The Perturbation Bound for the T-Drazin Inverse of Tensor and its Application

Ying-nan Cui ${ }^{\text {a }}$, Hai-feng Ma $^{\text {a }}$
${ }^{a}$ School of Mathematical Science, Harbin Normal University, Harbin 150025, P. R. China.

Abstract

In this paper, let \mathcal{A} and \mathcal{B} be $n \times n \times p$ complex tensors and $\mathcal{B}=\mathcal{A}+\mathcal{E}$. Denote the T-Drazin inverse of \mathcal{A} by \mathcal{A}^{D}. We give a perturbation bound for $\left\|\mathcal{B}^{D}-\mathcal{A}^{D}\right\| /\left\|\mathcal{A}^{D}\right\|$ under condition (\mathcal{W}). Considering the solution of singular tensor equation $\mathcal{A} * x=b,\left(b \in \mathcal{R}\left(\mathcal{F}^{D}\right)\right)$ at the same time. The optimal perturbation of T-Drazin inverse of tensors and the solution of a system of tensor equations have been given.

1. Introduction

The Drazin inverse plays an important role in many applications [1, 7, 20, 21, 25, 35]. There have been some papers on Drazin inverse of the perturbation bounds of matrix [27-31, 33, 34, 37]. Furthermore, we consider the perturbation of the Drazin inverse under the T-product of tensor. There are three monographs on the tensor $[5,19,32]$. Tensors are hyper dimensional matrices, which are the extensions of matrices. We study the generalized inverses of tensor based on Einstein product, in order to overcome high-dimension of tensor $[10,15,22,24]$. In addition, the T-product of tensor $[9,11,12,14,26]$ is another product which has been proven to be a useful tool in many applications[2, 9, 11, 12, 14, 16, 23, 38]. Recently, Ji and Wei [10] presented the Drazin inverse of an even-order tensor with the Einstein product. Che and Wei $[3,4,32,36]$ present the randomized algorithms for the tensor decomposition and the tensor equations.

The T-Jordan canonical form of the T-Drazin of third-order tensor inverse and the generalized tensor function are given by Miao, Qi and Wei in [17, 18], but its perturbation has not been developed yet. The perturbation of T-Drazin inverse and its application are introduced in this paper.

In this paper, let $\mathbb{C}^{n \times n \times p}$ and $\mathbb{R}^{n \times n \times p}$ be two sets of the $n \times n \times p$ tensors over the complex field \mathbb{C} and the real field \mathbb{R}, respectively. Let $\mathcal{A} \in \mathbb{C}^{n \times n \times p}$, and $\rho_{T}(\mathcal{A})$ denote the T -spectral radius of \mathcal{A}. For positive integers k and $n,[k]=[1, \cdots, n]$. We call O as a zero tensor in case of all the entries of the tensor are zero.

Now, a concept is proposed for multiplying third order tensors [9, 11, 12], based on viewing a tensor as a stake of frontal slices. Suppose $\mathcal{A} \in \mathbb{R}^{m \times n \times p}$ and $\mathcal{B} \in \mathbb{R}^{n \times s \times p}$ are third order tensors, denote their frontal

[^0]faces as $A^{(k)} \in \mathbb{R}^{m \times n}$ and $B^{(k)} \in \mathbb{R}^{n \times s}$, respectively $(k=1,2, \cdots, p)$. $\mathcal{A} \in \mathbb{C}^{n \times n \times p}$ is called as F-square tensor, if every frontal face of \mathcal{A} is square. The operation of "bcirc" was introduced in [9, 11, 12],
\[

\operatorname{bcirc}(\mathcal{A}):=\left($$
\begin{array}{ccccc}
A^{(1)} & A^{(p)} & A^{(p-1)} & \cdots & A^{(2)} \\
A^{(2)} & A^{(1)} & A^{(p)} & \cdots & A^{(3)} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
A^{(p)} & A^{(p-1)} & \cdots & A^{(2)} & A^{(1)}
\end{array}
$$\right), \operatorname{unfold}(\mathcal{A}):=\left($$
\begin{array}{c}
A^{(1)} \\
A^{(2)} \\
\vdots \\
A^{(p)}
\end{array}
$$\right)
\]

and $\operatorname{fold}(u n f o l d(\mathcal{A})):=\mathcal{A}$. We define the corresponding inverse operation $b \operatorname{circ}^{-1}: \mathbb{R}^{m p \times n p} \longrightarrow \mathbb{R}^{m \times n \times p}$ such that $\operatorname{bcirc}^{-1}(\operatorname{bcirc}(\mathcal{A}))=\mathcal{A}$.

Definition 1.1. $[9,11,12]$ (T-product) Let $\mathcal{A} \in \mathbb{R}^{m \times n \times p}$ and $\mathcal{B} \in \mathbb{R}^{n \times s \times p}$ be two real tensors. Then the T-product $\mathcal{A} * \mathcal{B}$ is an $m \times s \times p$ real tensor defined by
$\mathcal{A} * \mathcal{B}:=\operatorname{fold}(b \operatorname{circ}(\mathcal{A})$ unfold $(\mathcal{B}))$.
Definition 1.2. [9, 11, 12](Transpose and conjugate transpose) If \mathcal{A} is a third order tensor of size $m \times n \times p$, then the transpose \mathcal{A}^{T} is obtained by transposing each of the frontal slices and then reversing the order of transposed frontal slices 2 through n. The conjugate transpose \mathcal{A}^{H} is obtained by conjugate transposing each of the frontal slices and then reversing the order of transposed frontal slices 2 through n.

Definition 1.3. [9, 11, 12](Identity tensor) The $n \times n \times p$ identity tensor $I_{n n p}$ is the tensor whose first frontal slice is the $n \times n$ identity matrix, and whose other frontal slices are all zeros. It is easy to check that

$$
\mathcal{A} * \mathcal{I}_{n n p}=I_{m m p} * \mathcal{A}=\mathcal{A} \text { for } \mathcal{A} \in \mathbb{R}^{m \times n \times p}
$$

For a frontal square \mathcal{A} of size $n \times n \times p$, it has inverse tensor $\mathcal{B} \in \mathbb{R}^{n \times n \times p}\left(=\mathcal{A}^{-1}\right)$, provided that

$$
\mathcal{A} * \mathcal{B}=\mathcal{I}_{\text {nnp }} \text { and } \mathcal{B} * \mathcal{A}=\mathcal{I}_{n n p} .
$$

Definition 1.4. [17, 18] Let $\mathcal{A} \in \mathbb{R}^{m \times n \times p}$, then
(1) The T-range space of $\mathcal{A}, \mathcal{R}(\mathcal{A}):=\operatorname{Ran}\left(\left(F_{p} \otimes I_{m}\right) b \operatorname{circ}(\mathcal{A})\left(F_{p}^{H} \otimes I_{n}\right)\right)$,"Ran" means the range space,
(2) The T-null space of $\mathcal{A}, \mathcal{N}(\mathcal{A}):=\operatorname{Null}\left(\left(F_{p} \otimes I_{m}\right) \operatorname{birc}(\mathcal{A})\left(F_{p}^{H} \otimes I_{n}\right)\right)$, "Null" represents the null space,
(3) The tensor norm $\|\mathcal{A}\|:=\|b \operatorname{circ}(\mathcal{A})\|$,
where F_{n} is the discrete Fourier matrix of size $n \times n$, which is defined as [2].

$$
F_{n \times n}=\frac{1}{\sqrt{n}}\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdots & 1 \\
1 & w & w^{2} & w^{3} & \cdots & w^{n-1} \\
1 & w^{2} & w^{4} & w^{6} & \cdots & w^{2(n-1)} \\
1 & w^{3} & w^{6} & w^{9} & \cdots & w^{3(n-1)} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & w^{n-1} & w^{2(n-1)} & w^{3(n-1)} & \cdots & w^{(n-1)(n-1)}
\end{array}\right)
$$

where $w=e^{-2 \pi \mathbf{i} / n}$ is the primitive n-th root of unity in which $\mathbf{i}=\sqrt{-1} . F_{p}^{H}$ is the conjugate transpose of F_{p}.
Lemma 1.5. [12] Suppose $\mathcal{A} \in \mathbb{C}^{n \times n \times p}$ and $\mathcal{B} \in \mathbb{C}^{n \times s \times p}$, then

$$
\operatorname{bcirc}(\mathcal{A} * \mathcal{B})=\operatorname{bcirc}(\mathcal{A}) b \operatorname{circ}(\mathcal{B}) .
$$

Remark 1.6. Let $\mathcal{A}, \mathcal{B}, C \in \mathbb{C}^{n \times n \times p}$ be F-square tensors. Then $\|\mathcal{A} * \mathcal{B} * \mathcal{C}\| \leq\|\mathcal{A}\|\|\mathcal{B}\|\|C\|$.

Proof. Since Lemma 1.5, we obtain
$\operatorname{b\operatorname {circ}}(\mathcal{A} * \mathcal{B} * \mathcal{C})=\operatorname{bcirc}(\mathcal{A}) \operatorname{b\operatorname {circ}(\mathcal {B})b\operatorname {circ}(C)}$.
Take norm on both sides of (1) at the same time, then

$$
\begin{aligned}
\|b \operatorname{circ}(\mathcal{A} * \mathcal{B} * \mathcal{C})\| & =\|b \operatorname{circ}(\mathcal{A}) b \operatorname{circ}(\mathcal{B}) b \operatorname{circ}(\mathcal{C})\| \\
& \leq\|b \operatorname{circ}(\mathcal{A})\|\|b \operatorname{circ}(\mathcal{B})\|\|b \operatorname{circ}(\mathcal{C})\|
\end{aligned}
$$

According to (3) of Definition 1.4, we have

$$
\|\mathcal{A} * \mathcal{B} * \mathcal{C}\| \leq\|\mathcal{A}\|\|\mathcal{B}\|\|C\|
$$

Definition 1.7. [17](T-index) Let $\mathcal{A} \in \mathbb{C}^{n \times n \times p}$ be a complex tensor. The T-index of \mathcal{A} is defined as

$$
\operatorname{Ind}_{T}(\mathcal{A})=\operatorname{Ind}(\operatorname{bcirc}(\mathcal{A}))
$$

Definition 1.8. [17](T-Drazin inverse) Let $\mathcal{A}, \mathcal{X} \in \mathbb{C}^{n \times n \times p}$, satisfying the following three equations

$$
\begin{align*}
& \mathcal{A} * \mathcal{X}=\mathcal{X} * \mathcal{A}, \tag{2}\\
& \mathcal{X} * \mathcal{A} * \mathcal{X}=\mathcal{X}, \tag{3}\\
& \mathcal{A}^{k} * \mathcal{X} * \mathcal{A}=\mathcal{A}^{k} \tag{4}
\end{align*}
$$

where $\operatorname{Ind}_{T}(\mathcal{F})=k$, then \mathcal{X} is called by T-Drazin inverse of \mathcal{A}, which is denoted as \mathcal{A}^{D}.
Definition 1.9. [17](Nilpotent tensor) Let $\mathcal{A} \in \mathbb{C}^{n \times n \times p}$ be nilpotent, if there exists a positive integer $s \in \mathbb{Z}$ such that $\mathcal{A}^{s}=0$. If $s \in \mathbb{Z}$ is the smallest positive integer satisfying the equation $\mathcal{A}^{s}=0$, then s is called the nilpotent index of \mathcal{A}.

Definition 1.10. [17](T-core-nilpotent decomposition) Let $\mathcal{A} \in \mathbb{C}^{n \times n \times p}$ be a complex tensor, \mathcal{N}_{A} is T-nilpotentpart of \mathcal{A}, and \mathcal{C}_{A} is T-core-part of \mathcal{A}, satisfying

$$
\mathcal{N}_{A}=\mathcal{A}-C_{A}=\left(\mathcal{I}-\mathcal{A} * \mathcal{A}^{D}\right) * \mathcal{A},
$$

then $\mathcal{A}=\mathcal{C}_{A}+\mathcal{N}_{A}$ is called T-core-nilpotent decomposition of \mathcal{A}.
The construction of T-core-nilpotent decomposition of a tensor is introduced in [17]. Suppose $\mathcal{A} \in \mathbb{C}^{n \times n \times p}, \mathcal{P}$ is an invertible tensor, $\mathcal{J} \in \mathbb{C}^{n \times n \times p}$ is an F-bidiagonal tensor, and $\operatorname{Ind}_{T}(\mathcal{A})=k$, then the T-Jordan decomposition of \mathcal{A} is $\mathcal{A}=\mathcal{P}^{-1} * \mathcal{J} * \mathcal{P}$, and

$$
\operatorname{bcirc}(\mathcal{J})=\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{llll}
J_{1} & & & \\
& J_{2} & & \\
& & \ddots & \\
& & & J_{p}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right)
$$

where J_{i} can be block partitioned as

$$
J_{i}=\left(\begin{array}{cc}
C_{i} & O \\
O & N_{i}
\end{array}\right)=\left(\begin{array}{cc}
C_{i} & O \\
O & O
\end{array}\right)+\left(\begin{array}{cc}
O & O \\
O & N_{i}
\end{array}\right)=J_{i}^{C}+J_{i}^{N},(i=1,2, \cdots, p)
$$

and C_{i} is a nonsingular matrix, N_{i} is nilpotent with $\max _{1<i<p} \operatorname{Ind}\left(N_{i}\right)=k$, then

$$
\operatorname{bcirc}(\mathcal{J})=\operatorname{bcirc}\left(\mathcal{J}^{C}\right)+\operatorname{bcirc}\left(\mathcal{J}^{N}\right)
$$

that is

$$
\mathcal{A}=\mathcal{P}^{-1} * \mathcal{J} * \mathcal{P}=\mathcal{P}^{-1} *\left(\mathcal{J}^{C}+\mathcal{J}^{N}\right) * \mathcal{P}=C_{A}+\mathcal{N}_{A},
$$

which is the construction of T-core-nilpotent decomposition of \mathcal{A}.
Theorem 1.11. [17] Let $\mathcal{A} \in \mathbb{C}^{n \times n \times p}$, then there is an invertible tensor $\mathcal{P} \in \mathbb{C}^{n \times n \times p}$ and F-bidiagonal tensor $\mathcal{J} \in \mathbb{C}^{n \times n \times p}$, and the T-Jordan canonical form is,

$$
\mathcal{A}=\mathcal{P}^{-1} * \mathcal{J} * \mathcal{P}
$$

where the diagonal elements of $\mathcal{J}_{i}(i=1,2, \cdots, p)$ are the T-eigenvalues of \mathcal{A}. The decomposition of matrix bcirc (\mathcal{J}) is given, as follows

