_{a}^{b_{0}}((d \mathbf{m}) x(t), y(t))$ on a set of step-like functions with values in H defined on the segment $\left[a, b_{0}\right]$. Identifying with zero functions y obeying $(y, y)_{\mathrm{m}}=0$ and making the completion, we arrive at the Hilbert space denoted by $L_{2}(H, d \mathbf{m} ; a, b)=\mathfrak{H}$. The elements of \mathfrak{H} are the classes of functions identified with respect to the norm $\|y\|_{\mathrm{m}}=(y, y)_{\mathrm{m}}^{1 / 2}$. In order not to complicate the terminology, the class of functions with a representative y is indicated by the same symbol and we write $y \in \mathfrak{H}$. The equality of the functions in \mathfrak{H} is understood as the equality for associated equivalence classes.

Let us define a minimal relation L_{0} in the following way. The relation L_{0} consists of pairs $\left\{\widetilde{y}, \widetilde{f_{0}}\right\} \in \mathfrak{H} \times \mathfrak{H}$ satisfying the condition: for each pair $\left\{\widetilde{y}, \widetilde{f_{0}}\right\}$ there exists a pair $\left\{y, f_{0}\right\}$ such that the pairs $\left\{\widetilde{y}, \widetilde{f_{0}}\right\},\left\{y, f_{0}\right\}$ are identical in $\mathfrak{G} \times \mathfrak{H}$ and $\left\{y, f_{0}\right\}$ satisfies equation (4) and the equalities

$$
\begin{equation*}
y(a)=y\left(b_{0}\right)=y(\alpha)=0, \quad \alpha \in \mathcal{S}_{\mathbf{p}} ; \quad \mathbf{m}(\{\beta\}) f_{0}(\beta)=0, \quad \beta \in \mathcal{S}_{\mathbf{m}} . \tag{14}
\end{equation*}
$$

Further, without loss of generality it can be assumed that if $\left\{y, f_{0}\right\} \in L_{0}$, then equalities (4), (14) hold for this pair. In general, the relation L_{0} is not an operator since a function y can happen to be identified with zero in \mathfrak{G}, while f is non-zero. It follows from Lemma 2.1 that the relation L_{0} is symmetric.

Lemma 3.1. If a pair $\{y, f\} \in L_{0}-\lambda E$, then

$$
\begin{equation*}
y(t)=-i J \int_{a}^{t} d \mathbf{p}_{0}(s) y(s)-i J \lambda \int_{a}^{t} d \mathbf{m}_{0}(s) y(s)-i J \int_{a}^{t} d \mathbf{m}_{0}(s) f(s) \tag{15}
\end{equation*}
$$

Proof. Let $\{y, f\} \in L_{0}-\lambda E$. It follows from the definition of the relation L_{0} that the pair $\{y, f\}$ satisfies the equation

$$
\begin{equation*}
y(t)=-i J \int_{a}^{t} d \mathbf{p}(s) y(s)-i J \lambda \int_{a}^{t} d \mathbf{m}(s) y(s)-i J \int_{a}^{t} d \mathbf{m}(s) f(s) \tag{16}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
y(t)=-i J \int_{a}^{t} d\left(\mathbf{p}_{0}(s)+\widehat{\mathbf{p}}(s)\right) y(s)-i J \lambda \int_{a}^{t} d\left(\mathbf{m}_{0}(s)+\widehat{\mathbf{m}}(s)\right) y(s)-i J \int_{a}^{t} d\left(\mathbf{m}_{0}(s)+\widehat{\mathbf{m}}(s)\right) f(s) \tag{17}
\end{equation*}
$$

The pair $\{y, f+\lambda y\}$ belongs to L_{0}. Equalities (14) imply $\mathbf{m}(\{\beta\})(\lambda y(\beta)+f(\beta))=0, y(\alpha)=0$, where $\alpha \in \mathcal{S}_{\mathbf{p}}$, $\beta \in \mathcal{S}_{\mathrm{m}}$. Using (17), we obtain (15). The Lemma is proved.

Corollary 3.2. Equalities (15),(16) hold together for any pairs $\{y, f\} \in L_{0}-\lambda E$.
Lemma 3.3. A pair $\{\widetilde{y}, \widetilde{f}\} \in \mathfrak{H} \times \mathfrak{H}$ belongs to the relation $L_{0}-\lambda E$ if and only if there exists a pair $\{y, f\}$ such that the pairs $\{\widetilde{y}, \widetilde{f}\},\{y, f\}$ are identical in $\mathfrak{H} \times \mathfrak{H}$ and the equalities

$$
\begin{align*}
& y(t)=-W(t, \lambda) i J \int_{a}^{t} W^{*}(s, \bar{\lambda}) d \mathbf{m}_{0}(s) f(s) \tag{18}\\
& y(\alpha)=W(\alpha, \lambda) i J \int_{a}^{\alpha} W^{*}(s, \bar{\lambda}) d \mathbf{m}_{0}(s) f(s)=0, \quad \alpha \in \mathcal{S}_{\mathbf{p}} \cup\left\{b_{0}\right\} \tag{19}\\
& \mathbf{m}(\{\beta\})(\lambda y(\beta)+f(\beta))=0, \quad \beta \in \mathcal{S}_{\mathbf{m}} \tag{20}
\end{align*}
$$

hold.
Proof. The desired assertion follows from (14) and Lemmas 2.2, 3.1 and Corollary 3.2.
Corollary 3.4. If $y \in \mathcal{D}\left(L_{0}\right)$, then y is continuous and $y(b)=0$.
Corollary 3.5. Suppose a pair $\{y, f\}$ satisfies equality (18). The function $f \in \mathfrak{H}$ belongs to the range $\mathcal{R}\left(L_{0}-\lambda E\right)$ if and only if f satisfies the conditions

$$
\begin{equation*}
\int_{a}^{\alpha} W^{*}(s, \bar{\lambda}) d \mathbf{m}_{0}(s) f(s)=0, \quad \mathbf{m}(\{\beta\})(\lambda y(\beta)+f(\beta))=0 \tag{21}
\end{equation*}
$$

where $\alpha \in \mathcal{S}_{\mathbf{p}} \cup\left\{b_{0}\right\}, \beta \in \mathcal{S}_{\mathbf{m}}$.

Remark 3.6. The first equality in (21) is equivalent to the following

$$
\begin{equation*}
\int_{\alpha_{1}}^{\alpha_{2}} W^{*}(s, \bar{\lambda}) d \mathbf{m}_{0}(s) f(s)=0, \quad \alpha_{1}, \alpha_{2} \in \mathcal{S}_{\mathbf{p}} \cup\{a\} \cup\left\{b_{0}\right\} \tag{22}
\end{equation*}
$$

Remark 3.7. It follows from Lemma 3.3, Corollary 3.4 that we can replace b_{0} by b in (19), (21), (22).
Lemma 3.8. The relation L_{0} is closed.
Proof. Suppose $\left\{y_{n}, f_{n}\right\} \in L_{0}$. Using (18) - (20) for $\lambda=0$, we obtain

$$
\begin{align*}
& y_{n}(t)=-W(t, 0) i J \int_{a}^{t} W^{*}(s, 0) d \mathbf{m}_{0}(s) f_{n}(s) \tag{23}\\
& y_{n}(\alpha)=W(\alpha, 0) i J \int_{a}^{\alpha} W^{*}(s, 0) d \mathbf{m}_{0}(s) f_{n}(s)=0, \mathbf{m}(\{\beta\}) f_{n}(\beta)=0 \tag{24}
\end{align*}
$$

where $\alpha \in \mathcal{S}_{\mathbf{p}} \cup\left\{b_{0}\right\}, \beta \in \mathcal{S}_{\mathbf{m}}$. Suppose that the sequences $\left\{y_{n}\right\},\left\{f_{n}\right\}$ converge in \mathfrak{H} to y, f, respectively. We note that if a sequence converges in $\mathfrak{H}=L_{2}(H, d \mathbf{m} ; a, b)$, then this sequence converges in $L_{2}\left(H, d \mathbf{m}_{0} ; a, b\right)$. Moreover,

$$
\left\|f_{n}-f\right\|_{\mathfrak{S}}^{2} \geqslant\left(\mathbf{m}(\{\beta\})\left(f_{n}(\beta)-f(\beta)\right), f_{n}(\beta)-f(\beta)\right)=(\mathbf{m}(\{\beta\}) f(\beta), f(\beta)),
$$

where $\beta \in \mathcal{S}_{\mathrm{m}}$. Passing to the limit as $n \rightarrow \infty$ in (23), (24), we obtain equalities (18) - (20) for $\lambda=0$. It follows from Lemma 3.3 that the pair $\{y, f\} \in L_{0}$. The Lemma is proved.

By $\mathfrak{X}_{A}=\mathfrak{X}_{A}(t)$ denote an operator characteristic function of a set A, i.e., $\mathfrak{X}_{A}(t)=E$ if $t \in A$ and $\mathfrak{X}_{A}(t)=0$ if $t \notin A$. We shall often omit the argument t in the notation \mathfrak{X}_{A}.

Remark 3.9. Equality (20) means that the function $\mathfrak{X}_{\{\beta\}}(\lambda y(\beta)+f(\beta))$ is identified with zero in the space \mathfrak{H}.
By $\overline{\mathcal{S}}_{\mathbf{p}}$ denote the closure of the set $\mathcal{S}_{\mathbf{p}}$. Let \mathcal{S}_{0} be the set $t \in[a, b]$ such that $y(t)=0$ for all $y \in \mathcal{D}\left(L_{0}\right)$. It follows from (14) and Corollary 3.4 that $a, b \in \mathcal{S}_{0}$ and $\mathcal{S}_{\mathrm{p}} \subset \mathcal{S}_{0}$. Corollary 3.4 implies that the set \mathcal{S}_{0} is closed. Therefore, $\overline{\mathcal{S}}_{\mathrm{p}} \cup\{a\} \cup\{b\} \subset \mathcal{S}_{0}$.
Lemma 3.10. Suppose $\{y, f\} \in L_{0}$. Then $f(t)=0$ for \mathbf{m}-almost all $t \in \mathcal{S}_{0}$.
Proof. Using Corollary 3.5 (for $\lambda=0$) and Remark 3.7, we get

$$
\int_{a}^{\alpha}\left(d \mathbf{m}_{0}(s) f(s), W(s, 0) x\right)=0, \quad \mathbf{m}(\{\beta\}) f(\beta)=0
$$

for all $x \in H$ and for all $\alpha \in \mathcal{S}_{0}, \beta \in \mathcal{S}_{\mathrm{m}}$. Hence equality (2) implies

$$
\begin{equation*}
\int_{a}^{\alpha}\left(\Psi_{\mathbf{m}_{0}}(s) f(s), W(s, 0) x\right) d \rho_{\mathbf{m}_{0}}(s)=0, \quad \mathbf{m}(\{\beta\}) f(\beta)=0 \tag{25}
\end{equation*}
$$

We denote

$$
\varphi_{x}(t)=\left(\Psi_{\mathbf{m}_{0}}(t) f(t), W(t, 0) x\right), \quad \Phi_{x}(t)=\int_{a}^{t} \varphi_{x}(s) d \rho_{\mathbf{m}_{0}}(s)
$$

The function Φ_{x} is continuous. Hence it follows from (25) that $\Phi_{x}(t)=0$ for all $t \in \mathcal{S}_{0}$. Therefore, $\varphi_{x}(t)=0$ for $\rho_{\mathbf{m}_{0}}$-almost all $t \in \mathcal{S}_{0}$.

Let $\left\{x_{n}\right\}$ be a countable everywhere dense set in H and let \mathcal{X}_{n} be a set $t \in \mathcal{S}_{0}$ such that $\varphi_{x_{n}}(t)=0$. Then $\varrho_{\mathbf{m}_{0}}\left(\mathcal{X}_{n}\right)=\varrho_{\mathbf{m}_{0}}\left(\mathcal{S}_{0}\right)$. We denote $\mathcal{X}=\cap_{n} \mathcal{X}_{n}$. Then $\varrho_{\mathbf{m}_{0}}(\mathcal{X})=\varrho_{\mathbf{m}_{0}}\left(\mathcal{S}_{0}\right)$ and $\varphi_{x_{n}}(t)=0$ for all n. If a sequence
$\left\{z_{n}\right\}, z_{n} \in H$, converges to z in H, then the sequence $\left\{W(t, 0) z_{n}\right\}$ converges to $W(t, 0) z$ for fixed t. Therefore, $\varphi_{x}(t)=0$ for all $x \in H$ and for all $t \in \mathcal{X}$. The operator $W(t, 0)$ has a bounded inverse for all t. This implies that $\Psi_{\mathbf{m}_{0}}(t) f(t)=0$ for all $t \in \mathcal{X}$. Consequently, $\Psi_{\mathbf{m}_{0}}(t) f(t)=0$ for $\rho_{\mathbf{m}_{0}}$-almost all $t \in \mathcal{S}_{0}$. It follows from (2) that

$$
\int_{a}^{b}\left(d \mathbf{m}_{0}(t) f(t), f(t)\right)=\int_{a}^{b}\left(\Psi_{\mathbf{m}_{0}}(t) f(t), f(t)\right) d \rho_{\mathbf{m}_{0}}(t)=0
$$

