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Abstract. Let R be a ring. An additive mapping F : R→ R is called a generalized derivation if there exists
a derivation d of R such that F(xy) = F(x)y + xd(y) for all x, y ∈ R. The main purpose of this paper is to
characterize some specific classes of generalized derivations of rings. Precisely, we describe the structure of
generalized derivations of noncommutative prime rings with involution that belong to a particular class of
generalized derivations. Consequently, some recent results in this line of investigation have been extended.
Moreover, some suitable examples showing that the assumed hypotheses are crucial, are also given.

1. Introduction

Throughout this article, R denotes an associative ring with Z(R), the centre of R. Let U be the Utumi
quotient ring of R and C the extended centroid of R, we refer the reader to [18], [23] for definitions and
properties of these objects. For any x, y ∈ R, the symbol [x, y] will denote the commutator xy − yx and the
symbol x ◦ y will denote the anti-commutator xy + yx. A ring R is said to be a prime if aRb = {0} (where
a, b ∈ R) implies either a = 0 or b = 0. For some fixed positive integer n, R is called n−torsion free if for any
x ∈ R; nx = 0 implies x = 0. A mapping ∗ : R→ R is called involution of R if it satisfies: (i) (x + y)∗ = x∗ + y∗,
(ii) (x∗)∗ = x, (iii) (xy)∗ = y∗x∗ for all x, y ∈ R.A ring equipped with an involution is called ring with involution.
For any u ∈ C, let us write u = f̂ , where f : U → R and (we may assume) U∗ = U. Define a mapping
1 : U → R by 1(x) = ( f (x∗))∗ for all x ∈ U. Then it is easily seen that u� = 1̂ is an element of C. In this way,
∗ induces an involution u → u� on C. The involution ′∗′ is called involution of the first kind if the involution
� induced on C is the identity mapping. Otherwise, ∗ is involution of the second kind (see [23]). An element
x ∈ R is called symmetric (resp. skew symmetric) element if x∗ = x (resp. x∗ = −x). The set of symmetric
(resp. skew-symmetric) elements in R is denoted by H(R) (resp. S(R)). Therefore, in case ∗ is involution
of the second kind, C contains a nonzero skew-symmetric elements. Note that, if R is 2−torsion free ring,
then for each x ∈ R, we have a unique representation 2x = h + k, where h ∈ H(R) and k ∈ S(R). A ring
R is said to be normal if for each x ∈ R, xx∗ = x∗x. An immediate example of a normal ring is the ring of
quaternions. An additive mapping f of R is called the Lie homomorphism if it preserves the Lie product, i.e.,
f ([x, y]) = [ f (x), f (y)] for all x, y ∈ R. Therefore, it is natural to think about the additive mapping f : R→ R
such that f ([x, x∗]) = [ f (x), f (x∗)] for all x ∈ R. Such a mapping is called the Lie ∗-homomorphism of R.
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Recall that an additive mapping d : R → R is called derivation if d(xy) = d(x)y + xd(y) for all x, y ∈ R.
An immediate example of a derivation is the inner derivation (i.e., a mapping x 7→ [a, x], where a is a fixed
element). By the generalized inner derivation we mean an additive mapping F : R→ R such that for fixed
elements a, b ∈ R, F(x) = ax + xb for all x ∈ R. It is observed that F satisfies the relation F(xy) = F(x)y + xI−b(y)
for all x, y ∈ R,where I−b(y) = [−b, y] is the inner derivation of R associated with the element (−b).Motivated
by these observations, Bres̆ar [9] introduced the notion of generalized derivation. Accordingly, a generalized
derivation F : R → R is an additive mapping which is uniquely determined by a derivation d such that
F(xy) = F(x)y + xd(y) for all x, y ∈ R.

In [17], Herstein proved that if R is a 2−torsion free prime ring and d is a nonzero derivation of R such
that [d(x), d(y)] = 0 for all x, y ∈ R, then R is commutative. Later, Daif [11] extended this result for two
sided ideals of a semiprime rings. In [8], Bell and Rehman extended this classical theorem to the class
of generalized derivations. Recently, Dar and Ali [12] examined this situation on a 2−torsion free prime
ring with involution of the second kind. Precisely, they proved that if R is a 2−torsion free prime ring with
involution of the second kind and d is a nonzero derivation of R such that [d(x), d(x∗)] = 0 for all x ∈ R, then R is
commutative. Motivated by these results, Ali et al. [5] proved that: let R be a noncommutative 2−torsion free
prime ring with involution of the second kind. If R admits a nonzero generalized derivation F : R → R such that
[F(x),F(x∗)] = 0 for all x ∈ R, then R is an order in a central simple algebra of dimension at most 4 over its center and
F(x) = ax + xb for all x ∈ R and for some fixed a, b ∈ U such that a − b ∈ C.

A mapping f : R → R is called commutativity preserving on R if [x, y] = 0 implies [ f (x), f (y)] = 0 for all
x, y ∈ R. More generally, f is called strong commutativity preserving on R if [ f (x), f (y)] = [x, y] for all x, y ∈ R.
In [22], Ma et al. described the possible forms of strong commutativity preserving generalized derivations
acting on ideals and right ideals of prime rings. Further, Ali et al. [4] studied strong commutativity
preserving type derivations in rings with involution. Recently, Dar and Khan [13] proved the following
result in this domain: let R be a noncommutative 2−torsion free prime ring with involution of the second kind. If R
admits a generalized derivation F : R→ R associated with a derivation d : R→ R such that [F(x),F(x∗)]− [x, x∗] = 0
for all x ∈ R, then F(x) = x for all x ∈ R or F(x) = −x for all x ∈ R.