$$
\operatorname{bcirc}(\mathcal{J})=\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{llll}
J_{1} & & & \\
& J_{2} & & \\
& & \ddots & \\
& & & J_{p}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right)
$$

where J_{i} can be partitioned as $J_{i}=\left(\begin{array}{cc}J_{i}^{1} & O \\ O & J_{i}^{0}\end{array}\right), J_{i}^{1}$ is the core of the matrix J_{i}, and J_{i}^{0} is nilpotent, $(i=1,2, \cdots, p)$.
Further, the T-Drazin inverse is denoted as

$$
\mathcal{A}^{D}=\mathcal{P}^{-1} * \mathcal{J}^{D} * \mathcal{P}
$$

The decomposition of $\operatorname{b\operatorname {circ}}\left(\mathcal{J}^{D}\right)$ is

$$
\operatorname{bcirc}\left(\mathcal{J}^{D}\right)=\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{cccc}
J_{1}^{D} & & & \\
& J_{2}^{D} & & \\
& & \ddots & \\
& & & J_{p}^{D}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right)
$$

where $J_{i}^{D}=\left(\begin{array}{cc}\left(J_{i}^{1}\right)^{-1} & O \\ O & O\end{array}\right)$ is the Drazin inverse of the matrix $J_{i} .(i=1,2, \cdots, p)$
Remark 1.12. From the T-Jordan canonical form, we know that for any complex tensor $\mathcal{A} \in \mathbb{C}^{n \times n \times p}$ with $\operatorname{Ind}_{T}(\mathcal{A})=k$ and $\operatorname{rank}_{T}\left(\mathcal{A}^{k}\right)=r$, there exists nonsingular tensor $\mathcal{P} \in \mathbb{C}^{n \times n \times p}$ such that

$$
\mathcal{A}=\mathcal{P}^{-1} * \mathcal{J} * \mathcal{P}=\mathcal{P}^{-1} *\left(\begin{array}{cc}
\mathcal{J}_{1} & O \\
\mathcal{O} & \mathcal{J}_{4}^{0}
\end{array}\right) * \mathcal{P}
$$

and

$$
\mathcal{A}^{D}=\mathcal{P}^{-1} * \mathcal{J}^{D} * \mathcal{P}=\mathcal{P}^{-1} *\left(\begin{array}{cc}
\mathcal{J}_{1}^{-1} & \mathcal{O} \\
\mathcal{O} & O
\end{array}\right) * \mathcal{P}
$$

where \mathcal{J}_{1} is the core part of tensor \mathcal{J}, and \mathcal{J}_{4}^{0} is nilpotent.
Theorem 1.13. [10, 17, 18](T-linear system) Let $\mathcal{A} \in \mathbb{C}^{n \times n \times p}$ be an F-square invertible tensor with $\operatorname{Ind}_{T}(\mathcal{A})=k$. If the T-linear tensor system

$$
\mathcal{A} * x=b, x \in \mathcal{R}\left(\mathcal{F}^{k}\right)
$$

where $x, b \in \mathbb{C}^{n \times 1 \times p}$, has an unique solution, then it is given by

$$
\begin{equation*}
x=\mathcal{A}^{D} * b \tag{5}
\end{equation*}
$$

Theorem 1.14. If $\mathcal{N}=\left(\begin{array}{ll}\mathcal{A} & \mathcal{B} \\ O & \mathcal{C}\end{array}\right) \in \mathbb{C}^{2 n \times 2 n \times p}$, where \mathcal{A} and C are F-square tensors, $\operatorname{Ind} d_{T}(\mathcal{A})=k, \operatorname{Ind}_{T}(\mathcal{C})=l$, then

$$
\mathcal{N}^{D}=\left(\begin{array}{cc}
\mathcal{A}^{D} & \mathcal{X} \\
O & C^{D}
\end{array}\right) \in \mathbb{C}^{2 n \times 2 n \times p}
$$

where

$$
\mathcal{X}=\sum_{s=0}^{l-1}\left(\mathcal{A}^{D}\right)^{s+2} * \mathcal{B} * C^{s} *\left(\mathcal{I}-C * C^{D}\right)+\left(\mathcal{I}-\mathcal{A} * \mathcal{A}^{D}\right) * \sum_{s=0}^{k-1} \mathcal{A}^{s} * \mathcal{B} *\left(C^{D}\right)^{s+2}-\mathcal{A}^{D} * \mathcal{B} * C^{D}
$$

Proof. There are some decompositions of matrixes $\operatorname{bcirc}(\mathcal{A}), \operatorname{bcirc}(\mathcal{X}), \operatorname{bcirc}(C), b \operatorname{circ}(\mathcal{B}), \operatorname{such}$ that

$$
\begin{aligned}
& \operatorname{bcirc}(\mathcal{A})=\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{llll}
A_{1} & & & \\
& A_{2} & & \\
& & \ddots & \\
& & & A_{p}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right), \operatorname{bcirc}\left(\mathcal{F}^{D}\right)=\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{llll}
A_{1}^{D} & & & \\
& A_{2}^{D} & & \\
& & \ddots & \\
& & & A_{p}^{D}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right), \\
& \operatorname{bcirc}(\mathcal{B})=\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{cccc}
B_{1} & & & \\
& B_{2} & & \\
& & \ddots & \\
& & & B_{p}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right), \operatorname{bcirc}\left(\mathcal{B}^{D}\right)=\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{llll}
B_{1}^{D} & & & \\
& B_{2}^{D} & & \\
& & \ddots & \\
& & & B_{p}^{D}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right), \\
& \operatorname{bcirc}(C)=\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{cccc}
C_{1} & & & \\
& C_{2} & & \\
& & \ddots & \\
& & & C_{p}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right), \operatorname{bcirc}\left(C^{D}\right)=\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{llll}
C_{1}^{D} & & & \\
& C_{2}^{D} & & \\
& & \ddots & \\
& & & C_{p}^{D}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right),
\end{aligned}
$$

and

$$
\operatorname{bcirc}(X)=\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{llll}
T_{1} & & & \\
& T_{2} & & \\
& & \ddots & \\
& & & T_{p}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right)
$$

where

$$
\begin{aligned}
T_{i} & =\left(A_{i}^{D}\right)^{2}\left(\sum_{s=0}^{n}\left(A_{i}^{D}\right)^{s} B_{i} C_{i}^{s}\right)\left(I-C C^{D}\right)+\left(I-A A^{D}\right)\left(\sum_{s=0}^{n} A_{i}^{s} B_{i}\left(C_{i}^{D}\right)^{s}\right)\left(C_{i}^{D}\right)^{2}-A_{i}^{D} B_{i} C_{i}^{D} \\
& =\left(A_{i}^{D}\right)^{2}\left(\sum_{s=0}^{l-1}\left(A_{i}^{D}\right)^{s} B_{i} C_{i}^{s}\right)\left(I-C C^{D}\right)+\left(I-A A^{D}\right)\left(\sum_{s=0}^{k-1} A_{i}^{s} B_{i}\left(C_{i}^{D}\right)^{s}\right)\left(C_{i}^{D}\right)^{2}-A_{i}^{D} B_{i} C_{i}^{D},
\end{aligned}
$$

$i=1,2, \cdots, p$.
Expand the term $\mathcal{A} * \mathcal{X}$ as follows. Since Lemma 1.5, we obtain

$$
\begin{aligned}
\operatorname{bcirc}(\mathcal{A} * \mathcal{X}) & =\operatorname{bcirc}(\mathcal{A}) \operatorname{bcirc}(\mathcal{X}) \\
& =\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{llll}
A_{1} T_{1} & & & \\
& A_{2} T_{2} & & \\
& & \ddots & \\
& & & A_{p} T_{p}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
A_{i} T_{i} & =\sum_{s=0}^{l-1}\left(A_{i}^{D}\right)^{s+1} B_{i} C_{i}^{s}-\sum_{s=0}^{l-1}\left(A_{i}^{D}\right)^{s+1} B_{i} C_{i}^{s+1} C_{i}^{D} \\
& -\sum_{s=0}^{k-1} A_{i}^{s+1} B_{i}\left(C_{i}^{D}\right)^{s+2}-\sum_{s=0}^{k-1} A_{i}^{D} A_{i}^{s+2} B_{i}\left(C_{i}^{D}\right)^{s+2}-A_{i} A_{i}^{D} B_{i} C_{i} \\
& =\left(A_{i}^{D} B_{i}+\sum_{s=0}^{l-2}\left(A_{i}^{D}\right)^{s+2} B_{i} C_{i}^{s+1}\right)-\left(A_{i}^{D} B_{i} C_{i} C_{i}^{D}+\sum_{s=0}^{l-2}\left(A_{i}^{D}\right)^{s+2} B_{i} C_{i}^{s+2} C_{i}^{D}\right) \\
& +\left(\sum_{s=1}^{k-1}\left(A_{i}\right)^{s} B_{i}\left(C_{i}^{D}\right)^{s+1}+A_{i}^{k} B_{i}\left(C_{i}^{D}\right)^{k+1}\right)-\left(\sum_{s=1}^{k-1}\left(A_{i}\right)^{D} A_{i}^{s+1} B_{i}\left(C_{i}^{D}\right)^{s+1}+A_{i}^{k} B_{i}\left(C_{i}^{D}\right)^{k-1}\right) \\
& -A_{i} A_{i}^{D} B_{i} C_{i} \\
& =A_{i}^{D} B_{i}+\sum_{s=0}^{l-2}\left(A_{i}^{D}\right)^{s+2} B_{i} C_{i}^{s+1}-A_{i}^{D} B_{i} C_{i} C_{i}^{D}-\sum_{s=0}^{l-2}\left(A_{i}^{D}\right)^{s+2} B_{i} C_{i}^{s+2} C_{i}^{D} \\
& +\sum_{s=1}^{k-1} A_{i}^{s} B_{i}\left(C_{i}^{D}\right)^{s+1}-\sum_{s=1}^{k-1} A_{i}^{D} A_{i}^{s+1} B_{i}\left(C_{i}^{D}\right)^{s+1}-A_{i} A_{i}^{D} B_{i} C_{i} .(i=1,2 \cdots p)
\end{aligned}
$$

Now we expand the term $\mathcal{X} * C$ as follows.
By Lemma 1.5, then

$$
\begin{aligned}
\operatorname{bcirc}(\mathcal{X} * \mathcal{C}) & =\operatorname{bcirc}(\mathcal{X}) \operatorname{bcirc}(C) \\
& =\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{llll}
T_{1} C_{1} & & & \\
& T_{2} C_{2} & & \\
& & \ddots & \\
& & & T_{p} C_{p}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
T_{i} C_{i} & =\sum_{s=0}^{l-1}\left(A_{i}^{D}\right)^{s+2} B_{i} C_{i}^{s+1}-\sum_{s=0}^{l-1}\left(A_{i}^{D}\right)^{s+2} B_{i} C_{i}^{s+2} C_{i}^{D} \\
& +\sum_{s=0}^{k-1} A_{i}^{s} B_{i}\left(C_{i}^{D}\right)^{s+1}-\sum_{s=0}^{k-1} A_{i}^{D} A_{i}^{s+1} B_{i}\left(C_{i}^{D}\right)^{s+1}-A_{i}^{D} B_{i} C_{i}^{D} C_{i} \\
& =\left(\sum_{s=0}^{l-2}\left(A_{i}^{D}\right)^{s+2} B_{i} C_{i}^{s+1}+\left(A_{i}^{D}\right)^{l+1} B_{i} C_{i}^{l}\right)-\left(\sum_{s=0}^{l-2}\left(A_{i}^{D}\right)^{s+2} B_{i} C_{i}^{s+2} C^{D}+\left(A_{i}^{D}\right)^{l+1} B_{i} C_{i}^{l}\right) \\
& +\left(B_{i} C_{i}^{D}+\sum_{s=1}^{k-1} A_{i}^{s} B_{i}\left(C_{i}^{D}\right)^{s+1}\right)-\left(A_{i}^{D} A_{i} B_{i} C_{i}^{D}+\sum_{s=1}^{k-1} A_{i}^{D} A_{i}^{s+1} B_{i}\left(C_{i}^{D}\right)^{s+1}\right) \\
& -A_{i}^{D} B_{i} C_{i}^{D} C_{i} .(i=1,2 \cdots p)
\end{aligned}
$$

According to $\operatorname{b\operatorname {circ}}(\mathcal{A}), b \operatorname{circ}(\mathcal{B}), b \operatorname{circ}(C), b \operatorname{circ}\left(\mathcal{A}^{D}\right)$ and $b \operatorname{circ}\left(C^{D}\right)$, we obtain
$\operatorname{bcirc}\left(\mathcal{A}^{D} * \mathcal{B}\right)=\operatorname{bcirc}\left(\mathcal{A}^{D}\right) \operatorname{bcirc}(\mathcal{B})$

$$
=\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{llll}
A_{1}^{D} B_{1} & & & \\
& A_{2}^{D} B_{2} & & \\
& & \ddots & \\
& & & A_{p}^{D} B_{p}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right),
$$

$\operatorname{b\operatorname {circ}}\left(\mathcal{B} * C^{D}\right)=\operatorname{b\operatorname {circ}}(\mathcal{B}) \operatorname{b\operatorname {circ}}\left(C^{D}\right)$

$$
=\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{cccc}
B_{1} C_{1}^{D} & & & \\
& B_{2} C_{2}^{D} & & \\
& & \ddots & \\
& & & B_{p} C_{p}^{D}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right)
$$

then

$$
\mathcal{A}^{D} * \mathcal{B}-\mathcal{B} * C^{D}=\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{llll}
A_{1}^{D} B_{1}-B_{1} C_{1}^{D} & & & \\
& A_{2}^{D} B_{2}-B_{2} C_{2}^{D} & & \\
& & \ddots & \\
& & & A_{p}^{D} B_{p}-B_{p} C_{p}^{D}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right),
$$

and

$$
\mathcal{A} * \mathcal{X}-\mathcal{X} * \mathcal{C}=\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{llll}
A_{1} T_{1}-T_{1} C_{1} & & & \\
& A_{2} T_{2}-T_{2} C_{2} & & \\
& & \ddots & \\
& & & A_{p} T_{p}-T_{p} C_{p}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right)
$$

