
Filomat 35:5 (2021), 1465–1475
https://doi.org/10.2298/FIL2105465L

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. The present paper deals with the approximation properties for exponential functions of general
Durrmeyer type operators having the weights of Szász basis functions. Here we give explicit expressions
for exponential type moments by means of which we establish, for the derivatives of the operators, the
Voronovskaja formulas for functions of exponential growth and the corresponding weighted quantitative
estimates for the remainder in simultaneous approximation.

1. Introduction

For a function f : [0,∞)→ R and x ∈ [0,∞), the well-known Szász operators are defined by

Sn f (x) =

∞∑
i=0

φn,i(x) f
( i

n

)
, (1)

where φn,i(x) = e−nx (nx)i

i! . If f is integrable we can consider the Durrmeyer modification of these operators
introduced by Mazhat-Totik [15] given by

Mn f (x) = n
∞∑

i=0

φn,i(x)
∫
∞

0
φn,i(z) f (z)dz.

As it can be seen in [14], the Szász operators, Sn, are a particular case of the generalized Baskakov or
Mastroianni sequences and also in that paper [14, Proposition 3] it is proved that such a family of operators
exhibits a special behavior for exponencial functions and moments. In the same way we find in the literature
[1–3, 5–7, 9–13, 17] several generalized Durrmeyer sequences that include the modification Mn of the Szász
operators. For Durrmeyer type operators not all the members of these families present convergence for
exponential functions as in the discrete case [14]. However we will have a subclass whose domains include
exponential functions being Mn the paradigm example of this special subset.
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When we have convergence for exponential functions it is indicated to analyze the approximation
properties by means of weighted norms and moduli and our main aim is to study certain exponential
moments as a tool to extend to the exponential setting some recent results to estimate the remainder of
Voronovskaja formulas. Thereby, in this paper we show explicit formulas for exponential type moments for a
subclass of Durrmeyer type operators that presents convergence for exponential functions. As applications,
first, we can extend already known simultaneous approximation Voronovskaja formulas to functions of
exponential growth, and second, we give quantitative estimates for the remainder of these asymptotic
formulas by means of suitable weighted modulus of continuity; finally with our main result we can offer
a description of the remainder for all the derivatives of the Durrmeyer-Sazsz operators Mn. Although we
find along the last years several works about quantitative estimates of the remainder, as far as we know,
this is the first one that deals with simultaneous approximation in weighted spaces.

For this purpose we are going to employ the generalized sequence investigated in [13] defined in the
following fashion: for n, α ∈ R and the parameters a ∈ R, b ∈ Z, we consider the functions

φ[α]
n (x) =

(1 + αx)−
n
α , if α , 0,

e−nx, if α = 0
with x ∈ H[α] =

[0,∞), if α ≥ 0,
[0,− 1

α ], if α < 0

and, for i ∈N0 = {0, 1, 2, . . .},

φ[α]
n,i (x) =

(−1)i

i!
xiDiφ[α]

n (x), C[α]
n =

∫
H
φ[α]

n (z)dz =
1

n − α
.

Then, for α1, α2 ∈ R and a locally integrable function f : H[α2]
→ R, we define the Baskakov generalized

Durrmeyer operators as

Dn,a,b f (x) =
1

C[α2]
n+a

∞∑
i=max{0,−b}

φ[α1]
n,i (x)

∫
H[α2]

φ[α2]
n+a,i+b(z) f (z)dz. (2)

For several details about this definition we refer the readers to [13]; we only mention now that these
operators are positive on the interval H[α1]. Here the main point lyes in the fact that we can recover the
Durrmeyer-Szász operator as

Mn = Dn,0,0, for α1 = α2 = 0,

and, moreover, the differentiation formulas that we find in [13] provide a very convenient method to study
the derivatives of Mn since we can translate the results forDn,a,b into simultaneous approximation properties
for Mn.