In 1995, Bell and Daif [7] showed that if R is a prime ring admitting a nonzero derivation d such that
d([x, y]) = 0 for all x, y ∈ R, then R is commutative. Ali et al. [3], studied the above mentioned result in the
settings of prime rings with involution by taking x∗ instead of y. Recently, Alahmadi et al. [1] extended
this result to the class of generalized derivations by proving that: let R be a prime ring with involution of the
second kind such that char(R), 2. If R admits a generalized derivation F : R → R such that F([x, x∗]) = 0 for all
x ∈ R, then either F = 0 or R is commutative. Most recently, Idrissi and Oukhtite [19] studied this problem in
more general setting. In fact, they established the following result: let R be a 2−torsion free prime ring with
involution of the second kind. If R admits a nonzero generalized derivation F associated with a derivation d, then R is
commutative if and only if F([x, x∗]) ∈ Z(R) for all x ∈ R.

It is our aim in this paper to study certain classes of ∗-differential identities involving a pair of generalized
derivations of rings. Precisely, we investigate such generalized derivations on noncommutative prime rings
with involution and describe their possible forms. In fact, we extend and unify some recent results proved
by several authors (viz.; [1–3, 5, 6, 13] and references therein).

2. Classification of generalized derivations

Inspired by several results in the literature, our intent in this paper is to study about the behaviour of a
pair of generalized derivations F1 and F2 satisfying the following assertions:

F1([x, y]) = [F2(x),F2(y)] for all x, y ∈ R. (A1)

[F1(x),F2(y)] = [x, y] for all x, y ∈ R. (A2)

F1([x, y]) + [x,F2(y)] + [x, y] ∈ Z(R) for all x, y ∈ R. (A3)

F1([x, y]) + [F2(x), y] + [x, y] ∈ Z(R) for all x, y ∈ R. (A4)

Specifically, our discussion is on the existence of such generalized derivations in noncommutative prime
rings and their possible descriptions. We begin with the following definitions.
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Definition 2.1. Let R be a ring. A mapping F : R → R is said to be a Lie product preserving (in short LPP) if
F([x, y]) = [F(x),F(y)] for all x, y ∈ R. More generally, a pair (F1,F2) of functions F1 : R → R and F2 : R → R is
said to be LPP if it satisfies the condition (A1).

Example 2.2. The following are some routine examples of the pairs that are LPP.

(1) In a commutative ring R, every pair ( f , 1) of functions on R is LPP.
(2) For any a ∈ Z(R), the pair (F1,F2) of mappings F1(x) = a2x and F2(x) = ax for all x ∈ R is LPP.
(3) Let F be a Lie homomorphism of a ring R. Then the pair (F,F) is LPP.

Definition 2.3. Let R be a ring with involution ′∗′. A pair (F1,F2) of functions F1 : R→ R and F2 : R→ R is said
to be ∗ − LPP if F1([x, x∗]) = [F2(x),F2(x∗)] for all x ∈ R.

Remark 2.4. Note that if R is a ring with involution, then every pair of functions of R which is LPP is also ∗ − LPP,
however the converse is not true in general. For example, let R denotes the field of real numbers and R = M2(R),
the ring of 2 × 2 matrices over R. Let the involution ′∗′ be the standard inverse of 2 × 2 matrices and F1 = 1R and
F2 = 0 be the generalized derivations of R associated with derivations d1 = 0 and d2 = 0 respectively. Then we find
that [x, x∗] = 0. Thus (F1,F2) is ∗ − LPP, but not LPP.

Definition 2.5. Let R be a ring. A pair (F1,F2) of functions F1 : R → R and F2 : R → R is said to be strong
commutativity preserving (in short SCP) if it satisfies the condition (A2).

Example 2.6. The following are some routine examples of the pairs that are SCP.

(1) In a ring R, the pair (1R, 1R) of identity mappings on R is SCP.
(2) For any invertible a ∈ Z(R), the pair (F1,F2) of functions F1(x) = ax and F2(x) = a−1x for all x ∈ R is SCP.
(3) If ξ : R→ C, λ ∈ C such that λ2 = 1 and a function f (x) = λx + ξ(x) for all x ∈ R, then the pair ( f , f ) is SCP.

Definition 2.7. Let R be a ring with involution ′∗′. A pair (F1,F2) of functions F1 : R→ R and F2 : R→ R is said
to be ∗ − SCP if [F1(x),F2(x∗)] = [x, x∗] for all x ∈ R.

Remark 2.8. Note that if R is a ring with involution, then every pair of functions of R which is SCP is also ∗ − SCP,
however the converse is not true in general. For example, let R denotes the field of real numbers and R = M2(R), the
ring of 2 × 2 matrices over R. Let the involution ′∗′ be the standard inverse of 2 × 2 matrices and F1 = 1R,F2 = λx,
for all x ∈ R, where 0 , λ ∈ C be the generalized derivations of R associated with derivations d1 = 0 and d2 = 0
respectively. Then we find that (F1,F2) is ∗ − SCP but not SCP.

3. Preliminaries

In order to prove our main results, we shall need the following lemmas.

Lemma 3.1. [2, Lemma 2.1] Let R be a 2−torsion free prime ring with involution of the second kind. If R is normal,
then R is commutative.

Lemma 3.2. [10, Theorem (I)] Let R be a prime ring, ρ a nonzero right ideal of R, d a derivation of R and n a fixed
positive integer. If d(u)un = 0 for all u ∈ ρ, then d(ρ)ρ = {0}.

Lemma 3.3. [13, Lemma 2.2] Let R be a noncommutative prime ring with involution of the second kind such that
char(R) , 2. If R admits a derivation d : R→ R such that [d(h), h] = 0 for all h ∈ H(R), then d(Z(R)) = (0).