Hence using (14), we obtain $f(t)=0$ for \mathbf{m}-almost all $t \in \mathcal{S}_{0}$. The Lemma is proved.
By \mathfrak{S}_{0} (by \mathfrak{H}_{1}) denote a subspace of functions that vanish on $[a, b] \backslash \mathcal{S}_{0}$ (on \mathcal{S}_{0}, respectively) with respect to the norm in \mathfrak{H}. The subspaces $\mathfrak{H}_{0}, \mathfrak{H}_{1}$ are orthogonal and $\mathfrak{H}=\mathfrak{H}_{0} \oplus \mathfrak{Y}_{1}$. We note that $\mathfrak{H}_{0}=\{0\}$ if and only if $\mathbf{m}\left(\mathcal{S}_{0}\right)=0$. We denote $L_{10}=L_{0} \cap\left(\mathfrak{S}_{1} \times \mathfrak{Y}_{1}\right)$. Then $\mathcal{D}\left(L_{10}\right) \subset \mathfrak{H}_{1}, \mathcal{R}\left(L_{10}\right) \subset \mathfrak{Y}_{1}$. It follows from Lemma 3.10 that

$$
\begin{equation*}
L_{0}^{*}=\left(\mathfrak{H}_{0} \times \mathfrak{H}_{0}\right) \oplus L_{10}^{*} \tag{26}
\end{equation*}
$$

i.e., the relation L_{0}^{*} consists of all pairs $\{y, f\} \in \mathfrak{G}$ of the form

$$
\{y, f\}=\{u, v\}+\{z, g\}=\{u+z, v+g\}
$$

where $u, v \in \mathfrak{H}_{0},\{z, g\} \in L_{10}^{*}$.
The set $\mathcal{T}_{\mathbf{p}}=(a, b) \backslash \mathcal{S}_{0}$ is open and it is the union of at most a countable number of disjoint open intervals \mathcal{J}_{k}, i.e., $\mathcal{T}_{\mathbf{p}}=\bigcup_{k=1}^{\mathbb{k}_{1}} \mathcal{J}_{k}$ and $\mathcal{J}_{k} \cap \mathcal{J}_{j}=\varnothing$ for $k \neq j$, where \mathbb{k}_{1} is a natural number (equal to the number of intervals if this number is finite) or the symbol ∞ (if the number of intervals is infinite). By \mathbb{J} denote the set of these intervals \mathcal{J}_{k}.

Remark 3.11. The boundaries α_{k}, β_{k} of any interval $\mathcal{J}_{k}=\left(\alpha_{k}, \beta_{k}\right) \in \mathbb{J}$ belong to \mathcal{S}_{0}.
We denote

$$
\begin{equation*}
w_{k}(t, \lambda)=\mathfrak{X}_{\left[\alpha_{k}, \beta_{k}\right)} W(t, \lambda) W^{-1}\left(\alpha_{k}, \lambda\right), \tag{27}
\end{equation*}
$$

where $\left(\alpha_{k}, \beta_{k}\right)=\mathcal{J}_{k} \in \mathbb{J}$. Using (7), we get

$$
\begin{equation*}
w_{k}^{*}(t, \bar{\lambda}) J w_{k}(t, \lambda)=J, \quad \alpha_{k} \leqslant t<\beta_{k} \tag{28}
\end{equation*}
$$

Lemma 3.12. Let $g \in \mathfrak{S}_{1}$ and let a function $G_{\mathbf{o}}$ be given by the following equality

$$
G_{\mathbf{0}}(t)=-\mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathbf{m}}} w_{k}(t, \lambda) i J \int_{\alpha_{k}}^{t} w_{k}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) g(s)
$$

where $\left(\alpha_{k}, \beta_{k}\right)=\mathcal{J}_{k} \in \mathbb{J}$. Then the pair $\left\{G_{\mathbf{o}}, g\right\} \in L_{10}^{*}-\lambda E$ if g vanishes outside of $\left[\alpha_{k}, \beta_{k}\right)$.
Proof. We denote

$$
G(t)=-w_{k}(t, \lambda) i J \int_{\alpha_{k}}^{t} w_{k}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) g(s)
$$

Equalities (27), (7) imply

$$
G(t)=-\mathfrak{X}_{\left[\alpha_{k}, \beta_{k}\right)} W(t, \lambda) i J \int_{\alpha_{k}}^{t} W^{*}(s, \bar{\lambda}) d \mathbf{m}(s) g(s) .
$$

It follows from Lemma 2.2 that the function G is a solution of equation (9) on the segment $\left[\alpha_{k}, \gamma\right], \gamma<\beta_{k}$ (for $a=\alpha_{k}, y=G, f=g, x_{0}=0$).

Suppose a pair $\{y, f\} \in L_{0}-\bar{\lambda} E$. The pair $\{y, f\}$ satisfies equation (16) in which λ is replaced by $\bar{\lambda}$. Therefore we can apply formula (3) to the functions y, f, G, g for $c_{1}=\alpha_{k}, c_{2}=\gamma, \mathbf{q}=\mathbf{m}, \mathbf{p}_{1}=\mathbf{p}_{0}+\bar{\lambda} \mathbf{m}$, $\mathbf{p}_{2}=\mathbf{p}_{0}+\lambda \mathbf{m}_{0}$. Since the measures $\mathbf{p}_{0}, \mathbf{m}_{0}$ is continuous, self-adjoint, $\mathbf{m}=\mathbf{m}_{0}+\widehat{\mathbf{m}}$, and (20) holds, we obtain

$$
\int_{\alpha_{k}}^{\gamma}(d \mathbf{m}(s) f(s), G(s))-\int_{\alpha_{k}}^{\gamma}(y, d \mathbf{m}(s) g(s))=(i J y(\gamma), G(\gamma))-\int_{\alpha_{k}}^{\gamma} \bar{\lambda}(d \widehat{\mathbf{m}}(s) y(s), G(s)) .
$$

Using the equality $G_{\mathbf{o}}(t)=G(t)-\mathfrak{X}_{\mathcal{S}_{\mathbf{m}}} G(t)$ and (20), we get

$$
\begin{align*}
\int_{\alpha_{k}}^{\gamma}\left(d \mathbf{m}(s) f(s), G_{\mathbf{o}}(s)\right)- & \int_{\alpha_{k}}^{\gamma}(y, d \mathbf{m}(s) g(s))=(i J y(\gamma), G(\gamma))- \\
& -\sum_{s \in \mathcal{S}_{\mathbf{m}} \cap\left[\alpha_{k}, \gamma\right)} \bar{\lambda}(\widehat{\mathbf{m}}(\{s\}) y(s), G(s))-\sum_{s \in \mathcal{S}_{\mathbf{m}} \cap\left[\alpha_{k}, \gamma\right)}(\widehat{\mathbf{m}}(\{s\}) f(s), G(s))=(i J y(\gamma), G(\gamma)) . \tag{29}
\end{align*}
$$

The function y is continuous from the left and $y\left(\beta_{k}\right)=0$ (also see Corollary 3.4). Hence passing to the limit as $\gamma \rightarrow \beta_{k}-0$ in (29), we obtain

$$
\int_{\alpha_{k}}^{\beta_{k}}\left(d \mathbf{m}(s) f(s), G_{\mathbf{o}}(s)\right)=\int_{\alpha_{k}}^{\beta_{k}}(y(s), d \mathbf{m}(s) g(s)) .
$$

This implies the desired statement. The Lemma is proved.
By \mathfrak{G}_{10} (by \mathfrak{G}_{11}) denote a subspace of functions that belong to \mathfrak{G}_{1} and vanish on \mathcal{S}_{m} (on $[a, b] \backslash \mathcal{S}_{\mathrm{m}}$, respectively) with respect to the norm in \mathfrak{G}. So, $\mathfrak{Y}_{10}\left(\mathfrak{H}_{11}\right)$ consists of functions of the form $\mathfrak{X}_{[a, b] \backslash\left(\mathcal{S}_{0} \cup \mathcal{S}_{\mathrm{m}}\right)} h$ (of the form $\mathfrak{X}_{\mathcal{S}_{\mathrm{m}} \backslash \mathcal{S}_{0}} h$, respectively), where $h \in \mathfrak{H}$ is an arbitrary function. Therefore,

$$
\mathfrak{H}_{1}=\mathfrak{G}_{10} \oplus \mathfrak{S}_{11}, \quad \mathfrak{H}=\mathfrak{H}_{0} \oplus \mathfrak{S}_{10} \oplus \mathfrak{H}_{11} .
$$

Obviously, the space \mathfrak{S}_{11} is the closure in \mathfrak{H} of the linear span of functions that have the form $\mathfrak{X}_{\{\tau\}}(\cdot) x$, where $x \in H, \tau \in \mathcal{S}_{\mathrm{m}} \backslash \mathcal{S}_{0}$. By (14), it follows that $\mathfrak{G}_{11} \subset \operatorname{ker} L_{10}^{*}$.

Remark 3.13. Suppose $\tau \in \mathcal{S}_{\mathbf{m}} \cap \mathcal{S}_{0}$. Then $\mathfrak{X}_{\{\tau\}}(\cdot) x \in \mathfrak{S}_{0}$ for $x \in$ H. Hence (26) implies that the pair $\left\{0, \mathfrak{X}_{\{\tau\}}(\cdot) x\right\} \in L_{0}^{*}$. In particular, Remark 3.11 implies that this is true for $\tau \in \mathcal{S}_{\mathbf{m}} \cap\left(\cup_{k=1}^{\mathbb{k}_{1}}\left\{\alpha_{k}, \beta_{k}\right\} \cup\{a, b\}\right)$, where α_{k}, β_{k} are boundaries of intervals $\left(\alpha_{k}, \beta_{k}\right)=\mathcal{J}_{k} \in \mathbb{J}$.

We define an operator $\mathcal{U}_{k}(\lambda): \mathfrak{S}_{1} \rightarrow \mathfrak{H}_{1}$ by the equation

$$
\begin{equation*}
\left(\mathcal{U}_{k}(\lambda) f\right)(t)=-\mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathbf{m}}} w_{k}(t, \lambda) i J \int_{a}^{t} w_{k}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) \lambda f(s), \quad f \in \mathfrak{H}_{1} . \tag{30}
\end{equation*}
$$

The operator $\mathcal{U}_{k}(\lambda)$ is bounded. Obviously, $\mathcal{U}_{k}(0)=0$. Taking into account (27) and Lemma 3.12, we obtain that the pair $\left\{\mathcal{U}_{k}(\lambda) f, \mathfrak{x}_{\left[\alpha_{k}, \beta_{k}\right)} \lambda f\right\} \in L_{10}^{*}-\lambda E$.

Let $u_{k}(t, \lambda, \tau): H \rightarrow \mathfrak{G}_{1}$ be an operator acting by the formula

$$
\begin{equation*}
u_{k}(t, \lambda, \tau) x=\left(\mathcal{U}_{k}(\lambda) \mathfrak{X}_{\{\tau\}} x\right)(t)=-\mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathrm{m}}} w_{k}(t, \lambda) i J \int_{a}^{t} w_{k}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) \lambda \mathfrak{X}_{\{\tau\}}(s) x, \tag{31}
\end{equation*}
$$

where $x \in H, \tau \in\left(\alpha_{k}, \beta_{k}\right) \cap \mathcal{S}_{\mathrm{m}},\left(\alpha_{k}, \beta_{k}\right)=\mathcal{J}_{k} \in \mathbb{J}$. Then the pair $\left\{u_{k}(\cdot, \lambda, \tau) x, \lambda \mathfrak{X}_{\{\tau\}} x\right\} \in L_{10}^{*}-\lambda E$. The definition of L_{0} implies that the function $\mathfrak{X}_{\{\tau\}} x \in \operatorname{ker} L_{0}^{*}$. Consequently, $\left\{\mathfrak{X}_{\{\tau\}} x,-\lambda \mathfrak{X}_{\{\tau\}} x\right\} \in L_{10}^{*}-\lambda E$. Thus, for any $x \in H$ the function

$$
\begin{equation*}
u_{k}(\cdot, \lambda, \tau) x+\mathfrak{X}_{\{\tau\}}(\cdot) x \in \operatorname{ker}\left(L_{10}^{*}-\lambda E\right) . \tag{32}
\end{equation*}
$$

Using (31), we get

$$
\begin{equation*}
\left\|u_{k}(\cdot, \lambda, \tau) x\right\|_{\mathfrak{S}} \leqslant|\lambda| \gamma\left\|\mathfrak{X}_{\{\tau\}}(\cdot) x\right\|_{\mathfrak{H}}=|\lambda| \gamma \mathbf{m}^{1 / 2}(\{\tau\}) x \tag{33}
\end{equation*}
$$

where $\gamma>0, x \in H, \tau \in\left(\alpha_{k}, \beta_{k}\right) \cap \mathcal{S}_{\mathrm{m}}$.
The linear span of functions of the form $\mathfrak{X}_{\{\tau\}}(\cdot) x\left(x \in H, \tau \in \mathcal{S}_{\mathrm{m}} \backslash \mathcal{S}_{0}\right)$ is dense in the space \mathfrak{G}_{11}. It follows from (31), (32) that for any the function $z_{1} \in \mathfrak{S}_{11}$

$$
\begin{equation*}
\mathcal{U}_{k}(\lambda) z_{1}+z_{1} \in \operatorname{ker}\left(L_{10}^{*}-\lambda E\right) \tag{34}
\end{equation*}
$$

Lemma 3.14. The linear span of functions of the form $\mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathbf{m}}} w_{k}(\cdot, \lambda) x$ is dense in $\mathfrak{H}_{10} \cap \operatorname{ker}\left(L_{10}^{*}-\lambda E\right)$. Here $x \in H$; $k=1, \ldots, \mathbb{k}_{1}$ if \mathbb{k}_{1} is finite and k is any natural number if \mathbb{k}_{1} is infinite.