It is easy to see that $\mathcal{A} * \mathcal{X}-\mathcal{X} * \mathcal{C}=\mathcal{A}^{D} * \mathcal{B}-\mathcal{B} * C^{D}$, or $\mathcal{A} * \mathcal{X}+\mathcal{B} * \mathcal{C}^{D}=\mathcal{A}^{D} * \mathcal{B}+\mathcal{X} * C$.
From this it follows that

$$
\left(\begin{array}{ll}
\mathcal{A} & \mathcal{B} \\
O & C
\end{array}\right) *\left(\begin{array}{cc}
\mathcal{A}^{D} & \mathcal{X} \\
O & \mathcal{C}^{D}
\end{array}\right)=\left(\begin{array}{cc}
\mathcal{A}^{D} & \mathcal{X} \\
O & \mathcal{C}^{D}
\end{array}\right) *\left(\begin{array}{cc}
\mathcal{A} & \mathcal{B} \\
O & C
\end{array}\right)
$$

so that (2) of Definition 1.8 is satisfied. To show that (3) of Definition 1.8 holds, note that

$$
\left(\begin{array}{cc}
\mathcal{A}^{D} & \mathcal{X} \\
O & \mathcal{C}^{D}
\end{array}\right) *\left(\begin{array}{cc}
\mathcal{A} & \mathcal{B} \\
O & C
\end{array}\right) *\left(\begin{array}{cc}
\mathcal{A}^{D} & \mathcal{X} \\
O & C^{D}
\end{array}\right)=\left(\begin{array}{cc}
\mathcal{A}^{D} & \mathcal{A}^{D} * \mathcal{A} * \mathcal{X}+\mathcal{X} * C * C^{D}+\mathcal{A}^{D} * \mathcal{B} * C^{D} \\
O & C^{D}
\end{array}\right)
$$

Thus, it is only necessary to show that $\mathcal{A}^{D} * \mathcal{A} * \mathcal{X}+\mathcal{X} * C * C^{D}+\mathcal{A}^{D} * \mathcal{B} * \mathcal{C}^{D}=\mathcal{X}$.
Finally, we will show that

$$
\left(\begin{array}{ll}
\mathcal{A} & \mathcal{B} \\
O & C
\end{array}\right)^{n+2} *\left(\begin{array}{cc}
\mathcal{A}^{D} & \mathcal{X} \\
O & \mathcal{C}^{D}
\end{array}\right)=\left(\begin{array}{ll}
\mathcal{A} & \mathcal{B} \\
O & \mathcal{C}
\end{array}\right)^{n+1}
$$

First notice that for any $m>0$,

$$
\left(\begin{array}{cc}
\mathcal{A} & \mathcal{B} \\
O & C
\end{array}\right)^{m}=\left(\begin{array}{cc}
\mathcal{A}^{m} & \mathcal{S}_{(m)} \\
O & \mathcal{C}^{m}
\end{array}\right)
$$

where

$$
\begin{equation*}
\mathcal{S}_{(m)}=\sum_{s=0}^{m-1} \mathcal{A}^{m-1-s} * \mathcal{B} * \mathcal{C}^{s} \tag{6}
\end{equation*}
$$

it is seen that the decompose of matrix $\operatorname{bcirc}\left(\mathcal{S}_{(m)}\right)$ is

$$
\operatorname{bcirc}\left(\mathcal{S}_{(m)}\right)=\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{llll}
S_{1} & & & \\
& S_{2} & & \\
& & \ddots & \\
& & & S_{p}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right)
$$

and

$$
S_{i}=\sum_{s=0}^{m-1} A_{i}^{m-1-s} B_{i} C_{i}^{s},(i=1,2, \cdots, p)
$$

Since $n+2>k$ and $n+2>l$, then

$$
\left(\begin{array}{ll}
\mathcal{A} & \mathcal{B} \\
O & C
\end{array}\right)^{n+2} *\left(\begin{array}{cc}
\mathcal{A}^{D} & \mathcal{X} \\
O & C^{D}
\end{array}\right)=\left(\begin{array}{cc}
\mathcal{A}^{n+1} & \mathcal{A}^{n+2} * \mathcal{X}+\mathcal{S}_{(n+2)} * C^{D} \\
O & C^{n+1}
\end{array}\right)
$$

Therefore, it is necessary to show that $\mathcal{F}^{n+2} * \mathcal{X}+\mathcal{S}_{(n+2)} * \mathcal{C}^{D}=\mathcal{S}_{(n+1)}$. Observe first since $l+k<n+1$, by Definition 1.8, it is the case that

$$
\mathcal{A}^{n} *\left(\mathcal{A}^{D}\right)^{i}=\mathcal{A}^{n-1} \text { for } i=1,2, \cdots, l-1 .
$$

Thus

$$
\begin{aligned}
\mathcal{A}^{n+2} * \mathcal{X} & =\mathcal{A}^{n} *\left(\sum_{s=0}^{l-1}\left(\mathcal{A}^{D}\right)^{s} * \mathcal{B} * C^{s}\right) *\left(I-C * C^{D}\right)-\mathcal{A}^{n+1} * \mathcal{B} * C^{D} \\
& =\left(\sum_{s=0}^{l-1} \mathcal{A}^{n-s} * \mathcal{B} * \mathcal{C}^{s}\right) *\left(I-C * C^{D}\right)-\mathcal{A}^{n+1} * \mathcal{B} * \mathcal{C}^{D} \\
& =\sum_{s=0}^{l-1} \mathcal{A}^{n-s} * \mathcal{B} * C^{s}-\sum_{s=0}^{l-1} \mathcal{A}^{n-s} * \mathcal{B} * \mathcal{C}^{s+1} * \mathcal{C}^{D}-\mathcal{A}^{n+1} * \mathcal{B} * C^{D},
\end{aligned}
$$

that is

$$
\begin{equation*}
\mathcal{A}^{n+2} * \mathcal{X}=\sum_{s=0}^{l-1} \mathcal{A}^{n-s} * \mathcal{B} * C^{s}-\sum_{s=0}^{l-1} \mathcal{A}^{n-s} * \mathcal{B} * C^{s+1} * C^{D}-\mathcal{A}^{n+1} * \mathcal{B} * C^{D}, \tag{7}
\end{equation*}
$$

the decomposition of matrix $\operatorname{birc}\left(\mathcal{A}^{n+2} * \mathcal{X}\right)$ is

$$
\begin{aligned}
\operatorname{bcirc}\left(\mathcal{A}^{n+2} * \mathcal{X}\right) & =\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{ccccc}
A_{1}^{n+2} T_{1} & & & \\
& A_{2}^{n+2} T_{2} & & \\
& & & \ddots & \\
& & & & A_{p}^{n+2} T_{p}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right) \\
& =\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{cccc}
U_{1} & & & \\
& U_{2} & & \\
& & \ddots & \\
& & & U_{p}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right)
\end{aligned}
$$

and

$$
U_{i}=\sum_{s=0}^{l-1} A_{i}^{n-s} B_{i} C_{i}^{s}-\sum_{s=0}^{l-1} A_{i}^{n-s} B_{i} C_{i}^{s+1} C_{i}^{D}-A_{i}^{n+1} B_{i} C_{i}^{D},(i=1,2, \cdots, p)
$$

Since (6), then

$$
\mathcal{S}_{(n+2)} * C^{D}=\sum_{s=0}^{n+1} \mathcal{A}^{n+1-s} * \mathcal{B} * C^{s} * C^{D}=\sum_{s=0}^{l} \mathcal{A}^{n+1-s} * \mathcal{B} * C^{s} * C^{D}+\sum_{s=l+1}^{n+1} \mathcal{A}^{n+1-s} * \mathcal{B} * C^{s-1}
$$

By writing

$$
\begin{aligned}
\sum_{s=0}^{l} \mathcal{A}^{n+1-s} * \mathcal{B} * C^{s} * C^{D} & =\mathcal{A}^{n+1} * \mathcal{B} * C^{D}+\sum_{s=1}^{l} \mathcal{A}^{n+1-s} * \mathcal{B} * C^{s} * C^{D} \\
& =\mathcal{A}^{n+1} * \mathcal{B} * C^{D}+\sum_{s=0}^{l-1} \mathcal{A}^{n-s} * \mathcal{B} * C^{s+1} * C^{D}
\end{aligned}
$$

we obtain

$$
\begin{equation*}
\mathcal{S}_{(n+2)} * C^{D}=\mathcal{A}^{n+1} * \mathcal{B} * C^{D}+\sum_{s=0}^{l-1} \mathcal{A}^{n-s} * \mathcal{B} * C^{s+1} * C^{D}+\sum_{s=l+1}^{n+1} \mathcal{A}^{n+1-s} * \mathcal{B} * C^{s-1} \tag{8}
\end{equation*}
$$

the decomposition of matrix $\operatorname{bcirc}\left(\mathcal{S}_{(n+2)} * C^{D}\right)$ as follows

$$
\begin{aligned}
\operatorname{bcirc}\left(\mathcal{S}_{(n+2)} * C^{D}\right) & =\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{lllll}
Q_{1} & & & \\
& Q_{2} & & \\
& & \ddots & \\
& & & Q_{p}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right) \\
& =\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{lllll}
A_{1} B_{1} C_{1}^{D} & & A_{2} B_{2} C_{2}^{D} & & \\
& & & & \ddots \\
& & & & \\
& +\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{llll}
R_{1} B_{p} C_{p}^{D}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right) \\
& R_{2} & & \\
& & \ddots & \\
& & & R_{p}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right) \\
& +\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{llll}
V_{1} & & & \\
& V_{2} & & \\
& & \ddots & \\
& & & V_{p}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right),
\end{aligned}
$$

and

$$
R_{i}=\sum_{s=0}^{l-1} A_{i}^{n-s} B_{i} C_{i}^{s+1} C_{i}^{D}, V_{i}=\sum_{s=l+1}^{n+1} A_{i}^{n+1-s} B_{i} C_{i}^{s-1}
$$

then

$$
Q_{i}=A_{i}^{n+1} B_{i} C_{i}^{D}+R_{i}+V_{i}=A_{i}^{n+1} B_{i} C_{i}^{D}+\sum_{s=0}^{l-1} A_{i}^{n-s} B_{i} C_{i}^{s+1} C_{i}^{D}+\sum_{s=l+1}^{n+1} A_{i}^{n+1-s} B_{i} C_{i}^{s-1} \cdot(i=1,2, \cdots, p)
$$

It is seen from (7) and (8) that

$$
\begin{aligned}
\mathcal{A}^{n+2} * \mathcal{X}+\mathcal{S}_{(n+2)} * C^{D} & =\sum_{s=0}^{l-1} \mathcal{A}^{n-s} * \mathcal{B} * C^{s}+\sum_{s=l+1}^{n+1} \mathcal{A}^{n+1-s} * \mathcal{B} * C^{s-1} \\
& =\sum_{s=0}^{l-1} \mathcal{A}^{n-s} * \mathcal{B} * C^{s}+\sum_{s=l}^{n} \mathcal{A}^{n-s} * \mathcal{B} * C^{s} \\
& =\sum_{s=0}^{n} \mathcal{A}^{n-s} * \mathcal{B} * C^{s} \\
& =\mathcal{S}_{(n+1)} .
\end{aligned}
$$

The proof is completed.
Definition 1.15. (T-spectral radius) Let $\mathcal{A} \in \mathbb{C}^{n \times n \times p}$ be an F-square tensor, then denote the spectral radius of \mathcal{A} as

$$
\rho_{T}(\mathcal{A})=\rho(\operatorname{bcirc}(\mathcal{A}))=\rho\left(\left(F_{p} \otimes I_{n}\right) \operatorname{bcirc}(\mathcal{A})\left(F_{p}^{H} \otimes I_{n}\right)\right)
$$

where $\rho_{T}(\mathcal{A})$ is called by T-spectral radius of \mathcal{A}.
Definition 1.16. [17](T-eigenvalue) Let $\mathcal{A} \in \mathbb{C}^{n \times n \times p}$ be an F-square tensor, then denote the eigenvalue of \mathcal{A} as

$$
\lambda_{T}(\mathcal{A})=\lambda(\operatorname{bcirc}(\mathcal{A}))=\lambda\left(\left(F_{p} \otimes I_{n}\right) b \operatorname{circ}(\mathcal{A})\left(F_{p}^{H} \otimes I_{n}\right)\right)
$$

where $\lambda_{T}(\mathcal{A})$ is called by T-eigenvalue of \mathcal{A}.

2. Perturbation bounds

Theorem 2.1. Let $\mathcal{F} \in \mathbb{C}^{n \times n \times p}$ be an F-square tensor, suppose $\|\mathcal{F}\|<1$, then $\mathcal{I}+\mathcal{F}$ is nonsingular, and

$$
\left\|(I+\mathcal{F})^{-1}\right\| \leq \frac{1}{1-\|\mathcal{F}\|}
$$

Proof. Assume $I+\mathcal{F}$ is singular, then there is a nonzero $\mathcal{X} \in \mathbb{C}^{n \times n \times p}$, such that

$$
(\mathcal{I}+\mathcal{F}) * \mathcal{X}=O
$$

furthermore

$$
\begin{equation*}
I * X=-\mathcal{F} * \mathcal{X} \tag{9}
\end{equation*}
$$

Take norm on both sides of (9) at the same time, we have

$$
\|\mathcal{X}\|=\|\mathcal{I} * \mathcal{X}\|=\|\mathscr{F} * \mathcal{X}\| \leq\|\mathscr{F}\|\|\mathcal{X}\| .
$$

According to $\|\mathcal{X}\| \leq\|\mathcal{F}\|\|X\|$, which implies $\|\mathcal{F}\| \geq 1$, and it is contradictory to $\|\mathcal{F}\|<1$.
Therefore, $\mathcal{I}+\mathcal{F}$ is nonsingular.
Since $I+\mathcal{F}$ is invertible, we have $(I+\mathcal{F}) *(I+\mathcal{F})^{-1}=I$, then

$$
\begin{equation*}
(\mathcal{I}+\mathcal{F})^{-1}=\mathcal{I}-\mathcal{F} *(\mathcal{I}+\mathcal{F})^{-1} \tag{10}
\end{equation*}
$$

Take norm on both sides of (10) at the same time, we obtain

$$
\begin{aligned}
\left\|(\mathcal{I}+\mathcal{F})^{-1}\right\| & =\left\|\mathcal{I}-\mathcal{F} *(\mathcal{I}+\mathcal{F})^{-1}\right\| \\
& \leq\|\mathcal{I}\|+\left\|\mathcal{F} *(\mathcal{I}+\mathcal{F})^{-1}\right\| \\
& \leq 1+\|\mathcal{F}\|\left\|(\mathcal{I}+\mathcal{F})^{-1}\right\| .
\end{aligned}
$$

And then

$$
1 \geq(1-\|\mathcal{F}\|)\left\|(\mathcal{I}+\mathcal{F})^{-1}\right\|
$$

therefore

$$
\left\|(\mathcal{I}+\mathcal{F})^{-1}\right\| \leq \frac{1}{1-\|\mathcal{F}\|}
$$

The proof is completed.
Let $\mathcal{A}, \mathcal{B}, \mathcal{E} \in \mathbb{C}^{n \times n \times p}$ be F-square tensors, a condition (\mathcal{W}) [28] is given,

Now, we consider the perturbation of the T-Drazin inverse. First, let us give two lemmas of the perturbation bounds of $\mathcal{B}^{D}-\mathcal{A}^{D}$.