Lemma 3.4. [15, Corollary 2] Let R be a prime ring of characteristic different from 2, L a non central Lie ideal of
R, C the extended centroid of R. Let F : R → R and G : R → R be non-zero generalized derivations satisfying
[F(x),G(y)] = [x, y] for all x, y ∈ L. Then there exists λ ∈ C such that, for any x ∈ R, G(x) = λx and F(x) = λ−1x,
unless R satisfies s4.
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Lemma 3.5. [16, Theorem 3.3] Let R be a prime ring with char(R) , 2 and U be a nonzero Lie ideal of R. If R admits
a generalized derivation F determined by nonzero derivation d such that [F(x), x] ∈ Z(R) for all x ∈ U, then U ⊆ Z(R).

Lemma 3.6. [18, Lemma 2] Let R be a prime ring with central closure RC and right Martindale ring of quotients
Qr(R). Let f : R → R be an additive mapping satisfying f (xy) = f (x)y for all x ∈ R. Then there exists q ∈ Qr(RC)
such that f (x) = qx for all x ∈ R.

Lemma 3.7. [20, Theorem 1.1] Let R be a semiprime ring and d be a derivation of R. Suppose that
[xm, d(xn1 ), · · · , d(xns )]s = 0 for all x ∈ R, where s,m,n1, · · · ,ns are fixed positive integers. If R is k!−torsion free,
where k = max{m,n1, · · · ,ns} + 1, then d(R) ⊆ Z(R).

Lemma 3.8. [21, Theorem 3] Let R be a left faithful ring. Then every generalized derivation F on a dense right ideal
of R can be extended to U and assumes the form F(x) = ax + δ(x) for some a ∈ U and a derivation δ on U.

Lemma 3.9. [24, Fact 1] Let R be a 2−torsion free prime ring with involution of the second kind. If d(h) = 0 for all
h ∈ H(R) ∩ Z(R), then d(z) = 0 for all z ∈ Z(R).

Lemma 3.10. [24, Lemma 2.1] Let R be a prime ring with involution of the second kind. Then ∗ is centralizing if
and only if R is commutative.

Lemma 3.11. [25, Theorem 2.5] Let R be a 2−torsion free prime ring. Let J be a nonzero Jordan ideal of R and
F : R → R be a generalized derivation of R associated with a nonzero derivation d. If F([J, J]) ∈ Z(R), then R is
commutative.

Lemma 3.12. Let R be a prime ring. For an element a ∈ Z(R) and b ∈ R, if ab ∈ Z(R), then b ∈ Z(R) or a = 0.

Lemma 3.13. Let R be a 2−torsion free prime ring with involution of the second kind. If d(k) = 0 for all k ∈
S(R) ∩ Z(R), then d(z) = 0 for all z ∈ Z(R).

Proof. Let d(k) = 0 for all k ∈ S(R) ∩ Z(R). Replace k by hk, where h ∈ H(R) ∩ Z(R), we get d(h)k = 0. It forces
that d(h) = 0 for all h ∈ H(R) ∩ Z(R). The conclusion follows from Lemma 3.9.

Proposition 3.14. Let R be a 2−torsion free noncommutative prime ring with involution of the second kind. If
F : R→ R is a generalized derivation such that [F(h), h] = 0 for all h ∈ H(R) and F(kc) ∈ Z(R) for all kc ∈ S(R)∩Z(R),
then d(z) = 0 for all z ∈ Z(R).

Proof. Suppose that [F(h), h] = 0 for all h ∈ H(R). Replacing h by kck,where kc ∈ S(R)∩Z(R) and k ∈ S(R), we
get

[F(kck), kck] = 0,

which is equivalent to

[F(kc)k + kcd(k), kck] = 0.

On expanding, we have

F(kc)[k, kck] + [F(kc), kck]k + kc[d(k), kck] = 0.

Since F(kc) ∈ Z(R) for all kc ∈ S(R) ∩ Z(R), we get

kc[d(k), kck] = 0 for all k ∈ S(R), kc ∈ S(R) ∩ Z(R).

As 0 , kc ∈ S(R) ∩ Z(R) and center of a prime ring is free from the nonzero zero divisors (now onwards we
shall use this fact without mentioning specifically), we find

[d(k), k] = 0 for all k ∈ S(R).
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Replacing k by hkc, where h ∈ H(R) and kc ∈ S(R) ∩ Z(R), we get

[d(hkc), hkc] = 0.

It easily follows that

[d(h), h]k2
c = 0 for all h ∈ H(R) and kc ∈ S(R) ∩ Z(R).

Since 0 , kc ∈ Z(R), we have [d(h), h] = 0 for all h ∈ H(R). In view of Lemma 3.3, we get d(Z(R)) = {0}, as
desired.

4. The Main Results

We begin our discussion with the following theorem.

Theorem 4.1. Let R be a 2−torsion free noncommutative prime ring with involution of the second kind. If (F1,F2)
is a pair of generalized derivations of R with associated derivation (d1, d2) respectively, then the following assertions
are equivalent:

(i) The pair (F1,F2) is ∗ − LPP.

(ii) For some λ ∈ C, F2(x) = λx for all x ∈ R and F1 = λF2.

Proof. First we prove (ii)⇒ (i). Let us suppose that there exists λ ∈ C such that F2(x) = λx for all x ∈ R and
F1 = λF2. Then F1([x, x∗]) = λF2([x, x∗]) = λ2[x, x∗] = [λx, λx∗] = [F2(x),F2(x∗)] for all x ∈ R. It shows that the
pair (F1,F2) is ∗ − LPP.
We now proceed to prove (i)⇒ (ii). By the assumption, we have

F1([x, x∗]) = [F2(x),F2(x∗)] for all x ∈ R. (1)

Replacing x by h + k in (1), where h ∈ H(R), k ∈ S(R) and using 2−torsion freeness of R, we get

F1([h, k]) = [F2(h),F2(k)]. (2)

For any kc ∈ S(R) ∩ Z(R), taking h = k2
c in (2), we find

[F2(k),F2(k2
c )] = 0.