Proof. Suppose that $h_{0} \in \mathfrak{G}_{10} \cap \operatorname{ker}\left(L_{10}^{*}-\lambda E\right)$ and

$$
\begin{equation*}
\left(h_{0}, \mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathbf{m}}} w_{k}(\cdot, \lambda) x\right)_{\mathfrak{H}}=\int_{a}^{b}\left(d \mathbf{m}(s) h_{0}(s), \mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathbf{m}}} w_{k}(s, \lambda) x\right)=0 \tag{35}
\end{equation*}
$$

for all $x \in H$ and for all k. Let us prove that $h_{0}(t)=0 \mathbf{m}$-almost everywhere. We denote

$$
\begin{equation*}
y(t)=-W(t, \bar{\lambda}) i J \int_{a}^{t} W^{*}(s, \lambda) d \mathbf{m}_{0}(s) h_{0}(s) \tag{36}
\end{equation*}
$$

We define the function h as follows. We put $h(t)=h_{0}(t)$ for $t \in[a, b] \backslash \mathcal{S}_{\mathbf{m}}$, and $h(t)=-\bar{\lambda}^{-1} y(t)$ for $t \in \mathcal{S}_{\mathbf{m}}$, $\lambda \neq 0$, and $h(t)=0$ for $t \in \mathcal{S}_{\mathrm{m}}, \lambda=0$. The function y will not change if h_{0} is replaced by h in (36). Moreover, equality (35) will remain with this replacement. Then it follows from Lemma 3.3 and Corollary 3.5 that the pair $\{y, h\} \in L_{10}-\bar{\lambda} E$. Hence $\left(h_{0}, h\right)_{\mathfrak{H}}=0$ since $h_{0} \in \operatorname{ker}\left(L_{10}^{*}-\lambda E\right)$. On the other hand, $\left(h_{0}, h\right)_{\mathfrak{H}}=\left(h_{0}, h_{0}\right)_{\mathfrak{H}}$. This implies $h_{0}=0$. The Lemma is proved.

Lemma 3.15. The linear span of functions of the form $\mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathrm{m}}} w_{k}(\cdot, \lambda) x_{0}$ and $u_{k}(\cdot, \lambda, \tau) x_{k}+\mathfrak{X}_{\{\tau\}}(\cdot) x_{k}$ is dense in $\operatorname{ker}\left(L_{10}^{*}-\lambda E\right)$. Here $x_{k}, x_{0} \in H ; \tau \in\left(\alpha_{k}, \beta_{k}\right) \cap \mathcal{S}_{\mathbf{m}} ; k=1, \ldots, \mathbb{1}_{1}$ if $\mathbb{1}_{1}$ is finite and k is any natural number if \mathbb{k}_{1} is infinite.

Proof. Let $z \in \operatorname{ker}\left(L_{10}^{*}-\lambda E\right)$. Then $z=z_{0}+z_{1}$, where $z_{0} \in \mathfrak{S}_{10}, z_{1} \in \mathfrak{G}_{11}$. Suppose that the function z is orthogonal to the functions listed in the condition of the Lemma. We claim that $z=0$. The pair $\left\{z_{1},-\lambda z_{1}\right\} \in L_{10}^{*}-\lambda E$ since $z_{1} \in \operatorname{ker} L_{10}^{*}$. Therefore, $\left\{z_{0}, \lambda z_{1}\right\} \in L_{10}^{*}-\lambda E$. We denote $z_{k}=\mathfrak{X}_{[\alpha, \beta)} z, z_{0 k}=\mathfrak{X}_{[\alpha, \beta)} z_{0}$, $z_{1 k}=\mathfrak{X}_{[\alpha, \beta)} z_{1}$. Using Lemma 3.12, we get

$$
\begin{equation*}
z_{0 k}(t)=-\mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathbf{m}}} w_{k}(t, \lambda) i J \int_{a}^{t} w_{k}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) \lambda z_{1 k}(s)+h_{0}(t) \tag{37}
\end{equation*}
$$

where $h_{0} \in \operatorname{ker}\left(L_{10}^{*}-\lambda E\right)$. Moreover, $h_{0} \in \mathfrak{G}_{10}$ since $z_{0 k} \in \mathfrak{H}_{10}$ and the first term in (37) belongs to \mathfrak{H}_{10}. According to Lemma 3.14, h_{0} belongs to the closure of linear span of functions that have the form $\mathfrak{X}_{\left[\alpha_{k}, \beta_{k}\right) \backslash \mathcal{S}_{\mathrm{m}}} w_{k}(\cdot, \lambda) x^{\prime}$, $x^{\prime} \in H$. Using (30), (37), we obtain $z_{k}=\mathcal{U}_{k}(\lambda) z_{1 k}+z_{1 k}+h_{0}$. By assumption, $\left(z_{k}, \mathcal{U}_{k}(\lambda) z_{1 k}+z_{1 k}\right)_{\mathfrak{y}}=0$ and $\left(z_{k}, h_{0}\right)_{\mathfrak{G}}=0$. Hence, $\left(z_{k}, z_{k}\right)_{\mathfrak{G}}=0$ for all k. Therefore, $(z, z)_{\mathfrak{G}}=0$. The Lemma is proved.

Remark 3.16. The Lemma 3.15 remains true iffunctions of the form $u_{k}(\cdot, \lambda, \tau) x_{k}+\mathfrak{X}_{\{\tau\}}(\cdot) x_{k}$ are replaced by functions $u_{k}(\cdot, \lambda, \tau) w_{k}(\tau, \lambda) x_{k}+\mathfrak{X}_{\{\tau\}}(\cdot) w_{k}(\tau, \lambda) x_{k}$. Indeed, by (8), (27), it follows that the operator $w_{k}(\tau, \lambda)$ is continuously invertible for $\tau \in \mathcal{J}_{k}=\left(\alpha_{k}, \beta_{k}\right)$. Hence the linear spans of the noted above functions coincide.

Let \mathbb{M} be a set consisting of intervals $\mathcal{J} \in \mathbb{J}$ and single-point sets $\{\tau\}$, where $\tau \in \mathcal{S}_{\mathrm{m}} \backslash \mathcal{S}_{0}$. The set \mathbb{M} is at most countable. Let \mathbb{k} be the number of elements in \mathbb{M}. We arrange the elements of \mathbb{M} in the form of a finite or infinite sequence and denote these elements by \mathcal{E}_{k}, where k is any natural number if the number of elements in \mathbb{M} is infinite, and $1 \leqslant k \leqslant \mathbb{k}$ if the number of elements in \mathbb{M} is finite.

We shall assign an operator function v_{k} to each element $\mathcal{E}_{k} \in \mathbb{M}$ in the following way. If \mathcal{E}_{k} is the interval, $\mathcal{E}_{k}=\mathcal{J}_{k}=\left(\alpha_{k}, \beta_{k}\right) \in \mathbb{J}$, then

$$
\begin{equation*}
v_{k}(t, \lambda)=\mathfrak{X}_{\left[\alpha_{k}, \beta_{k}\right) \backslash \mathcal{S}_{\mathrm{m}}} w_{k}(t, \lambda) . \tag{38}
\end{equation*}
$$

If \mathcal{E}_{k} is a single-point set, $\mathcal{E}_{k}=\left\{\tau_{k}\right\}, \tau_{k} \in \mathcal{S}_{\mathbf{m}} \backslash \mathcal{S}_{0}$, and $\tau_{k} \in \mathcal{J}_{n}=\left(\alpha_{n}, \beta_{n}\right) \in \mathrm{J}$, then

$$
\begin{equation*}
v_{k}(t, \lambda)=u_{n}\left(t, \lambda, \tau_{k}\right) w_{n}\left(\tau_{k}, \lambda\right)+\mathfrak{X}_{\left\{\tau_{k}\right\}}(t) w_{n}\left(\tau_{k}, \lambda\right) \tag{39}
\end{equation*}
$$

Remark 3.17. It follows from (27) that equality (38) is equivalent to the following: $v_{k}(t, \lambda)=\mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathrm{m}}} w_{k}(t, \lambda)$.
Lemma 3.18. The linear span of functions $t \rightarrow v_{k}(t, \lambda) \xi_{k}\left(\xi_{k} \in H\right)$ is dense in $\operatorname{ker}\left(L_{10}^{*}-\lambda E\right)$. (Here $k \in \mathbb{N}$ if $\mathbb{k}=\infty$, and $1 \leqslant k \leqslant \mathbb{k}$ if \mathbb{k} is finite.)

Proof. The required statement follows from Remark 3.16 and Lemma 3.15 immediately.
Corollary 3.19. A function $f \in \mathfrak{Y}_{1}$ belongs to the range $\mathcal{R}\left(L_{10}-\lambda E\right)$ if and only if the equality $\left(f, v_{k}(\cdot, \bar{\lambda})\right)_{\mathfrak{y}}=0$ holds for all k. (Here $k \in \mathbb{N}$ if $\mathbb{k}=\infty$, and $1 \leqslant k \leqslant \mathbb{k}$ if \mathbb{k} is finite.)

Proof. The proof follows from the equality $\mathcal{R}\left(L_{10}-\lambda E\right) \oplus \operatorname{ker}\left(L_{10}^{*}-\bar{\lambda} E\right)=\mathfrak{H}_{1}$ and Lemma 3.18.
Further, we denote $v_{k}(t, 0)=v_{k}(t)$. We note that $u_{k}(t, 0, \tau)=0$ (see (31)).
Let $Q_{k, 0}$ be a set $x \in H$ such that the functions $t \rightarrow v_{k}(t) x$ are identical with zero in \mathfrak{H}. We put $Q_{k}=H \ominus Q_{k, 0}$. On the linear space Q_{k} we introduce a norm $\|\cdot\|_{-}$by the equality

$$
\begin{equation*}
\left\|\xi_{k}\right\|_{-}=\left\|v_{k}(\cdot) \xi_{k}\right\|_{\mathfrak{5}}, \quad \xi_{k} \in Q_{k} \tag{40}
\end{equation*}
$$

We note that if v_{k} has form (38) with $\lambda=0$, then

$$
\left\|\xi_{k}\right\|_{-}=\left(\int_{[a, b] \backslash \mathcal{S}_{\mathbf{m}}}\left(d \mathbf{m}(s) w_{k}(s, 0) \xi_{k}, w_{k}(s, 0) \xi_{k}\right)\right)^{1 / 2}=\left(\int_{[a, b]}\left(d \mathbf{m}_{0}(s) w_{k}(s, 0) \xi_{k}, w_{k}(s, 0) \xi_{k}\right)\right)^{1 / 2}, \quad \xi_{k} \in Q_{k}
$$

If v_{k} has form (39) with $\lambda=0$, then

$$
\left\|\xi_{k}\right\|_{-}=\left(\mathbf{m}\left(\left\{\tau_{k}\right\}\right) w_{n}\left(\tau_{k}, 0\right) \xi_{k}, w_{n}\left(\tau_{k}, 0\right) \xi_{k}\right)^{1 / 2}=\left\|\mathbf{m}^{1 / 2}\left(\left\{\tau_{k}\right\}\right) w_{n}\left(\tau_{k}, 0\right) \xi_{k}\right\|, \quad \xi_{k} \in Q_{k}
$$

By Q_{k}^{-}denote the completion of Q_{k} with respect to norm (40). This norm (40) is generated by the scalar product

$$
\begin{equation*}
\left(\xi_{k}, \eta_{k}\right)_{-}=\left(v_{k}(\cdot) \xi_{k}, v_{k}(\cdot) \eta_{k}\right)_{\mathfrak{G}} \tag{41}
\end{equation*}
$$

where $\xi_{k}, \eta_{k} \in Q_{k}$. From formula (2) in which the measure \mathbf{P} is replaced by \mathbf{m}, it follows that

$$
\begin{equation*}
\left\|\xi_{k}\right\|_{-} \leqslant \gamma\left\|\xi_{k}\right\|, \quad \xi_{k} \in Q_{k} \tag{42}
\end{equation*}
$$

where $\gamma>0$ is independent of $\xi_{k} \in Q_{k}$.
It follows from (42) that the space Q_{k}^{-}can be treated as a space with a negative norm with respect to Q_{k} ([2, ch. 1], [11, ch.2]). By Q_{k}^{+}denote the associated space with a positive norm. The definition of spaces with positive and negative norms implies that $Q_{k}^{+} \subset Q_{k} \subset Q_{k}^{-}$. By $(\cdot, \cdot)_{+}$and $\|\cdot\|_{+}$we denote the scalar product and the norm in Q_{k}^{+}, respectively.
Lemma 3.20. There exist constants $\gamma_{1 k}, \gamma_{2 k}>0$ such that the inequality

$$
\begin{equation*}
\gamma_{1 k}\left\|v_{k}(\cdot) x\right\|_{\mathfrak{5}} \leqslant\left\|v_{k}(\cdot, \lambda) x\right\|_{\mathfrak{5}} \leqslant \gamma_{2 k}\left\|v_{k}(\cdot) x\right\|_{\mathfrak{H}} \tag{43}
\end{equation*}
$$

holds for all $x \in H$.

