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Abstract. This work is entirely devoted to compare the largest claims from two heterogeneous portfolios. It
is assumed that the claim amounts in an insurance portfolio are nonnegative absolutely continuous random
variables and belong to a general family of distributions. The largest claims have been compared based
on various stochastic orderings. The established sufficient conditions are associated with the matrices and
vectors of model parameters. Applications of the results are provided for the purpose of illustration.

1. Introduction

In survival analysis, models with nonmonotone failure rate play a vital role to fit the real life data
sets. A large number of distributions exists in statistical theory, which have monotone failure rate. For
example, the exponentiated Weibull and generalized gamma distributions have monotone failure rate. In
this communication, a general family of distributions (exponentiated location-scale) is taken. It contains
both monotone and nonmonotone failure rate models. Because of this, the general exponentiated location-
scale (ELS) model is important from both practical and theoretical points of view. It is well-known that X
belongs to the ELS model if X ∼ Fα( x−λ

θ ), x > λ > 0 and α, θ > 0. The functions F(·) and f (·) denote the
baseline cumulative distribution and probability density functions of X, respectively. Here, we consider
F(·) to be the absolutely continuous distribution function. The strictly positive real numbers α, λ and θ are
respectively the shape, location and scale parameters. For λ = 0 and α = 1, the exponentiated location-scale
model reduces to the scale model. Further, we respectively get the proportional reversed hazard rate model
and the location model, when λ = 0, θ = 1 and α = 1, θ = 1.

For i = 1, . . . ,n, let Xi be the claim amount and Ji be the Bernoulli random variable. Further, Ji = 0, if the
ith policy holder does not claim, and Ji = 1, if the ith policy holder makes random claim Xi. We assume that
the claim is taken place with probability pi, and is not taken place with probability 1 − pi. It is known that
in an insurance portfolio consisting of n risks, the ith individual risk is a product of Xi and Ji. Throughout
this paper, we consider that {X1, . . . ,Xn} and {Y1, . . . ,Yn} are two collections of independent random claims
of two portfolios with Xi ∼ Fαi ( x−λi

θi
) and Yi ∼ Fβi ( x−µi

δi
), where i = 1, . . . ,n. Further, assume that {J1, . . . , Jn}
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and {J∗1, . . . , J
∗
n} are another two collections of independent Bernoulli random variables, independent of Xi’s

and Yi’s, respectively, i = 1, . . . ,n. Consider two vectors U = (U1, . . . ,Un) and V = (V1, . . . ,Vn), such that
for i = 1, . . . ,n, Ui = JiXi and Vi = J∗i Yi with E(Ji) = pi and E(J∗i ) = qi. Denote Un:n = max{U1, . . . ,Un} and
Vn:n = max{V1, . . . ,Vn} for the maximum claims arising from two insurance portfolios of n risks, where the
ith individual risks are Ui and Vi, respectively, i = 1, . . . ,n. Besides this, Un:n has another interpretation
in reliability theory. It represents the lifetime of a parallel system for which the components are equipped
with starters. Here, the random variables Xi’s can be treated as components’ lifetimes and Ji’s represent the
status of the corresponding starters. Therefore, the present study of stochastic comparison is very important
both from the mathematical research and real life applications.

Barmalzan and Najafabadi [4] and Barmalzan et al. [5] considered two collections of independent claims
following heterogeneous Weibull distributions. Barmalzan and Najafabadi [4] addressed the comparisons
between the minimum claims stochastically in the sense of the convex transform and right spread orders.
They also derived upper and lower bounds of the coefficient of variations. Barmalzan et al. [5] discussed
the sufficient conditions under which the likelihood ratio and dispersive orders hold between the smallest
claim amounts. Barmalzan et al. [6] took scale model to compare the extreme claims with respect to the
usual stochastic and the hazard rate orderings. Balakrishnan et al. [3] studied ordering properties of the
largest claim amounts from two heterogeneous sets of portfolios. They proposed sufficient conditions
to show various stochastic orderings between the largest claim amounts. Zhang et al. [20] established
conditions to compare the extreme claims from two collections of insurance portfolios. Barmalzan et al.[1]
developed stochastic comparisons results of extreme claim amounts having location-scale claim severities.
To the best of our knowledge, stochastic comparisons of the largest claim amounts when random claims
have ELS models have not been addressed in the literature so far. However, some generalized models
to study ordering properties of extreme order statistics in the context of reliability studies can be found
in [7–11, 16]. In this paper, we address this problem and derive sufficient conditions for the stochastic
comparison of the largest claim amounts in the sense of various stochastic orderings.

This article is organized as follows. In section 2, we provide some basic definitions and results. Section 3
is emphasized on some ordering results based on the matrix chain majorization order, when heterogeneity
presents in two parameters. Section 4 addresses comparisons between the largest claims with respect to the
usual stochastic and reversed hazard rate orders. Here, we consider that the heterogeneity is presented in
one parameter. Section 5 is devoted to illustrations of the results. Generalized linear failure rate and Pareto
distributions are considered. Finally, we present some concluding remarks in Section 6.

Throughout this article, we assume that the random variables are nonnegative and absolutely continu-
ous. The integrations and differentiations are well defined. Further, ‘increasing’ and ‘decreasing’ terms are
employed in non-strict sense. For any function h(·), h′(x) =

dh(x)
dx . We assume componentwise comparison

when comparing two vectors.

2. Preliminaries

This section is concerned with some basic definitions and important lemmas, which are used to prove
the results in the subsequent sections. Let U and V be two nonnegative absolutely continuous random
variables. Assume that fU(·) and fV(·), FU(·) and FV(·), F̄U(·) and F̄V(·) are the probability density functions,
the cumulative distribution functions and the survival functions of U and V, respectively. The following
definition is for some concepts of stochastic orders. For comprehensive discussions on the properties and
applications of the following stochastic orders, one may refer to Shaked and Shanthikumar [18].

Definition 2.1. U is smaller than V in the

(a) usual stochastic order, abbreviated by U ≤st V, if F̄U(x) ≤ F̄V(x), for every x ∈ R;

(b) reversed hazard rate order, abbreviated by U ≤rh V, if the ratio FV(x)/FU(x) is increasing with respect to x.

Next definition describes the concept of majorization and related orders. Prior to this, we consider
vectors x = (x1, . . . , xn) and y = (y1, . . . , yn). Further, x1:n ≤ . . . ≤ xn:n and y1:n ≤ . . . ≤ yn:n respectively denote
the components of x and y.
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Definition 2.2. x is known to be

(a) weakly supermajorized by y, abbreviated by x �w y, if
∑ j

k=1 xk:n ≥
∑ j

k=1 yk:n, for j = 1, . . . ,n;

(b) weakly submajorized by y, abbreviated by x �w y, if
∑n

k=i xk:n ≤
∑n

k=i yk:n, for i = 1, . . . ,n;

(c) majorized by y, abbreviated by x �m y, if
∑n

k=1 xk =
∑n

k=1 yk and
∑ j

k=1 xk:n ≥
∑ j

k=1 yk:n, for j = 1, . . . ,n − 1;

(d) p-larger than y, denoted by x �p y, if
∏k

i=1 xi:n ≤
∏k

i=1 yi:n, for k = 1, . . . ,n;

(e) reciprocally majorized by y, denoted by x �rm y, if
∑l

i=1 x−1
i:n ≤

∑l
i=1 y−1

i:n , for all l = 1, . . . ,n.

It is easy to see that x �m y implies both x �w y and x �w y. Further, x �w y ⇒ x �p y. We may refer to
Marshall et al. [15] for brief and extensive details on the majorization and their applications.