On expanding, we obtain

[F2(k),F2(kc)kc + kcd2(kc)] = 0 for all k ∈ S(R), kc ∈ S(R) ∩ Z(R).

In view of the fact that every derivation preserves center of R, it follows that [F2(k),F2(kc)]kc = 0. It implies
that

[F2(k),F2(kc)] = 0 for all k ∈ S(R), kc ∈ S(R) ∩ Z(R). (3)

Substituting kc for k in (2) and using the fact that kc ∈ Z(R), we find

[F2(h),F2(kc)] = 0 for all h ∈ H(R), kc ∈ S(R) ∩ Z(R). (4)

Since R is 2−torsion free prime ring, for each x ∈ R, the element 2x can be uniquely expressed as 2x = h + k,
where h ∈ H(R) and k ∈ S(R). With the aid of (3) and (4), we obtain

2[F2(x),F2(kc)] = [F2(2x),F2(kc)]
= [F2(h + k),F2(kc)]
= [F2(h),F2(kc)] + [F2(k),F2(kc)]
= 0.
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That is,

[F2(x),F2(kc)] = 0 for all x ∈ R, kc ∈ S(R) ∩ Z(R).

Replacing x by kcx, where kc ∈ S(R) ∩ Z(R), we have

F2(kc)[x,F2(kc)] + kc[d2(x),F2(kc)] = 0. (5)

Taking xkc instead of x in (5), where kc ∈ S(R) ∩ Z(R), we get

F2(kc)[x,F2(kc)]kc + kc[d2(x),F2(kc)]kc + kc[x,F2(kc)]d2(kc) = 0 for all x ∈ R, kc ∈ S(R) ∩ Z(R).

Application of (5) yields that

kc[x,F2(kc)]d2(kc) = 0 for all x ∈ R, kc ∈ S(R) ∩ Z(R). (6)

In view of (6) it follows that for each kc ∈ S(R) ∩ Z(R), either [x,F2(kc)] = 0 for all x ∈ R or d2(kc) = 0. Let

U = {kc ∈ S(R) ∩ Z(R) : [x,F2(kc)] = 0, ∀ x ∈ R}

and V = {kc ∈ S(R) ∩ Z(R) : d2(kc) = 0}.

Therefore, we note that S(R) ∩ Z(R) can be written as the set-theoretic union of the additive subgroups
U and V, which is not possible. Thus either S(R) ∩ Z(R) = U or S(R) ∩ Z(R) = V. First we assume that
[x,F2(kc)] = 0 for all x ∈ R, kc ∈ S(R)∩Z(R). This implies that F2(kc) ∈ Z(R) for all kc ∈ S(R)∩Z(R). Replacing
k by h1kc in (2), where h1 ∈ H(R) and kc ∈ S(R) ∩ Z(R), we get

F1([h, h1kc]) = [F2(h),F2(h1kc)].

The above expression gives

F1([h, h1])kc + [h, h1]d1(kc) = [F2(h),F2(h1)kc + h1d2(kc)] for all h, h1 ∈ H(R), kc ∈ S(R) ∩ Z(R). (7)

In particular, for h = h1, the last relation yields that

[F2(h), h]d2(kc) = 0 for all h ∈ H(R), kc ∈ S(R) ∩ Z(R),

which implies that either [F2(h), h] = 0 or d2(kc) = 0. Let us assume that [F2(h), h] = 0 and F2(kc) ∈ Z(R) for all
kc ∈ S(R) ∩ Z(R). Application of Proposition 3.14 forces that d2(Z(R)) = {0}. Therefore in each case we have
d2(kc) = 0 for all kc ∈ S(R) ∩ Z(R). In view of Lemma 3.13, d2(Z(R)) = {0}. By using this fact in relation (7),
we get

F1([h, h1])kc + [h, h1]d1(kc) = [F2(h),F2(h1)kc] for all h, h1 ∈ H(R), kc ∈ S(R) ∩ Z(R). (8)

Replacing h1 by kkc in (8), where k ∈ S(R) and kc ∈ S(R) ∩ Z(R), we get

F1([h, kkc])kc + [h, kkc]d1(kc) = [F2(h),F2(kkc)kc].

That is

(F1([h, k])kc + [h, k]d1(kc))kc + [h, kkc]d1(kc) = [F2(h),F2(k)kc + kd2(kc)]kc.

Using (2) and the fact that d2(Z(R)) = {0}, we get

[h, k]d1(kc)kc + [h, kkc]d1(kc) = 0 for all h ∈ H(R), k ∈ S(R), kc ∈ S(R) ∩ Z(R).

Since R is 2−torsion free, the last expression gives

[h, k]d1(kc)kc = 0,
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which implies either [h, k] = 0 or d1(kc) = 0. In the first case, R must be normal and hence commutative by
Lemma 3.1, a contradiction. Let us assume that d1(kc) = 0 for all kc ∈ S(R)∩Z(R). Then using it in (8), we get

F1([h, h1])kc = [F2(h),F2(h1)kc] for all h, h1 ∈ H(R), kc ∈ S(R) ∩ Z(R).

It forces that

F1([h, h1]) = [F2(h),F2(h1)].

Combining the above expression with (2) in order to obtain

F1([h, x]) = [F2(h),F2(x)] for all h ∈ H(R), x ∈ R.

Replacing h by kkc, where k ∈ S(R) and kc ∈ S(R) ∩ Z(R) and following similar arguments, we get

F1([y, x]) = [F2(y),F2(x)] for all x, y ∈ R. (9)

Replacing y by kc in (9), where kc ∈ S(R) ∩ Z(R), we get

[F2(kc),F2(x)] = 0 for all x ∈ R, kc ∈ S(R) ∩ Z(R). (10)

By using Lemma 3.8 in (10), we find that for some a, b ∈ U, F2(x) = ax + d2(x) and F1(x) = bx + d1(x) for all
x ∈ R and d2, d1 are the derivations of U. With this, we have

[akc + d2(kc), ax + d2(x)] = 0.