With the definitions above, depending on α2, the function φ[α2]
n+a,i+b(t) could be polynomial or rational and

then the integral is not convergent when f is an exponential function. Therefore, as we announced before,
the exponential functions do not belong to the domain of the operators of the family in the general case; only,
for α2 = 0, this can be guaranteed and, in particular, for α1 = α2 = 0, that is to say for the Szász-Durrmeyer
operators. Accordingly, from now on we will asume α2 = 0 which will include both Durrmeyer-Szász and
hybrid operators with Szász basis inside the integral. Besides, as differentiation formulas in [13] are valid
for positive b we will also take b ∈N0 for the rest of the paper.

Notice that throughout this work, t denotes the identity map t : [0,∞) 3 x 7→ t(x) = x ∈ [0,∞) meanwhile
x is a general fixed point of [0,∞). Therefore we will use t to write functional expressions and x for pointwise
formulas. Moreover, for any operator L : E1 ⊆ R[0,∞)

→ E2 ⊆ R[0,∞) and f ∈ E1, L( f ) or L f stand for the
image function for f and L( f )(x) or L f (x) is the evaluation of such a function at x. Moreover we will use
the following notation for ascending/descending factorial and generalized factorial numbers:

xn = x(x − 1) · · · (x − n + 1), xn = x(x + 1) · · · (x + n − 1),
xα,n = x(x − α) · · · (x − (n − 1)α), xα,n = x(x + α) · · · (x + (n − 1)α).
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2. Exponential type moments

In [14, Proposition 3] it is proved that the interpolatory generalized operators of Baskakov-Mastroianni,
Ln, under suitable conditions, present for certain type of exponential moments a behavior similar to the one
that is known for classical polynomials for which

Ln ((t − x)m) (x) = O
(
n−[

m+1
2 ]

)
, m ∈N0; (3)

actually (3) is satisfied by most of the classical linear positive operators and as a matter of fact also byDn,a,b
as we can see in [13, Theorem 3-ii)]. In [14] we can see that (3) holds for exponential moments of the type
Ln

(
(et
− ex)m)

(x) as well. Here we are going to analyze the central moments Dn,a,b

(
(t − x)meβt

)
(x). In this

section, we will start with explicit expressions for the momentDn,a,b

(
tseβt

)
(x) to end with a (3)-like identity

for the central ones.
Let us fix an exponential coefficient β > 0 and take a point x ∈ H[α1]. Notice also that if we replace in (1)

φn,i(x) with φ[α]
n,i (x) we obtain the definition of Ln.

Lemma 2.1. Dn,a,b(eβt)(x) =

(
n + a

n + a − β

)b+1

φ[α1]
n

(
−βx

n + a − β

)
.

Proof. For any B > 0, it is straightforward that∫
∞

0
zieBzdz =

(−1)i+1i!
Bi+1

and therefore ∫
∞

0
φ[0]

n,i (z)eβzdz =

∫
∞

0

zini

i!
e(β−n)zdz =

ni

i!
(−1)i+1i!
(β − n)i+1

=
1

n − β
e

i
n log

((
n

n−β

)n)
.

In this way, considering this formula for displaced indexes n + a, i + b instead of n, i, and inserting it in the
definition ofDn,a,b, we have

Dn,a,b(eβt)(x) = (n + a)
∞∑

i=0

φ[α1]
n,i (x)

1
n + a − β

e
i+b
n+a log

((
n+a

n+a−β

)n+a
)

=

(
n + a

n + a − β

)b+1 ∞∑
i=0

φ[α1]
n,i (x)e

i
n log

((
n+a

n+a−β

)n)

=

(
n + a

n + a − β

)b+1

Ln

(
et log

((
n+a

n+a−β

)n))
(x),

where Ln are the Baskakov/Mastroianni operators as defined in [14] for α = α1. Now by [14, equation (6)],
for r = 0 and k = log

((
n+a

n+a−β

)n)
, we have that

Ln

(
et log

((
n+a

n+a−β

)n))
(x) = φ[α1]

n

(
x
(
1 − e

1
n log

((
n+a

n+a−β

)n)))
from which we conclude the proof.

Theorem 2.2. For s ∈N0,

Dn,a,b

(
tseβt

)
(x) = s!