Lemma 2.2. Suppose condition (\mathcal{W}) holds, let $\mathcal{A} \in \mathbb{C}^{n \times n \times p}$ be a complex tensor, then there is an invertible tensor $\mathcal{P} \in \mathbb{C}^{n \times n \times p}$ and F-bidiagonal tensor $\mathcal{N} \in \mathbb{C}^{n \times n \times p}$. Further, the decomposition form of \mathcal{E} is

$$
\mathcal{E}=\mathcal{P}^{-1} * \mathcal{N} * \mathcal{P}=\mathcal{P}^{-1} *\left(\begin{array}{cc}
\mathcal{N}_{1} & O \\
O & O
\end{array}\right) * \mathcal{P},
$$

where \mathcal{N}_{1} is the first block element of the tensor \mathcal{N}, and the matrix $\operatorname{bcirc}(\mathcal{N})$ has the following decomposition

$$
\operatorname{bcirc}(\mathcal{N})=\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{llll}
N_{1} & & & \\
& N_{2} & & \\
& & \ddots & \\
& & & N_{p}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right)
$$

where $N_{i}=\left(\begin{array}{cc}N_{i}^{1} & O \\ O & O\end{array}\right), N_{i}^{1}$ is the first block element of the matrix of $N_{i} .(i=1,2, \cdots, p)$
Proof. According to the Theorem 1.11, we have

$$
\mathcal{A}=\mathcal{P}^{-1} * \mathcal{J} * \mathcal{P}=\mathcal{P}^{-1} *\left(\begin{array}{cc}
\mathcal{J}_{1} & O \\
\mathcal{O} & \mathcal{J}_{4}^{0}
\end{array}\right) * \mathcal{P}
$$

where \mathcal{J}_{1} is the first block inverse element of tensor \mathcal{J}, and \mathcal{J}_{4}^{0} is nilpotent.
Further, we obtain

$$
\mathcal{A}^{D}=\mathcal{P}^{-1} * \mathcal{J}^{D} * \mathcal{P}=\mathcal{P}^{-1} *\left(\begin{array}{cc}
\mathcal{J}_{1}^{-1} & O \\
\mathcal{O} & O
\end{array}\right) * \mathcal{P}
$$

where \mathcal{J}_{1}^{-1} is the first block element of the tensor \mathcal{J}^{D}.
Next, the decomposition of \mathcal{E} will be given.
Suppose that $\mathcal{E}=\mathcal{P}^{-1} *\left(\begin{array}{ll}\mathcal{N}_{1} & \mathcal{N}_{2} \\ \mathcal{N}_{3} & \mathcal{N}_{4}\end{array}\right) * \mathcal{P}$, then

$$
\mathcal{A} * \mathcal{A}^{D} * \mathcal{E}=\mathcal{P}^{-1} *\left(\begin{array}{cc}
\mathcal{J}_{1} & O \tag{11}\\
\boldsymbol{O} & \mathcal{J}_{4}^{0}
\end{array}\right) * \mathcal{P} * \mathcal{P}^{-1} *\left(\begin{array}{cc}
\mathcal{J}_{1}^{-1} & \mathcal{O} \\
\mathcal{O} & O
\end{array}\right) * \mathcal{P} * \mathcal{P}^{-1} *\left(\begin{array}{cc}
\mathcal{N}_{1} & \mathcal{N}_{2} \\
\mathcal{N}_{3} & \mathcal{N}_{4}
\end{array}\right) * \mathcal{P}=\mathcal{P}^{-1} *\left(\begin{array}{cc}
\mathcal{N}_{1} & \mathcal{N}_{2} \\
\boldsymbol{O} & O
\end{array}\right) * \mathcal{P},
$$

and

$$
\mathcal{E} * \mathcal{A} * \mathcal{A}^{D}=\mathcal{P}^{-1} *\left(\begin{array}{ll}
\mathcal{N}_{1} & \mathcal{N}_{2} \tag{12}\\
\mathcal{N}_{3} & \mathcal{N}_{4}
\end{array}\right) * \mathcal{P} * \mathcal{P}^{-1} *\left(\begin{array}{cc}
\mathcal{J}_{1} & O \\
\mathcal{O} & \mathcal{J}_{4}^{0}
\end{array}\right) * \mathcal{P} * \mathcal{P}^{-1} *\left(\begin{array}{cc}
\mathcal{T}_{1}^{-1} & \mathcal{O} \\
\mathcal{O} & O
\end{array}\right) * \mathcal{P}=\mathcal{P}^{-1} *\left(\begin{array}{ll}
\mathcal{N}_{1} & \mathcal{O} \\
\mathcal{N}_{3} & O
\end{array}\right) * \mathcal{P},
$$

According to $\mathcal{E}=\mathcal{A} * \mathcal{A}^{D} * \mathcal{E}=\mathcal{E} * \mathcal{A} * \mathcal{A}^{D}$, (11) and (12), we obtain

$$
\mathcal{E}=\mathcal{P}^{-1} *\left(\begin{array}{ll}
\mathcal{N}_{1} & \mathcal{N}_{2} \tag{13}\\
\mathcal{N}_{3} & \mathcal{N}_{4}
\end{array}\right) * \mathcal{P}=\mathcal{P}^{-1} *\left(\begin{array}{cc}
\mathcal{N}_{1} & \mathcal{N}_{2} \\
\boldsymbol{O} & O
\end{array}\right) * \mathcal{P}=\mathcal{P}^{-1} *\left(\begin{array}{ll}
\mathcal{N}_{1} & O \\
\mathcal{N}_{3} & O
\end{array}\right) * \mathcal{P}
$$

Hence $\mathcal{E}=\mathcal{P}^{-1} *\left(\begin{array}{cc}\mathcal{N}_{1} & O \\ \mathcal{O} & O\end{array}\right) * \mathcal{P}$. The proof is completed.
Lemma 2.3. Suppose condition (\mathcal{W}) holds, let $\mathcal{A} \in \mathbb{C}^{n \times n \times p}$ be a complex tensor, $\mathcal{B}=\mathcal{A}+\mathcal{E}$, then there is an invertible tensor $\mathcal{P} \in \mathbb{C}^{n \times n \times p}$ and F-bidiagonal tensor $\mathcal{M} \in \mathbb{C}^{n \times n \times p}$, such that
(1) $\mathcal{B}^{D}=\mathcal{P}^{-1} * \mathcal{M}^{D} * \mathcal{P}$, and the decomposition of the matrix $\operatorname{bcirc}\left(\mathcal{M}^{D}\right)$ is

$$
\operatorname{bcirc}\left(\mathcal{M}^{D}\right)=\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{llll}
M_{1}^{D} & & & \\
& M_{2}^{D} & & \\
& & \ddots & \\
& & & M_{p}^{D}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right)
$$

where $M_{i}^{D}=\left(\begin{array}{cc}\left(M_{i}^{1}\right)^{-1} & O \\ O & O\end{array}\right),(i=1,2, \cdots, p)$
(2) $\mathcal{A} * \mathcal{A}^{D}=\mathcal{B} * \mathcal{B}^{D}$.

Proof. (1) According to the Theorem 1.11, there is $\mathcal{N} \in \mathbb{C}^{n \times n \times p}$ and $\mathcal{J} \in \mathbb{C}^{n \times n \times p}$, then $\mathcal{A}=\mathcal{P}^{-1} * \mathcal{J} * \mathcal{P}$, $\mathcal{E}=\mathcal{P}^{-1} * \mathcal{N} * \mathcal{P}$, suppose $\mathcal{B}=\mathcal{A}+\mathcal{E}=\mathcal{P}^{-1} * \mathcal{M} * \mathcal{P}$, where

$$
\begin{aligned}
\operatorname{bcirc}(\mathcal{M}) & =\operatorname{bcirc}(\mathcal{T}+\mathcal{N}) \\
& =\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{llll}
\left(N_{1}+J_{1}\right) & & & \\
& \left(N_{2}+J_{2}\right) & & \\
& & \ddots & \\
& & & \left(N_{p}+J_{p}\right)
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right),
\end{aligned}
$$

and $J_{i}=\left(\begin{array}{cc}J_{i}^{1} & O \\ O & J_{i}^{0}\end{array}\right), N_{i}=\left(\begin{array}{cc}N_{i}^{1} & O \\ O & O\end{array}\right), J_{i}^{1}$ is the first block element of the matrix of J_{i}, N_{i}^{1} is the first block element of the matrix of N_{i}, and J_{i}^{0} is nilpotent, $(i=1,2, \cdots, p)$
Therefore

$$
\operatorname{bcirc}\left(\mathcal{M}^{D}\right)=\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{llll}
\left(N_{1}+J_{1}\right)^{D} & & & \\
& \left(N_{2}+J_{2}\right)^{D} & & \\
& & \ddots & \\
& & & \left(N_{p}+J_{p}\right)^{D}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right)
$$

Moreover, it proves that $N_{i}^{1}+J_{i}^{1}$ is invertible, where $N_{i}+J_{i}=\left(\begin{array}{cc}N_{i}^{1}+J_{i}^{1} & O \\ O & O\end{array}\right) \cdot(i=1,2, \cdots, p)$
Now, by Theorem 1.11 and Lemma 2.2, we have

$$
\begin{aligned}
\mathcal{A}^{D} * \mathcal{E} & =\mathcal{P}^{-1} * \mathcal{J}^{D} * \mathcal{P} * \mathcal{P}^{-1} * \mathcal{N} * \mathcal{P} \\
& =\mathcal{P}^{-1} * \mathcal{J}^{D} * \mathcal{N} * \mathcal{P},
\end{aligned}
$$

and the decomposition $\operatorname{of} \operatorname{bcirc}\left(\mathcal{J}^{D} * \mathcal{N}\right)$ is

$$
\operatorname{bcirc}\left(\mathcal{J}^{D} * \mathcal{N}\right)=\operatorname{bcirc}\left(\mathcal{J}^{D}\right) \operatorname{bcirc}(\mathcal{N})=\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{llll}
J_{1}^{D} N_{1} & & & \\
& J_{2}^{D} N_{2} & & \\
& & \ddots & \\
& & & J_{p}^{D} N_{P}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right)
$$

where $J_{i}^{D} N_{i}=\left(\begin{array}{cc}\left(J_{i}^{1}\right)^{-1} N_{i}^{1} & O \\ O & O\end{array}\right),(i=1,2, \cdots, p)$
By Definition 1.15, we have

$$
\begin{aligned}
\rho_{T}\left(\mathcal{J}^{D} * \mathcal{N}\right) & =\rho\left(b \operatorname{circ}\left(\mathcal{T}^{D} * \mathcal{N}\right)\right) \\
& =\rho\left(\left(F_{p} \otimes I_{n}\right) b \operatorname{circ}\left(\mathcal{J}^{D} * \mathcal{N}\right)\left(F_{p}^{H} \otimes I_{n}\right)\right) \\
& =\max _{i} \rho\left(\left(J_{i}^{1}\right)^{-1} N_{i}^{1}\right),
\end{aligned}
$$

that is

$$
\begin{equation*}
\rho_{T}\left(\mathcal{A}^{D} * \mathcal{E}\right)=\rho_{T}\left(\mathcal{J}^{D} * \mathcal{N}\right)=\max _{i} \rho\left(\left(J_{i}^{1}\right)^{-1} N_{i}^{1}\right), \tag{14}
\end{equation*}
$$

thus

$$
\begin{equation*}
\rho_{T}\left(\mathcal{A}^{D} * \mathcal{E}\right) \leq\left\|\mathcal{A}^{D}\right\|\|\mathcal{E}\|<1 . \tag{15}
\end{equation*}
$$

On the other hand, it will prove that $J_{i}^{1}+N_{i}^{1}=J_{i}^{1}\left(I+\left(J_{i}^{1}\right)^{-1} N_{i}^{1}\right)$ is invertible. According to the inverse of J_{i}^{1}, we will only prove that $I+\left(J_{i}^{1}\right)^{-1} N_{i}^{1}$ is nonsingular. Now, we prove it by reduction to absurdity. Assume $I+\left(J_{i}^{1}\right)^{-1} N_{i}^{1}$ is singular, then there is a nonzero vector $x \in \mathbb{C}^{n \times 1}$, such that

$$
\left(I+\left(J_{i}^{1}\right)^{-1} N_{i}^{1}\right) x=0,
$$

then

$$
x=-\left(\left(J_{i}^{1}\right)^{-1} N_{i}^{1}\right) x .
$$

Therefore, -1 is the eigenvalue of matrix $\left(J_{i}^{1}\right)^{-1} N_{i}^{1}$, denoted $\lambda\left(\left(J_{i}^{1}\right)^{-1} N_{i}^{1}\right)=-1$,
it implies $\rho\left(\left(J_{i}^{1}\right)^{-1} N_{i}^{1}\right) \geq 1$.
According to (14), we obtain

$$
\left.\rho_{T}\left(\mathcal{A}^{D} * \mathcal{E}\right)=\max _{i} \rho\left(J_{i}^{1}\right)^{-1} N_{i}^{1}\right) \geq 1,
$$

which is contradictory to (15). Hence $I+\left(J_{1}^{1}\right)^{-1} N_{1}^{1}$ is nonsingular.
(2) By Theorem 1.11, we have $\mathcal{A}=\mathcal{P}^{-1} * \mathcal{J} * \mathcal{P}$ and $\mathcal{A}^{D}=\mathcal{P}^{-1} * \mathcal{J}^{D} * \mathcal{P}$. Similary, $\mathcal{B}=\mathcal{P}^{-1} * \mathcal{M} * \mathcal{P}$ and $\mathcal{B}^{D}=\mathcal{P}^{-1} * \mathcal{M}^{D} * \mathcal{P}$, then

$$
\mathcal{A} * \mathcal{A}^{D}=\mathcal{P}^{-1} * \mathcal{J} * \mathcal{P} * \mathcal{P}^{-1} * \mathcal{J}^{D} * \mathcal{P}=\mathcal{P}^{-1} * \mathcal{J} * \mathcal{J}^{D} * \mathcal{P},
$$

and

$$
\mathcal{B} * \mathcal{B}^{D}=\mathcal{P}^{-1} * \mathcal{M} * \mathcal{P}_{*} \mathcal{P}^{-1} * \mathcal{M}^{D} * \mathcal{P}=\mathcal{P}^{-1} * \mathcal{M} * \mathcal{M}^{D} * \mathcal{P},
$$