Definition 2.3. Let ϕ : B (⊆ Rn) → R be a function. It is said to be Schur-convex (Schur-concave) on B if
x �m y⇒ ϕ(x) ≤ (≥)ϕ(y), for any x, y ∈ B.

The following notations are used throughout the paper. We denote 1n = (1, . . . , 1).

D+ = {(t1, . . . , tn) : t1 ≥ . . . ≥ tn > 0}; E+ = {(t1, . . . , tn) : 0 < t1 ≤ . . . ≤ tn}.

Now, we move our attention to the notion of the matrix majorization. We say that a square matrix π is
said to be a permutation matrix, if each row and column have a single entry, and except that, all entries are
zero. One can easily find out that n! number of such matrices arise after interchanging rows (or columns)
of the n × n order identity matrix In. Let Tw denote a T-transform matrix, with the form

Tw = wIn + (1 − w)π, 0 ≤ w ≤ 1, (1)

where π is a permutation matrix obtained by interchanging two rows or columns in identity matrix.
Consider the T-transform matrices Tw1 and Tw2 such that Tw1 = w1In + (1−w1)π1 and Tw2 = w2In + (1−w2)π2,
where π1 and π2 are the permutation matrices obtained by interchanging two rows or columns in identity
matrix and 0 ≤ w1, w2 ≤ 1. We say that Tw1 and Tw2 have the same structure, if π1 = π2, and have different
structures, if π1 , π2. The definition given below describes the concept of multivariate majorization.

Definition 2.4. Let us take two matrices C = [ci j] and D = [di j] of order m× n, where i = 1, . . . ,m and j = 1, . . . ,n.
Let Tw1 , . . . ,Twk be a finite set of n × n T-transform matrices. Then, C is said to chain majorize D, abbreviated by
C >> D, if D = CTw1 . . .Twk .

Henceforth, (r1, . . . , rm; n) represents a matrix of order m×n,where each real-valued vector ri containing
n elements denotes the ith row, for i = 1, . . . ,m. For i, j = 1, . . . ,n and xi, y j > 0, let us consider

Mn =
{
(x, y; n) : (xi − x j)(yi − y j) ≥ 0

}
;

Qn =
{
(x, y; n) : (xi − x j)(yi − y j) ≤ 0

}
.

The next consecutive lemmas are helpful to prove few of the proposed ordering results. Interested
readers are referred to the work by Balakrishnan et al. [2] for detailed idea on the proofs.

Lemma 2.5. A differentiable function $ : R+4
→ R+ satisfies

$(C) ≥ (≤)$(D) for all C,D ∈M2 or Q2 and C� D (2)

if and only if for all C ∈M2 or Q2 and C satisfies

(a) $(C) = $(Cπ), for all permutation matrices π and

(b)
∑2

i=1

(
cik − ci j

) (
$ik(C) − $i j(C)

)
≥ (≤)0, for all j, k = 1, 2, where $i j(C) =

∂$(C)
∂ci j

.
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Lemma 2.6. Consider a differentiable function υ : R+2
→ R+ and a function ζn : R+2n

→ R+ such that

ζn(C) =

n∏
k=1

υ (c1k, c2k) . (3)

Let ζ2 satisfy (2). Then, for all C ∈Mn or Qn and D = CTω, we have ζn(C) ≥ (≤)ζn(D).

Before proceeding to the next section, we introduce two lemmas, which deal with the analytical behavior
of two mathematical functions. The proofs are omitted since these are simple. The first lemma is useful for
the derivation of the results of Theorems 3.6, 3.7, 3.9, and the second one is used in the proof of Theorem
4.1.

Lemma 2.7. Consider a function k1 : (0,∞) × (0, 1) × (0, 1)→ (0,∞) such that k1(α, t, p) =
(1−tα)

1−p(1−tα) . Then, for all

(i) t ∈ (0, 1), k1(α, t, p) is increasing in to α and p;

(ii) α ∈ (0,∞) and p ∈ (0, 1), k1(α, t, p) is decreasing in t.

Lemma 2.8. Let k2 : (0,∞) × (0, 1)→ (0,∞) be defined as k2(α, p) =
ptα ln(t)

1−p(1−tα) . Then, for all

(i) p ∈ (0, 1), k2(α, p) is increasing in α;

(ii) α ∈ (0,∞), k2(α, p) is decreasing in p.

3. Matrix chain majorization

In this section, we establish some ordering results between the largest claims when a matrix of parameters
is related to another matrix of parameters in some mathematical senses. To begin with, let us write the
respective cumulative distribution functions of Un:n and Vn:n as

Fn:n(t) =

n∏
i=1

[
1 − pi

[
1 − Fαi

( t − λi

θi

)]]
, t > max{λ1, . . . , λn} (4)

and

Gn:n(t) =

n∏
i=1

[
1 − qi

[
1 − Fβi

( t − µi

δi

)]]
, t > max{µ1, . . . , µn}. (5)

First, we consider the following assumptions. These will be called in the main results when necessary.

(A1) Let F(·) be the baseline distribution function. Again, let {X1, . . . ,Xn} and {Y1, . . . ,Yn} be two sets
of nonnegative independent random variables. For i = 1, . . . ,n, assume that Xi ∼ Fαi ( t−λi

θi
) and

Yi ∼ Fβi ( t−µi

δi
).

(A2) Let {J1, . . . , Jn} and {J∗1, . . . , J
∗
n} be two collections of independent Bernoulli random variables, indepen-

dent of Xi’s and Yi’s, respectively. Further, E(Ji) = pi and E(J∗i ) = qi, for i = 1, . . . ,n.

Let r(·) be the hazard rate function of the baseline distribution F(·), where r(x) = f (x)/(1 − F(x)). We
provide the following conditions, which are also required for the smooth presentation of the results.

(C1) r(x) is decreasing.

(C2) xr(x) is decreasing.

(C3) x2r(x) is decreasing.
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(C4) r′(x)
r(x) is increasing.

(C5) xr(x) is convex.

(C6) x3r2(x) is decreasing.

(C7) x2[xr(x)]′ is increasing.

(C8) r(x) is convex.

The function ψ : (0, 1)→ (0,∞) is taken to be differentiable throughout the paper.

(C9) ψ(w) is convex and increasing.

(C10) ψ(w) is convex and decreasing.

The following result establishes conditions, under which multivariate chain majorization between two
matrices of parameters implies the usual stochastic order between the largest claim amounts. In the sequel,
we take a common shape parameter vector for both sets. It is equal to a scalar α, which lies in the interval
(0, 1]. Note that the following result contains two parts, of which the second part generalizes Theorem 1 of
Barmalzan et al. [6].

Theorem 3.1. For n = 2, let (A1), (A2) and (C1) hold. Also, assume α = β = α12 (α ≤ 1).

(i) Suppose the functionψ satisfies (C9). Ifθ = δ = θ12 and (ψ(p),λ; 2) ∈M2, then (ψ(p),λ; 2)� (ψ(q),µ; 2)⇒
U2:2 ≥st V2:2;

(ii) Suppose the function ψ satisfies (C10). If λ = µ = µ12 and (ψ(p), 1/θ; 2) ∈ M2, then (ψ(p), 1/θ; 2) �
(ψ(q), 1/δ; 2)⇒ U2:2 ≥st V2:2.