(
n + a

n + a − β

)b+1 (
n + a − (1 + α1x)β

n + a − β

)− n
α1

×

s∑
j=0

(n + a) jnα1, jx j

j!(n + a − β)s (n + a − (1 + α1x)β
) j

s∑
r= j

(
s + b − r

b

)(
r − 1
j − 1

)
. (4)
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Proof. Since e(β+θ)t =
∑
∞

s=0 eβtts θs

s! , applying the moments generating functions technique, we deduce that
Dn,a,b

(
tseβt

)
(x) = ds

dθs |θ=0Dn,a,b

(
e(β+θ)t

)
(x). By Lemma 2.1,

Dn,a,b

(
e(β+θ)t

)
(x) =

(
n + a

n + a − β − θ

)b+1

φ[α1]
n

(
−(β + θ)x

n + a − β − θ

)
.

Let us suppose that α1 , 0 and therefore φ[α1]
n (x) = (1 + α1x)−

n
α1 . In that case, since

1 + α1
−(β + θ)x

n + a − β − θ
=

n + a − (1 + α1x)β
n + a − β

(
1 −

(n + a)α1x
n + a − (1 + α1x)β

·
θ

n + a − β − θ

)
we have that

Dn,a,b

(
e(β+θ)t

)
(x) =

(
n + a

n + a − β − θ

)b+1

︸                 ︷︷                 ︸
(∗)

(
n + a − (1 + α1x)β

n + a − β

)− n
α1

×

(
1 −

(n + a)α1x
n + a − (1 + α1x)β

·
θ

n + a − β − θ

)− n
α1

︸                                                 ︷︷                                                 ︸
(∗∗)

. (5)

The McLaurin expansion (1 + z)γ =
∑
∞

r=0
γr

r! zr allows us to write

(∗) =

(
n + a

n + a − β

)b+1
 1

1 − θ
n+a−β


b+1

=

(
n + a

n + a − β

)b+1 ∞∑
s̄=0

(
s̄ + b

b

) (
θ

n + a − β

)s̄

,

(∗∗) =

∞∑
j=0

(
−

n
α1

) j

j!
(−1) j

(
(n + a)α1x

n + a − (1 + α1x)β

) j
 θ

n+a−β

1 − θ
n+a−β


j

=

∞∑
j=0

(n)α1, j

j!

(
(n + a)x

n + a − (1 + α1x)β

) j ∞∑
r= j

(
r − 1
j − 1

) (
θ

n + a − β

)r

.

If we place these two identities in (5), we group the powers of θ, rearrange the order of the sums and make
the change of indexes s = s̄ + r, we obtain the expansion ofDn,a,b

(
e(β+θ)t

)
(x) in powers of θ that finally yields

the result. The case α1 = 0 can be proved following the same steps.

We would like to indicate that the case α1 = 0 is included in the expression of the theorem by taking
into account that

lim
α1→0

(
n + a − (1 + α1x)β

n + a − β

)− n
α1

= e
nβx

n+a−β

and therefore we have

Dn,a,b

(
tseβt

)
(x) = s!

(
n + a

n + a − β

)b+1

e
nβx

n+a−β

s∑
j=0

(n + a) jn jx j

j!(n + a − β)s+ j

s∑
r= j

(
s + b − r

b

)(
r − 1
j − 1

)
.

In particular, if we also have a = b = 0, it is straightforward that this last formula simplifies to

Mn

(
tseβt

)
(x) = s!

n
(n − β)s+1 e

nβx
n−β

s∑
j=0

(
s
j

)
1
j!

(
n2x

n − β

) j

.

Identity (3) also holds in this setting in the following terms.
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Corollary 2.3. Dn,a,b

(
(t − x)meβt

)
(x) = Ox

(
n−[

m+1
2 ]

)
, m ∈N0.

Proof. In (4), it is straightforward that

lim
n→∞

(
n + a

n + a − β

)b+1 (
n + a − (1 + α1x)β

n + a − β

)− n
α1

= eβx.