Since d2(Z(R)) = {0}, the above expression yields that

0 = [akc, ax + d2(x)]
= [a, ax + d2(x)]kc. (11)

This implies that

a[a, x] + [a, d2(x)] = 0 for all x ∈ R. (12)

Replacing y by x2 in (9) and hence using Lemma 3.8, we get

0 = [ax + d2(x), ax2 + d2(x2)]
= [ax, ax2 + d2(x2)] + [d2(x), ax2 + d2(x2)].

Using (11), we get

0 = a[x, ax2 + d2(x2)] + [d2(x), ax2 + d2(x2)]
= a[x, ax2] + a[x, d2(x2)] + [d2(x), ax2] + [d2(x), d2(x2)]
= a[x, a]x2 + a[x, d2(x)x + xd2(x)] + a[d2(x), x2] + [d2(x), a]x2 + [d2(x), d2(x2)].

Application of (12) yields that

0 = a[x, d2(x)]x + ax[x, d2(x)] + ax[d2(x), x] + a[d2(x), x]x + [d2(x), d2(x2)]
= [d2(x), d2(x2)].

It implies that [x, [d2(x), d2(x2)]] = 0 for all x ∈ R. In view of Lemma 3.7, we get d2(x) = 0 for all x ∈ R.
Consequently, F2(x) = ax for all x ∈ R. Moreover, equation (12) implies that

a[a, x] = 0. (13)



B. Bhushan et al. / Filomat 35:5 (2021), 1439–1452 1446

Replacing x by yx, we get

ay[a, x] = 0 for all x, y ∈ R. (14)

That is either [a, x] = 0 or a = 0. The latter case forces that F2 = 0. By Lemma 3.11 in (9), we get d1 = 0, again
from (9), we have [by, x] = 0 for all x, y ∈ R. Replacing y by yt, we get by[t, x] = 0 for all x, y, t ∈ R. In view
of our assumption it follows that b = 0, i.e., F1 = 0. On the other hand we have [a, x] = 0 for all x ∈ R, i.e.,
a ∈ C. In this view, equation (9) yields

F1([x, y]) = a2[x, y].

Notice that F1 − a2I is also generalized derivation with associated derivation d1. In view of Lemma 3.11, we
get d1 = 0. Then F1(x) = bx for all x ∈ R. By the above relation, we have

b[x, y] = a2[x, y].

That is (b − a2)[x, y] = 0, which implies b − a2 = 0. In case b − a2 = 0, we find that F1(x) = bx = a2x = aF2(x)
for all x ∈ R, as desired.

As immediate consequences of the above theorem, we have the following corollaries.

Corollary 4.2. Let R be a 2−torsion free noncommutative prime ring with involution of the second kind. If R admits
a generalized derivations F1 and F2 such that F1([x, x∗]) = [F2(x),F2(x∗)] + (x ◦ x∗) for all x ∈ R, then there exists
λ ∈ C such that F2(x) = λx and F1 = λF2.

Proof. By the assumption, we have

F1([x, x∗]) = [F2(x),F2(x∗)] + (x ◦ x∗) for all x ∈ R.

Substituting x∗ instead of x and using the fact that Jordan product is commutative, we obtain

F1([x, x∗]) = [F2(x),F2(x∗)] − (x ◦ x∗) for all x ∈ R.

Combining the last two relation and using the fact that Char(R) , 2, we get

F1([x, x∗]) = [F2(x),F2(x∗)] for all x ∈ R,

Application of Theorem 4.1 yields the result.

Corollary 4.3. Let R be a 2−torsion free noncommutative prime ring with involution of the second kind. If R admits
a nonzero generalized derivation F associated with a derivation d such that F([x, x∗]) = [x, x∗] for all x ∈ R, then
F(x) = x for all x ∈ R.

Corollary 4.4. [13, Theorem 2.3] Let R be a 2−torsion free noncommutative prime ring with involution of the
second kind. If R admits a nonzero generalized derivation F associated with a derivation d such that [F(x),F(x∗)] =
[x, x∗] for all x ∈ R, then F(x) = x for all x ∈ R or F(x) = −x for all x ∈ R.

Corollary 4.5. [1, Theorem 2.2] Let R be a 2−torsion free prime ring with involution of the second kind. If R admits
a generalized derivation F associated with a derivation d such that F([x, x∗]) = 0 for all x ∈ R, then either F = 0 or
R is commutative.

Corollary 4.6. Let R be a 2−torsion free noncommutative prime ring with involution of the second kind. If R admits
a generalized derivation F associated with a derivation d such that [F(x),F(x∗)] = 0 for all x ∈ R, then F = 0.
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Corollary 4.7. Let R be a 2−torsion free noncommutative prime ring with involution of the second kind. If R admits
a generalized derivation F associated with a derivation d such that [F(x),F(x∗)] + x◦ x∗ = 0 for all x ∈ R, then F = 0.

Proof. By the hypothesis, we have

[F(x),F(x∗)] + x ◦ x∗ = 0 for all x ∈ R.

Substituting x∗ instead of x and using the fact of x ◦ x∗ = x∗ ◦ x, we obtain

[F(x),F(x∗)] − x ◦ x∗ = 0 for all x ∈ R.

Combining the last two relation and using Corollary 4.6, we get the required result.

Corollary 4.8. Let R be a 2−torsion free noncommutative prime ring with involution of the second kind. If R admits
a generalized derivation F associated with a derivation d such that F(x)F(x∗) = xx∗ for all x ∈ R, then F(x) = x for
all x ∈ R or F(x) = −x for all x ∈ R.