Proof. (i) We have

F2:2(t) =

2∏
i=1

[
1 − ψ−1(wi)

[
1 − Fα

( t − λi

θ

)]]
, (6)

where ψ(pi) = wi, for i = 1, 2. Note that F2:2(t) is permutation invariant in (wi, λi). Hence, the first condition
of Lemma 2.5 is fulfilled. Further, the partial derivatives of (6) with respect to wi and λi are respectively
obtained as

∂F2:2(t)
∂wi

= −
∂ψ−1(wi)
∂wi

[1 − Fα
(

t−λi
θ

)
][

1 − ψ−1(wi)
[
1 − Fα

(
t−λi
θ

)]]F2:2(t), (7)

and

∂F2:2(t)
∂λi

= −
αFα−1

(
t−λi
θ

)
f
(

t−λi
θ

)
θ
[
1 − Fα

(
t−λi
θ

)] ψ−1(wi)[1 − Fα
(

t−λi
θ

)
]

1 − ψ−1(wi)
[
1 − Fα

(
t−λi
θ

)]F2:2(t). (8)

We define

φ1(w,λ) = (wi − w j)
[
∂F2:2(t)
∂wi

−
∂F2:2(t)
∂w j

]
+ (λi − λ j)

[
∂F2:2(t)
∂λi

−
∂F2:2(t)
∂λ j

]
, (9)

where the partial derivatives are given by (7) and (8). Together with Lemma 3 of Balakrishnan et al. [2]
and the assumptions made, we can show that φ1(w,λ) is nonpositive. Thus, clearly, the second argument
of Lemma 2.5 is verified, and the proof is completed. By adopting the arguments of the proof of the first
part, the second part follows easily.
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Remark 3.2. On using Theorem 3.1(ii), one can easily find out a lower bound for the reliability function of the largest
claims having heterogeneous portfolios of risks in the form of reliability of the largest claims having homogeneous
portfolio of risks. Consider a T- transform matrix T0.5 of order 2 × 2, where the first and second rows are same
and equal to (1/2, 1/2). Let (ψ(p1), ψ(p2)) = (e−p1 , e−p2 ) and 1/θ = (1/θ1, 1/θ2). Further, assume (ψ(q1), ψ(q2)) =
((e−p1 + e−p2 )/2, (e−p1 + e−p2 )/2) and (1/δ1, 1/δ2) = ((θ1 + θ2)/(2θ1θ2), (θ1 + θ2)/(2θ1θ2)). It is easy to check that(

ψ(q1) ψ(q2)
1/δ1 1/δ2

)
=

(
ψ(p1) ψ(p2)
1/θ1 1/θ2

)
T0.5.

As a result,
(
ψ(p1) ψ(p2)
1/θ1 1/θ2

)
�

(
ψ(q1) ψ(q2)
1/δ1 1/δ2

)
. Therefore, by Theorem 3.1(ii), we can propose a lower bound of the reliability

function of U2:2 as

F̄2:2(t) ≥ 1 −
{

1 + ln
(

e−p1 + e−p2

2

) [
1 − Fα

(
(t − λ)(θ1 + θ2)

2θ1θ2

)]}2

.

Now, it might be of interest to investigate whether the decreasing and convexity property of the function
ψ is a must or not in Theorem 3.1(ii). The following numerical counterexample states that this assumption
is required to get the usual stochastic order in Theorem 3.1(ii).

Counterexample 3.1. Let F(t) = 1 − (1 + t5)−4, t > 0 and ψ(p) = 1 − p3. It is easy to check that ψ(p) is
decreasing and concave. So, the condition in (C10) is relaxed. Let us take (α1, α2) = (β1, β2) = (0.01, 0.01),
(1/θ1, 1/θ2) = (0.7, 0.6), (1/δ1, 1/δ2) = (0.66, 0.64), (λ1, λ2) = (µ1, µ2) = (0.9, 0.9), (p1, p2) = ((0.2)1/3, (0.5)1/3)
and (q1, q2) = ((0.32)1/3, (0.38)1/3). Consider a T-transform matrix T0.6 =

(
0.6 0.4
0.4 0.6

)
. It can be shown that(

ψ(q1) ψ(q2)
1/δ1 1/δ2

)
=

(
ψ(p1) ψ(p2)
1/θ1 1/θ2

)
T0.6,

which produces
(
ψ(p1) ψ(p2)
1/θ1 1/θ2

)
�

(
ψ(q1) ψ(q2)
1/δ1 1/δ2

)
. Further,

(
ψ(p1) ψ(p2)
1/θ1 1/θ2

)
∈ M2. Based on this present setup, we have

F2:2(1.5)−G2:2(1.5) = 1.5928× e−5 (> 0) and F2:2(1.6)−G2:2(1.6) = −1.9324× e−4 (< 0). For graphical view, please
see Figure 1(a). It establishes that Theorem 3.1(ii) does not hold, if (C10) is taken out.
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Figure 1: (a) Graph of F2:2(t) − G2:2(t) for Counterexample 3.1. (b) Graph of F2:2(t) − G2:2(t) for Counterexample 3.2.

We next consider a counterexample to show that if the condition “
(
ψ(p1) ψ(p2)
1/θ1 1/θ2

)
< M2” is removed, then

Theorem 3.1(ii) may not hold.
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Counterexample 3.2. Consider the same baseline distribution function as in Counterexample 3.1. Suppose ψ(p) =
− ln p. Here, one can check that (C1) and (C10) are satisfied. Set (α1, α2) = (β1, β2) = (0.01, 0.01), (1/θ1, 1/θ2) =
(0.5, 0.3), (1/δ1, 1/δ2) = (0.32, 0.48), (λ1, λ2) = (µ1, µ2) = (0.9, 0.9), (ψ(p1), ψ(p2)) = (0.23, 0.69) and (ψ(q1), ψ(q2)) =

(0.644, 0.276). For a T-transform matrix T0.1 =
(

0.1 0.9
0.9 0.1

)
, we have(

ψ(q1) ψ(q2)
1/δ1 1/δ2

)
=

(
ψ(p1) ψ(p2)
1/θ1 1/θ2

)
T0.1.

Thus, from Definition 2.4,
(
ψ(p1) ψ(p2)
1/θ1 1/θ2

)
�

(
ψ(q1) ψ(q2)
1/δ1 1/δ2

)
. Again,

(
ψ(p1) ψ(p2)
1/θ1 1/θ2

)
does not belong to M2. Now, considering

the assumed numerical values, we get F2:2(1.6) − G2:2(1.6) = −9.2138 × e−6 (< 0) and F2:2(1.7) − G2:2(1.7) =
5.0560 × e−5 (> 0), which negates the usual stochastic order, stated in Theorem 3.1(ii). See Figure 1(b) for the graph
of F2:2(t) − G2:2(t).

The following three consecutive results can be thought of a generalization of the above result to arbitrary
n ≥ 3. The cases in which the chain majorization order holds between two matrices (ψ(q),µ; n) and
(ψ(p),λ; n), or (ψ(q), 1/δ; n) and (ψ(p), 1/θ; n) are considered. First, we use a T-transform matrix to obtain the
matrices (ψ(q),µ; n) and (ψ(q), 1/δ; n) from (ψ(p),λ; n) and (ψ(p), 1/θ; n), respectively, so that (ψ(p),λ; n)�
(ψ(q),µ; n) and (ψ(p), 1/θ; n)� (ψ(q), 1/δ; n) hold.

Theorem 3.3. Let us assume that (A1), (A2) and (C1) hold. Further, α = β = α1n (α ≤ 1). Suppose Tw is a
T-transform matrix.

(i) Let ψ satisfy (C9). If θ = δ = θ1n and (ψ(p),λ; n) ∈Mn, then (ψ(q),µ; n) = (ψ(p),λ; n)Tw ⇒ Un:n ≥st Vn:n;

(ii) Let ψ satisfy (C10). If λ = µ = µ1n and (ψ(p), 1/θ; n) ∈ Mn, then (ψ(q), 1/δ; n) = (ψ(p), 1/θ; n)Tw ⇒

Un:n ≥st Vn:n.