If we call Cb,s, j =
∑s

r= j
(s+b−r

b
)(r−1

j−1
)
, we use Newton’s binomial formula and we take common denominator for

the powers of n + a − β, then (4) has the form

Dn,a,b

(
(t − x)meβt

)
(x) =

eβxO(1)
(n + a − β)m

m∑
s=0

(
m
s

)
s!(−x)m−s

s∑
j=0

(n + a − β)m−s(n + a) jnα1, jx jCb,s, j

j!
(
n + a − (1 + α1x)β

) j .

We can express (n + a − β)m−s(n + a) jnα1, j in terms of the basis
(
n + a − (1 + α1x)β

)i, i = 0, . . . , 2m, in such a
way that, for certain polynomials qσ(x), σ = −m, . . . ,m, we can write

Dn,a,b

(
(t − x)meβt

)
(x) = eβxO(1)

1
(n + a − β)m

m∑
σ=−m

(
n + a − (1 + α1x)β

)σ qσ(x). (6)

On the other hand, sinceDn,a,b is a linear positive operator, by means of a Schwartz type inequality and [13,
Theorem 3-ii)] we have∣∣∣∣Dn,a,b

(
(t − x)meβt

)∣∣∣∣ ≤ (
Dn,a,b

(
(t − x)2m

)) 1
2
(
Dn,a,b

(
e2βt

)) 1
2

≤ Ox(n−
m
2 )

(
n + a

n + a − 2β

) b+1
2

(
1 + α1

−2βx
n + a − 2β

)− n
2α1

= Ox(n−
m
2 ).

But then, in (6), qm(x) = qm−1(x) = · · · = qm−[ m−1
2 ] = 0 which implies the result.

In particular, we can give the following expression for the second order exponential moment:

Dn,a,b

(
(t − x)2eβt

)
(x) =

(
n + a

n + a − β

)b+1 (
n + a − (1 + α1x)β

n + a − β

)− n
α1 (

B0 + B1x + B2x2
)

(7)

for

B0 =
(b + 1)(b + 2)
(a − β + n)2 , B1 =

(
2(b + 2)n(a + n)

(a − β + n)2 (
a − β (α1x + 1) + n

) − 2(b + 1)
a − β + n

)
,

B2 =
α1n

(n + a − (1 + α1x)β)2 +
p1(x)

(n + a − (1 + α1x)β)2 +
p2(x)

(n + a − β)(n + a − (1 + α1x)β)2

+
(a − β)β2(a − β − α1)

(n + a − β)2(n + a − (1 + α1x)β)2 ,

where p1(x) = β2α2
1x2+α1(4β2

−2aβ)x+(a−2β)2+2βα1 and p2(x) = 2α1(β3
−aβ2)x+2a2β−6aβ2+4β3

−2aβα1+3β2α1.

It will be necessary in the following section to consider the polynomial central moments for which we
will use the notation

µa,b
n,m(x) = Dn,a,b ((t − x)m) (x).

From [13, Theorem 2-iii)], for the second order moment we can obtain the expression

µa,b
n,2(x) =

(b + 2)(b + 1)
(n + a)2︸          ︷︷          ︸

B̃0

+
2n − 2a(b + 1)

(n + a)2︸           ︷︷           ︸
B̃1

x +
α1n + a2

(n + a)2 x2. (8)
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In particular, for the Sász operators we have α1 = α2 = a = b = 0 but in order to consider later higher
order derivatives we will let b ≥ 0 and then formulas (7) and (8) simplify to

Dn,0,b

(
(t − x)2eβt

)
(x) =

(
n

n − β

)b+1

e
nβx
n−β

 (b + 1)(b + 2)
(n − β)2 + 2

(
(b + 2)n2

(n − β)3 −
b + 1
n − β

)
x +

4β2
(
n − β

2

)2

(n − β)4 x2

 (9)

and

µ0,b
n,2(x) =

(b + 2)(b + 1)
n2 +

2
n

x, (10)

where we can also observe the corresponding simplified forms for coefficients Bi, B̃i, i = 0, 1, 2.

3. Applications

3.1. Voronovskaja formulas for functions of exponential growth
In [13] we find several results of simultaneous asymptotic approximation for generalized Durrmeyer

operators. These results are valid for functions of polynomial growth but here, for the case α2 = 0, a
modification of the proofs in [13] is necessary to cover the exponential growth functions case. Thus, our
next theorem is the corresponding extension of theorems 11 and 12 in [13].