Proof. By the hypothesis, we have

F(x)F(x∗) = xx∗ for all x ∈ R.

Replacing x by x∗ in the above expression to get

F(x∗)F(x) = x∗x for all x ∈ R.

Combining these both expressions, we obtain

[F(x),F(x∗)] = [x, x∗] for all x ∈ R.

In view of Corollary 4.4, we get the conclusion.

By taking F1 = F2 in Theorem 4.13, we obtain the following result, which is a generalization [6, Theorem
3.5].

Corollary 4.9. Let R be a 2−torsion free noncommutative prime ring with involution of second kind. If R admits a
nonzero generalized derivation F associated with a derivation d such that F([x, x∗]) = [F(x),F(x∗)] for all x ∈ R, then
F(x) = x for all x ∈ R.

Theorem 4.10. Let R be a 2−torsion free noncommutative prime ring with involution of the second kind. If (F1,F2)
is a pair of nonzero generalized derivations of R with associated derivations (d1, d2) respectively, then the following
assertions are equivalent:

(i) The pair (F1,F2) is ∗ − SCP.

(ii) For some λ ∈ C, F1(x) = λx and F2(x) = λ−1x for all x ∈ R.

Proof. We first prove (ii)⇒ (i). Let us suppose that there exists λ ∈ C such that F1(x) = λx and F2(x) = λ−1x
for all x ∈ R. Then [F1(x),F2(x∗)] = [λx, λ−1x] = [x, x∗] for all x ∈ R. Therefore, the pair (F1,F2) is ∗ − SCP.
Now we proceed to prove (i)⇒ (ii). Let us suppose that

[F1(x),F2(x∗)] = [x, x∗] for all x ∈ R. (15)

Linearizing (15) in order to obtain

[F1(x),F2(y∗)] + [F1(y),F2(x∗)] = [x, y∗] + [y, x∗] for all x, y ∈ R. (16)
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Replacing y by yhc in (16), where hc ∈ H(R) ∩ Z(R), we have

[F1(x),F2(y∗)]hc + [F1(x), y∗]d2(hc) + [F1(y),F2(x∗)]hc + [y,F2(x∗)]d1(hc) = [x, y∗]hc + [y, x∗]hc for all x, y ∈ R.
(17)

Combining (16) and (17), we have

[F1(x), y∗]d2(hc) + [y,F2(x∗)]d1(hc) = 0. (18)

Replacing y by ykc in (18), where kc ∈ S(R) ∩ Z(R), we have

[F1(x), y∗](−kc)d2(hc) + [y,F2(x∗)]kcd1(hc) = 0.

It implies that

−[F1(x), y∗]d2(hc) + [y,F2(x∗)]d1(hc) = 0. (19)

Adding (18) and (19), and using 2−torsion freeness of R, we get

[y,F2(x∗)]d1(hc) = 0. (20)

It implies that either [y,F2(x∗)] = 0 or d1(hc) = 0 for all hc ∈ H(R) ∩ Z(R). In the former case, we shall show
that a contradiction follows. Let us assume that [y,F2(x∗)] = 0. In particular, we have [F2(x), x] = 0 for all
x ∈ R. In view of Lemma 3.5, it follows that d2(x) = 0 for all x ∈ R. By Lemma 3.6, it forces that F2(x) = qx
for some q ∈ Qr(RC) (symmetric Martindale ring of quotients of the central closure RC of R). It implies that
[qx, x] = 0 i.e. [q, x]x = 0 for all x ∈ R. A particular case of Lemma 3.2 yields that q ∈ C. Since [y,F2(x∗)] = 0,
it implies that q[y, x∗] = 0 for all x, y ∈ R. It implies R is commutative, which is a contradiction.

In case d1(hc) = 0 for all hc ∈ H(R) ∩ Z(R), we get d1(Z(R)) = {0} by Lemma 3.9. Using it in (18), we get

[F1(x), y∗]d2(hc) = 0.

This equation is same as (20) and hence following similar reasoning, we conclude that d2(Z(R)) = {0}.
Replacing y by yz, in (16), where z ∈ Z(R), we have

[F1(x),F2(y∗)]z∗ + [F1(y),F2(x∗)]z = [x, y∗]z∗ + [y, x∗]z for all x, y ∈ R. (21)

In particular, we put z = kc in (21), where kc ∈ S(R) ∩ Z(R), we get

[F1(x),F2(y∗)](−kc) + [F1(y),F2(x∗)]kc = [x, y∗](−kc) + [y, x∗]kc.

Further it implies that

−[F1(x),F2(y∗)] + [F1(y),F2(x∗)] = −[x, y∗] + [y, x∗]. (22)

Taking z = hc in (21), where hc ∈ H(R) ∩ Z(R), we get

[F1(x),F2(y∗)]hc + [F1(y),F2(x∗)]hc = [x, y∗]hc + [y, x∗]hc.

It gives

[F1(x),F2(y∗)] + [F1(y),F2(x∗)] = [x, y∗] + [y, x∗]. (23)

Adding (22) and (23) in order to find

[F1(x),F2(y∗)] = [x, y∗].

Replacing y by y∗, we have

[F1(x),F2(y)] = [x, y] for all x, y ∈ R.

In view of Lemma 3.4, we find there exists λ ∈ C such that F1(x) = λx and F2(x) = λ−1x for all x ∈ R. It
completes the proof.
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Corollary 4.11. [13, Theorem 2.3] Let R be a 2−torsion free noncommutative prime ring with involution of the
second kind. If R admits a nonzero generalized derivation F associated with a derivation d such that [F(x),F(x∗)] =
[x, x∗] for all x ∈ R, then F(x) = x for all x ∈ R or F(x) = −x for all x ∈ R.