Proof. Here, we present the proof of the first part. The second part can be proved with the similar
arguments. Denote ζn(w,λ) =

∏n
i=1

[
1 − ψ−1(wi)

[
1 − Fα

(
t−λi
θ

)]]
=

∏n
i=1 ζi(wi, λi), where ζi(wi, λi) = 1 −

ψ−1(wi)
[
1 − Fα

(
t−λi
θ

)]
, for i = 1, . . . ,n. By Theorem 3.1(i), one can easily check that ζ2 satisfies (2). Rest of

the proof is completed from Lemma 2.6.

Suppose Tw1 , . . . ,Twk are k (finite) number of T-transform matrices. Also, assume that all these T-
transform matrices have the same structure. Since, the product of a finite number of T-transform ma-
trices having the same structure is again a T-transform matrix. Hence, the above result can be ex-
tended. This is addressed in the following corollary, which is a direct consequence of Theorem 3.3.
Here, (ψ(p),λ; n) � (ψ(q),µ; n) and (ψ(p), 1/θ; n) � (ψ(q), 1/δ; n) hold, since (ψ(q),µ; n) and (ψ(q), 1/δ; n)
are respectively obtained from (ψ(p),λ; n) and (ψ(p), 1/θ; n) using a finite number of T-transform matrices.
Denote T∗w = Tw1 . . .Twk .

Corollary 3.4. Suppose (A1), (A2) and (C1) hold. Also, let α = β = α1n (α ≤ 1).

(i) Let ψ satisfy (C9). If θ = δ = θ1n and (ψ(p),λ; n) ∈Mn, then (ψ(q),µ; n) = (ψ(p),λ; n)T∗w ⇒ Un:n ≥st Vn:n;

(ii) Let ψ satisfy (C10). If λ = µ = µ1n and (ψ(p), 1/θ; n) ∈ Mn, then (ψ(q), 1/δ; n) = (ψ(p), 1/θ; n)T∗w ⇒
Un:n ≥st Vn:n.

Note that a finite product of T-transform matrices may not produce a T-transform matrix, when they
have different structures. Thus, it is natural to face the question whether Corollary 3.4 still holds for
differently structured T-transform matrices. The next result shows that it is possible under some new
assumptions.

Theorem 3.5. Let (A1), (A2) and (C1) hold. Assume α = β = α1n (α ≤ 1). Further, let Tw1 , . . . ,Tw j be the
T-transform matrices with different structures for j = 1, . . . , k − 1, (k ≥ 2).



S. Das, S. Kayal / Filomat 35:4 (2021), 1315–1332 1322

(i) Suppose ψ satisfies (C9). If θ = δ = θ1n and (ψ(p),λ; n) ∈ Mn, then (ψ(q),µ; n) = (ψ(p),λ; n)Tw1 . . .Twk ⇒

Un:n ≥st Vn:n;

(ii) Supposeψ satisfies (C10). Ifλ = µ = µ1n and (ψ(p), 1/θ; n) ∈Mn, then (ψ(q), 1/δ; n) = (ψ(p), 1/θ; n)Tw1 . . .Twk

⇒ Un:n ≥st Vn:n.

Proof. We provide the proof of the first part. The second part follows similarly. Let us consider (ψ(p( j)),λ( j); n) =

(ψ(p),λ; n)Tw1 . . . Tw j , where j = 1, . . . , k − 1. Further, let W( j)
1 , . . . ,W

( j)
n be n independent random variables

having the distribution function of W( j)
i as

F( j)
Wi

(t) = 1 − ψ−1(w( j)
i )

1 − Fα
 t − λ( j)

i

θ


 ,

for i = 1, . . . ,n and j = 1, . . . , k − 1. Using the assumptions made, we have (ψ(p( j)),λ( j); n) ∈ Mn, for
j = 1, . . . , k − 1. Now,(

ψ(q),µ; n
)

=
(
ψ(p),λ; n

)
Tw1 . . .Twk

=
[(
ψ(p),λ; n

)
Tw1 . . .Twk−1

]
Twk

=
(
ψ(p(k−1)),λ(k−1); n

)
Twk ,

which implies W(k−1)
n:n ≥st Vn:n. Similarly, (ψ(p(k−1)),λ(k−1); n) = (ψ(p(k−2)),λ(k−2); n) Twk−1 implies W(k−2)

n:n ≥st

W(k−1)
n:n . Applying similar arguments, we obtain

Un:n ≥st W(1)
n:n ≥st . . . ≥st W(k−2)

n:n ≥st W(k−1)
n:n ≥st Vn:n.

This completes the proof of the first part.

Till now, we have derived conditions under which the usual stochastic order holds between the largest
claim amounts arising from two heterogeneous portfolios of risks. Now, one may wonder whether the
above results can be upgraded to other stochastic orders. Below, we answer this question affirmatively. In
this part, it is shown that under some new conditions, the usual stochastic order can be extended to the
reversed hazard rate order. The reversed hazard rate of Un:n is given by

r̃n:n(t) =

n∑
i=1

αi

θi
r
( t − λi

θi

) piF(αi−1)
(

t−λi
θi

) [
1 − F

(
t−λi
θi

)]
1 − pi

[
1 − Fαi

(
t−λi
θi

)]  . (10)

The reversed hazard rate of Vn:n, denoted by s̃n:n(·) can be obtained by substituting qi, δi, µi, βi in the place of
pi, θi, λi, αi, respectively in (10). First, we consider two heterogeneous insurance portfolios each consisting
of two individual risks.

Theorem 3.6. For n = 2, let (A1) and (A2) hold. Further, take α = β = 1n.

(i) If p = q (= p12) and (λ, 1/θ; 2) ∈ Q2, then we have (λ, 1/θ; 2) � (µ, 1/δ; 2)⇒ U2:2 ≥rh V2:2, provided (C2),
C(3), (C4) and (C5) are satisfied;

(ii) Let ψ satisfy (C9). If θ = δ (= θ12) and (λ,ψ(p); 2) ∈ M2, then (λ,ψ(p); 2) � (µ,ψ(q); 2) ⇒ U2:2 ≥rh V2:2,
provided (C1) and (C8) hold;

(iii) Let ψ satisfy (C9). If λ = µ (= λ12) and (1/θ,ψ(p); 2) ∈ Q2, then (1/θ,ψ(p); 2)� (1/δ,ψ(q); 2)⇒ U2:2 ≥rh
V2:2, provided (C2) and (C5)are satisfied.
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Proof. (i) Under the set up, Equation (10) can be expressed as

r̃2:2(t) =

2∑
i=1

mir ((t − λi)mi)
[

p [1 − F ((t − λi)mi)]
1 − p [1 − F ((t − λi)mi)]

]
, (11)

where mi = 1/θi, for i = 1, . . . ,n. On differentiating (11) with respect to mi and λi partially, we respectively
get

∂r̃2:2(t)
∂mi

= ∂
∂x [xr(x)]x=((t−λi)mi)

[ p[1−F((t−λi)mi)]
1−p[1−F((t−λi)mi)]

]
(12)

−

[
xr2(x)

]
x=((t−λi)mi)

[
p[1−F((t−λi)mi)]

[1−p[1−F((t−λi)mi)]]2

]
and

∂r̃2:2(t)
∂λi

= −
[x2r(x)]x=((t−λi )mi)

(t−λi)2

[
r′(x)
r(x)

]
x=((t−λi)mi)

[ p[1−F((t−λi)mi)]
1−p[1−F((t−λi)mi)]

]
(13)

+ 1
(t−λi)2 [xr(x)]2

x=((t−λi)mi)

[
p[1−F((t−λi)mi)]

[1−p[1−F((t−λi)mi)]]2

]
.