Along the rest of the paper we fix a differentiation order k ∈ N0 for which we are going to obtain
formulas and inequalities.

Theorem 3.1. For f a locally integrable function of exponential growth on [0,∞), k + 2 times differentiable at
x ∈ H[α1],

lim
n→∞

n
(

(n + a)k

nα1,k
DkDn,a,b f (x) −Dk f (x)

)
= Aa,b,α1,k f (x)

and
lim
n→∞

n
(
DkDn,a,b f (x) −Dk f (x)

)
= Ba,b,α1,k f (x),

where

Aa,b,α1,k f (x) = ((−a + kα1)x + b + k + 1)Dk+1 f (x) + x(1 +
α1

2
x)Dk+2 f (x),

Ba,b,α1,k f (x) = Dk [(b − (a + α1)t) D f
]

(x) + Dk+1
[
t
(
1 +

α1

2
t
)

D f
]

(x)

are the differential operators that we find in the Voronovskaja formulas of theorems 11 and 12 of [13].

Proof. If f is k + 2 times differentiable at x, there exists J = (x − ε, x + ε)∩ [0,∞), 0 < ε, such that f ∈ Ck(J). It
is immediate that we can consider J1 = (x − ε1, x + ε1) ∩ [0,∞), 0 < ε1 < ε, and a function f̃ ∈ Ck[0,∞) such
that f |J1 = f̃ |J1 and f̃ |[0,∞)−J = 0. Then, as f is of exponential growth, for any m ∈ N we can assume that for
certain Km > 0,

| f − f̃ | ≤ Km(t − x)2meβt

which implies that ∣∣∣Dn,a,b f (x) −Dn,a,b f̃ (x)
∣∣∣ ≤ KmDn,a,b

(
(t − x)2meβt

)
(x) = O(n−m).

Therefore,

Dn,a,b f (x) −Dn,a,b f̃ (x) = O(n−m), ∀m ∈N. (11)

But f̃ is of polynomial growth and all its derivatives at x coincide with the ones of f and hence theorems 11
and 12 in [13] applied to f̃ along with (11) give us the result.
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3.2. Weighted quantitative estimates for the remainder

Several recent papers show estimates of the remainder of Voronovskaja type formulas. In [16] (see also
the comments in [8]), Gupta et al. extend already known results in the topic to the case of functions of
exponential growth in the interval [0,∞) establishing quantitative expressions in terms of the modulus of
continuity with exponential weight defined as

ω1( f , δ, β) = sup
h≤δ,0≤x<∞

| f (x) − f (x + h)|e−βx.

They also consider the spaces Lip(α, β), 0 < α ≤ 1, that consist of all function such that ω1( f , δ, β) ≤Mδα for
all δ < 1. With this notation they establish the following theorem.

Theorem A ([16, Theorem 1.1]) Let E be a subspace of C[0,∞) which contains all continuous functions with
exponential growth and let Ln : E → C[0,∞) be a sequence of linear positive operators preserving the linear
functions. We suppose that for each constant β > 0 and fixed x ∈ [0,∞) the operators Ln satisfy

Ln

(
(t − x)2eβt

)
(x) ≤ C(β, x) · µLn,2(x), (12)

where C(β, x) is some function depending on β and x, and we denote
µLn,2(x) = Ln

(
(t − x)2

)
(x).

If in addition f ∈ C2[0,∞) ∩ E and f ′′ ∈ Lip(α, β), 0 < α ≤ 1, then we have, for x ∈ [0,∞),

∣∣∣∣∣Ln f (x) − f (x) −
1
2

f ′′(x)µLn,2(x)
∣∣∣∣∣ ≤

e2βx +
C(β, x)

2
+

√
C(2β, x)

2

 · µLn,2(x) · ω1

 f ′′,

√√√
µLn,4(x)

µLn,2(x)
, β

 .
Several comments can be made about this result:

1. Although it is assumed that f ′′ ∈ Lip(α, β), the theorem also holds for any function for which
ω1( f ′′, h, β) is defined for h ≥ 0.