Proof. Using Lemma 2.2 and (6), we get

$$
\begin{align*}
& W(t, \lambda) x_{0}=W(t, 0) x_{0}-W(t, 0) i J \int_{a}^{t} W^{*}(s, 0) d \mathbf{m}_{0}(s) \lambda W(s, \lambda) x_{0}, \quad x_{0} \in H \tag{44}\\
& W(t, 0) x_{0}=W(t, \lambda) x_{0}+W(t, \lambda) i J \int_{a}^{t} W^{*}(\xi, \bar{\lambda}) d \mathbf{m}_{0}(s) \lambda W(s, 0) x_{0}, \quad x_{0} \in H \tag{45}
\end{align*}
$$

Suppose that v_{k} has form (38). Using (27), (44), (45), we obtain

$$
\begin{array}{ll}
v_{k}(t, \lambda) x_{0}=v_{k}(t, 0) x_{0}-v_{k}(t, 0) i J \int_{\alpha_{k}}^{t} v_{k}^{*}(s, 0) d \mathbf{m}_{0}(s) \lambda v_{k}(s, \lambda) x_{0}, & x_{0} \in H \\
v_{k}(t, 0) x_{0}=v_{k}(t, \lambda) x_{0}+v_{k}(t, \lambda) i J \int_{\alpha_{k}}^{t} v_{k}^{*}(\xi, \bar{\lambda}) d \mathbf{m}_{0}(s) \lambda v_{k}(s, 0) x_{0}, & x_{0} \in H . \tag{47}
\end{array}
$$

Equalities (8), (46), (47) imply (43) in the case when v_{k} has form (38). Suppose that v_{k} has form (39). Using (39), (31), we get

$$
\left\|v_{k}(\cdot, \lambda) x\right\|_{\mathfrak{S}}^{2}=\left\|u_{n}\left(\cdot, \lambda, \tau_{k}\right) w_{n}\left(\tau_{k}, \lambda\right) x\right\|_{\mathfrak{5}}^{2}+\left\|\mathfrak{X}_{\left\{\tau_{k}\right\}}(\cdot) w_{n}\left(\tau_{k}, \lambda\right) x\right\|_{\mathfrak{H}}^{2} \geqslant\left\|\mathfrak{F}_{\left\{\tau_{k}\right\}}(\cdot) w_{n}\left(\tau_{k}, \lambda\right) x\right\|_{\mathfrak{H}}^{2}=\left\|v_{k}(\cdot) x\right\|_{\mathfrak{H}}^{2} .
$$

On the other hand, using (31), (33), we obtain

$$
\left\|v_{k}(\cdot, \lambda) x\right\|_{\mathfrak{5}} \leqslant\left\|u_{n}\left(\cdot, \lambda, \tau_{k}\right) w_{n}\left(\tau_{k}, \lambda\right) x\right\|_{\mathfrak{5}}+\left\|\mathfrak{X}_{\left\{\tau_{k}\right\}}(\cdot) w_{n}\left(\tau_{k}, \lambda\right) x\right\|_{\mathfrak{5}} \leqslant \gamma_{3}\left\|\mathfrak{x}_{\left\{\tau_{k}\right\}}(\cdot) w_{n}\left(\tau_{k}, \lambda\right) x\right\|_{\mathfrak{5}}=\gamma_{3}\left\|v_{k}(\cdot) x\right\|_{\mathfrak{5}}
$$

where $\gamma_{3}>0$. The Lemma is proved.
Remark 3.21. By (43), it follows that the set $Q_{k, 0}$ will not change if the function $v_{k}(\cdot)=v_{k}(\cdot, 0)$ is replaced by $v_{k}(\cdot, \lambda)$ in the definition of $Q_{k, 0}$. Moreover, with such a replacement, the space Q_{k}^{-}will not change in the following sense: the set Q_{k}^{-}will not change, and the norm in it will be replaced by the equivalent one. The similar statement holds for the space Q_{k}^{+}.

Suppose that a sequence $\left\{x_{k n}\right\}, x_{k n} \in Q_{k}$, converges in the space Q_{k}^{-}to $x_{0} \in Q_{k}^{-}$as $n \rightarrow \infty$. It follows from Lemma 3.20 that the sequence $\left\{v_{k}(\cdot, \lambda) x_{k n}\right\}$ is fundamental in \mathfrak{H}. Therefore this sequence converges to some element in \mathfrak{H}. By $v_{k}(\cdot, \lambda) x_{0}$ we denote this element.

Let $\widetilde{Q}_{N}^{-}=Q_{1}^{-} \times \ldots \times Q_{N}^{-}\left(\widetilde{Q}_{N}^{+}=Q_{1}^{+} \times \ldots \times Q_{N}^{+}\right)$be the Cartesian product of the first n sets Q_{k}^{-}(Q_{k}^{+}, respectively) and let $V_{N}(t, \lambda)=\left(v_{1}(t, \lambda), \ldots, v_{N}(t, \lambda)\right)$ be the operator one-row matrix. It is convenient to treat elements from \widetilde{Q}_{N}^{-}as one-column matrices, and to assume that $V_{N}(t, \lambda) \widetilde{\xi}_{N}=\sum_{k=1}^{N} v_{k}(t, \lambda) \xi_{k}$, where we denote $\widetilde{\xi}_{N}=$ $\operatorname{col}\left(\xi_{1}, \ldots, \xi_{N}\right) \in \widetilde{Q}_{N^{\prime}}^{-}, \xi_{k} \in Q_{k}^{-}$.

Let $\operatorname{ker}_{k}(\lambda)$ be a linear space of functions $t \rightarrow v_{k}(t, \lambda) \xi_{k}, \xi_{k} \in Q_{k}^{-}$. By (40) and Lemma 3.20, it follows that $\operatorname{ker}_{k}(\lambda)$ is closed in \mathfrak{G}. The spaces $\operatorname{ker}_{k}(0)$ and $\operatorname{ker}_{j}(0)$ are orthogonal for $k \neq j$. We denote $\mathcal{K}_{N}(\lambda)=$ $\operatorname{ker}_{1}(\lambda) \dot{+} \ldots \dot{+} \operatorname{ker}_{N}(\lambda)$. Obviously, $\mathcal{K}_{N_{1}}(\lambda) \subset \mathcal{K}_{N_{2}}(\lambda)$ for $N_{1}<N_{2}$.

Lemma 3.22. The set $\cup_{N} \mathcal{K}_{N}(\lambda)$ is dense in $\operatorname{ker}\left(L_{10}^{*}-\lambda E\right)$.
Proof. The required statement follows from Lemma 3.18 immediately.
By $\mathcal{V}_{N}(\lambda)$ denote the operator $\widetilde{\xi}_{N} \rightarrow V_{N}(\cdot, \lambda) \widetilde{\xi}_{N}$, where $\widetilde{\xi}_{N} \in \widetilde{Q}_{N}^{-}$. The operator $\mathcal{V}_{N}(\lambda)$ maps continuously and one-to-one \widetilde{Q}_{N}^{-}onto $\mathcal{K}_{N}(\lambda) \subset \mathfrak{H}_{1} \subset \mathfrak{H}$. Hence the adjoint operator $\mathcal{V}_{N}^{*}(\lambda)$ maps \mathfrak{H} onto \widetilde{Q}_{N}^{+}continuously. We find the form of the operator \mathcal{V}_{N}^{*}. For all $\widetilde{\xi}_{N} \in \widetilde{Q}_{N}=Q_{1} \times \ldots Q_{N}, f \in \mathfrak{H}$, we have

$$
\left(f, \mathcal{V}_{N}(\lambda) \widetilde{\xi}_{N}\right)_{\mathfrak{H}}=\int_{a}^{b_{0}}\left(d \mathbf{m}(s) f(s), V_{N}(s, \lambda) \widetilde{\xi}_{N}\right)=\int_{a}^{b_{0}}\left(V_{N}^{*}(s, \lambda) d \mathbf{m}(s) f(s), \widetilde{\xi}_{N}\right)=\left(\mathcal{V}_{N}^{*}(\lambda) f, \widetilde{\xi}_{N}\right)
$$

Since \widetilde{Q}_{N} is dense in $\widetilde{Q}_{N^{\prime}}^{-}$, we obtain

$$
\begin{equation*}
\mathcal{V}_{N}^{*}(\lambda) f=\int_{a}^{b_{0}} V_{N}^{*}(s, \lambda) d \mathbf{m}(s) f(s) \tag{48}
\end{equation*}
$$

Thus, we have proved the following statement.
Lemma 3.23. The operator $\mathcal{V}_{N}(\lambda)$ maps continuously and one-to-one \widetilde{Q}_{N}^{-}onto $\mathcal{K}_{n}(\lambda)$. The adjoint operator $\mathcal{V}_{N}^{*}(\lambda)$ maps continuously \mathfrak{G} onto \widetilde{Q}_{N}^{+}and acts by formula (48). Moreover, $\mathcal{V}_{N}^{*}(\lambda)$ maps one-to-one $\mathcal{K}_{N}(\lambda)$ onto \widetilde{Q}_{N}^{+}.

Let Q_{-}, Q_{+}, Q be linear spaces of sequences, respectively, $\widetilde{\eta}=\left\{\eta_{k}\right\}, \widetilde{\varphi}=\left\{\varphi_{k}\right\}, \widetilde{\xi}=\left\{\xi_{k}\right\}$, where $\eta_{k} \in Q_{k}^{-}$, $\varphi_{k} \in Q_{k}^{+}, \xi_{k} \in Q_{k} ; k \in \mathbb{N}$ if $\mathbb{k}=\infty$, and $1 \leqslant k \leqslant \mathbb{k}$ if \mathbb{k} is finite; \mathbb{k} is the number of elements in \mathbb{M}. We assume that the series $\sum_{k=1}^{\infty}\left\|\eta_{k}\right\|_{-^{\prime}}^{2} \sum_{k=1}^{\infty}\left\|\varphi_{k}\right\|_{+^{\prime}}^{2} \sum_{k=1}^{\infty}\left\|\xi_{k}\right\|^{2}$ converge if $\mathbb{k}=\infty$. These spaces become Hilbert spaces if we introduce scalar products by the formulas

$$
(\widetilde{\eta}, \widetilde{\zeta})_{-}=\sum_{k=1}^{\mathbb{k}}\left(\eta_{k}, \zeta_{k}\right)_{-}, \quad \widetilde{\eta}, \widetilde{\zeta} \in Q_{-} ; \quad(\widetilde{\varphi}, \widetilde{\psi})_{+}=\sum_{k=1}^{\mathbb{k}}\left(\varphi_{k}, \psi_{k}\right)_{+}, \quad \widetilde{\varphi}, \widetilde{\psi} \in Q_{+} ; \quad(\widetilde{\xi}, \widetilde{\sigma})=\sum_{k=1}^{\mathbb{k}}\left(\xi_{k}, \sigma_{k}\right), \widetilde{\xi}, \widetilde{\sigma} \in Q .
$$

In these spaces, the norms are defined by the equalities

$$
\|\widetilde{\eta}\|_{-}^{2}=\sum_{k=1}^{\mathbb{k}}\left\|\eta_{k}\right\|_{-}^{2} \quad\|\widetilde{\varphi}\|_{+}^{2}=\sum_{k=1}^{\mathbb{k}}\left\|\varphi_{k}\right\|_{+^{\prime}}^{2} \quad\|\widetilde{\xi}\|^{2}=\sum_{k=1}^{\mathbb{k}}\left\|\xi_{k}\right\|^{2} .
$$

The spaces Q_{+}, Q_{-}can be treated as spaces with positive and negative norms with respect to Q ([2, ch. 1], [11, ch.2]). So $Q_{+} \subset Q \subset Q_{-}$and $\gamma_{1}\|\widetilde{\varphi}\|_{-} \leqslant\|\widetilde{\varphi}\| \leqslant \gamma_{2}\|\widetilde{\varphi}\|_{+}$, where $\widetilde{\varphi} \in Q_{+}, \gamma_{1}, \gamma_{2}>0$. The "scalar product" $(\widetilde{\eta}, \widetilde{\varphi})$ is defined for all $\widetilde{\varphi} \in Q_{+}, \widetilde{\eta} \in Q_{-}$. If $\widetilde{\eta} \in Q$, then $(\widetilde{\eta}, \widetilde{\varphi})$ coincides with the scalar product in Q.