Now, consider the following

φ2(m,λ) = (mi −m j)
[
∂r̃2:2(t)
∂mi

−
∂r̃2:2(t)
∂m j

]
+ (λi − λ j)

[
∂r̃2:2(t)
∂λi

−
∂r̃2:2(t)
∂λ j

]
. (14)

Under the assumptions and Lemma 2.7, it can be shown that the right hand side of (14) is greater than or
equals to zero. Thus, the result follows from Lemma 2.5. Using similar approach, other two parts can be
proved.

The following counterexample shows that the condition in (C9) is necessary to obtain the reversed
hazard rate order in Theorem 3.6(ii).

Counterexample 3.3. Consider the baseline distribution function as F(t) = 1 − (1 + 5t)−1/5, t > 0, for which
the hazard rate function r(x) is decreasing and convex. Let ψ(p) = 1 − p2. Clearly, ψ(p) does not satisfy (C9).
Set (α1, α2) = (β1, β2) = (1, 1), (θ1, θ2) = (δ1, δ2) = (0.5, 0.5), (λ1, λ2) = (0.9, 0.6), (µ1, µ2) = (0.81, 0.69),
(p1, p2) = (

√
0.2,
√

0.3) and (q1, q2) = (
√

0.23,
√

0.27). Consider a T-transform matrix T0.7 =
(

0.7 0.3
0.3 0.7

)
. It can be

shown that ( µ1 µ2
ψ(q1) ψ(q2)

)
=

(
λ1 λ2
ψ(p1) ψ(p2)

)
T0.7,

which yields
(

λ1 λ2
ψ(p1) ψ(p2)

)
�

( µ1 µ2
ψ(q1) ψ(q2)

)
. Further,

(
λ1 λ2
ψ(p1) ψ(p2)

)
∈ M2 . Denote η(t) = r̃2:2(t) − s̃2:2(t). Then,

η(1.7) = 1.3522 × e−4 (> 0) and η(1.8) = −2.0998 × e−4 (< 0), which shows that η(t) changes sign, when t travels
from 0 to∞. Graph is presented in Figure 2(a) for clear view. Thus, U2:2 �rh V2:2.

In analogy to Theorem 3.3, the result in Theorem 3.6 can also be generalized for arbitrary n ≥ 3.
Here, we use a single T-transform matrix to get (µ, 1/δ; n), (µ,ψ(q); n) and (1/δ,ψ(q); n) from (λ, 1/θ; n),
(λ,ψ(p); n) and (1/θ,ψ(p); n), respectively. That is, (λ, 1/θ; n) � (µ, 1/δ; n), (λ,ψ(p); n) � (µ,ψ(q); n) and
(1/θ,ψ(p); n)� (1/δ,ψ(q); n) hold.

Theorem 3.7. Let (A1) and (A2) hold, and α = β = 1n. Let Tw be a T-transform matrix.

(i) If p = q (= p1n) and (λ, 1/θ; n) ∈ Qn hold, then we have (µ, 1/δ; n) = (λ, 1/θ; n)Tw ⇒ Un:n ≥rh Vn:n, provided
(C2), (C3), (C4) and (C5) are satisfied;

(ii) Suppose ψ satisfies (C9). Then, for θ = δ (= θ1n) and (λ,ψ(p); n) ∈ Mn, we have (µ,ψ(q); n) =
(λ,ψ(p); n)Tw ⇒ Un:n ≥rh Vn:n, provided (C1), (C8) hold;
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Figure 2: (a) Graph of r̃2:2(t) − s̃2:2(t) for Counterexample 3.3. (b) Graphs of r̃3:3(t) and s̃3:3(t) for Example 5.3.

(iii) Suppose ψ satisfies (C9). Then, for λ = µ (= λ1n) and (1/θ,ψ(p); n) ∈ Qn, we have (1/δ,ψ(q); n) =
(1/θ,ψ(p); n)Tw ⇒ Un:n ≥rh Vn:n, provided (C2), (C5) hold.

Proof. Using Lemma 2.6, the proof of the theorem follows similar to Theorem 3.3. Hence, it is omitted for
the sake of brevity.

Similar to Corollary 3.4, the above result in Theorem 3.7 can be extended from a T-transform matrix to a
finite number of T-transform matrices having same structure. This is presented in the following corollary.
In this sequel, we denote T∗w = Tw1 . . .Twk , where k is finite.

Corollary 3.8. Under the assumptions in (A1) and (A2), let α = β = 1n.

(i) Then, for p = q (= p1n) and (λ, 1/θ; n) ∈ Qn, we get (µ, 1/δ; n) = (λ, 1/θ; n)T∗w ⇒ Un:n ≥rh Vn:n, provided
(C2), (C3), (C4) and (C5) hold;

(ii) Suppose ψ satisfies (C9). Let (C1) and (C8) hold. Then, for θ = δ (= θ1n) and (λ,ψ(p); n) ∈ Mn, we get
(µ,ψ(q); n) = (λ,ψ(p); n) T∗w ⇒ Un:n ≥rh Vn:n;

(iii) Supposeψ satisfies (C9). Let (C2) and (C5) be satisfied. Further, assumeλ = µ (= λ1n) and (1/θ,ψ(p); n) ∈ Qn.
Then, (1/δ,ψ(q); n) = (1/θ,ψ(p); n)T∗w ⇒ Un:n ≥rh Vn:n.

Next result states that the results in Corollary 3.8 also hold, when we have T-transform matrices with
different structures instead of the same structure. The proof is similar to that of Theorem 3.5, and therefore,
it is omitted.

Theorem 3.9. Under (A1) and (A2), let α = β = 1n. Further, let Tw1 , . . . ,Tw j be the T-transform matrices with
different structures, for j = 1, . . . , k − 1, where k ≥ 2.

(i) Then, for p = q (= p1n) and (λ, 1/θ; n) ∈ Qn, we get (µ, 1/δ; n) = (λ, 1/θ; n)Tw1 . . .Twk ⇒ Un:n ≥rh Vn:n,
provided (C2), (C3), (C4) and (C5) hold;

(ii) Suppose ψ satisfies (C9). Let (C1) and (C8) hold. Then, for θ = δ (= θ1n) and (λ,ψ(p); n) ∈ Mn, we get
(µ,ψ(q); n) = (λ,ψ(p); n) Tw1 . . . Twk ⇒ Un:n ≥rh Vn:n;

(iii) Suppose ψ satisfies (C9). For λ = µ (= λ1n) and (1/θ,ψ(p); n) ∈ Qn, we have (1/δ,ψ(q); n) = (1/θ,ψ(p); n)
Tw1 . . .Twk ⇒ Un:n ≥rh Vn:n, provided (C2) and (C5) hold.
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4. Vector majorization

This section is devoted to derive sufficient conditions for the comparison results between the largest
claim amounts of two heterogeneous portfolios of risks in the sense of the usual stochastic and the reversed
hazard rate orderings. First, we present the results for the usual stochastic ordering. The following theorem
shows that under some conditions, the weakly supermajorized vector of shape parameters leads to larger
largest claim amount in the sense of the usual stochastic order. Here, we assume that both the location and
scale parameters are same and fixed.

Theorem 4.1. Let (A1) and (A2) hold. Also, for i = 1, . . . ,n, assume θi = δi = θ, pi = qi, λi = µi = λ and
α, β ∈ E+(D+), p ∈ D+(E+). Then, α �w β implies Un:n ≤st Vn:n.