2. We can see that in Theorem A it is supposed that the operators of the sequence preserve linear
functions. However this restriction is not essential and the original proof [16] remains valid for a
general sequence of linear positive operators if we replace inside the absolute value in the left hand
side of the final inequality − f (x) with the terms −µLn,0(x) f (x) − µLn,1(x) f ′(x) that in the case of linear
preservation simplify to the inequality showed in Theorem A.

3. After a detailed examination of the proof of Theorem A in [16] it is evident that it is enough that
(12) holds for n > N(x). Actually, the constant C(β, x) can be replaced by an expression C(β, x,n) also
depending on n. As a matter of fact, in the theorem we could take as a valid definition for C(β, x,n)
the following one,

C(β, x,n) =
Ln

(
(t − x)2eβt

)
(x)

µLn,2(x)
,

or, of course, any bound of this expression.

We want to apply this result to study the generalized Durrmeyer operators defined above and at the
end to offer inequalities for the remainder of the Százs-Durrmeyer operators in the Voronovskaja formulas
displayed before. These asymptotic expressions of the last subsection are valid for all the derivatives and
accordingly we want to obtain simultaneous approximation estimates. The main tool to deal with all the
derivatives is the differentiation formula [13, Theorem 2-(i)]

DkDn,a,b f =
nα1,k

(n + a − 2α2)α2,k
Dn+kα1,a−k(α1+α2),b+k(Dk f ) (13)
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that transforms the derivatives of Dn,a,b into linear modifications of the parameters a, b (similar technique
is applied in [4]).

First of all, as we intend to study the convergence for functions of exponential growth we will consider
α1 ≥ 0 since otherwise the positiveness interval H[α1] = [0,− 1

α1
) is finite and the use of exponential weights

makes no sense. Therefore, from now on we assume α1 ≥ 0.

The key point to apply Theorem A is to check that Dn,a,b verifies (12) and to estimate the involved
constants. For this purpose let us consider, for any d1, d2 ∈ R, the constant Kd1,d2 = max{1, |d2 − d1 + 1|} for
which it is immediate that

∣∣∣ n−d1
n−d2

∣∣∣ ≤ Kd1,d2 for natural n ≥ d2 + 1.
On the one hand, in (7), the first factor of the expression can be easily bounded by Kb+1

−a,β−a, for n ≥ β−a+1.
If we also have n > (1 + α1x)β − a, for the second factor, as log z ≤ z − 1, for any z ∈ R+, we have(

n + a − (1 + α1x)β
n + a − β

)− n
α1

= e
n
α1

log
(

n+a−β
n+a−(1+α1x)β

)
≤ e

n
n+a−(1+α1x)β βx

= eβxe
(1+α1x)β−a

n+a−(1+α1x)β βx
≤ eβx+1, (14)

for (1+α1x)β−a
n+a−(1+α1x)ββx ≤ 1 or, in other words, n ≥ ((1 + α1x)β − a)(1 + βx).
On the other hand, for the coefficients Bi, i = 1, 2, 3, we can bound as it follows: It is straightforward

that, for n ≥ β − a + 1,
B0 ≤ K2

−a,β−aB̃0 = (β + 1)2︸  ︷︷  ︸
=C0

B̃0

and

B1 ≤

(
(b + 2)K2

−a,β−aK−a,a(b+1)K0,(1+α1x)β−a + (b + 1)K−a,β−aK−a,a(b+1)

)
B̃1,

≤ (b + 2)K−a,β−aK−a,a(b+1)

(
K−a,β−aK0,(1+α1x)β−a + 1

)
B̃1,

= (b + 2)(β + 1)K−a,a(b+1)

(
(β + 1)K0,(1+α1x)β−a + 1

)
︸                                                     ︷︷                                                     ︸

=C1

B̃1, (15)

for n ≥ max{β − a, a(b + 1), (1 + α1x)β − a} + 1. In the case of B2,∣∣∣B2x2
∣∣∣ ≤ xK2

−a,β(1+α1x)−a

(
α1

2
K0,a(b+1)

+
|p1(x)|

2(n − a(b + 1))
+

|p2(x)|
2(n + a − β)(n − a(b + 1))

+
|(a − β)β2(a − β − α1)|

(n + a − β)2(n − a(b + 1))

)
B̃1x.