By Lemma 1.5, we have

$$
\begin{aligned}
\operatorname{bcirc}\left(\mathcal{J} * \mathcal{J}^{D}\right) & =\operatorname{bcirc}(\mathcal{J}) b \operatorname{circ}\left(\mathcal{J}^{D}\right) \\
& =\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{llll}
J_{1} J_{1}^{D} & & & \\
& J_{2} J_{2}^{D} & & \\
& & \ddots & \\
& & & J_{p} J_{p}^{D}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{bcirc}\left(\mathcal{M} * \mathcal{M}^{D}\right) & =\operatorname{bcirc}(\mathcal{M}) \operatorname{bcirc}\left(\mathcal{M}^{D}\right) \\
& =\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{cccc}
M_{1} M_{1}^{D} & & & \\
& M_{2} M_{2}^{D} & & \\
& & \ddots & \\
& & & M_{p} M_{p}^{D}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right),
\end{aligned}
$$

where $J_{i} J_{i}^{D}=\left(\begin{array}{cc}J_{i}^{1} & O \\ O & J_{i}^{0}\end{array}\right)\left(\begin{array}{cc}\left(J_{i}^{1}\right)^{-1} & O \\ O & O\end{array}\right)=\left(\begin{array}{cc}I & O \\ O & O\end{array}\right), J_{i}^{1}$ is the first block element of the matrix of J_{i}, and J_{i}^{0} is nilpotent, and $M_{i} M_{i}^{D}=\left(\begin{array}{cc}M_{i}^{1} & O \\ O & O\end{array}\right)\left(\begin{array}{cc}\left(M_{i}^{1}\right)^{-1} & O \\ O & O\end{array}\right)=\left(\begin{array}{ll}I & O \\ O & O\end{array}\right), M_{i}^{1}$ is the first block element of the matrix of $M_{i} .(i=1,2, \cdots, p)$

Hence, $\mathcal{A} * \mathcal{A}^{D}=\mathcal{B} * \mathcal{B}^{D}$. The proof is completed.
Theorem 2.4. Let $\mathcal{A}, \mathcal{B}, \mathcal{E} \in \mathbb{C}^{n \times n \times p}$ be F-square tensors, \mathcal{A}^{D} is T-Drazin inverse of \mathcal{A}, if $\mathcal{E}=\mathcal{A} * \mathcal{A}^{D} * \mathcal{E}=\mathcal{E} * \mathcal{A} * \mathcal{A}^{D}$, $\operatorname{Ind}_{T}(\mathcal{A})=k, \mathcal{B}=\mathcal{A}+\mathcal{E}$ and $\left\|\mathcal{A}^{D} * \mathcal{E}\right\|<1$, then
(1) $\mathcal{B}^{D}-\mathcal{A}^{D}=-\mathcal{B}^{D} * \mathcal{E} * \mathcal{A}^{D}=-\mathcal{A}^{D} * \mathcal{E} * \mathcal{B}^{D}$,
(2) $\mathcal{B}^{D}=\left(\mathcal{I}+\mathcal{A}^{D} * \mathcal{E}\right)^{-1} * \mathcal{A}^{D}=\mathcal{A}^{D} *\left(\mathcal{I}+\mathcal{E} * \mathcal{A}^{D}\right)^{-1}$,
(3) $\frac{\mathcal{B}^{D}-\mathcal{H}^{D} \|}{\left\|\mathcal{A}^{D}\right\|} \leq \frac{\left\|\mathcal{A}^{D} * \mathcal{E}\right\|}{1-\left\|\mathcal{P}^{*} * \mathcal{E}\right\|}$.

Proof. (1) According to Lemma 2.3, we have $\mathcal{A} * \mathcal{A}^{D}=\mathcal{B} * \mathcal{B}^{D}$, then

$$
\begin{aligned}
\mathcal{B}^{D}-\mathcal{A}^{D} & =-\mathcal{B}^{D} * \mathcal{E} * \mathcal{A}^{D}+\mathcal{B}^{D}-\mathcal{A}^{D}+\mathcal{B}^{D} *(\mathcal{B}-\mathcal{A}) * \mathcal{A}^{D} \\
& =-\mathcal{B}^{D} * \mathcal{E} * \mathcal{A}^{D}+\mathcal{B}^{D}-\mathcal{B}^{D} * \mathcal{A} * \mathcal{A}^{D}-\mathcal{A}^{D}+\mathcal{B}^{D} * \mathcal{B} * \mathcal{A}^{D} \\
& =-\mathcal{B}^{D} * \mathcal{E} * \mathcal{A}^{D}+\mathcal{B}^{D}-\mathcal{B}^{D} * \mathcal{B} * \mathcal{B}^{D}-\mathcal{A}^{D}+\mathcal{A}^{D} * \mathcal{A} * \mathcal{A}^{D} \\
& =-\mathcal{B}^{D} * \mathcal{E} * \mathcal{A}^{D},
\end{aligned}
$$

that is

$$
\begin{equation*}
\mathcal{B}^{D}-\mathcal{A}^{D}=-\mathcal{B}^{D} * \mathcal{E} * \mathcal{A}^{D} . \tag{16}
\end{equation*}
$$

Similarly,

$$
\begin{aligned}
\mathcal{B}^{D}-\mathcal{A}^{D} & =-\mathcal{A}^{D} * \mathcal{E} * \mathcal{B}^{D}+\mathcal{B}^{D}-\mathcal{A}^{D}+\mathcal{A}^{D} *(\mathcal{B}-\mathcal{A}) * \mathcal{B}^{D} \\
& =-\mathcal{A}^{D} * \mathcal{E} * \mathcal{B}^{D}+\mathcal{B}^{D}-\mathcal{A}^{D} * \mathcal{A} * \mathcal{B}^{D}-\mathcal{A}^{D}+\mathcal{A}^{D} * \mathcal{B} * \mathcal{B}^{D} \\
& =-\mathcal{A}^{D} * \mathcal{E} * \mathcal{B}^{D}+\mathcal{B}^{D}-\mathcal{B}^{D} * \mathcal{B} * \mathcal{B}^{D}-\mathcal{A}^{D}+\mathcal{A}^{D} * \mathcal{A} * \mathcal{A}^{D} \\
& =-\mathcal{A}^{D} * \mathcal{E} * \mathcal{B}^{D},
\end{aligned}
$$

that is

$$
\begin{equation*}
\mathcal{B}^{D}-\mathcal{A}^{D}=-\mathcal{A}^{D} * \mathcal{E} * \mathcal{B}^{D} . \tag{17}
\end{equation*}
$$

(2) By (16), we have

$$
\mathcal{B}^{D} *\left(\mathcal{I}+\mathcal{E} * \mathcal{A}^{\mathcal{D}}\right)=\mathcal{A}^{D}
$$

Since $\rho_{T}\left(\mathcal{E} * \mathcal{A}^{D}\right)=\rho_{T}\left(\mathcal{A}^{D} * \mathcal{E}\right)$, then $\rho_{T}\left(\mathcal{E} * \mathcal{A}^{D}\right)=\rho_{T}\left(\mathcal{A}^{D} * \mathcal{E}\right) \leq\left\|\mathcal{A}^{D} * \mathcal{E}\right\|<1$, therefore $\mathcal{I}+\mathcal{E} * \mathcal{A}^{D}$ is nonsingular, then

$$
\begin{equation*}
\mathcal{B}^{D}=\mathcal{A}^{D} *\left(\mathcal{I}+\mathcal{E} * \mathcal{A}^{D}\right)^{-1} \tag{18}
\end{equation*}
$$

By (17), we obtain

$$
\left(\mathcal{I}+\mathcal{A}^{D} * \mathcal{E}\right) * \mathcal{B}^{D}=\mathcal{A}^{D}
$$

Since $\left\|\mathcal{A}^{D} * \mathcal{E}\right\|<1$, therefore $\mathcal{I}+\mathcal{A}^{D} * \mathcal{E}$ is nonsingular, then

$$
\begin{equation*}
\mathcal{B}^{D}=\left(\mathcal{I}+\mathcal{A}^{D} * \mathcal{E}\right)^{-1} * \mathcal{A}^{D} . \tag{19}
\end{equation*}
$$

(3) By Theorem 2.1, and take norm on both sides of (19) at the same time, then

$$
\begin{aligned}
\left\|\mathcal{B}^{D}\right\| & =\left\|\left(\mathcal{I}+\mathcal{A}^{D} * \mathcal{E}\right)^{-1} * \mathcal{A}^{D}\right\| \\
& \leq\left\|\left(\mathcal{I}+\mathcal{A}^{D} * \mathcal{E}\right)^{-1}\right\|\left\|\mathcal{A}^{D}\right\| \\
& \leq \frac{\left\|\mathcal{A}^{D}\right\|}{1-\left\|\mathcal{A}^{D} * \mathcal{E}\right\|} .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left\|\mathcal{B}^{D}\right\| \leq \frac{\left\|\mathcal{A}^{D}\right\|}{1-\left\|\mathcal{A}^{D} * \mathcal{E}\right\|} \tag{20}
\end{equation*}
$$

Take norm on both sides of (17) at the same time, then

$$
\begin{aligned}
\left\|\mathcal{B}^{D}-\mathcal{A}^{D}\right\| & =\left\|-\mathcal{A}^{D} * \mathcal{E} * \mathcal{B}^{D}\right\| \\
& \leq\left\|\mathcal{A}^{D} * \mathcal{E}\right\|\left\|\mathcal{B}^{D}\right\| .
\end{aligned}
$$

Divide $\left\|\mathcal{A}^{D}\right\|$ on both sides at the same time, we obtain

$$
\frac{\left\|\mathcal{B}^{D}-\mathcal{A}^{D}\right\|}{\left\|\mathcal{A}^{D}\right\|} \leq \frac{\left\|\mathcal{A}^{D} * \mathcal{E}\right\|\left\|\mathcal{B}^{D}\right\|}{\left\|\mathcal{A}^{D}\right\|}
$$

Since (20), then

$$
\frac{\left\|\mathcal{B}^{D}-\mathcal{A}^{D}\right\|}{\left\|\mathcal{A}^{D}\right\|} \leq \frac{\left\|\mathcal{A}^{D} * \mathcal{E}\right\|\left\|\mathcal{B}^{D}\right\|}{\left\|\mathcal{A}^{D}\right\|} \leq \frac{\left\|\mathcal{A}^{D} * \mathcal{E}\right\|}{1-\left\|\mathcal{A}^{D} * \mathcal{E}\right\|}
$$

Therefore

$$
\begin{equation*}
\frac{\left\|\mathcal{B}^{D}-\mathcal{A}^{D}\right\|}{\left\|\mathcal{A}^{D}\right\|} \leq \frac{\left\|\mathcal{A}^{D} * \mathcal{E}\right\|}{1-\left\|\mathcal{A}^{D} * \mathcal{E}\right\|} \tag{21}
\end{equation*}
$$

The proof is completed.
Corollary 2.5. Suppose condition (\mathcal{W}) holds, let $\mathcal{A}, \mathcal{B}, \mathcal{E} \in \mathbb{C}^{n \times n \times p}$ be F-square tensors, then

$$
\frac{\left\|\mathcal{A}^{D}\right\|}{1+\left\|\mathcal{A}^{D}\right\|\|\mathcal{E}\|} \leq\left\|\mathcal{B}^{D}\right\| \leq \frac{\left\|\mathcal{A}^{D}\right\|}{1-\left\|\mathcal{A}^{D}\right\|\|\mathcal{E}\|}
$$

Proof. According to Theorem 2.4, we have $\mathcal{B}^{D}=\mathcal{A}^{D} *\left(I+\mathcal{E} * \mathcal{A}^{D}\right)^{-1}$, then

$$
\begin{equation*}
\mathcal{A}^{D}=\mathcal{B}^{D} *\left(\mathcal{I}+\mathcal{E} * \mathcal{A}^{D}\right) \tag{22}
\end{equation*}
$$

Taking norm on both sides of (22) at the same time, we obtain

$$
\left\|\mathcal{A}^{D}\right\|=\left\|\mathcal{B}^{D} *\left(\mathcal{I}+\mathcal{E} * \mathcal{A}^{D}\right)\right\| \leq\left\|\mathcal{B}^{D}\right\|\left\|\mathcal{I}+\mathcal{E} * \mathcal{A}^{D}\right\| .
$$

Hence

$$
\begin{equation*}
\left\|\mathcal{B}^{D}\right\| \geq \frac{\left\|\mathcal{A}^{D}\right\|}{\left\|\mathcal{I}+\mathcal{E} * \mathcal{A}^{D}\right\|} \tag{23}
\end{equation*}
$$

According to $\left\|\left(\mathcal{I}+\mathcal{E} * \mathcal{A}^{D}\right)\right\| \leq\|\mathcal{I}\|+\left\|\mathcal{E} * \mathcal{A}^{D}\right\| \leq 1+\|\mathcal{E}\|\left\|\mathcal{A}^{D}\right\|$, then

$$
\frac{1}{1+\|\mathcal{E}\|\left\|\mathcal{A}^{D}\right\|} \leq \frac{1}{\left\|\mathcal{I}+\mathcal{E} * \mathcal{A}^{D}\right\|}
$$

Multiply $\left\|\mathcal{A}^{D}\right\|$ on both sides at the same time, we obtain

$$
\frac{\left\|\mathcal{A}^{D}\right\|}{1+\|\mathcal{E}\|\left\|\mathcal{A}^{D}\right\|} \leq \frac{\left\|\mathcal{A}^{D}\right\|}{\left\|\mathcal{I}+\mathcal{E} * \mathcal{A}^{D}\right\|}
$$

By (23), then

$$
\frac{\left\|\mathcal{A}^{D}\right\|}{1+\|\mathcal{E}\|\left\|\mathcal{A}^{D}\right\|} \leq \frac{\left\|\mathcal{A}^{D}\right\|}{\left\|\mathcal{I}+\mathcal{E} * \mathcal{A}^{D}\right\|} \leq\left\|\mathcal{B}^{D}\right\|
$$

On the other hand, by (20), it shows that

$$
\left\|\mathcal{B}^{D}\right\| \leq\left\|\mathcal{A}^{D}\right\|\left\|\left(\mathcal{I}+\mathcal{A}^{D} * \mathcal{E}\right)^{-1}\right\| \leq \frac{\left\|\mathcal{A}^{D}\right\|}{1-\left\|\mathcal{A}^{D}\right\|\|\mathcal{E}\|}
$$