Let $\mathcal{M} \subset Q_{-}$be a set of sequences vanishing starting from a certain number (its own for each sequence). The set \mathcal{M} is dense in the space Q_{-}. The operator $\mathcal{V}_{N}(\lambda)$ is the restriction of $\mathcal{V}_{N+1}(\lambda)$ to \widetilde{Q}_{N}^{-}. By $\mathcal{V}^{\prime}(\lambda)$ denote an operator in \mathcal{M} such that $\mathcal{V}^{\prime}(\lambda) \widetilde{\eta}=\mathcal{V}_{N}(\lambda) \widetilde{\eta}_{N}$ for all $N \in \mathbb{N}$, where $\widetilde{\eta}=\left(\widetilde{\eta}_{N}, 0, \ldots\right), \widetilde{\eta}_{N} \in \widetilde{Q}_{N}^{-}$. It follows from (40), (43) that $\mathcal{V}^{\prime}(\lambda)$ admits an extension by continuity to the space Q_{-}. By $\mathcal{V}(\lambda)$ denote the extended operator. This operator maps continuously and one-to-one Q_{-}onto $\operatorname{ker}\left(L_{10}^{*}-\lambda E\right) \subset \mathfrak{H}_{1} \subset \mathfrak{H}$. Moreover, we denote $\widetilde{V}(t, \lambda) \widetilde{\eta}=(\mathcal{V}(\lambda) \widetilde{\eta})(t)$, where $\widetilde{\eta}=\left\{\eta_{k}\right\} \in Q_{-}$. Using (41), we get

$$
(\mathcal{V}(0) \widetilde{\eta}, \mathcal{V}(0) \widetilde{\zeta})_{\mathfrak{H}}=(\widetilde{\eta}, \widetilde{\zeta})_{-} ; \quad \widetilde{\eta}=\left\{\eta_{k}\right\}, \widetilde{\zeta}=\left\{\zeta_{k}\right\} ; \quad \widetilde{\eta}, \widetilde{\zeta} \in Q_{-} .
$$

The adjoint operator $\mathcal{V}^{*}(\lambda)$ maps continuously \mathfrak{H} onto Q_{+}. Let us find the form of $\mathcal{V}^{*}(\lambda)$. Suppose $f \in \mathfrak{H}$, $\tilde{\eta} \in \mathcal{M}, \widetilde{\eta}=\left\{\tilde{\eta}_{N}, 0, \ldots\right\}$. Then

$$
\left.\left(\widetilde{\eta}, \mathcal{V}^{*}(\lambda) f\right)=(\mathcal{V}(\lambda) \widetilde{\eta}, f)_{\mathfrak{H}}=\int_{a}^{b_{0}}(d \mathbf{m}(t) \widetilde{V}(t, \lambda) \widetilde{\eta}, f(t))=\int_{a}^{b_{0}} \widetilde{\eta}, \widetilde{V}^{*}(t, \lambda) d \mathbf{m}(t) f(t)\right)
$$

Since $\mathcal{V}^{*}(\lambda) f \in Q_{+}$and the set \mathcal{M} is dense in Q_{-}, we get

$$
\begin{equation*}
\mathcal{V}^{*}(\lambda) f=\int_{a}^{b_{0}} \widetilde{V}^{*}(t, \lambda) d \mathbf{m}(t) f(t) \tag{49}
\end{equation*}
$$

Taking into account Lemmas 3.22,3.23, we obtain the following statement.
Lemma 3.24. The operator $\mathcal{V}(\lambda)$ maps Q_{-}onto $\operatorname{ker}\left(L_{10}^{*}-\lambda E\right)$ continuously and one to one. A function z belongs to $\operatorname{ker}\left(L_{10}^{*}-\lambda E\right)$ if and only if there exists an element $\widetilde{\eta}=\left\{\eta_{k}\right\} \in Q_{-}$such that $z(t)=(\mathcal{V}(\lambda) \widetilde{\eta})(t)=\widetilde{V}(t, \lambda) \widetilde{\eta}$. The operator $\mathcal{V}^{*}(\lambda)$ maps \mathfrak{H} onto Q_{+}continuously, and acts by formula (49), and $\operatorname{ker} \mathcal{V}^{*}(\lambda)=\mathfrak{H}_{0} \oplus \mathcal{R}\left(L_{10}-\bar{\lambda} E\right)$. Moreover, $\mathcal{V}^{*}(\lambda)$ maps $\operatorname{ker}\left(L_{10}^{*}-\lambda E\right)$ onto Q_{+}one to one.

Theorem 3.25. A pair $\{\widetilde{y}, \widetilde{f}\} \in \mathfrak{H} \times \mathfrak{H}$ belongs to $L_{0}^{*}-\lambda E$ if and only if there exist a pair $\{y, f\} \in \mathfrak{H} \times \mathfrak{H}$, functions

$$
\begin{align*}
& y=y_{0}+\widehat{y}, f=y_{0}^{\prime}+\widehat{f}, \tag{50}\\
& \widehat{y}(t)=\widetilde{V}(t, \lambda) \widetilde{\eta}-\sum_{k=1}^{\mathbb{k}_{1}} \mathfrak{x}_{[a, b] \backslash \mathcal{S}_{\mathbf{m}}} w_{k}(t, \lambda) i J \int_{a}^{t} w_{k}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) \widehat{f}(s) \tag{51}
\end{align*}
$$

hold, where the series in (51) converges in $\mathfrak{H}, \mathfrak{k}_{1}$ is the number of intervals $\mathcal{J}_{k} \in \mathbb{J}$.
Proof. Equalities (50) follow from (26). Let us prove that equality (51) holds. It follows from Lemma 3.24 that $\mathcal{V}(\lambda) \widetilde{\eta} \in \operatorname{ker}\left(L_{10}^{*}-\lambda E\right)$. We prove that if the functions \widehat{y}, \widehat{f} satisfy equality (51), then the pair $\{\widehat{y}, \widehat{f}\} \in L_{10}^{*}-\lambda E$. If \mathbb{k}_{1} is finite, then this statement follows from Lemmas $3.12,3.24$. We assume that $\mathbb{k}_{1}=\infty$ and first prove that the series in (51) converges in \mathfrak{G} for each function $\widehat{f} \in \mathfrak{H}_{1}$.

The function

$$
\begin{equation*}
\widehat{y}_{k}(t)=-\mathfrak{x}_{[a, b] \mathcal{S}_{\mathbf{m}}} w_{k}(t, \lambda) i \int_{a}^{t} w_{k}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) \widehat{f}(s)=-\mathfrak{x}_{[a, b] \backslash \mathcal{S}_{\mathbf{m}}} w_{k}(t, \lambda) i \iint_{\alpha_{k}}^{t} w_{k}^{*}(s, \bar{\lambda}) \Psi_{\mathbf{m}}(s) \widehat{f}(s) d \rho_{\mathrm{m}}(s) \tag{52}
\end{equation*}
$$

vanishes outside the interval $\left[\alpha_{k}, \beta_{k}\right.$). (Here $\Psi_{\mathrm{m}}, \rho_{\mathrm{m}}$ are functions from formula (2) in which the measure \mathbf{P} is replaced by \mathbf{m}.) We denote $\widehat{f_{k}}(t)=\chi_{\left[\alpha_{k} \beta_{k}\right)} \widehat{f}(t)$. Using (52), (8), (2), we get

$$
\begin{aligned}
& \left\|\widehat{y}_{k}(t)\right\| \leqslant \varepsilon_{1}\left\|w_{k}(t, \lambda)\right\| \int_{a_{k}}^{\beta_{k}}\left\|w_{k}^{*}(s, \bar{\lambda})\right\|\left\|\Psi_{\mathbf{m}}^{1 / 2}(s) \widehat{f}_{k}(s)\right\| d \rho_{\mathbf{m}}(s) \leqslant \\
& \\
& \leqslant \varepsilon\left(\int_{a_{k}}^{\beta_{k}}\left\|\Psi_{\mathbf{m}}^{1 / 2}(s) \widehat{f_{k}}(s)\right\|^{2} d \rho_{\mathbf{m}}(s)\right)^{1 / 2}=\varepsilon\left\|\widehat{f}_{k}\right\|_{\mathfrak{j}}, \varepsilon_{1}, \varepsilon>0 .
\end{aligned}
$$

This implies

$$
\begin{equation*}
\left\|\widehat{y}_{k}\right\|_{\mathfrak{G}}^{2}=\int_{\alpha_{k}}^{\beta_{k}}\left(\Psi_{\mathbf{m}}(t) \widehat{y}_{k}(t), \widehat{y}_{k}(t)\right) d \rho_{\mathbf{m}}(t) \leqslant \varepsilon^{2} \rho_{\mathbf{m}}\left(\left[\alpha_{k}, \beta_{k}\right)\right)\left\|\widehat{f}_{k}\right\|_{\mathfrak{S}}^{2} \tag{53}
\end{equation*}
$$

We denote $S_{n}(t)=\sum_{k=1}^{n} \widehat{y}_{k}(t)$ and prove that the sequence $\left\{S_{n}\right\}$ converges in \mathfrak{H}. From (53), we get

$$
\left\|S_{n}\right\|_{\mathfrak{G}}^{2}=\sum_{k=1}^{n}\left\|\widehat{y}_{k}\right\|_{\mathfrak{F}}^{2} \leqslant \varepsilon^{2} \sum_{k=1}^{n} \rho_{\mathbf{m}}\left(\left[\alpha_{k}, \beta_{k}\right)\right)\left\|\widehat{f}_{k}\right\|_{\mathfrak{F}}^{2} \leqslant \varepsilon^{2} \rho_{\mathbf{m}}([a, b])\|\widehat{f}\|_{\mathfrak{F}}^{2} .
$$

Hence the sequence $\left\{S_{n}\right\}$ converges to some function $S \in \mathfrak{G}$ and

$$
\begin{equation*}
S(t)=-\sum_{k=1}^{\infty} \mathfrak{x}_{[a, b] \backslash \mathcal{S}_{\mathbf{m}}} w_{k}(t, \lambda) i J \int_{a}^{t} w_{k}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) \widehat{f}(s), \quad\|S\|_{\mathfrak{S}} \leqslant \varepsilon_{2}\|\widehat{f}\|_{\mathfrak{j}}, \varepsilon_{2}>0 . \tag{54}
\end{equation*}
$$

It follows from Lemma 3.12 that the pair $\left\{S_{n}, \sum_{k=1}^{n} \widehat{f_{k}}\right\} \in L_{10}^{*}-\lambda E$. The relation L_{10}^{*} is closed. Therefore, $\left\{S, \widehat{f\}} \in L_{10}^{*}-\lambda E\right.$ and $\{\widehat{y}, \widehat{f}\} \in L_{10}^{*}-\lambda E$.

Now we assume that a pair $\{\widehat{y}, \widehat{f}\} \in L_{10}^{*}-\lambda E$. For the function \widehat{f}, we find a function S by formula (54). Then $\{S, \widehat{f}\} \in L_{10}^{*}-\lambda E$. Hence $\widehat{y}-S \in \operatorname{ker}\left(L_{10}^{*}-\lambda E\right)$. By Lemma 3.24, it follows that there exists an element $\widetilde{\eta} \in Q_{\text {_ }}$ such that $\widehat{y}-S=\mathcal{V}(\lambda) \widetilde{\eta}$. Therefore \widehat{y} has form (51). Now (26) implies the desired assertion. The Theorem is proved.

4. Continuously invertible extensions of the relation $L_{0}-\lambda E$

We denote

$$
\begin{aligned}
& \mathfrak{y}_{k}(t, \lambda)=-\mathfrak{x}_{\left[\alpha_{k}, \beta_{k}\right) \backslash\left(\mathcal{S}_{\mathbf{m}} \cap \mathcal{S}_{0}\right)} w_{k}(t, \lambda) i J \int_{a}^{t} w_{k}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) \mathfrak{x}_{[a, b] \backslash \mathcal{S}_{\mathbf{m}}} \widehat{f}(s)= \\
& =-\mathfrak{X}_{\left[\alpha_{k}, \beta_{k}\right)\left(\mathcal{S}_{\mathbf{m}} \cap S_{0}\right)} w_{k}(t, \lambda) i J \int_{a}^{t} w_{k}^{*}(s, \bar{\lambda}) d \mathbf{m}_{0}(s) \widehat{f}(s), \\
& \widetilde{\mathfrak{y}}_{k}(t, \lambda)=\mathfrak{X}_{\left[a_{k}, \beta_{k}\right) \backslash\left(\mathcal{S}_{\mathbf{m}} \cap S_{0}\right)} w_{k}(t, \lambda) i J \int_{t}^{b} w_{k}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) \mathfrak{X}_{[a, b] \mathcal{S}_{\mathbf{m}}} \widehat{f}(s)= \\
& =\mathfrak{X}_{\left[a_{k} \beta_{k}\right) \backslash\left(\mathcal{S}_{\mathrm{m}} \cap S_{0}\right)} w_{k}(t, \lambda) i J \int_{t}^{b} w_{k}^{*}(s, \bar{\lambda}) d \mathbf{m}_{0}(s) \widehat{f}(s) .
\end{aligned}
$$

It follows from Remark 3.11 that $\mathfrak{X}_{\left[\alpha_{k}, \beta_{k}\right) \backslash\left(\mathcal{S}_{\mathbf{m}} \cap \mathcal{S}_{0}\right)}=\mathfrak{X}_{\left[\alpha_{k}, \beta_{k}\right)}$ if $\alpha_{k} \notin \mathcal{S}_{\mathbf{m}}$ and $\mathfrak{X}_{\left[\alpha_{k}, \beta_{k}\right) \backslash\left(\mathcal{S}_{\mathbf{m}} \cap \mathcal{S}_{0}\right)}=\mathfrak{X}_{\left(\alpha_{k}, \beta_{k}\right)}$ if $\alpha_{k} \in \mathcal{S}_{\mathbf{m}}$ (see also Remark 3.13).