Of course, the restrictions on n imply that we can remove the denominators in the fractions above and in
this last inequality we can consider the more simple constant

C2 =
x
2

(β(1 + α1x) + 1)2
(
α1K0,a(b+1) + |p1(x)| + |p2(x)| + |(a − β)β2(a − β − α1)|

)
.

Accordingly, from (7), for n > N(a, b, β, x) = max{((1 + α1x)β − a)(1 + βx), β − a, a(b + 1), (1 + α1x)β − a} + 1,
we obtain

Dn,a,b

(
(t − x)2eβt

)
(x) ≤ C(a, b, β, x)µa,b

n,2(x), (16)

with C(a, b, β, x) = (β + 1)b+1eβx+1(C0 + C1 + C2).

These computations and Theorem A lead us to the following result.
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Theorem 3.2. Let f ∈ Ck+2[0,∞) be such that |Dk f | ≤ Keβt for certain K ≥ 0. Then, with C(a, b, β, x) and N(a, b, β, x)
as given before, we have for n > N(a − kα1, b + k, β, x) − kα1 and x ∈ [0,∞) that∣∣∣∣∣∣Nα2,k

nα1,k
DkDn,a,b f (x) −Dk f (x) −

1
n
Aa,b,α1,k f (x)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣e2βx +
C(β, x)

2
+

√
C(2β, x)

2

∣∣∣∣∣∣∣µa−kα1,b+k
n+kα1,2

(x) · ω1

Dk+2 f ,

√√√
µa−kα1,b+k

n+kα1,4
(x)

µa−kα1,b+k
n+kα1,2

(x)
, β

 ,
where we write C(β, x) = C(a − kα1, b + k, β, x) for short.

Proof. We only need to use (13) and to apply Theorem A for the operator
Dn+kα1,a−kα1,b+k. Condition (12) of Theorem A is guaranteed by (16).

From this theorem it is also possible to obtain an estimate of the remainder of the Voronovskaja formula
(3.1), that is to say of [13, Theorem 12], in the following way: For the Stirling numbers of the second kind it
is known that {

n
n

}
= 1,

{
n

n − 1

}
=

n(n − 1)
2

and
{

n
n − 2

}
=

1
24

n(n − 1)(n − 2)(3n − 5)

and then we can deduce that

1 −
Nα2,k

nα1,k
= 1 −

(n + a)k

nα1,k

= −(ka −
k(k − 1)

2
α1)

1
n
−

1
24

k(k − 1)(12a2
− 12kα1a + (3k2 + k − 2)α2

1)
1

n(n + α1)

+O
(

1
n(n + α1)(n + 2α1)

)
. (17)

As we can write

DkDn,a,b f (x) −Dk f (x) =
nα1,k

Nα2,k

(
Nα2,k

nα1,k
DkDn,a,b f (x) −Dk f (x) +

(
1 −

Nα2,k

nα1,k

)
Dk f

)
,

with (17) and Theorem 3.2 we have∣∣∣∣∣DkDn,a,b f (x) −Dk f (x) −
1
n
Ba,b,α1,k f

∣∣∣∣∣ ≤ nα1,k

Nα2,k
R(x)

+
nα1,k

Nα2,k

∣∣∣∣∣∣1 − Nα2,k

nα1,k
+

(
ka −

k(k − 1)
2

α1

)
1
n

∣∣∣∣∣∣ ∣∣∣Dk f (x)
∣∣∣ +

∣∣∣∣∣∣ nα1,k

Nα2,k
− 1

∣∣∣∣∣∣ 1
n

∣∣∣Ba,b,α1,k f (x)
∣∣∣ ,

where R(x) denotes the left hand side term of the inequality of Theorem 5. In the last line, it is clear that the
coefficients of

∣∣∣Dk f (x)
∣∣∣ and

∣∣∣Ba,b,α1,k f (x)
∣∣∣ are both of them O(n−2).