Therefore

$$
\frac{\left\|\mathcal{A}^{D}\right\|}{1+\left\|\mathcal{A}^{D}\right\|\|\mathcal{E}\|} \leq\left\|\mathcal{B}^{D}\right\| \leq \frac{\left\|\mathcal{A}^{D}\right\|}{1-\left\|\mathcal{A}^{D}\right\|\|\mathcal{E}\|}
$$

The proof is completed.
Theorem 2.6. Let $\mathcal{A}, \mathcal{B} \in \mathbb{C}^{n \times n \times p}$ be F-square tensors, if $\|\mathcal{E}\|\left\|\mathcal{A}^{D}\right\|<1$, and $\mathcal{K}_{D}(\mathcal{A})=\|\mathcal{A}\|\left\|\mathcal{A}^{D}\right\|$, then

$$
\frac{\left\|\mathcal{B}^{D}-\mathcal{A}^{D}\right\|}{\left\|\mathcal{A}^{D}\right\|} \leq \frac{\mathcal{K}_{D}(\mathcal{A})\|\mathcal{E}\| /\|\mathcal{A}\|}{1-\mathcal{K}_{D}(\mathcal{A})\|\mathcal{E}\| / / / \mathcal{A} \|}
$$

Proof. From (21), we have

$$
\begin{aligned}
\frac{\left\|\mathcal{B}^{D}-\mathcal{A}^{D}\right\|}{\left\|\mathcal{A}^{D}\right\|} & \leq \frac{\left\|\mathcal{A}^{D} * \mathcal{E}\right\|}{1-\left\|\mathcal{A}^{D} * \mathcal{E}\right\|} \\
& \leq \frac{\left\|\mathcal{A}^{D}\right\|\|\mathcal{E}\|}{1-\left\|\mathcal{A}^{D}\right\|\|\mathcal{E}\|} \\
& =\frac{\|\mathcal{A}\|\left\|\mathcal{A}^{D}\right\|\|\mathcal{E}\| /\|\mathcal{A}\|}{1-\|\mathcal{A}\|\left\|\mathcal{A} \mathcal{A}^{D}\right\|\|\mathcal{E}\| /\|\mathcal{A}\|} \\
& =\frac{\mathcal{K}_{D}(\mathcal{A})\|\mathcal{E}\| /\|\mathcal{A}\|}{1-\mathcal{K}_{D}(\mathcal{A})\|\mathcal{E}\| /\|\mathcal{A}\|^{\prime}}
\end{aligned}
$$

where $\mathcal{K}_{D}(\mathcal{A})=\|\mathcal{A}\|\left\|\mathcal{A}^{D}\right\|$.
The proof is completed.
Remark 2.7. If $\operatorname{Ind}_{T}(\mathcal{A})=1$, then condition (\mathcal{W}) is reduced to $\mathcal{B}=\mathcal{A}+\mathcal{E}, \mathcal{E}=\mathcal{A} * \mathcal{A}_{g} * \mathcal{E} * \mathcal{A} * \mathcal{A}_{g}$, and $\left\|\mathcal{A}_{g}\right\|\|\|\mathcal{E}\|<1$. Thus under these assumes, we can get a perturbation bound for the group inverse of the tensor.

Remark 2.8. If $_{\operatorname{Ind}}^{T}(\mathcal{A})=0$,i.e., \mathcal{A} is nonsingular, then condition (\mathcal{W}) is reduced to $\mathcal{B}=\mathcal{A}+\mathcal{E}$, and $\left\|\mathcal{A}^{-1}\right\|\|\mathcal{E}\|<1$. We also obtain a perturbation bound on the common tensor inverse.

3. Applications

In this section, we consider the T-linear system. Let $\mathcal{B} \in \mathbb{C}^{n \times n \times p}$ be an F-square tensor, and $y, b, c, f \in$ $\mathbb{C}^{n \times 1 \times p}$ are tensors.

$$
\mathcal{B} * y=c, y \in \mathcal{R}\left(\mathcal{B}^{D}\right),
$$

where $\mathcal{B}=\mathcal{A}+\mathcal{E}, c=b+f \in \mathcal{R}\left(\mathcal{B}^{D}\right)$.
Theorem 3.1. Suppose condition (\mathcal{W}) holds, let $y, x, b, c, f \in \mathbb{C}^{n \times 1 \times p}$ and $\left\|\mathcal{P}^{D}\right\|\|\mathcal{E}\|<1$, then

$$
\frac{\|y-x\|}{\|x\|} \leq \frac{\mathcal{K}_{D}(\mathcal{A})}{1-\mathcal{K}_{D}(\mathcal{A})\|\mathcal{E}\| /\|\mathcal{A}\|}\left(\frac{\|\mathcal{E}\|}{\|\mathcal{A}\|}+\frac{\|f\|}{\|b\|}\right) .
$$

Proof. According to Theorem 1.13, we obtain $x=\mathcal{A}^{D} * b$, and by (5), one can obtain

$$
x=\mathcal{A}^{D} * b .
$$

Similarly

$$
\begin{aligned}
y & =\mathcal{B}^{D} * c \\
& =(\mathcal{A}+\mathcal{E})^{D} *(b+f) .
\end{aligned}
$$

Since $\mathcal{B}^{D}-\mathcal{A}^{D}=-\mathcal{B}^{D} * \mathcal{E} * \mathcal{A}^{D}$, then

$$
\begin{aligned}
y-x & =(\mathcal{A}+\mathcal{E})^{D} *(b+f)-\mathcal{A}^{D} * b \\
& =(\mathcal{A}+\mathcal{E})^{D} * b+(\mathcal{A}+\mathcal{E})^{D} * f-\mathcal{A}^{D} * b \\
& =\left((\mathcal{A}+\mathcal{E})^{D}-\mathcal{A}^{D}\right) * b+(\mathcal{A}+\mathcal{E})^{D} * f \\
& =-\mathcal{B}^{D} * \mathcal{E} * \mathcal{A}^{D} * b+(\mathcal{A}+\mathcal{E})^{D} * f \\
& =-\left((\mathcal{A}+\mathcal{E})^{D}\right) * \mathcal{E} * x+(\mathcal{A}+\mathcal{E})^{D} * f .
\end{aligned}
$$

Hence

$$
\begin{equation*}
y-x=-\left((\mathcal{A}+\mathcal{E})^{D}\right) * \mathcal{E} * x+(\mathcal{A}+\mathcal{E})^{D} * f . \tag{24}
\end{equation*}
$$

Due to Corollary 2.5, and take norm on both sides of (24) at the same time, then

$$
\begin{aligned}
& \|y-x\|=\left\|-(\mathcal{A}+\mathcal{E})^{D} * \mathcal{E} * x+(\mathcal{A}+\mathcal{E})^{D} * f\right\| \\
& \leq\left\|(\mathcal{A}+\mathcal{E})^{D}\right\|\|\mathcal{E}\|\|x\|+\left\|(\mathcal{A}+\mathcal{E})^{D}\right\|\|f\| \\
& =\left\|(\mathcal{A}+\mathcal{E})^{D}\right\|(\|\mathcal{E}\|\|x\|+\|f\|) \\
& =\left\|\mathcal{B}^{D}\right\|\left(\|\mathcal{E}\|\|x\|+\frac{\|f\|\|b\|}{\|b\|}\right) \\
& \leq \frac{\|\mathcal{A}\|\left\|\mathcal{A}^{D}\right\|\|x\|}{1-\left\|\mathcal{A}^{D} * \mathcal{E}\right\|}\left(\|\mathcal{E}\|+\frac{\|f\|\|\mid \mathcal{A}\|}{\|b\|}\right) \\
& \leq \frac{\|\mathcal{A}\|\left\|\mathcal{A}^{D}\right\|\|x\|}{1-\left\|\mathcal{A}^{D}\right\|\|\mathcal{E}\|}\left(\|\mathcal{E}\|+\frac{\|f\|\|\mathcal{A}\|}{\|b\|}\right) \\
& \leq \frac{\mathcal{K}_{D}(\mathcal{F})\|x\|}{1-\mathcal{K}_{D}(\mathcal{A})\|\mathcal{E}\| /\|\mathcal{A}\|}\left(\frac{\|\mathcal{E}\|}{\|\mathcal{F}\|}+\frac{\|f\|}{\|b\|}\right) \text {. }
\end{aligned}
$$

4. One-sided Perturbation of T-Drazin Inverse

Lemma 4.1. Let $\mathcal{A} \in \mathbb{C}^{n \times n \times p}, \mathcal{E} \in \mathbb{C}^{n \times n \times p}$ be complex tensors, and $\mathcal{E}=\mathcal{A} * \mathcal{A}^{D} * \mathcal{E}$, then there is an invertible tensor $\mathcal{P} \in \mathbb{C}^{n \times n \times p}$ and F-bidiagonal tensor $\mathcal{N} \in \mathbb{C}^{n \times n \times p}$. Further, the decomposition form of \mathcal{E} is

$$
\mathcal{E}=\mathcal{P}^{-1} * \mathcal{N} * \mathcal{P}=\mathcal{P}^{-1} *\left(\begin{array}{cc}
\mathcal{N}_{1} & \mathcal{N}_{2} \\
O & O
\end{array}\right) * \mathcal{P}
$$

where \mathcal{N}_{1} and \mathcal{N}_{2} are block elements of tensor \mathcal{N}.
And the matrix $b \operatorname{circ}(\boldsymbol{N})$ has the following decomposition

$$
\operatorname{bcirc}(\mathcal{N})=\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{llll}
N_{1} & & & \\
& N_{2} & & \\
& & \ddots & \\
& & & N_{p}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right)
$$

where $N_{i}=\left(\begin{array}{cc}N_{i}^{1} & N_{i}^{2} \\ O & O\end{array}\right), N_{i}^{1}$ and N_{i}^{2} are block elements of the matrix of $N_{i} .(i=1,2, \ldots, p)$

Proof. According to the Theorem 1.11, we have

$$
\mathcal{A}=\mathcal{P}^{-1} * \mathcal{J} * \mathcal{P}=\mathcal{P}^{-1} *\left(\begin{array}{cc}
\mathcal{J}_{1} & O \tag{25}\\
O & \mathcal{J}_{4}^{0}
\end{array}\right) * \mathcal{P}
$$

where the first block element \mathcal{J}_{1} is inverse in tensor \mathcal{J}, and \mathcal{J}_{4}^{0} is nilpotent.
Further, we obtain

$$
\mathcal{A}^{D}=\mathcal{P}^{-1} * \mathcal{J}^{D} * \mathcal{P}=\mathcal{P}^{-1} *\left(\begin{array}{cc}
\mathcal{J}_{1}^{-1} & \mathcal{O} \tag{26}\\
\mathcal{O} & O
\end{array}\right) * \mathcal{P}
$$

where the first block element \mathcal{J}_{1}^{-1} of the tensor \mathcal{J}^{D}.
Next, the decomposition of \mathcal{E} will be given. Suppose $\mathcal{E}=\mathcal{P}^{-1} * \mathcal{N} * \mathcal{P}=\mathcal{P}^{-1} *\left(\begin{array}{ll}\mathcal{N}_{1} & \mathcal{N}_{2} \\ \mathcal{N}_{3} & \mathcal{N}_{4}\end{array}\right) * \mathcal{P}$, then

$$
\mathcal{A} * \mathcal{A}^{D} * \mathcal{E}=\mathcal{P}^{-1} *\left(\begin{array}{cc}
\mathcal{J}_{1} & \mathcal{O} \tag{27}\\
\mathcal{O} & \mathcal{J}_{4}^{0}
\end{array}\right) * \mathcal{P} * \mathcal{P}^{-1} *\left(\begin{array}{cc}
\mathcal{J}_{1}^{-1} & \mathcal{O} \\
\mathcal{O} & O
\end{array}\right) * \mathcal{P} * \mathcal{P}^{-1} *\left(\begin{array}{cc}
\mathcal{N}_{1} & \mathcal{N}_{2} \\
\mathcal{N}_{3} & \mathcal{N}_{4}
\end{array}\right) * \mathcal{P}=\mathcal{P}^{-1} *\left(\begin{array}{cc}
\mathcal{N}_{1} & \mathcal{N}_{2} \\
\mathcal{O} & \mathcal{O}
\end{array}\right) * \mathcal{P}
$$

By $\mathcal{E}=\mathcal{A} * \mathcal{A}^{D} * \mathcal{E}$ and (27), we obtain

$$
\mathcal{E}=\mathcal{P}^{-1} *\left(\begin{array}{ll}
\mathcal{N}_{1} & \mathcal{N}_{2} \tag{28}\\
\mathcal{N}_{3} & \mathcal{N}_{4}
\end{array}\right) * \mathcal{P}=\mathcal{P}^{-1} *\left(\begin{array}{cc}
\mathcal{N}_{1} & \mathcal{N}_{2} \\
O & O
\end{array}\right) * \mathcal{P}
$$

$$
\text { Hence } \mathcal{E}=\mathcal{P}^{-1} * \mathcal{N} * \mathcal{P}=\mathcal{P}^{-1} *\left(\begin{array}{cc}
\mathcal{N}_{1} & \mathcal{N}_{2} \\
O & O
\end{array}\right) * \mathcal{P} \text {, and }
$$

$$
\operatorname{bcirc}(\mathcal{N})=\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{llll}
N_{1} & & & \\
& N_{2} & & \\
& & \ddots & \\
& & & N_{p}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right)
$$

The proof is completed.