Lemma 4.1. Let $\lambda \neq 0$. Equality (51) hold if and only if

$$
\begin{align*}
& \widetilde{y}(t)=\widetilde{V}(t, \lambda) \widetilde{\zeta}+2^{-1} \sum_{k=1}^{\mathfrak{k}_{1}}\left[\mathfrak{y}_{k}(t, \lambda)-\mathfrak{x}_{\mathcal{S}_{\mathbf{m}} \cap\left(\alpha_{k}, \beta_{k}\right)} \mathfrak{y}_{k}(t, \lambda)-\mathfrak{X}_{\mathcal{S}_{\mathrm{m}} \cap\left(\alpha_{k}, \beta_{k}\right)} \lambda^{-1} \widehat{f}(t)\right]+ \\
&+2^{-1} \sum_{k=1}^{\boldsymbol{k}_{1}}\left[\widetilde{\mathfrak{y}}_{k}(t, \lambda)-\mathfrak{X}_{\mathcal{S}_{\mathbf{m}} \cap\left(\alpha_{k} \beta_{k}\right)} \widetilde{\mathfrak{y}}_{k}(t, \lambda)-\mathfrak{x}_{\mathcal{S}_{\mathrm{m}} \cap\left(\alpha_{k}, \beta_{k}\right)} \lambda^{-1} \widehat{f}(t)\right], \tag{55}
\end{align*}
$$

where $\bar{\zeta} \in Q_{\text {_ }}$.
Proof. By standard transformations, equality (51) is reduced to the form

$$
\begin{align*}
& \widehat{y}(t)=\widetilde{V}(t, \lambda) \widetilde{\vartheta}-2^{-1} \sum_{k=1}^{\mathbf{k}_{1}} \mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathbf{m}}} w_{k}(t, \lambda) i \int_{a}^{t} w_{k}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) \widehat{f}(s)+ \\
&+2^{-1} \sum_{k=1}^{\mathbf{k}_{1}} \mathfrak{X}_{[a, b] \backslash S_{\mathbf{m}}} w_{k}(t, \lambda) i J \int_{t}^{b} w_{k}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) \widehat{f}(s), \tag{56}
\end{align*}
$$

where $\widetilde{\vartheta}=\left\{\vartheta_{k}\right\} \in Q_{-}$, and $\vartheta_{k}=\eta_{k}$ if v_{k} has form (39), and $\vartheta_{k}=\eta_{k}-2^{-1} i J \int_{\alpha_{k}}^{\beta_{k}} w_{k}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) \widehat{f}(s)$ if v_{k} has form (38).
Let us write the function

$$
\begin{equation*}
\mathfrak{w}_{k}(t, \lambda)=-\mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathrm{m}}} w_{k}(t, \lambda) i J \int_{a}^{t} w_{k}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) \widehat{f}(s) \tag{57}
\end{equation*}
$$

in a different form. Using (57), (30), we get

$$
\begin{aligned}
\mathfrak{w}_{k}(t, \lambda) & =\mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathbf{m}}} \mathfrak{y}_{k}(t, \lambda)-\mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathbf{m}}} w_{k}(t, \lambda) i J \int_{a}^{t} w_{k}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) \mathfrak{X}_{\mathcal{S}_{\mathbf{m}}} \widehat{f}(s)= \\
& =\mathfrak{y}_{k}(t, \lambda)-\left[\mathfrak{X}_{\mathcal{S}_{\mathbf{m}} \cap\left(\alpha_{k}, \beta_{k}\right)} \mathfrak{y}_{k}(t, \lambda)+\mathfrak{X}_{\mathcal{S}_{\mathbf{m}} \cap\left(\alpha_{k}, \beta_{k}\right)} \lambda^{-1} \widehat{f}(t)\right]+\left[\mathfrak{X}_{\mathcal{S}_{\mathbf{m}} \cap\left(\alpha_{k}, \beta_{k}\right)} \lambda^{-1} \widehat{f}(t)+\left(\mathcal{U}_{k}(\lambda) \lambda^{-1} \mathfrak{X}_{\mathcal{S}_{\mathbf{m}} \cap\left(\alpha_{k}, \beta_{k}\right)} \widehat{f}(t)\right] .\right.
\end{aligned}
$$

Using (34), we get

$$
\mathfrak{v}_{k}=\mathfrak{X}_{\mathcal{S}_{\mathrm{m}} \cap\left(\alpha_{k}, \beta_{k}\right)} \lambda^{-1} f+\mathcal{U}_{k}(\lambda) \lambda^{-1} \mathfrak{X}_{\mathcal{S}_{\mathrm{m}} \cap\left(\alpha_{k}, \beta_{k}\right)} \widehat{f} \in \operatorname{ker}\left(L_{10}^{*}-\lambda E\right) .
$$

Therefore,

$$
\begin{equation*}
\mathfrak{w}_{k}(t, \lambda)=\mathfrak{y}_{k}(t, \lambda)-\left[\mathfrak{X}_{\mathcal{S}_{\mathrm{m}} \cap\left(\alpha_{k}, \beta_{k}\right)} \mathfrak{y}_{k}(t, \lambda)+\mathfrak{X}_{\mathcal{S}_{\mathrm{m}} \cap\left(\alpha_{k}, \beta_{k}\right)} \lambda^{-1} \widehat{f}(t)\right]+\mathfrak{v}_{k}(t) . \tag{58}
\end{equation*}
$$

Similarly, we transform the function

$$
\widehat{\mathfrak{w}}_{k}(t, \lambda)=\mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathbf{m}}} w_{k}(t, \lambda) i J \int_{t}^{b} w_{k}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) \widehat{f}(s)
$$

to the form

$$
\begin{aligned}
\widetilde{\mathfrak{w}}_{k}(t, \lambda)= & \widetilde{\mathfrak{y}}_{k}(t, \lambda)-\left[\mathfrak{X}_{\mathcal{S}_{\mathrm{m}} \cap\left(\alpha_{k}, \beta_{k}\right)} \widetilde{\mathfrak{y}}_{k}(t, \lambda)+\mathfrak{X}_{\mathcal{S}_{\mathrm{m}} \cap\left(\alpha_{k}, \beta_{k}\right)} \lambda^{-1} \widehat{f}(t)\right]+ \\
& +\left[\mathfrak{X}_{\mathcal{S}_{\mathrm{m}} \cap\left(\alpha_{k}, \beta_{k}\right)} \lambda^{-1} f(t)+\left(\mathcal{U}_{k}(\lambda) \lambda^{-1} \mathfrak{X}_{\mathcal{S}_{\mathrm{m}} \cap\left(\alpha_{k}, \beta_{k}\right)} \widehat{f}(t)\right]+\mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathrm{m}}} w_{k}(t, \lambda) i J \int_{a}^{b} w_{k}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) \mathfrak{X}_{\mathcal{S}_{\mathrm{m}}} \widehat{f}(s) .\right.
\end{aligned}
$$

By Lemma 3.15 and (34), it follows that here the last two terms belong to $\operatorname{ker}\left(L_{10}^{*}-\lambda E\right)$. Consequently,

$$
\begin{equation*}
\widetilde{\mathfrak{w}}_{k}(t, \lambda)=\widetilde{\mathfrak{y}}_{k}(t, \lambda)-\left[\mathfrak{X}_{\mathcal{S}_{\mathrm{m}} \cap\left(\alpha_{k}, \beta_{k}\right)} \widetilde{\mathfrak{y}}_{k}(t)+\mathfrak{X}_{\mathcal{S}_{\mathrm{m}} \cap\left(\alpha_{k}, \beta_{k}\right)} \lambda^{-1} \widehat{f}(t)\right]+\widetilde{\mathfrak{v}}_{k}(t), \tag{59}
\end{equation*}
$$

where $\widetilde{\mathfrak{v}}_{k} \in \operatorname{ker}\left(L_{10}^{*}-\lambda E\right)$. Now the desired statement follows from (56), (58), (59) and Lemma 3.24. The Lemma is proved.

Lemma 4.2. Let $\lambda=0$. Equality (51) hold if and only if

$$
\begin{align*}
& \widehat{y}(t)=\widetilde{V}(t, 0) \widetilde{\zeta}+2^{-1} \sum_{k=1}^{\mathbb{k}_{1}}\left[\mathfrak{y}_{k}(t, 0)-\mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathrm{m}}} w_{k}(t, 0) i J \int_{a}^{t} w_{k}^{*}(s, 0) d \mathbf{m}(s) \mathfrak{X}_{\mathcal{S}_{\mathrm{m}}} \widehat{f(s)]+}\right. \\
&\left.+2^{-1} \sum_{k=1}^{\mathbb{k}_{1}}\left[\mathfrak{y}_{k}(t, 0)+\mathfrak{X}_{[a, b] \mathcal{S}_{\mathrm{m}}} w_{k}(t, 0) i J \int_{t}^{b} w_{k}^{*}(s, 0) d \mathbf{m}(s) \mathfrak{X}_{\mathcal{S}_{\mathrm{m}}} \widehat{f}(s)\right)\right] . \tag{60}
\end{align*}
$$

Proof. Equality (56) holds for $\lambda=0$. We transform the function $\mathfrak{w}_{k}(t, 0)$ (see (57)) in the following way:

$$
\begin{aligned}
\mathfrak{w}_{k}(t, 0)=-\mathfrak{x}_{[a, b] \backslash \mathcal{S}_{\mathrm{m}}} w_{k}(t, 0) i J \int_{a}^{t} w_{k}^{*}(s, 0) d \mathbf{m}(s) \widehat{f}(s)=\mathfrak{y}_{k}(t, 0)- & \mathfrak{X}_{\mathcal{S}_{\mathrm{m}} \cap\left(\alpha_{k}, \beta_{k}\right)} \mathfrak{y}_{k}(t, 0)- \\
& -\mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathrm{m}}} w_{k}(t, 0) i J \int_{a}^{t} w_{k}^{*}(s, 0) d \mathbf{m}(s) \mathfrak{X}_{\mathcal{S}_{\mathrm{m}}} \widehat{f(s)}
\end{aligned}
$$

Similarly, we transform the function $\widetilde{\mathfrak{w}}_{k}(t, 0)$. Since $\mathfrak{X}_{\mathcal{S}_{\mathbf{m}} \cap\left(\alpha_{k}, \beta_{k}\right)} \mathfrak{y}_{k}(\cdot, 0) \in \operatorname{ker} L_{10}^{*}, \mathfrak{X}_{\mathcal{S}_{\mathbf{m}} \cap\left(\alpha_{k}, \beta_{k}\right)} \widetilde{\mathfrak{y}}_{k}(\cdot, 0) \in \operatorname{ker} L_{10}^{*}$, $\mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathbf{m}}} w_{k}(t, 0) i J \int_{a}^{b} w_{k}^{*}(0, \bar{\lambda}) d \mathbf{m}(s) \mathfrak{X}_{\mathcal{S}_{\mathbf{m}}} \widehat{f(s)} \in \operatorname{ker} L_{10}^{*}$, we obtain the required statement.The Lemma is proved.
Theorem 4.3. Let $T(\lambda)$ be a linear relation such that $L_{10}-\lambda E \subset T(\lambda) \subset L_{10}^{*}-\lambda E$. The relation $T(\lambda)$ is continuously invertible in the space \mathfrak{S}_{1} if and only if there exists a bounded operator $M(\lambda): Q_{+} \rightarrow Q_{-}$such that equalities (61) (for $\lambda \neq 0)$ and $(62)($ for $\lambda=0)($ see equalities below) hold for any pair $\{y, \widehat{f\}} \in T(\lambda)$

$$
\begin{align*}
& \widehat{y}(t)=\int_{a}^{b} \widetilde{V}(t, \lambda) M(\lambda) \widetilde{V}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) \widehat{f}(s)+ \\
& +2^{-1} \sum_{k=1}^{\mathbf{k}_{1}} \int_{a}^{b} \mathfrak{X}_{\left[\alpha_{k}, \beta_{k}\right) \backslash\left(\mathcal{S}_{\mathbf{m}} \cap \mathcal{S}_{0}\right)}(t) w_{k}(t, \lambda) \operatorname{sgn}(s-t) i j w_{k}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) \mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathbf{m}}}(s) \widehat{f}(s)- \\
& -2^{-1} \sum_{k=1}^{\mathbf{k}_{1}} \int_{a}^{b} \mathfrak{X}_{\mathcal{S}_{\mathbf{m}} \cap\left(\alpha_{k}, \beta_{k}\right)}(t) w_{k}(t, \lambda) \operatorname{sgn}(s-t) i j w_{k}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) \mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathbf{m}}}(s) \widehat{f}(s)-\lambda^{-1} \sum_{k=1}^{\mathbb{k}_{1}} \mathfrak{X}_{\mathcal{S}_{\mathbf{m}} \cap\left(\alpha_{k}, \beta_{k}\right)}(t) \widehat{f}(t), \tag{61}
\end{align*}
$$

$$
\begin{align*}
& \widehat{y}(t)=\int_{a}^{b} \widetilde{V}(t, 0) M(0) \widetilde{V}^{*}(s, 0) d \mathbf{m}(s) \widehat{f}(s)+ \\
& +2^{-1} \sum_{k=1}^{\mathfrak{k}_{1}} \int_{a}^{b} \mathfrak{X}_{\left[\alpha_{k}, \beta_{k}\right) \backslash\left(\mathcal{S}_{\mathbf{m}} \cap \mathcal{S}_{0}\right)}(t) w_{k}(t, 0) \operatorname{sgn}(s-t) i J w_{k}^{*}(s, 0) d \mathbf{m}(s) \mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathbf{m}}}(s) \widehat{f}(s)+ \\
& \tag{62}\\
& \quad+2^{-1} \sum_{k=1}^{\mathbb{k}_{1}} \int_{a}^{b} \mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathbf{m}}}(t) w_{k}(t, 0) \operatorname{sgn}(s-t) i J w_{k}^{*}(s, 0) d \mathbf{m}(s) \mathfrak{F}_{\mathcal{S}_{\mathbf{m}}}(s) \widehat{f}(s) .
\end{align*}
$$

Proof. First note that the range $\mathcal{R}\left(L_{10}-\lambda E\right)$ is closed and $\operatorname{ker}\left(L_{10}-\lambda E\right)=\{0\}$. This follows from the Lemma 3.3. Suppose that the relation $T^{-1}(\lambda)$ is a boundary everywhere defined operator and $\widehat{y}=T^{-1}(\lambda) \widehat{f}$. Then \widehat{y} has form (55) for $\lambda \neq 0$ and (60) for $\lambda=0$. In this equalities, $\widetilde{\zeta} \in Q_{-}$is uniquely determined by \widehat{f} and λ, i.e., $\widetilde{\zeta}=\widetilde{\zeta}(\widehat{f}, \lambda)$. Indeed, if $\widehat{f}=0$, then $\widetilde{V}(t, \lambda) \widetilde{\zeta}=T^{-1}(\lambda) 0=0$. It follows from Lemma 3.24 that $\widetilde{\zeta}=0$. Moreover, $\widetilde{\zeta}$ depends on \widehat{f} linearly. Consequently, $\widetilde{\zeta}=S(\lambda) \widehat{f}$, where $S(\lambda): \mathfrak{G}_{1} \rightarrow Q_{-}$is a linear operator for fixed λ. We claim that the operator $S(\lambda)$ is bounded. Indeed, if a sequence $\left\{\widehat{f}_{n}\right\}$ converges to zero in the space \mathfrak{G}_{1} as $n \rightarrow \infty$, then the sequence $\left\{\widehat{y}_{n}\right\}=\left\{T^{-1}(\lambda) \widehat{f_{n}}\right\}$ converges to zero in \mathfrak{S}_{1}. Hence the sequence $\left\{\mathcal{V}(\lambda) \widetilde{\zeta}_{n}\right\}$ (where $\left.\widetilde{\zeta}_{n}=S(\lambda) \widehat{f_{n}}\right)$ converges to zero in \mathfrak{H}_{1}. By Lemma 3.24 , it follows that the sequence $\left\{S(\lambda) \widehat{f_{n}}\right\}$ converges to zero in the space Q_{-}. Therefore $S(\lambda)$ is the bounded operator.