Proof. First, we consider the case α,β ∈ E+ and p ∈ D+. Under the given set up, the distribution function
of Un:n is obtained as

Fn:n(t) =

n∏
i=1

[
1 − pi

[
1 − Fαi

( t − λ
θ

)]]
. (15)

After taking the partial derivative of Fn:n(t) with respect to αi, we get

∂Fn:n(t)
∂αi

= GiFn:n(t), (16)

where Gi = (pi ln
[
F( t−λ

θ )
]

Fαi
(

t−λ
θ

)
)/(1−pi

[
1 − Fαi

(
t−λ
θ

)]
). For i ≤ j,we have pi ≥ p j, αi ≤ α j. Thus, by Lemma

2.8, we obtain Gi ≤ G j. Hence, the difference
[
∂Fn:n(t)
∂αi
−

∂Fn:n(t)
∂α j

]
can be shown to be at most zero. This implies

that Fn:n(t) is Schur-convex with respect to α ∈ E+ by Lemma 3.3 of Kundu et al. [14]. Also, it is decreasing
with respect to α ∈ E+. Thus, the rest of the proof is completed by Theorem A.8 of Marshall et al. [15]. The
proof is similar when α, β ∈ D+ and p ∈ E+.

In the following theorem, we consider that the location, scale and shape parameters are same, but vector
valued.

Theorem 4.2. Suppose ψ is a differentiable function. Let (A1) and (A2) hold. Further, take αi = βi, θi = δi and
λi = µi, for i = 1, . . . ,n. Ifψ(.) satisfies (C9), thenψ(p) �w ψ(q)⇒ Un:n ≥st Vn:n, provided θ, λ, α, p, q ∈ E+(D+).

Proof. We take θ, λ, α, p, q ∈ E+. The proof of the other case is similar. Note that the distribution function
of Un:n is

Fn:n(t) =

n∏
i=1

[
1 − ψ−1(wi)

[
1 − Fαi

( t − λi

θi

)]]
, (17)

where pi = ψ−1(wi), for i = 1, . . . ,n. Differentiating Fn:n(t) with respect to wi partially, we obtain

∂Fn:n(t)
∂wi

= −
∂ψ−1(wi)
∂wi

CiFn:n(t), (18)

where Ci = ([1 − Fαi ( t−λi
θi

)])/(1 − ψ−1(wi)[1 − Fαi ( t−λi
θi

)]). Under the assumptions made, for i ≤ j, we have
wi ≤ w j, λi ≤ λ j, θi ≤ θ j, αi ≤ α j and ψ(w) is increasing, convex. Therefore, ψ−1(·) is also increasing and

convex. This implies ψ−1(wi) ≤ ψ−1(w j). Since ψ−1(·) is convex, we can write ∂ψ−1(wi)
∂wi

≤
∂ψ−1(w j)
∂w j

. Further,
by Lemma 2.7, we have Ci ≤ C j. Combining these two inequalities, it can be checked that Equation (18) is

negative, and the difference
[
∂Fn:n(t)
∂wi
−

∂Fn:n(t)
∂w j

]
is greater than or equals to zero. Hence, by using Lemma 3.3 of

Kundu et al. [14], Fn:n(t) is Schur-concave with respect to w ∈ E+. Also, Fn:n(t) is decreasing. Now, applying
Theorem A.8 of Marshall et al. [15], we get the required result.



S. Das, S. Kayal / Filomat 35:4 (2021), 1315–1332 1326

Remark 4.3. Theorem 4.2 demonstrates that more heterogeneity among transformed occurrence probabilities with
respect to the weakly submajorization order provides better tail function of the largest claim amount.

The following theorem shows that the usual stochastic ordering holds between the largest claim amounts,
when the reciprocal of the scale parameters are associated with the p-majorization and reciprocal majoriza-
tion orders. We assume that the shape parameters are less than or equal to 1.

Theorem 4.4. Suppose (A1) and (A2) hold. For i = 1, . . . ,n, let αi = βi = α ≤ 1, pi = qi and λi = µi. Take
p, θ, δ, λ ∈ E+(D+).

(i) If (C2) holds, then 1/θ �p 1/δ implies Un:n ≥st Vn:n;

(ii) If (C3) holds, then 1/θ �rm 1/δ implies Un:n ≥st Vn:n.

Proof. (i) We prove the result when p, θ, δ, λ ∈ E+. The proof for p, θ, δ, λ ∈ D+ is analogous. Under the
present set up, the distribution function of Un:n is

Fn:n(t) =

n∏
i=1

[
1 − pi [1 − Fα ((t − λi)esi )]

]
, (19)

where si = − lnθi, for i = 1, . . . ,n. To prove the required result, we consider

χ1(es) =

n∏
i=1

[
1 − pi [1 − Fα ((t − λi)esi )]

]
.

Differentiating χ1(es) with respect to si partially, we have

∂χ1(es)
∂si

=

[
αF(α−1)(x)[1 − F(x)]

1 − Fα(x)

]
x=(t−λi)esi

[xr(x)]x=(t−λi)esi Aiχ1(es), (20)

where Ai = ([1 − Fα ((t − λi)esi )])/(1−pi[1−Fα ((t − λi)esi )]). First, we consider the case si ≥ s j, λi ≤ λ j, pi ≤ p j.
Using the given assumptions and Lemma 2.7, the inequality Ai ≤ A j holds. Combining this with Lemma 3
of Balakrishnan et al. [2] and the decreasing property of xr(x), we obtain[

∂χ1(es)
∂si

−
∂χ1(es)
∂s j

]
≤ 0. (21)

From Lemma 3.1 of Kundu et al. [14], (21) implies that χ1(es) is Schur-concave with respect to s ∈ D+.
Further, χ1(es) is increasing with respect to s. Thus, by Lemma 2.1 of Khaledi and Kochar [13], the rest of
the proof is completed.
(ii) The cumulative distribution function of Un:n is

Fn:n(t) =

n∏
i=1

[
1 − pi

[
1 − Fα

( t − λi

θi

)]]
. (22)

Denote χ2(1/θ) =
∏n

i=1[1 − pi[1 − Fα( t−λi
θi

)]]. Differentiating, χ2(1/θ) with respect to θi partially, we get

∂χ2(1/θ)
∂θi

= −

[
αF(α−1)(x)[1 − F(x)]

1 − Fα(x)

]
x=

(
t−λi
θi

)
[
x2r(x)

]
x=

(
t−λi
θi

)
(t − λi)

Biχ2(1/θ), (23)

where Bi = ([1 − Fα( t−λi
θi

)])/(1 − pi[1 − Fα( t−λi
θi

)]). Now, similar to the arguments used in the proof of Part (i)
and by Lemma 1 of Hazra et al. [12], it can be established that χ2(1/θ) is decreasing and Schur-concave
with respect to θ ∈ E+(D+). Hence, the proof is completed.
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In the next, we prove ordering result between two largest claim amounts in the sense of the usual
stochastic order, when the vectors of the location parameters are connected with the weak submajorization
order. We consider that the scale and risk parameters are same, but vector valued. The proof is omitted
since it follows similarly to that of Theorem 4.4(i).

Theorem 4.5. Let (A1), (A2) and (C2) hold. If θ, λ, µ, p ∈ D+(E+), then we have λ �w µ ⇒ Un:n ≥st Vn:n,
provided α = β = α1n (α ≤ 1), θ = δ and p = q.

Below, we obtain two different sets of sufficient conditions for the existence of the usual stochastic order
between the largest claim amounts arising from heterogeneous portfolios of risks for the case of different
location, scale and risk parameters.

Theorem 4.6. Let a function ψ be differentiable. Suppose (A1) and (A2) hold. Further, let α = β = α1n (α ≤ 1) and
θ, λ, µ, δ, p, q ∈ E+(D+).

(i) If (C2) and (C9) hold, then 1/θ �p 1/δ, ψ(p) �w ψ(q) and λ �w µ imply Un:n ≥st Vn:n;

(ii) If (C2), (C3) and (C9) hold, then 1/θ �rm 1/δ, ψ(p) �w ψ(q) and λ �w µ imply Un:n ≥st Vn:n.

Proof. The proof of the first (second) part of the theorem follows from Theorem 4.2, Theorem 4.4(i) ((ii)) and
Theorem 4.5. So, it is omitted.