Lemma 4.2. Let $\mathcal{A} \in \mathbb{C}^{n \times n \times p}, \mathcal{E} \in \mathbb{C}^{n \times n \times p}$ be complex tensors, and $\mathcal{E}=\mathcal{A} * \mathcal{A}^{D} * \mathcal{E}$, $\left\|\mathcal{A}^{D} * \mathcal{E}\right\|<1, \mathcal{B}=\mathcal{A}+\mathcal{E}$, such that

$$
\mathcal{B}^{D}=\mathcal{A}^{D}-\mathcal{A}^{D} * \mathcal{E} *\left(\mathcal{I}+\mathcal{A}^{D} * \mathcal{E}\right)^{-1} * \mathcal{A}^{D}+\sum_{s=0}^{k-1}\left(\mathcal{A}^{D}-\mathcal{A}^{D} * \mathcal{E} *\left(\mathcal{I}+\mathcal{A}^{D} * \mathcal{E}\right)^{-1} * \mathcal{A}^{D}\right)^{s+2} * \mathcal{E} *\left(\mathcal{I}-\mathcal{A} * \mathcal{A}^{D}\right) * \mathcal{A}^{s}
$$

Proof. According to the Theorem 1.11, then there is an invertible tensor $\mathcal{P} \in \mathbb{C}^{n \times n \times p}$ such that

$$
\begin{aligned}
\mathcal{B} & =\mathcal{A}+\mathcal{E} \\
& =\mathcal{P}^{-1} * \mathcal{J} * \mathcal{P}+\mathcal{P}^{-1} * \mathcal{N} * \mathcal{P} \\
& =\mathcal{P}^{-1} *\left(\begin{array}{cc}
\mathcal{J}_{1} & \mathcal{O} \\
\mathcal{O} & \mathcal{J}_{4}^{0}
\end{array}\right) * \mathcal{P}+\mathcal{P}^{-1} *\left(\begin{array}{cc}
\mathcal{N}_{1} & \mathcal{N}_{2} \\
\mathcal{O} & O
\end{array}\right) * \mathcal{P} \\
& =\mathcal{P}^{-1} *\left(\begin{array}{cc}
\mathcal{J}_{1}+\mathcal{N}_{1} & \mathcal{N}_{2} \\
\mathcal{O} & \mathcal{J}_{4}^{0}
\end{array}\right) * \mathcal{P} .
\end{aligned}
$$

By Theorem 1.14, we have

$$
\begin{aligned}
\mathcal{B}^{D} & =\mathcal{P}^{-1} *\left(\begin{array}{cc}
\mathcal{J}_{1}+\mathcal{N}_{1} & \mathcal{N}_{2} \\
\mathcal{O} & \mathcal{J}_{4}^{0}
\end{array}\right)^{D} * \mathcal{P} \\
& =\mathcal{P}^{-1} *\left(\begin{array}{cc}
\left(\mathcal{J}_{1}+\mathcal{N}_{1}\right)^{D} & \mathcal{X} \\
O & \left(\mathcal{J}_{4}^{0}\right)^{D}
\end{array}\right) * \mathcal{P} \\
& =\mathcal{P}^{-1} *\left(\begin{array}{cc}
\left(\mathcal{J}_{1}+\mathcal{N}_{1}\right)^{-1} & \mathcal{X} \\
\mathcal{O} & \mathcal{O}
\end{array}\right) * \mathcal{P},
\end{aligned}
$$

where \mathcal{J}_{4}^{0} is nilpotent and

$$
\begin{aligned}
X & =\sum_{s=0}^{k-1}\left(\left(\mathcal{J}_{1}+\mathcal{N}_{1}\right)^{-1}\right)^{s+2} * \mathcal{N}_{2} *\left(\mathcal{J}_{4}^{0}\right)^{s} *\left(\mathcal{I}-\mathcal{J}_{4}^{0} *\left(\mathcal{J}_{4}^{0}\right)^{D}\right) \\
& +\left(\mathcal{I}-\left(\mathcal{J}_{1}+\mathcal{N}_{1}\right) *\left(\mathcal{J}_{1}+\mathcal{N}_{1}\right)^{-1}\right) * \sum_{s=0}^{l-1}\left(\mathcal{J}_{1}+\mathcal{N}_{1}\right)^{s} * N_{2} *\left(\mathcal{J}_{4}^{0}\right)^{s+2} \\
& -\left(\mathcal{J}_{1}+\mathcal{N}_{1}\right)^{D} * \mathcal{N}_{2} *\left(\mathcal{J}_{4}^{0}\right)^{D} \\
& =\sum_{s=0}^{k-1}\left(\left(\mathcal{J}_{1}+\mathcal{N}_{1}\right)^{-1}\right)^{s+2} * \mathcal{N}_{2} *\left(\mathcal{J}_{4}^{0}\right)^{s} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\mathcal{B}^{D} & =\mathcal{P}^{-1} *\left(\begin{array}{cc}
\left(\mathcal{T}_{1}+\mathcal{N}_{1}\right)^{-1} & \sum_{s=0}^{k-1}\left(\left(\mathcal{J}_{1}+\mathcal{N}_{1}\right)^{-1}\right)^{s+2} * \mathcal{N}_{2} *\left(\mathcal{J}_{4}^{0}\right)^{s} \\
O
\end{array}\right) * \mathcal{P} \\
& =\mathcal{A}^{D}-\mathcal{A}^{D} * \mathcal{E} *\left(\mathcal{I}+\mathcal{A}^{D} * \mathcal{E}\right)^{-1} * \mathcal{A}^{D} \\
& +\sum_{s=0}^{k-1}\left(\mathcal{A}^{D}-\mathcal{A}^{D} * \mathcal{E} *\left(\mathcal{I}+\mathcal{A}^{D} * \mathcal{E}\right)^{-1} * \mathcal{A}^{D}\right)^{s+2} * \mathcal{E} *\left(\mathcal{I}-\mathcal{A} * \mathcal{A}^{D}\right) * \mathcal{A}^{s} .
\end{aligned}
$$

Moreover, it proves that $\mathcal{N}_{1}+\mathcal{J}_{1}$ is invertible. Let consider spectral radius of $\mathcal{A}^{D} * \mathcal{E}$.
Since (26) and (28), then

$$
\begin{aligned}
\mathcal{A}^{D} * \mathcal{E} & =\mathcal{P}^{-1} * \mathcal{J}^{D} * \mathcal{P} * \mathcal{P}^{-1} * \mathcal{N} * \mathcal{P} \\
& =\mathcal{P}^{-1} * \mathcal{J}^{D} * \mathcal{N} * \mathcal{P},
\end{aligned}
$$

and the decomposition of the matrix $\operatorname{bcirc}\left(\mathcal{J}^{D} * \mathcal{N}\right)$ is

$$
\begin{aligned}
\operatorname{bcirc}\left(\mathcal{T}^{D} * \mathcal{N}\right) & =\operatorname{bcirc}\left(\mathcal{J}^{D}\right) \operatorname{bcirc}(\mathcal{N}) \\
& =\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{cccc}
J_{1}^{D} N_{1} & & & \\
& J_{2}^{D} N_{2} & & \\
& & \ddots & \\
& & & J_{p}^{D} N_{P}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right),
\end{aligned}
$$

where $J_{i}^{D} N_{i}=\left(\begin{array}{cc}\left(J_{i}^{1}\right)^{-1} N_{i}^{1} & \left(J_{i}^{1}\right)^{-1} N_{i}^{2} \\ O & O\end{array}\right) .(i=1,2, \cdots, p)$
Similarly, we obtain

$$
\begin{aligned}
\mathcal{E} * \mathcal{A}^{D} & =\mathcal{P}^{-1} * \mathcal{N} * \mathcal{P} * \mathcal{P}^{-1} * \mathcal{J}^{D} * \mathcal{P} \\
& =\mathcal{P}^{-1} * \mathcal{N} * \mathcal{J}^{D} * \mathcal{P},
\end{aligned}
$$

and the decomposition of the matrix $\operatorname{bcirc}\left(\mathcal{N} * \mathcal{J}^{D}\right)$ is

$$
\begin{aligned}
\operatorname{bcirc}\left(\mathcal{N} * \mathcal{J}^{D}\right) & =\operatorname{bcirc}(\mathcal{N}) \operatorname{bcirc}\left(\mathcal{J}^{D}\right) \\
& =\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{llll}
N_{1} J_{1}^{D} & & & \\
& N_{2} J_{2}^{D} & & \\
& & \ddots & \\
& & & N_{P} J_{p}^{D}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right),
\end{aligned}
$$

where $N_{i} J_{i}^{D}=\left(\begin{array}{cc}N_{i}^{1}\left(J_{i}^{1}\right)^{-1} & N_{i}^{2}\left(J_{i}^{1}\right)^{-1} \\ O & O\end{array}\right) \cdot(i=1,2, \cdots, p)$
By Definition 1.15, we have

$$
\begin{aligned}
\rho_{T}\left(\mathcal{J}^{D} * \mathcal{N}\right) & =\rho\left(b \operatorname{circ}\left(\mathcal{J}^{D} * \mathcal{N}\right)\right) \\
& =\rho\left(\left(F_{p} \otimes I_{n}\right) \operatorname{bcirc}\left(\mathcal{J}^{D} * \mathcal{N}\right)\left(F_{p}^{H} \otimes I_{n}\right)\right) \\
& =\max _{i} \rho\left(\left(J_{i}^{1}\right)^{-1} N_{i}^{1}\right) \\
& =\max _{i} \rho\left(N_{i}^{1}\left(J_{i}^{1}\right)^{-1}\right) \\
& \left.=\rho\left(\left(F_{p} \otimes I_{n}\right) \operatorname{bcirc}\left(\mathcal{N} * \mathcal{J}^{D}\right)\right)\left(F_{p}^{H} \otimes I_{n}\right)\right) \\
& =\rho\left(\operatorname{bcirc}\left(\mathcal{N} * \mathcal{J}^{D}\right)\right) \\
& =\rho_{T}\left(\mathcal{N} * \mathcal{J}^{D}\right),
\end{aligned}
$$

that is

$$
\begin{equation*}
\rho_{T}\left(\mathcal{A}^{D} * \mathcal{E}\right)=\max _{i} \rho\left(\left(J_{i}^{1}\right)^{-1} N_{i}^{1}\right)=\max _{i} \rho\left(N_{i}^{1}\left(J_{i}^{1}\right)^{-1}\right)=\rho_{T}\left(\mathcal{E} * \mathcal{A}^{D}\right) \tag{29}
\end{equation*}
$$

further

$$
\begin{equation*}
\rho_{T}\left(\mathcal{E} * \mathcal{A}^{D}\right)=\rho_{T}\left(\mathcal{A}^{D} * \mathcal{E}\right) \leq\left\|\mathcal{A}^{D} * \mathcal{E}\right\|<1 \tag{30}
\end{equation*}
$$

On the other hand, it will prove that $\mathcal{J}_{1}+\mathcal{N}_{1}=\mathcal{J}_{1} *\left(\mathcal{I}+\left(\mathcal{J}_{1}\right)^{-1} * \mathcal{N}_{1}\right)$ is invertible. According to the inverse of \mathcal{J}_{1}, we will only prove that $\mathcal{I}+\left(\mathcal{J}_{1}\right)^{-1} * \mathcal{N}_{1}$ is nonsingular. Now, we prove it by reduction to absurdity. Assume $I+\left(\mathcal{J}_{1}\right)^{-1} * \mathcal{N}_{1}$ is singular, then there is a nonzero tensor $y \in \mathbb{C}^{n \times n \times p}$, such that

$$
\left(I+\left(\mathcal{J}_{1}\right)^{-1} * \mathcal{N}_{1}\right) * y=O
$$

then

$$
y=-\left(\left(\mathcal{J}_{1}\right)^{-1} * \mathcal{N}_{1}\right) * y
$$

and the decomposition $\operatorname{of} \operatorname{bcirc}\left(\left(\mathcal{J}_{1}\right)^{-1} * \mathcal{N}_{1}\right)$ is

$$
\begin{aligned}
\operatorname{bcirc}\left(\left(\mathcal{J}_{1}\right)^{-1} * \mathcal{N}_{1}\right) & =\operatorname{bcirc}\left(\left(\mathcal{J}_{1}\right)^{-1}\right) \operatorname{bcirc}\left(\mathcal{N}_{1}\right) \\
& =\left(F_{p} \otimes I_{n}\right)\left(\begin{array}{llll}
\left(J_{1}^{1}\right)^{-1} N_{1}^{1} & & & \\
& \left(J_{2}^{1}\right)^{-1} N_{2}^{1} & & \\
& & \ddots & \\
& & & \left(J_{p}^{1}\right)^{-1} N_{p}^{1}
\end{array}\right)\left(F_{p}^{H} \otimes I_{n}\right) .
\end{aligned}
$$

Therefore, by Definition 1.16, then -1 is the eigenvalue of tensor $\left(\left(\mathcal{J}_{1}\right)^{-1} * \mathcal{N}_{1}\right)$, denoted

$$
\begin{aligned}
\lambda_{T}\left(\left(\mathcal{J}_{1}\right)^{-1} * \mathcal{N}_{1}\right) & =\lambda\left(\operatorname{bcirc}\left(\left(\mathcal{J}_{1}\right)^{-1} * \mathcal{N}_{1}\right)\right) \\
& =\lambda\left(\left(F_{p} \otimes I_{n}\right) \operatorname{bcirc}\left(\left(\mathcal{J}_{1}\right)^{-1} * \mathcal{N}_{1}\right)\left(F_{p}^{H} \otimes I_{n}\right)\right) \\
& =\lambda\left(\left(J_{i}^{1}\right)^{-1} N_{i}^{1}\right) \\
& =-1,
\end{aligned}
$$

it implies $\max _{i} \rho\left(\left(J_{i}^{1}\right)^{-1} N_{i}^{1}\right) \geq 1$.
According to (29), we obtain

$$
\rho_{T}\left(\mathcal{E} * \mathcal{A}^{D}\right)=\rho_{T}\left(\mathcal{A}^{D} * \mathcal{E}\right)=\max _{i} \rho\left(\left(J_{i}^{1}\right)^{-1} N_{i}^{1}\right) \geq 1,
$$

which is contradictory to (30).
Hence $I+\left(\mathcal{J}_{1}\right)^{-1} * \mathcal{N}_{1}$ is nonsingular. The proof is completed.