Now we prove that $\widetilde{\zeta}(\widehat{f}, \lambda)$ is uniquely determined by the element $\mathcal{V}^{*}(\bar{\lambda}) \widehat{f} \in Q_{+}$. Suppose $\mathcal{V}^{*}(\bar{\lambda}) \widehat{f}=0$. The application of Lemma 3.24 yields $\widehat{f} \in \mathcal{R}\left(L_{10}-\lambda E\right)$.

Suppose $\lambda \neq 0$. Taking into account Lemma 3.3, we determine a function \widehat{y} by equality (55) in which

$$
\mathfrak{X}_{\mathcal{S}_{\mathbf{m}} \cap\left(\alpha_{k}, \beta_{k}\right)} \mathfrak{y}_{k}(t, \lambda)+\mathfrak{X}_{\mathcal{S}_{\mathbf{m}} \cap\left(\alpha_{k}, \beta_{k}\right)} \lambda^{-1} \widehat{f}(t)=0, \quad \mathfrak{X}_{\mathcal{S}_{\mathbf{m}} \cap\left(\alpha_{k}, \beta_{k}\right)} \widetilde{\mathfrak{y}}_{k}(t, \lambda)+\mathfrak{X}_{\mathcal{S}_{\mathbf{m}} \cap\left(\alpha_{k}, \beta_{k}\right)} \lambda^{-1} \widehat{f}(t)=0 .
$$

By Lemma 3.3 and Remark 3.9, it follows that the pairs $\left\{\mathfrak{y}_{k}, \mathfrak{X}_{(\alpha, \beta)} \widehat{f\}},\left\{\mathfrak{\mathfrak { y }}_{k}, \mathfrak{x}_{(\alpha, \beta)}\right) \widehat{f\}} \in L_{10}-\lambda E\right.$. This and the invertibility of $T(\lambda)$ imply that $\widetilde{\zeta}(\widehat{f}, \lambda)=0$ for $\lambda \neq 0$.

Let $\lambda=0$. Using Lemma 3.3 (for $\lambda=0$) and Remark 3.9, we determine a function y by equality (60) in which $\mathfrak{X}_{\{\tau\}} \widehat{f}(\tau)=0$ for $\tau \in \mathcal{S}_{\mathrm{m}}$. Then equality (60) will take the form

$$
\widehat{y}(t)=\widetilde{V}(t, 0) \widetilde{\zeta}(\widehat{f}, 0)+2^{-1} \sum_{k=1}^{\mathbb{k}_{1}} \mathfrak{y}_{k}(t, 0)+2^{-1} \sum_{k=1}^{\mathbb{k}_{1}} \widetilde{\mathfrak{y}}_{k}(t, 0) .
$$

It follows from Lemma 3.3 and Remark 3.9 that $\left\{\mathfrak{y}_{k}, \mathfrak{x}_{[\alpha, \beta)} \widehat{f\}}, \widetilde{\mathfrak{y}}_{k}, \mathfrak{X}_{[\alpha, \beta)} \widehat{f\}} \in L_{10}\right.$. This and the invertibility of $T(0)$ imply that $\widetilde{\zeta}(\widehat{f}, 0)=0$.

Thus $S(\lambda) \widehat{f}=M(\lambda) \mathcal{V}^{*}(\bar{\lambda}) \widehat{f}$, where $M(\lambda): Q_{+} \rightarrow Q_{-}$is an everywhere defined operator. Let $\mathcal{V}_{0}^{*}(\bar{\lambda})$ be a restriction of $\mathcal{V}^{*}(\bar{\lambda})$ to $\operatorname{ker}\left(L_{10}^{*}-\bar{\lambda} E\right)$. By Lemma 3.24, it follows that $M(\lambda)=S(\lambda)\left(\mathcal{V}_{0}^{*}(\bar{\lambda})\right)^{-1}$. Hence $M(\lambda)$ is the bonded operator and equalities (61) (for $\lambda \neq 0)$ and (62) (for $\lambda=0$) hold.

Conversely, suppose that equalities (61) (for $\lambda \neq 0)$ and (62) (for $\lambda=0$) hold. Then $\widehat{y}=0$ if $\widehat{f}=0$ in (61), (62). Therefore, $T^{-1}(\lambda)$ is an operator. We claim that the operator $T^{-1}(\lambda)$ is bounded. Indeed, suppose that pairs $\left\{\widehat{y}_{n}, \widehat{f_{n}}\right\}$ satisfy the equality (61) or (62) and the sequence $\left\{\widehat{f_{n}}\right\}$ converges to zero in \mathfrak{H}_{1}. It follows from Lemma 3.24 and equalities (61), (62) that the sequence $\left\{\widehat{y}_{n}\right\}$ converges to zero. So, $T^{-1}(\lambda)$ is the boundary everywhere defined operator. The Theorem is proved.

Corollary 4.4. Let $\widetilde{T}(\lambda) \subset \mathfrak{H} \times \mathfrak{H}$ be a linear relation and $L_{0}-\lambda E \subset \widetilde{T}(\lambda) \subset L_{0}^{*}-\lambda E$. Then $\widetilde{T}(\lambda)$ is continuously invertible in the space \mathfrak{H} if and only if $\widetilde{T}(\lambda)$ has the form $\widetilde{T}(\lambda)=T_{0} \oplus T(\lambda)$, where $T_{0} \subset \mathfrak{H}_{0} \times \mathfrak{H}_{0}, T(\lambda) \subset \mathfrak{H}_{1} \times \mathfrak{G}_{1}$ are linear relations, $L_{10}-\lambda E \subset T(\lambda) \subset L_{10}^{*}-\lambda E, T(\lambda)$ is continuously invertible in \mathfrak{H}_{1} (i.e., $T(\lambda)$ satisfies Theorem 4.3), T_{0} is any continuously invertible relation in \mathfrak{H}_{0}.

Proof. The desired statement follows from (26).

Remark 4.5. It follows from Lemma 3.24 that the operator $M(\lambda)$ is uniquely determined by the relation $T(\lambda)$ and by the choice of functions v_{k}.

We shall write equalities (61), (62) in a short form. We denote $\widetilde{W}(t, \lambda)=\sum_{k=1}^{\mathbb{k}_{1}} \mathfrak{X}_{\left[\alpha_{k}, \beta_{k}\right) \backslash\left(\mathcal{S}_{\mathbf{m}} \cap \mathcal{S}_{0}\right)} w_{k}(t, \lambda)$, i.e., $\widetilde{W}(t, \lambda)=w_{k}(t, \lambda)$ for $t \in\left(\alpha_{k}, \beta_{k}\right)$, and $\widetilde{W}\left(\alpha_{k}, \lambda\right)=w_{k}\left(\alpha_{k}, \lambda\right)$ if $\alpha_{k} \notin \mathcal{S}_{\mathrm{m}}$, and $\widetilde{W}\left(\alpha_{k}, \lambda\right)=0$ if $\alpha_{k} \in \mathcal{S}_{\mathrm{m}}$. In (61), (62), the series converge in \mathfrak{Y}_{1} for any function $\widehat{f} \in \mathfrak{H}_{1}$. We denote

$$
\begin{aligned}
& \mathbf{K}(t, s, \lambda)=\widetilde{V}(t, \lambda) M(\lambda) \widetilde{V}^{*}(s, \bar{\lambda})+2^{-1} \widetilde{W}(t, \lambda) \operatorname{sgn}(s-t) i J \widetilde{W}^{*}(s, \bar{\lambda}) \mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathrm{m}}}(s)- \\
&-2^{-1} \mathfrak{X}_{\mathcal{S}_{\mathrm{m}}}(t) \widetilde{W}(t, \lambda) \operatorname{sgn}(s-t) i J \widetilde{W}^{*}(s, \bar{\lambda}) \mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathrm{m}}}(s), \quad \lambda \neq 0 \\
& \mathbf{K}(t, s, 0)=\widetilde{V}(t, 0) M(0) \widetilde{V}^{*}(s, 0)+2^{-1} \widetilde{W}(t, 0) \operatorname{sgn}(s-t) i J \widetilde{W}^{*}(s, 0) \mathfrak{X}_{[a, b] \mathcal{S}_{\mathrm{m}}}(s)+ \\
&+2^{-1} \mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathrm{m}}}(t) \widetilde{W}(t, 0) \operatorname{sgn}(s-t) i J \widetilde{W}^{*}(s, 0) \mathfrak{X}_{\mathcal{S}_{\mathbf{m}}}(s) .
\end{aligned}
$$

Then the equalities (61), (62) can be written as

$$
\begin{align*}
\widehat{y}(t) & =\left(T^{-1}(\lambda) \widehat{f)}(t)=\int_{a}^{b} \mathbf{K}(t, s, \lambda) d \mathbf{m}(s) \widehat{f}(s)-\lambda^{-1} \mathfrak{X}_{\mathcal{S}_{\mathbf{m}} \backslash \mathcal{S}_{0}} \widehat{f}(t), \quad \lambda \neq 0, \quad \widehat{f} \in \mathfrak{H}_{1}\right. \tag{63}\\
y(t) & =\left(T^{-1}(0) \widehat{f}\right)(t)=\int_{a}^{b} \mathbf{K}(t, s, 0) d \mathbf{m}(s) \widehat{f}(s), \quad \widehat{f} \in \mathfrak{H}_{1} \tag{64}
\end{align*}
$$

Let us consider some examples.
Example 4.6. Suppose $\mathbf{p}=\mathbf{p}_{0}$ is a continuous measure, $\mathbf{m}=\mu$ is the usual Lebesque measure on $[a, b]$ (i.e., $\mu([\alpha, \beta))=\beta-\alpha$, where $a \leqslant \alpha<\beta \leqslant b$ (we write ds instead of $d \mu(s)$). In this case, L_{0}, L_{0}^{*} are operators, $\mathbb{k}_{1}=\mathbb{k}=1$, $\mathfrak{H}_{0}=\{0\}, Q_{1,0}=\{0\}, Q_{1}=H=Q_{-}=Q_{+}, \widetilde{V}(t, \lambda)=W(t, \lambda)$. Equality (51) has the form

$$
y(t)=W(t, \lambda) \eta-W(t, \lambda) i J \int_{a}^{t} W^{*}(s, \bar{\lambda}) f(s) d s, \quad f=\left(L_{0}^{*}-\lambda E\right) y, \quad \eta \in H
$$

For any λ, equalities (63), (64) take the form

$$
\begin{equation*}
y(t)=\left(T^{-1}(\lambda) f\right)(t)=\int_{a}^{b} \mathbf{K}(t, s, \lambda) f(s) d s \tag{65}
\end{equation*}
$$

where $\mathbf{K}(t, s, \lambda)=W(t, \lambda)\left(M(\lambda)+2^{-1} \operatorname{sgn}(s-t) i J\right) W^{*}(s, \bar{\lambda})$.
Example 4.7. We assume that measures \mathbf{p}, \mathbf{m} are continuous. Then L_{0}, L_{0}^{*} are not operators, generally. In this case, $\mathbb{k}_{1}=\mathbb{k}=1, \mathfrak{H}_{0}=\{0\}$. In general, $Q_{1} \neq H, Q_{1} \neq Q_{1}^{-}$. In this case, $Q_{-}=Q_{1}^{-}, \mathcal{V}(\lambda)=\mathcal{W}(\lambda)$ is an extension of the operator $\xi \rightarrow W(\cdot, \lambda) \xi\left(\xi \in Q_{1} \subset H\right)$ to the set $Q_{-}, \widetilde{V}(t, \lambda) \eta=\widetilde{W}(t, \lambda) \eta=(\mathcal{W}(\lambda) \eta)(t)\left(\eta \in Q_{-}\right)$. Equality (51) has the form

$$
y(t)=\widetilde{W}(t, \lambda) \eta-\widetilde{W}(t, \lambda) i J \int_{a}^{t} \widetilde{W}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) f(s), \quad\{y, f\} \in L_{0}^{*}-\lambda E, \quad \eta \in Q_{-}
$$

For any λ, equalities (63), (64) take the form

$$
y(t)=\left(T^{-1}(\lambda) f\right)(t)=\int_{a}^{b} \mathbf{K}(t, s, \lambda) d \mathbf{m}(s) f(s)
$$

where $\mathbf{K}(t, s, \lambda)=\widetilde{W}(t, \lambda)\left(M(\lambda)+2^{-1} \operatorname{sgn}(s-t) i J\right) \widetilde{W}^{*}(s, \bar{\lambda})$.
Example 4.8. Suppose that $\mathbf{m}=\mu$ is the usual Lebesque measure and the set $\mathcal{S}_{\mathbf{p}}$ of single-point atoms of the measure \mathbf{p} can be arranged as an increasing sequence converging to b. In this case, the description of $T^{-1}(\lambda)$ is obtained in [9].