The simplified formulas (9) and (10) allow to improve the last theorem and we thus achieve our final
result for the Szász-Durrmeyer operators.

Theorem 3.3. Let f ∈ Ck+2[0,∞) be such that |Dk f | ≤ Keβt for certain K ≥ 0. Then, for n ≥ 1
2 (k + 4)2, β + 1 and

x ∈ [0,∞), we have∣∣∣∣∣∣DkMn f (x) −Dk f (x) −
1
n

Dk+1[tD f ](x)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣e2βx +

C(β, x)
2

+

√
C(2β, x)

2

∣∣∣∣∣∣∣ 2x + 1
n
· ω1

Dk+2 f ,

√
6(x + 1)

n
, β

 ,
where C(β, x) = (β + 1)k+6eβ(β+1)x(5 + 2k + 3

5 x).
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Proof. As α1 = a = 0, it is straightforward that for the constant C1 of (15) we have C1 = (b + 2)(β +

1)
(
(β + 1)2 + 1

)
and that coefficient B2 whose expression we gave along with (7) simplifies to

B2 =
4β2(n − β

2 )2

(n − β)4

and therefore, for n > β, we can also choose a better constant C2 as

B2x2
≤ 2xK2

β
2 ,β

K2
0,ββ

2 2
n2 x ≤ 2x(

β

2
+ 1)2(β + 1)2β

2
n

x ≤
3
5

x(β + 1)5︸      ︷︷      ︸
=C2

2
n

x.

Now,

C0 + C1 + C2 = (β + 1)2 + (b + 2)((β + 1)2 + 1)(β + 1) +
3
5

(β + 1)5x ≤ (1 + 2(b + 2) +
3
5

x)(β + 1)5

and we can obtain the following version of (16),

Dn,0,b

(
(t − x)2eβt

)
(x) ≤ (β + 1)b+6eβx+1(5 + 2b +

3
5

x)µ0,b
n,2(x),

for n > max{β + 1, β(1 + βx)}. However, we want this last restriction on n not to depend on the point x and
for this reason, instead of (14) (from which the restriction n > β(1 + βx) is coming from), we use the estimate

e
nβx
n−β = eβx n

n−β ≤ eβxK0,β ≤ eβ(β+1)x,

which is valid when n ≥ β + 1. In this way we have the alternative inequality

Dn,0,b

(
(t − x)2eβt

)
(x) ≤ (β + 1)b+6eβ(β+1)x(5 + 2b +

3
5

x)µ0,b
n,2(x), for n ≥ β + 1. (18)

Let us estimate now the quotient between the fourth and second polynomial moments that we find
inside the modulus of continuity of the inequality of Theorem 3.2 in our special case α1 = a = 0. From [13,
Theorem 2-iii)]

µ0,b
n,4(x) =

(b + 4)4

n4 +
12(b + 3)2

n3 x +
12
n2 x2.

Then, for n ≥ 1
2 (b + 4)2, we have

6n ≥ (b + 4)2
⇒

(b + 4)4

n4 ≤ 6
(b + 1)(b + 2)

n3 ,

2n ≥ (b + 4)2
≥ 2(b + 3)2

− (b + 1)(b + 2) ⇒
12(b + 3)2

n3 ≤ 6
(b + 1)(b + 2) + 2n

n3

and therefore, with (10),

µ0,b
n,4(x) ≤ 6

(
(b + 1)(b + 2)

n3 +

(
(b + 1)(b + 2)

n3 +
2
n2

)
x +

2
n2 x2

)
=

6(x + 1)
n

µ0,b
n,2(x).

Thus

µ0,b
n,4(x)

µ0,b
n,2(x)

≤
6(x + 1)

n
, for n ≥

1
2

(b + 4)2. (19)

To finish the proof we use again (13) which, for α1 = α2 = a = 0, yields DkMn = DkDn,0,0 = Dn,0,k and we
only need to consider b = k in (18) and (19). We conclude sinceA0,0,0,k f (x) = B0,0,0,k f (x) = Dk+1[tD f ](x).
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