Corollary 4.12. Let R be a 2−torsion free noncommutative prime ring with involution of the second kind. If R admits
a generalized derivation F associated with a derivation d such that [F(x),F(x∗)] = [x, x∗] + x ◦ x∗ for all x ∈ R, then
F(x) = x or F(x) = −x for all x ∈ R.

Proof. By the assumption, we have

[F(x),F(x∗)] = [x, x∗] + x ◦ x∗ for all x ∈ R.

On interchanging the role of x and x∗ and using the fact that [x, x∗] = −[x∗, x] and x ◦ x∗ = x∗ ◦ x, we obtain

[F(x),F(x∗)] = [x, x∗] − x ◦ x∗ for all x ∈ R.

Since R is 2-torsion free, last two expression forces that

[F(x),F(x∗)] = [x, x∗] for all x ∈ R.

Henceforth, we conclude the required result.

In this sequel, we also characterize the structure of generalized derivations satisfying some central valued
conditions as follows:

Theorem 4.13. Let R be a 2−torsion free noncommutative prime ring with involution of the second kind. If (F1,F2)
is a pair of generalized derivations of R with associated derivations (d1, d2) respectively, then the following assertions
are equivalent:

(i) F1([x, x∗]) + [x,F2(x∗)] + [x, x∗] ∈ Z(R) for all x ∈ R.

(ii) F1([x, x∗]) + [F2(x), x∗] + [x, x∗] ∈ Z(R) for all x ∈ R.

(iii) For some λ ∈ C, F1(x) = λx and F2(x) = −λx − x for all x ∈ R.

Proof. Let us suppose that there exists λ ∈ C such that F1(x) = λx and F2(x) = −λx − x for all x ∈ R. In this
view, it follows that F1([x, x∗]) + [x,F2(x∗)] + [x, x∗] = 0 ∈ Z(R) for all x ∈ R, it proves (iii) ⇒ (i). In the same
way we see that F1([x, x∗]) + [F2(x), x∗] + [x, x∗] = 0 ∈ Z(R) for all x ∈ R, and hence (iii)⇒ (ii).
Now we prove the nontrivial implication (ii)⇒ (iii). Let us suppose that

F1([x, x∗]) + [x,F2(x∗)] + [x, x∗] ∈ Z(R) for all x ∈ R. (24)

Substituting x + y for x in (24), where y ∈ R, we get

F1([x, y∗]) + F1([y, x∗]) + [x,F2(y∗)] + [y,F2(x∗)] + [x, y∗] + [y, x∗] ∈ Z(R) for all x, y ∈ R. (25)

Replacing y by yhc in (25), where hc ∈ H(R) ∩ Z(R), we have

F1([x, y∗])hc + [x, y∗]d1(hc) + F1([y, x∗])hc + ([y, x∗])d1(hc) + [x,F2(y∗)]hc + [x, y∗]d2(hc)
+[y,F2(x∗)]hc + [x, y∗]hc + [y, x∗]hc ∈ Z(R).

(26)

Combining (25) and (26), we get

[x, y∗]d1(hc) + [y, x∗]d1(hc) + [x, y∗]d2(hc) ∈ Z(R). (27)
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Replacing y by ykc in (27), where kc ∈ S(R) ∩ Z(R), we find

[x, y∗](−kc)d1(hc) + [y, x∗]kcd1(hc) + [x, y∗](−kc)d2(hc) ∈ Z(R).

Further it implies that

−[x, y∗]d1(hc) + [y, x∗]d1(hc) − [x, y∗]d2(hc) ∈ Z(R). (28)

Adding (27) and (28), we obtain

[y, x∗]d1(hc) ∈ Z(R).

In view of Lemma 3.12, [y, x∗] ∈ Z(R) or d1(hc) = 0 for all hc ∈ H(R) ∩ Z(R). If [y, x∗] ∈ Z(R) then replacing y
by x and using Lemma 3.10, we get R is commutative, a contradiction. In the latter case, we have d1(hc) = 0
for all hc ∈ H(R) ∩ Z(R). In view of Lemma 3.9, we find that d1(Z(R)) = {0}. Using this in equation (27), we
have

[x, y∗]d2(hc) ∈ Z(R).

It implies that either [x, y∗] ∈ Z(R) or d2(hc) = 0 for all hc ∈ H(R)∩Z(R). In light of our assumption, we have
d2(hc) = 0 for all hc ∈ H(R) ∩ Z(R). Then by using Lemma 3.9, we obtain that d2(Z(R)) = {0}. Replacing y by
yz, in (25), where z ∈ Z(R), and using the fact that d1(Z(R)) = {0} = d2(Z(R)), we obtain

F1([x, y∗])z∗ + F1([y, x∗])z + [x,F2(y∗)]z∗ + [y,F2(x∗)]zx + [x, y∗]z∗ + [y, x∗]z ∈ Z(R) for all x, y, z ∈ R. (29)

In particular replacing z by kc in (29), where kc ∈ S(R) ∩ Z(R), we get

F1([x, y∗])(−kc) + F1([y, x∗])kc + [x,F2(y∗)](−kc) + [y,F2(x∗)]kc + [x, y∗](−kc) + [y, x∗]kc ∈ Z(R).

Further it implies that

−F1([x, y∗]) + F1([y, x∗]) − [x,F2(y∗)] + [y,F2(x∗)] − [x, y∗] + [y, x∗] ∈ Z(R). (30)

Similarly replacing z by hc in (28),where hc ∈ H(R ∩ Z(R), we get

F1([x, y∗]) + F1([y, x∗]) + [x,F2(y∗)] + [y,F2(x∗)] + [x, y∗] + [y, x∗] ∈ Z(R). (31)

Adding (30) and (31), we have

F1([y, x∗]) + [y,F2(x∗)] + [y, x∗] ∈ Z(R). (32)

In particular replacing x by y∗, we have

[y,F2(y)] ∈ Z(R) for all y ∈ R. (33)

By Lemma 3.5, we get d2 = 0. Henceforth, we conclude that F2(x) = ax for all x ∈ R, where a ∈ U. Using
F2(x) = ax and replacing y by z∗ in (31), where z ∈ Z(R), we get

[x,F2(z)] ∈ Z(R) for all x ∈ R.