Example 4.9. Suppose that $\mathcal{S}_{\mathbf{m}} \neq \varnothing$ and $\mathbf{m}=\mu+\widehat{\mathbf{m}}$, where $\mu=\mathbf{m}_{0}$ is the usual Lebesque measure on $[a, b]$ and $\mu(\Delta)=\mathbf{m}(\Delta)$ for all Borel sets such that $\Delta \cap \mathcal{S}_{\mathbf{m}}=\varnothing$. So, $\mathcal{S}_{\mathbf{m}}=\mathcal{S}_{\widehat{\mathbf{m}}}$ and $\mathbf{m}(\{\beta\})=\widehat{\mathbf{m}}(\{\beta\})$ for all $\beta \in \mathcal{S}_{\mathbf{m}}$. We arrange the elements of \mathcal{S}_{m} in the form of a finite or infinite sequence $\left\{\tau_{k}\right\}$. Let \mathbb{k}_{2} be the number of elements in \mathcal{S}_{m}. We denote $\widehat{Q}_{k, 0}=\operatorname{ker} \mathbf{m}\left(\left\{\tau_{k}\right\}\right), \widehat{Q}_{k}=H \ominus \widehat{Q}_{k, 0}$, where $\tau_{k} \in \mathcal{S}_{\mathbf{m}}$. Let \mathbf{m}_{k} be the restriction of the operator $\mathbf{m}\left(\left\{\tau_{k}\right\}\right)$ to \widehat{Q}_{k}. The operator \mathbf{m}_{k} is self-adjoint and $\mathcal{R}\left(\mathbf{m}_{k}\right) \subset \widehat{Q}_{k}$. By \widehat{Q}_{k}^{-}denote the completion of \widehat{Q}_{k} with respect to norm $\|\xi\|_{-}=\left(\mathbf{m}_{k} \xi, \xi\right)^{1 / 2}$, where $\xi \in \widehat{Q}_{k}$. Let \widehat{Q}_{-}be linear space of sequences $\widetilde{\eta}=\left\{\eta_{k}\right\}$ such that $\eta_{k} \in \widehat{Q}_{k}^{-}\left(k \in \mathbb{N}\right.$ if $\mathbb{k}_{2}=\infty$, and $1 \leqslant k \leqslant \mathbb{k}_{2}$ if \mathbb{k}_{2} is finite) and the series $\sum_{k=1}^{\infty}\left\|\eta_{k}\right\|_{-}^{2}$ converges if $\mathbb{k}_{2}=\infty$. Then $\mathfrak{H}=L_{2}(H ; a, b) \oplus \widehat{Q}_{-}$.

Suppose $\mathbf{p}=0$ and $a \notin \mathcal{S}_{\mathrm{m}}, b \notin \mathcal{S}_{\mathrm{m}}$. (The case of an arbitrary continuous measure \mathbf{p} can be considered similarly.) Then $\mathfrak{H}_{0}=\{0\}, \mathbb{k}_{1}=1, W(t, 0)=E$, and $Q_{-}=H \oplus \widehat{Q}_{-}$. It follows from Lemma 3.3 and (14) that a pair $\{y, f\} \in L_{0}$ if and only if

$$
y(t)=-i J \int_{a}^{t} f(s) d s, \quad y(b)=0, \quad \mathbf{m}(\beta) f(\beta)=0 \quad\left(\beta \in \mathcal{S}_{\mathbf{m}}\right)
$$

Using Theorem 3.25 for $\lambda=0$, we obtain that a pair $\{y, f\} \in L_{0}^{*}$ if and only if

$$
\begin{equation*}
y(t)=\eta_{0}+\sum_{\tau_{k} \leqslant t} \mathfrak{X}_{\left\{\tau_{k}\right\}}(t) \eta_{k}-i J \int_{a}^{t} d \mathbf{m}(s) f(s), \tag{66}
\end{equation*}
$$

where $\eta_{0} \in H, \tau_{k} \in \mathcal{S}_{\mathbf{m}}, \eta_{k} \in \widehat{Q_{k}^{-}}$, and the sequence $\widetilde{\eta}=\left\{\eta_{0}, \eta_{k}\right\}$ belongs to Q_{-}(here $k \in \mathbb{N}$ if $\mathbb{k}_{2}=\infty$, and $1 \leqslant k \leqslant \mathbb{k}_{2}$ if \mathbb{k}_{2} is finite). It follows from Lemma $3.15(f o r \lambda=0)$ that the function $\mathfrak{X}_{\mathcal{S}_{\mathbf{m}}}(t) \int_{a}^{t} d \mathbf{m}(s) f(s) \in \operatorname{ker} L_{0}^{*}$. Therefore, equality (66) can be written as

$$
y(t)=\xi_{0}+\sum_{\tau_{k} \leqslant t} \mathfrak{X}_{\left\{\tau_{k}\right\}} \xi_{k}-\mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathbf{m}}}(t) i J \int_{a}^{t} d \mathbf{m}(s) f(s), \quad \xi_{0} \in H, \quad \xi_{k} \in \widehat{Q}_{k}^{-}, \quad \widetilde{\xi}=\left\{\xi_{0}, \xi_{k}\right\} \in Q_{-} .
$$

By (6), it follows that $W(t, \lambda)=\exp (-i J \lambda t)$. Using (31), we get

$$
u_{1}(t, \lambda, \tau) x=-\mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathbf{m}}} W(t, \lambda) i J \int_{a}^{t} W^{*}(s, \bar{\lambda}) d \mathbf{m}(s) \lambda \mathfrak{X}_{\{\tau\}}(s) x, \quad x \in H, \quad \tau \in \mathcal{S}_{\mathbf{m}}
$$

Hence, $u_{1}(t, \lambda, \tau) x+\mathfrak{X}_{\{\tau\}}(t) x$ is equal to zero if $t<\tau$, and $\mathfrak{X}_{\{\tau\}}(t) x$ if $t=\tau$, and $-\lambda \mathfrak{X}_{[a . b] \backslash \mathcal{S}_{\mathbf{m}}} W(t, \lambda) i J W^{*}(\tau, \bar{\lambda}) \mathbf{m}(\{\tau\}) x$ if $t>\tau$. We denote $v_{0}(t, \lambda)=\mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathrm{m}}} W(t, \lambda), v_{k}(t, \lambda)=u_{1}\left(t, \lambda, \tau_{k}\right) W\left(\tau_{k}, \lambda\right) x+\mathfrak{X}_{\left\{\tau_{k}\right\}}(t) W\left(\tau_{k}, \lambda\right) x\left(k \in \mathbb{N}\right.$ if $\mathbb{k}_{2}=\infty$, and $1 \leqslant k \leqslant \mathbb{k}_{2}$ if \mathbb{k}_{2} is finite). By Lemma 3.18, it follows that the linear span of functions $v_{0}(\cdot, \lambda) \xi_{0}, v_{k}(\cdot, \lambda) \xi_{k}$ $\left(\xi_{0}, \xi_{k} \in H\right)$ is dense in $\operatorname{ker}\left(L_{10}^{*}-\lambda E\right)$. The operator $V_{N}(t, \lambda)$ has the form $V_{N}(t, \lambda)=\left(v_{0}(t, \lambda), \ldots, v_{N-1}(t, \lambda)\right)$. As above, by $\mathcal{V}(\lambda)$ we denote the operator $\mathcal{V}(\lambda): \mathcal{Q}_{-} \rightarrow \mathfrak{G}$ such that $\mathcal{V}(\lambda) \widetilde{\eta}=\mathcal{V}_{N}(\lambda) \tilde{\eta}_{N}$ for all $N \in \mathbb{N}$, where $\mathcal{V}_{N}(\lambda)$ is the operator $\widetilde{\xi}_{N} \rightarrow V_{N}(\cdot, \lambda) \widetilde{\xi}_{N}, \widetilde{\xi}_{=}=\left(\widetilde{\xi}_{N}, 0, \ldots\right), \widetilde{\xi}_{N} \in \widetilde{Q}_{N}^{-}$.

Thus, in this example, equalities (61), (62) will take form (67), (68), respectively, (see equalities below)

$$
\begin{align*}
& y(t)=\left(T^{-1}(\lambda) f\right)(t)= \int_{a}^{b} \widetilde{V}(t, \lambda) M(\lambda) \widetilde{V}^{*}(s, \bar{\lambda}) d \mathbf{m}(s) f(s)+2^{-1} \int_{a}^{b} W(t, \lambda) \operatorname{sgn}(s-t) i j W^{*}(s, \bar{\lambda}) f(s) d s- \\
&-2^{-1} \int_{a}^{b} \mathfrak{X}_{\mathcal{S}_{\mathbf{m}}}(t) W(t, \lambda) \operatorname{sgn}(s-t) i J W^{*}(s, \bar{\lambda}) f(s) d s-\lambda^{-1} \mathfrak{X}_{\mathcal{S}_{\mathbf{m}}}(t) f(t), \quad \lambda \neq 0, \quad f \in \mathfrak{H}, \tag{67}\\
& \begin{aligned}
y(t)=\left(T^{-1}(0) f\right)(t)= & \int_{a}^{b} \widetilde{V}(t, 0) M(0) \widetilde{V}^{*}(s, 0) d \mathbf{m}(s) f(s)+2^{-1} \int_{a}^{b} W(t, 0) \operatorname{sgn}(s-t) i J W^{*}(s, 0) f(s) d s+ \\
& +2^{-1} \int_{a}^{b} \mathfrak{X}_{[a, b] \backslash \mathcal{S}_{\mathbf{m}}}(t) W(t, 0) \operatorname{sgn}(s-t) i J W^{*}(s, 0) d \mathbf{m}(s) \mathfrak{X}_{\mathcal{S}_{\mathbf{m}}}(s) f(s), \quad f \in \mathfrak{H} .
\end{aligned}
\end{align*}
$$

We note that if $\mathcal{S}_{\mathrm{m}}=\varnothing$, then equalities (67), (68) coincide with (65) for all λ.

References

[1] A. G. Baskakov, Analysis of Linear Differential Equations by Methods of the Spectral Theory of Difference Operators and Linear Relations, Uspekhi Mat. Nauk 68 (2013), No.1, 77-128; Engl. transl.: Russian Mathematical Surveys 68 (2013), No.1, 69-116.
[2] Yu. M. Berezanski, Expansions in Eigenfunctions of Selfadjoint Operators, Naukova Dumka, Kiev, 1965; Engl. transl.: Amer. Math. Soc., Providence, RI, 1968.
[3] J. Behrndt and S. Hassi and H. Snoo and R. Wietsma, Square-Integrable Solutions and Weil functions for Singular Canonical Systems, Math. Nachr. 284 (2011), No.11-12, 1334-1384.
[4] V.M. Bruk, On a Number of Linearly Independent Square-Integrable Solutions of Systems of Differential Equations, Functional analysis 5 (1975), Uljanovsk, 25-33.
[5] V. M. Bruk, Linear Relations in a Space of Vector Functions, Mat. Zametki 24 (1978), No.4, 499-511; Engl. transl.: Mathematical Notes, 24 (1978), No.4, 767-773.
[6] V. M. Bruk, Boundary Value Problems for Integral Equations with Operator Measures, Probl. Anal. Issues Anal. 6(24) (2017), No.1, 19-40.
[7] V. M. Bruk, On Self-adjoint Extensions of Operators Generated by Integral Equations, Taurida Journal of Computer Science Theory and Mathematics (2017), No.1(34), 17-31.
[8] V. M. Bruk, On the Characteristic Operator of an Integral Equation with a Nevanlinna Measure in the Infinite-Dimensional Case, Journal of Math. Physics, Analysis, Geometry 10 (2014), No.2, 163-188.
[9] V.M. Bruk, Generalized Resolvents of Operators Generated by Integral Equations, Probl. Anal. Issues Anal 7(25) (2018), No.2, 20-38.
[10] V. M. Bruk, On Self-adjoint and Invertible Linear Relations Generated by Integral Equations, Buletinul Academiei de Stiinte a Republicii Moldova. Matematica (2020), No. 1 (92), 106-121.
[11] V.I. Gorbachuk and M. L. Gorbachuk, Boundary Value Problems for Differential-Operator Equations, Naukova Dumka, Kiev, 1984; Engl. transl.: Kluver Acad. Publ., Dordrecht-Boston-London, 1991.
[12] T.Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelberg, New York, 1966.
[13] V. Khrabustovskyi, Analogs of Generalized Resolvents for Relations Generated by a Pair of Differential Operator Expressions One of which Depends on Spectral Parameter in Nonlinear Manner, Journal of Math. Physics, Analysis, Geometry 9 (2013), No.4, 496-535.
[14] B. C. Orcutt, Canonical Differential Equations, Dissertation, University of Virginia, 1969.

[^0]: 2010 Mathematics Subject Classification. Primary 41A10, 46G12, 45N05
 Keywords. Hilbert space, integral equation, operator measure, linear relation, symmetric relation, invertible relation.
 Received: 22 April 2020; Revised: 11 October 2020; Accepted: 18 October 2020
 Communicated by Dijana Mosić
 Email address: vladislavbruk@mail.ru (Vladislav M. Bruk)