The following theorem states that the kth largest claim amounts can be comparable with respect to the
usual stochastic order.

Theorem 4.7. Let (A1) and (A2) hold, and ψ be a differentiable function. Also, let λi = µi = λ, θi = δi = θ, for
i = 1, . . . ,n. Then, α �m β⇒ Uk:n ≤st Vk:n, provided ψ(p) = ψ(q) = v.

Proof. Consider the function F(αi, t) = 1 − ψ−1(v)
[
1 − Fαi

(
t−λ
θ

)]
, which can be shown to be increasing and

log-convex with respect to αi, for i = 1, . . . ,n. Thus, the result follows from Theorem 3.5 of Pledger and
Proschan [17].

In this part, we study the conditions under which the reversed hazard rate order holds between the
largest claim amounts from two heterogeneous insurance portfolios of risks.

Theorem 4.8. Assume that (A1) and (A2) hold. Further, let α = β = 1n, p = q, θ = δ and λ, θ, µ, p ∈ E+(D+).
Then, λ �w µ⇒ Un:n ≥rh Vn:n if (C2), (C3) and (C4) are satisfied.

Proof. Under the set up, the reversed hazard rate function of Un:n is

r̃n:n(t) =

n∑
i=1

1
θi

r
( t − λi

θi

)  pi

[
1 − F

(
t−λi
θi

)]
1 − pi

[
1 − F

(
t−λi
θi

)]  . (24)

The partial derivative of r̃n:n(t) given by (24) with respect to λi, is given by

∂r̃n:n(t)
∂λi

= −

[x2r(x)]
x=

(
t−λi
θi

)
(t−λi)2

[
r′(x)
r(x)

]
x=

(
t−λi
θi

)  pi

[
1−F

(
t−λi
θi

)]
1−pi

[
1−F

(
t−λi
θi

)]
 (25)

+ 1
(t−λi)2 [xr(x)]2

x=
(

t−λi
θi

)
 pi

[
1−F

(
t−λi
θi

)]
[
1−pi

[
1−F

(
t−λi
θi

)]]2

 .
It is easy to see that r̃n:n(t) is increasing with respect to λi, i = 1, . . . ,n, since r(x) is decreasing. For any
1 ≤ i ≤ j ≤ n, we have t−λi

θi
≥ (≤) t−λ j

θ j
. Applying the property of r′(x)

r(x) (≤ 0) and xr(x), we obtain

−

[
r′(x)
r(x)

]
x=

t−λi
θi

≤ (≥) −
[

r′(x)
r(x)

]
x=

t−λ j
θ j

and [xr(x)]x=
t−λi
θi

≤ (≥)[xr(x)]
x=

t−λ j
θ j

.
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With these results, Lemma 2.7 yields that [ ∂r̃n:n(t)
∂λi
−

∂r̃n:n(t)
∂λ j

] is less than or equals (greater than or equals) to
zero. Thus, r̃n:n(t) is Schur-convex with respect to λ ∈ E+(D+) by using Lemma 3.3 (Lemma 3.1) of Kundu
et al. [14]. The rest of the proof is completed by Theorem A.8 of Marshall et al. [15].

In the next theorem, we consider that the shape parameter vectors are equal to 1n and the location
parameter vectors are same.

Theorem 4.9. Suppose (A1) and (A2) hold. Further, we assumeα = β = 1n, p = q, λ = µ and λ, θ, δ, p ∈ E+(D+).

(i) If (C2) and (C5) hold, then 1/θ �w 1/δ⇒ Un:n ≥rh Vn:n;

(ii) If (C2), (C6) and (C7) hold, then 1/θ �rm 1/δ⇒ Un:n ≥rh Vn:n.

Proof. (i) Under the given set up, we have

r̃n:n(t) =

n∑
i=1

mir ((t − λi)mi)
[

pi [1 − F ((t − λi)mi)]
1 − pi [1 − F ((t − λi)mi)]

]
, (26)

where mi = 1/θi, for i = 1, . . . ,n. Taking derivative of (26) with respect to mi partially, we obtain

∂r̃n:n(t)
∂mi

= ∂
∂x [xr(x)]x=((t−λi)mi)

[ pi[1−F((t−λi)mi)]
1−pi[1−F((t−λi)mi)]

]
(27)

−

[
xr2(x)

]
x=((t−λi)mi)

[
pi[1−F((t−λi)mi)]

[1−pi[1−F((t−λi)mi)]]2

]
.

From (27), it is clear that r̃n:n(t) is decreasing with respect to mi, for i = 1, . . . ,n. Now, let us take 1 ≤ i ≤ j ≤ n.
Then, (t−λi)mi ≥ (≤)(t−λ j)m j. Moreover, xr(x) is decreasing and convex. Hence, we get ∂

∂x [xr(x)]x=((t−λi)mi) ≥

(≤) ∂∂x [xr(x)]x=((t−λ j)m j) and [xr(x)]x=(t−λi)mi ≤ (≥)[xr(x)]x=(t−λ j)m j . Utilizing Lemma 2.7, we can show that for

any i ≤ j, ∂r̃n:n(t)
∂mi
−

∂r̃n:n(t)
∂m j

≥ (≤)0. Thus, r̃n:n(t) is Schur-convex with respect to m ∈ D+(E+). The rest of the
proof follows from Lemma 3.1 (Lemma 3.3) of Kundu et al. [14] and Theorem A.8 of Marshall et al. [15].
The second part of the theorem can be proved in a similar manner by using Lemma 1 of Hazra et al. [12].
Thus, it is omitted.

Theorem 4.10. Let (A1), (A2) and (C2) hold. Then,

(i) {α = β = 1n, θ ≥ δ, λ ≥ µ, p ≥ q} ⇒ Un:n ≥rh Vn:n;

(ii) {α = β = α < 1, θ ≥ δ, λ ≥ µ, p ≥ q} ⇒ Un:n ≥rh Vn:n.

Proof. To prove the first part, it suffices to show that

n∑
i=1

pi

θi
r
( t − λi

θi

)
si ≥

n∑
i=1

qi

δi
r
( t − µi

δi

)
ti, (28)

where si = (pi[1−F( t−λi
θi

)])/(1−pi[1−F( t−λi
θi

)] and ti = (qi[1−F( t−µi

δi
)])(1−qi[1−F( t−µi

δi
)]).Note that the inequality

given by (28) holds if

1
δi

r
( t − µi

δi

)
≤

1
θi

r
( t − λi

θi

)
(29)

and si ≥ ti, for all i = 1, . . . ,n. Thus, the proof is completed by the given assumptions and Lemma 2.7. The
second part of the theorem can be proved by Lemmas 3(i), 3(ii) of Balakrishnan et al. [2].

Next theorem shows that Vn:n is dominated by Un:n with respect to the reversed hazard rate order under
some conditions. Here, we take that the location parameter and scale parameter vectors are equal. The
shape parameters are taken fixed and less than or equal to 1.
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Theorem 4.11. Suppose ψ : (0, 1) → (0,∞) is a differentiable function satisfying (C9). Let (A1), (A2) and (C2)
hold. Again, θ = δ, λ = µ, α = β = α1n (≤ 1) and λ, θ, p, q ∈ E+(D+). Then, ψ(p) �w ψ(q)⇒ Un:n ≥rh Vn:n.