Suppose that $\mathcal{E}=\mathcal{A} * \mathcal{A}^{D} * \mathcal{E}$, then

$$
\frac{\left\|\mathcal{B}^{D}-\mathcal{A}^{D}\right\|}{\left\|\mathcal{A}^{D}\right\|} \leq \frac{\left\|\mathcal{A}^{D} * \mathcal{E}\right\|}{1-\left\|\mathcal{A}^{D} * \mathcal{E}\right\|}+\sum_{s=0}^{k-1} \frac{\mathcal{K}_{D}(\mathcal{A})^{s+1}}{\left(1-\left\|\mathcal{A}^{D} * \mathcal{E}\right\|\right)^{s+2}} \frac{\|\mathcal{E}\|}{\|\mathcal{A}\|}\left\|\mathcal{A} * \mathcal{A}^{D}\right\|,
$$

where $\mathcal{K}_{D}(\mathcal{A})=\|\mathcal{A}\|\| \| \mathcal{A}^{D} \|$.
Proof. Since Lemma 4.2, we have

$$
\begin{align*}
\mathcal{B}^{D}-\mathcal{A}^{D} & =-\mathcal{A}^{D} * \mathcal{E} *\left(\mathcal{I}+\mathcal{A}^{D} * \mathcal{E}\right)^{-1} * \mathcal{A}^{D} \\
& +\sum_{s=0}^{k-1}\left(\mathcal{A}^{D}-\mathcal{A}^{D} * \mathcal{E} *\left(\mathcal{I}+\mathcal{A}^{D} * \mathcal{E}\right)^{-1} * \mathcal{A}^{D}\right)^{s+2} * \mathcal{E} *\left(\mathcal{I}-\mathcal{A} * \mathcal{A}^{D}\right) * \mathcal{H}^{s}, \tag{31}
\end{align*}
$$

taking norm on both sides of (31) at the same time, then

$$
\begin{aligned}
\left\|\mathcal{B}^{D}-\mathcal{A}^{D}\right\| & \leq\left\|-\mathcal{A}^{D} * \mathcal{E} *\left(\mathcal{I}+\mathcal{A}^{D} * \mathcal{E}\right)^{-1} * \mathcal{A}^{D}\right\| \\
& +\sum_{s=0}^{k-1}\left\|\left(\mathcal{A}^{D}-\mathcal{A}^{D} * \mathcal{E} *\left(\mathcal{I}+\mathcal{A}^{D} * \mathcal{E}\right)^{-1} * \mathcal{A}^{D}\right)^{s+2} * \mathcal{E} *\left(\mathcal{I}-\mathcal{A} * \mathcal{F}^{D}\right) * \mathcal{A}^{s}\right\| \\
& \leq\left\|\mathcal{A}^{D} * \mathcal{E}\right\|\left\|\left(\mathcal{I}+\mathcal{A}^{D} * \mathcal{E}\right)^{-1}\right\|\left\|\mathcal{A}^{D}\right\| \\
& +\sum_{s=0}^{k-1}\left(\left\|\mathcal{A}^{D}\right\|+\left\|\mathcal{A}^{D} * \mathcal{E}\right\|\left\|\left(\mathcal{I}+\mathcal{A}^{D} * \mathcal{E}\right)^{-1}\right\|\left\|\mathcal{A}^{D}\right\|\right)^{s+2}\|\mathcal{E}\|\left\|\left(\mathcal{I}-\mathcal{A} * \mathcal{A}^{D}\right)\right\|\|\mathcal{A}\|^{s},
\end{aligned}
$$

by Theorem 2.1, we have

$$
\begin{aligned}
\left\|\mathcal{B}^{D}-\mathcal{A}^{D}\right\| & \leq\left\|\mathcal{A}^{D} * \mathcal{E}\right\| \frac{1}{1-\left\|\mathcal{A}^{D} * \mathcal{E}\right\|}\left\|\mathcal{A}^{D}\right\| \\
& +\sum_{s=0}^{k-1}\left(\left\|\mathcal{A}^{D}\right\|+\left\|\mathcal{A}^{D} * \mathcal{E}\right\| \frac{1}{1-\left\|\mathcal{A}^{D} * \mathcal{E}\right\|}\left\|\mathcal{A}^{D}\right\|\right)^{s+2}\|\mathcal{E}\|\left\|\mathcal{A} * \mathcal{A}^{D}\right\|\|\mathcal{A}\|^{s} \\
& =\left\|\mathcal{A}^{D} * \mathcal{E}\right\| \frac{1}{1-\left\|\mathcal{A}^{D} * \mathcal{E}\right\|}\left\|\mathcal{A}^{D}\right\| \\
& +\sum_{s=0}^{k-1}\left(\left\|\mathcal{A}^{D}\right\|\right)^{s+2}\left(1+\left\|\mathcal{A}^{D} * \mathcal{E}\right\| \frac{1}{1-\left\|\mathcal{A}^{D} * \mathcal{E}\right\|}\right)^{s+2}\|\mathcal{E}\|\left\|\mathcal{A} * \mathcal{A}^{D}\right\|\|\mathcal{A}\|^{s},
\end{aligned}
$$

that is

$$
\begin{align*}
\left\|\mathcal{B}^{D}-\mathcal{A}^{D}\right\| & \leq\left\|\mathcal{A}^{D} * \mathcal{E}\right\| \frac{1}{1-\left\|\mathcal{A}^{D} * \mathcal{E}\right\|}\left\|\mathcal{A}^{D}\right\| \\
& +\sum_{s=0}^{k-1}\left(\left\|\mathcal{A}^{D}\right\|\right)^{s+2}\left(1+\left\|\mathcal{A}^{D} * \mathcal{E}\right\| \frac{1}{1-\left\|\mathcal{A}^{D} * \mathcal{E}\right\|}\right)^{s+2}\|\mathcal{E}\|\left\|\mathcal{A} * \mathcal{A}^{D}\right\|\|\mathcal{A}\|^{s}, \tag{32}
\end{align*}
$$

divide $\left\|\mathcal{A}^{D}\right\|$ on both sides of (32) at the same time, we obtain

$$
\begin{aligned}
\frac{\left\|\mathcal{B}^{D}-\mathcal{A}^{D}\right\|}{\left\|\mathcal{A}^{D}\right\|} & \leq\left\|\mathcal{A}^{D} * \mathcal{E}\right\| \frac{1}{1-\left\|\mathcal{A}^{D} * \mathcal{E}\right\|} \\
& +\sum_{s=0}^{k-1}\left(\left\|\mathcal{A}^{D}\right\|\right)^{s+1}\left(1+\left\|\mathcal{A}^{D} * \mathcal{E}\right\| \frac{1}{1-\left\|\mathcal{A}^{D} * \mathcal{E}\right\|}\right)^{s+2}\|\mathcal{E}\|\left\|\mathcal{A} * \mathcal{A}^{D}\right\|\|\mathcal{A}\|^{s} \\
& =\left\|\mathcal{A}^{D} * \mathcal{E}\right\| \frac{1}{1-\left\|\mathcal{A}^{D} * \mathcal{E}\right\|} \\
& +\sum_{s=0}^{k-1}\left(\left\|\mathcal{A}^{D}\right\|\right)^{s+1}\left(\frac{1}{1-\left\|\mathcal{A}^{D} * \mathcal{E}\right\|}\right)^{s+2} \frac{\|\mathcal{E}\|}{\|\mathcal{A}\|}\left\|\mathcal{A} * \mathcal{A}^{D}\right\|\|\mathcal{A}\|^{s}\|\mathcal{A}\| \\
& =\left\|\mathcal{A}^{D} * \mathcal{E}\right\| \frac{1}{1-\left\|\mathcal{A}^{D} * \mathcal{E}\right\|} \\
& +\sum_{s=0}^{k-1}\left(\left\|\mathcal{A}^{D}\right\|\right)^{s+1}(\|\mathcal{A}\|)^{s+1}\left(\frac{1}{1-\left\|\mathcal{A}^{D} * \mathcal{E}\right\|}\right)^{s+2} \frac{\|\mathcal{E}\|}{\|\mathcal{A}\|}\left\|\mathcal{A} * \mathcal{A}^{D}\right\| \\
& =\frac{\left\|\mathcal{A}^{D} * \mathcal{E}\right\|}{1-\left\|\mathcal{A}^{D} * \mathcal{E}\right\|}+\sum_{s=0}^{k-1} \frac{\mathcal{K}_{D}(\mathcal{A})^{s+1}}{\left(1-\left\|\mathcal{A}^{D} * \mathcal{E}\right\|\right)^{s+2}} \frac{\|\mathcal{E}\|}{\|\mathcal{F}\|}\left\|\mathcal{A} * \mathcal{A}^{D}\right\|
\end{aligned}
$$

where $\mathcal{K}_{D}(\mathcal{A})^{s+1}=\left(\|\mathcal{A} \mid\|\left\|\mathcal{A}^{D}\right\|\right)^{s+1}$. The proof is completed.

References

[1] S. Campbell and C. Meyer. Generalized Inverse of Linear Transformations. London, Pitman 1979.
[2] R. Chan and X. Jin. An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia, 2007.
[3] M. Che and Y. Wei. Randomized algorithms for the approximations of Tucker and the tensors train decompositions, Adv. Comput. Math., 45(2019), 395-428.
[4] M. Che, Y. Wei, and H. Yan. The computation of low multilinear rank approximations of tensors via power scheme and random projection, SIAM.J Matrix Anal. Appl., 41(2020), 605-636.
[5] M. Che and Y. Wei. Theory and Computation of Complex Tensors and its Applications, Springer, Singaproe. 2020.
[6] R. E. Cline and T. N. E. Greville. A Drazin inverse for rectangular matrices, Linear algebra Appl. 29 (1980), 53-62.
[7] D. S. Cvetkovic and Y. Wei, Algebraic Properties of Generalized Inverses. Developments in Mathematics, 52. Springer, Singapore, 2017.
[8] M. P. Drazin. Pseudoinvese in associative rings and semigroups, Amer. Math. Monthly 65 (1958), 506-514.
[9] N. Hao, M. E. Kilmer, K. Braman, and R. C. Hoover. Facial recognition using tensor-tensor decompositions. SIAM J. Imaging Sci. 6 (2013), 437-463.
[10] J. Ji and Y. Wei. The Drazin inverse of an even-order tensor and its application to singular tensor equations. Comput. Math. Appl. 75 (2018), 3402-3413.
[11] M. E. Kilmer, K. Braman, N. Hao, and R. C. Hoover. Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 34 (2013), 148-172.
[12] M. E Kilmer and C. D. Martin. Factorization strategies for third-order tensors. Linear Algebra Appl. 435 (2011), 641-658.
[13] C.F. King. A note on Drazin inverse, Pacific J. Math. 70 (1977), 383-390.
[14] K. Lund, The tensor t-function: a definition for functions of third-order tensors. Numer. Linear Algebra Appl. 2020 , e2288.
[15] H. Ma, N. Li, P. S. Stanimirovic, and V. Katsikis. Perturbation theory for Moore-Penrose inverse of tensor via Einstein product, Comp. Appl. Math. 38 (2019), Art 111.
[16] C. D. Matin, R. Shafer, and B. Latue. An order-p tensor factorization with applications in imaging, SIAM J. Sci. Comput. 35 (2013), A474-A490.
[17] Y. Miao, L. Qi, and Y. Wei. T-Jordan canonical form and T-Drazin inverse based on the T-Product. arXiv: $1902.07024 \mathrm{v} 1,2019$. Commun. Appl. Math. Comput. 3(2021), 201-220.
[18] Y. Miao, L. Qi, Y. Wei. Generalized tensor function via the tensor singular value decomposition based on the T-product. Linear Algebra Appl. 590 (2020), 258-303.
[19] L. Qi and, Z. Luo. Tensor Analysis: Spectral Theory and Special Tensors, Society of Industrial and Applied Mathematics, Philadelphia. 2017.
[20] S. Qiao, X. Wang and Y. Wei, Two finite-time convergent Zhang neural network models for time-varying complex matrix Drazin inverse, Linear Algebra Appl. 542 (2018), 101-117.
[21] S. Qiao and Y.Wei, Acute perturbation of Drazin inverse and oblique projectors, Front. Math. China, 13 (2018), 1427-1445.
[22] J. K. Sahoo, R. Behera, P. S. Stanimirovic, V. N. Katsikis and H. Ma. Core and core-EP inverses of tensors, Comput. Appl. Math. 39 (2020), no.1, Art 9, 28 pp.
[23] S. Soltani, M. E. Kilmer, and P. C. Hansen. A tensor-based dictionary learning approach to tomo-graphic image reconstruction, BIT Numerical Mathematics. 56 (2016), 1425-1454.
[24] L. Sun, B. Zheng, Y. Wei and C. Bu, Generalized inverses of tensors via a general product of tensors, Front. Math. China. 13 (2018), 893-911.
[25] G. Wang, Y. Wei, and S. Qiao, Generalized Inverses: Theory and Computations, Developments in Mathematics 53. Singapore: Springer; Beijing: Science Press, 2018.
[26] X. Wang, M. Che and Y. Wei, Tensor neural network models for tensor singular value decompositions, Comput. Optim. Appl. 75 (2020), 753-777.
[27] Y. Wei, X. Li, and F. Bu, A pertubation bound of the Drazin inverse of a matrix by separation of simple invariant subspaces, SIAM J. Matrix Anal. Appl. 27 (2005), 72-81.
[28] Y. Wei, G. Wang. The Perturbation Theory for the Drazin Inverse and its Applications, Linear Algebra Appl. 258 (1997), 179-186.
[29] Y. Wei. A characterization and representation of the Drazin inverse, SIAM J. Matrix Anal. Appl. 17 (1996), 744-747.
[30] Y. Wei. Index splitting for the Drazin inverse and the sigular linear system, Appl. Math. Comput. 108 (2000), 115-124.
[31] Y. Wei. The Drazin inverse of updating of a square matrix with application to perturbation formula, Appl. Math. Comput. 108 (2000), 77-83.
[32] Y. Wei and W. Ding, Theory and Computation of Tensors: Multi-Dimensional Arrays, Academic Press, New York, 2016.
[33] Y. Wei and X. Li, An improvement on perturbation bounds for the Drazin inverse, Numer. Linear Algebra Appl., 10 (2003), 563-575.
[34] Y. Wei and H. Wu, Challenging problems on the perturbation of Drazin inverse, Annals of Operations Research, 103 (2001), 371-378.
[35] Y. Wei, P. S. Stanimirović and M. D. Petković, Numerical and Symbolic Computations of Generalized Inverses, World Scientific Publishing Co. Pte. Ltd., Singapore, 2018.
[36] Z. Xie, X. Jin and Y. Wei. Tensor methods for solving symmetric M-tensor systems. J. Sci. Comput., 74(2018), 412-425.
[37] Q. Xu, C. Song and Y. Wei, The stable perturbation of the Drazin inverse of the square matrices, SIAM J. Matrix Anal. Appl., 31 (2009), 1507-1520.
[38] P. Zhou, C. Lu, Z. Lin, and C. Zhang. Tensor factorization for low-rank tensor completion, IEEE Trans. Image Process. 27 (2018), 1152-1163.

[^0]: 2010 Mathematics Subject Classification. Primary 15A09; Secondary 65F20.
 Keywords. perturbation, T-Drazin inverse, T-product, tensor.
 Received: 21 April 2020; Accepted: 08 May 2020
 Communicated by Yimin Wei
 Corresponding author: Hai-feng Ma
 Research supported by the National Natural Science Foundation of China under grant 11971136, the bilateral project between China and Poland (no.37-18), and Innovative Research Project for Postgraduate Students of Harbin Normal University (no. HSDSSCX201934).

 Email addresses: 994998246@qq.com (Ying-nan Cui), haifengma@aliyun.com (Hai-feng Ma)