This implies [x, az] = [x, a]z ∈ Z(R) for all x ∈ R. By Lemma 3.12, it implies that

[x, a] ∈ Z(R). (34)

Using Lemma 3.8 in (33), we get

0 = [[x, ax], r]
= [[x, a]x, r]
= [x, a][x, r]
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Application of (34) gives that either [x, r] = 0 or [x, a] = 0. Since R is noncommutative, we have [a, x] = 0 for
all x ∈ R, that means a ∈ C. Using it in (32), we have

(F1 + a + 1R)([x, y]) ∈ Z(R) for all x, y ∈ R. (35)

Since (F1 + a + 1R) act as generalized derivation, by applying Lemma 3.11, we obtain d1(x) = 0 for all x ∈ R.
In this view, we have (F1 + a + 1R)(x) = bx for all x ∈ R and for some b ∈ U. Eq. (35) gives b[x, y] ∈ Z(R) for
all x, y ∈ R. It is now straight forward to see that b ∈ C. Thus the expression b[x, y] ∈ Z(R) for all x, y ∈ R
implies that b = 0. Hence F1 = −a − 1R. It completes the proof.
Analogously, we can prove the implication (i)⇒ (iii), for the sake of brevity, we omit the proof.

Corollary 4.14. Let R be a 2−torsion free noncommutative prime ring with involution of the second kind. If F is a
generalized derivation of R with associated derivation d, then the following assertions are equivalent:

(i) [x,F(x∗)] + [x, x∗] ∈ Z(R) for all x ∈ R.

(ii) [F(x), x∗] + [x, x∗] ∈ Z(R) for all x ∈ R.

(iii) F(x) = −x for all x ∈ R.

Corollary 4.15. Let R be a 2−torsion free noncommutative prime ring with involution of the second kind. If R
admits a generalized derivation F associated with a derivation d such that F([x, x∗]) + [x, x∗] ∈ Z(R) for all x ∈ R,
then F(x) = −x for all x ∈ R.

The proof of our next theorem is straight forward and follows from the proof of Theorem 4.13. Therefore,
we only give the statement and omit its proof.

Theorem 4.16. Let R be a 2−torsion free prime ring with involution of the second kind. If (F1,F2) is a pair of
generalized derivations of R with associated nonzero derivations (d1, d2) respectively, then the following assertions are
equivalent:

(i) F1([x, x∗]) + [x,F2(x∗)] + [x, x∗] ∈ Z(R) for all x ∈ R.

(ii) F1([x, x∗]) + [F2(x), x∗] + [x, x∗] ∈ Z(R) for all x ∈ R.

(iii) R is commutative.

5. Examples

In the first example, we show that the assumption of the “second kind involution” is essential in Theorem
4.1, Theorem 4.10, Theorem 4.13 and Theorem 4.16. In the next example, we show that assumption of
“primeness” of R is not redundant in our results.

Example 5.1. Let R =

{(
a b
c d

)
| a, b, c, d ∈ Z

}
, where Z denotes the ring of integers. Define the mappings

∗,F1, d1,F2, d2 : R → R by
(

a b
c d

)∗
=

(
d −b
−c a

)
, F1

(
a b
c d

)
=

(
a 0
2c d

)
, d1

(
a b
c d

)
=

(
0 −b
c 0

)
and F2

(
a b
c d

)
= d2

(
a b
c d

)
=

(
0 0
0 0

)
. It is straight forward to check that R is prime ring and F1,F2

are the generalized derivations of R with associated derivations d1, d2 respectively. Also, we notice that Z(R) ={(
a 0
0 a

)
| a ∈ R

}
and X∗ = X for all X ∈ Z(R). It implies that Z(R) ⊆ H(R), which shows that “∗” is the involution

of the first kind. In these settings, the following conditions: F1([X,X∗]) = [F2(X),F2(X∗)], [F1(X),F2(X∗)] = [X,X∗],
F1([X,X∗]) + [F2(X),X∗] + [X,X∗] ∈ Z(R) and F1([X,X∗]) + [X,F2(X∗)] + [X,X∗] ∈ Z(R) are satisfied for all X ∈ R.
However, none of the outcomes of the respective theorems hold.
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Example 5.2. Let R be a ring with involution “∗” same as in Example 5.1. Next, letC be the field of complex numbers.
Consider the set L = R × C. Define the mappings †,F1, δ1,F2, δ2 : L → L by (r, z)† = (r∗, z̄), F1(r, z) = (F1(r), 0),
δ1(r, z) = (d1(r), 0), F2(r, z) = (F2(r), 0) and δ2(r, z) = (d2(r), 0) for all (r, z) ∈ R ×C (where F1,F2 are the generalized
derivation of R with associated derivations d1, d2 respectively as Example 5.1).

Then it is straight forward to check that L is a semiprime ring with involution “†” of the second kind and F1,F2
are the generalized derivations of L with associated derivations δ1, δ2 respectively. In these settings, the following
conditions: F1([X,X†]) = [F2(X),F2(X†)], [F1(X),F2(X†)] = [X,X†], F1([X,X†]) + [F2(X),X†] + [X,X†] ∈ Z(R)
and F1([X,X†]) + [X,F2(X†)] + [X,X†] ∈ Z(R) are satisfied for all X ∈ L. However, none of the outcomes of the
respective theorems hold. Hence, in our results the hypothesis of primeness is crucial.
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