Proof. The reversed hazard rate of Un:n is

r̃n:n(t) =

n∑
i=1

1
θi

r
( t − λi

θi

)
DiGi, (30)

where Di = ([1 − Fα( t−λi
θi

)])/(1 − ψ−1(wi)[1 − Fα( t−λi
θi

)]) and Gi = (αFα−1( t−λi
θi

)[1 − F( t−λi
θi

)])/([1 − Fα( t−λi
θi

)]). On
differentiating (30) with respect to wi partially, we get

∂r̃n:n(t)
∂wi

=
∂ψ−1(wi)
∂wi

DiGi

1 − ψ−1(wi)
[
1 − Fα

(
t−λi
θi

)] 1
θi

r
( t − λi

θi

)
. (31)

Since ψ(w) is increasing, ψ−1(w) is also increasing. Therefore, r̃n:n(t) is increasing with respect to wi,
i = 1, . . . ,n. Now, under the assumptions made, we have t−λi

θi
≥ (≤) t−λ j

θ j
. Using (C2), we can write

[xr(x)]x=
t−λi
θi

≤ (≥)[xr(x)]
x=

t−λ j
θ j

. Further, by Lemma 2.7, and Lemma 3 of Balakrishnan et al. [2], we get

∂r̃n:n(t)
∂wi
−
∂r̃n:n(t)
∂w j
≤ (≥)0. Thus, r̃n:n(t) is Schur-convex with respect to w ∈ E+(D+), and the desired result readily

follows from Lemma 3.3 (Lemma 3.1) of Kundu et al. [14] and Theorem A.8 of Marshall et al. [15].

The following theorem is an extension of Theorem 4.6. Proof of the first part of the theorem follows from
Theorem 4.8, Theorem 4.9(i) and Theorem 4.11. The second part follows from Theorem 4.8, Theorem 4.9(ii)
and Theorem 4.11.

Theorem 4.12. Let ψ be a differentiable function. Further, let (A1) and (A2) hold. Also, assume α = β = 1n and
θ, λ, µ, δ, p, q ∈ E+(D+).

(i) Suppose (C2), (C5) and (C9) hold. Then, 1/θ �w 1/δ, ψ(p) �w ψ(q) and λ �w µ imply Un:n ≥rh Vn:n;

(ii) Suppose (C2), (C3), (C6), (C7) and (C9) hold. Then, 1/θ �rm 1/δ, ψ(p) �w ψ(q) and λ �w µ imply
Un:n ≥rh Vn:n.

Remark 4.13. On using Theorem 2.3 of Zardasht [19], the usual stochastic ordering implies the incomplete cumu-
lative residual entropy ordering. Further, the reversed hazard rate ordering implies the usual stochastic ordering.
Therefore, the results obtained in this paper also compare two largest claim amounts arising from two heterogeneous
portfolios of risks in the sense of the incomplete cumulative residual entropy ordering.

5. Applications

In this section, we consider two special probability models and show the applicability of the established
results. We take generalized linear failure rate and pareto distributions. For these distributions, we present
few corollaries. However, one can easily obtain similar applications for other established results.

5.1 Generalized linear failure rate distribution
The distribution function of the generalized linear failure rate distribution is given by

F(x) =
[
1 − e−(ax+ b

2 x2)
]d
, x ≥ 0, a, b, d > 0. (32)

One can easily check that for d = 0.5, a = 1, b = 0 and d = 1, a = 1, b = 0, the hazard rate function of (32)
satisfies the conditions given in (C1) and (C8). Here, we consider generalized linear failure rate distribution
as the baseline distribution function.

Corollary 5.1. Under the assumptions of Theorem 4.1 , α �w β⇒ Un:n ≤st Vn:n.
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Corollary 5.2. Let the assumptions of Theorem 3.6(ii) hold. Then, (λ, ψ(p); 2) >> (µ, ψ(q); 2)⇒ U2:2 ≥rh V2:2.

Next, we consider an example to illustrate Corollary 5.2.

Example 5.3. Consider {X1,X2} and {Y1,Y2} are the collections of independent random variables such that Xi ∼

Fα( x−λi
θ ) and Yi ∼ Fα( x−µi

θ ), for i = 1, 2. Also, suppose that {J1, J2} is a set of independent Bernoulli random variables,
independent of Xi’s with E(Ji) = pi and {J∗1, J

∗

2} is another set of independent Bernoulli random variables, independent
of Yi’s with E(J∗i ) = qi, for i = 1, 2. Set λ = (0.5, 0.3), µ = (0.32, 0.48), θ = (2, 2), p = (0.2, 0.1), q =

(0.11, 0.19), α = 1. Here, ψ(p) = p, which is increasing and convex with respect to p. Let T0.1 =
(

0.1 0.9
0.9 0.1

)
. Then,(

λ1 λ2
ψ(p1) ψ(p2)

)
�

( µ1 µ2
ψ(q1) ψ(q2)

)
. Also (C1) and (C8) hold, for d = 1, a = 1, b = 0. Thus, as an application of Corollary 5.2,

one can write U2:2 ≥rh V2:2. The graphs of r̃2:2(t) and s̃2:2(t) are given in Figure 2(b) that verifies Corollary 5.2.

5.1.1 Pareto distribution
The distribution function of the pareto distribution as

F(x) = 1 − x−a, x ≥ 1, a > 0. (33)

For all a, the hazard rate function of the pareto distribution satisfies (C1), (C2), (C4), (C5), (C7) and (C8).
Below, some corollaries are provided, which are the direct consequences of Theorem 3.1 (i). Consider the
pareto distribution to be the baseline distribution function with a = 0.002.

Corollary 5.4. Suppose the assumptions of Theorem 3.1 (i) hold. Again, let ψ(p) = p2. Then,(
ψ(p1) ψ(p2)
λ1 λ2

)
�

(
ψ(p∗1) ψ(p∗2)
µ1 µ2

)
⇒ U2:2 ≥st V2:2.

The example given below, illustrates Corollary 5.4.

Example 5.5. Let {X1,X2} and {Y1,Y2} be two collections of independent random variables such that Xi ∼ Fα( x−λi
θ )

and Yi ∼ Fα( x−µi

θ ), for i = 1, 2. Set the baseline distribution function as pareto distribution. Also, let {J1, J2} be
a set of independent Bernoulli random variables, independent of Xi’s with E(Ji) = pi and {J∗1, J

∗

2} be another set of
independent Bernoulli random variables, independent of Yi’s with E(J∗i ) = qi, where i = 1, 2. Consider λ = (5, 6.1),
µ = (5.44, 5.66), θ = 0.01, α = 0.52, ψ(p) = (0.2, 0.5), ψ(q) = (0.32, 0.38). Here, ψ(p) = p2, which is increasing and
convex with respect to p. Let T0.6 =

(
0.6 0.4
0.4 0.6

)
. Then,

(
ψ(p1) ψ(p2)
λ1 λ2

)
�

(
ψ(q1) ψ(q2)
µ1 µ2

)
. Thus, as an application of Corollary

5.4, U2:2 ≥st V2:2. The graph of F2:2(t) − G2:2(t) is given in Figure 3(a) that verifies Corollary 5.4.

6. Concluding remarks

Let us have two insurance portfolios of n individual risks. Assume that the portfolios are heteroge-
neous. The problem of comparison of the smallest and largest claim amounts arising from these portfolios
of risks with respect to some well known stochastic orders is of recent interest from both theoretical and
practical points of view. Here, under different conditions, we established stochastic comparisons between
the largest claims in the sense of the usual stochastic and reversed hazard rate orderings. Both these orders
are useful tools to a decision maker to choose better one among several risks. For example, for two risks
X and Y, if X ≤st Y, then a person will choose X over Y. Again, for the case of the reversed hazard rate
ordering, a person should prefer a bond, which has smaller reversed hazard rate. The results have been
developed using the concepts of the vector majorization and related orders, and the multivariate chain
majorization order. Finally, the established results have been applied to two baseline distribution functions
for explanation purpose.
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Figure 3: (a) Graph of F2:2(t) − G2:2(t) for Example 5.5.
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