On the D_{α} Spectral Radius of Strongly Connected Digraphs

Weige Xi^{a}
${ }^{a}$ College of Science, Northwest A\&F University, Yangling, Shaanxi 712100, China.

Abstract

Let G be a strongly connected digraph with distance matrix $D(G)$ and let $\operatorname{Tr}(G)$ be the diagonal matrix with vertex transmissions of G. For any real $\alpha \in[0,1]$, define the matrix $D_{\alpha}(G)$ as $$
D_{\alpha}(G)=\alpha \operatorname{Tr}(G)+(1-\alpha) D(G) .
$$

The D_{α} spectral radius of G is the spectral radius of $D_{\alpha}(G)$. In this paper, we first give some upper and lower bounds for the D_{α} spectral radius of G and characterize the extremal digraphs. Moreover, for digraphs that are not transmission regular, we give a lower bound on the difference between the maximum vertex transmission and the D_{α} spectral radius. Finally, we obtain the D_{α} eigenvalues of the join of certain regular digraphs.

1. Introduction

Let $G=(V(G), E(G))$ be a digraph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and arc set $E(G)$. If there is an arc from v_{i} to v_{j}, we denote this by writing $\left(v_{i}, v_{j}\right)$, call v_{j} and v_{i} the head and the tail of $\left(v_{i}, v_{j}\right)$, respectively. The loop is an arc which starts and ends at a same vertex. The multiarcs are the arcs which start at a same vertex v_{i} and end at a same vertex v_{j}, where $v_{i} \neq v_{j}$. A digraph is simple if it has no loops and multiarcs. A digraph G is strongly connected if for every pair of vertices $v_{i}, v_{j} \in V(G)$, there exists a directed path from v_{i} to v_{j}. The complete digraph is a digraph in which every pair of vertices is connected by an arc. For a digraph G with vertex set $V(G)$, if $S \subset V(G)$, then we use $G[S]$ to denote the subdigraph of G induced by S. Let H be a subdigraph of G, if $G[V(H)]$ is a complete subdigraph of G, then H is called a clique of G. We follow $[4,5,11]$ for terminology and notations. Throughout this paper, we only consider simple strongly connected digraphs.

For any vertex $v_{i} \in V(G), N^{+}\left(v_{i}\right)=\left\{v_{j}:\left(v_{i}, v_{j}\right) \in E(G)\right\}$ is called the set of outneighbors of v_{i}. Let $d_{G}^{+}\left(v_{i}\right)=\left|N^{+}\left(v_{i}\right)\right|$ denote the outdegree of v_{i}, (we simply write $d^{+}\left(v_{i}\right)$ if it is clear from the context.) A digraph is called regular if each of its vertex has the same outdegree. For a strongly connected digraph G, the distance from v_{i} to v_{j}, denoted by $d_{v_{i} v_{j}}$ or simply $d_{i j}$, is defined as the length of the shortest directed path from v_{i} to v_{j} in G. The diameter of the strongly connected digraph G, denoted by $\operatorname{diam}(G)$, is the maximum $d_{i j}$ over all ordered pairs of vertices v_{i}, v_{j}.

[^0]Let $A(G)=\left(a_{i j}\right)_{n \times n}$ be the adjacency matrix of G, where $a_{i j}=1$ if $\left(v_{i}, v_{j}\right) \in E(G)$ and $a_{i j}=0$ otherwise. The signless Laplacian matrix of G is $Q(G)=\operatorname{Diag}(G)+A(G)$, where $\operatorname{Diag}(G)=\operatorname{diag}\left(d^{+}\left(v_{1}\right), d^{+}\left(v_{2}\right), \ldots, d^{+}\left(v_{n}\right)\right)$ is the diagonal matrix with outdegrees of vertices of G. For any real $\alpha \in[0,1]$, the A_{α} matrix of G is introduced by J.P. Liu et al. [18] below. The matrix $A_{\alpha}(G)=\alpha \operatorname{Diag}(G)+(1-\alpha) A(G)$ is called A_{α} matrix of G, which reduces to merging the adjacency spectral and signless Laplacian spectral theories.

The distance matrix of G, denoted by $D(G)$, is defined as $D(G)=\left(d_{i j}\right)_{n \times n}$, where $d_{i j}$ is defined as the length of the shortest directed path from v_{i} to v_{j} in the strongly connected digraph G. The transmission of a vertex v_{i}, denoted by $\operatorname{Tr}_{G}\left(v_{i}\right)$ or $T r_{i}$, is defined as the sum of distances from v_{i} to all other vertices in G, that is, $\operatorname{Tr}_{G}\left(v_{i}\right)=\operatorname{Tr}_{i}=\sum_{j=1}^{n} d_{i j}(i=1,2, \ldots, n)$. In fact, for $1 \leq i \leq n$, the transmission of vertex v_{i} is just the i-th row sum of $D(G)$. A strongly connected digraph G is k-transmission regular if $T r_{i}=k$ for each $v_{i} \in V(G)$; otherwise, G is non-transmission regular. The second transmission of v_{i}, denoted by T_{i}, is given by $T_{i}=\sum_{t=1}^{n} d_{i t} T r_{t}$. Let $\operatorname{Tr}(G)=\operatorname{diag}\left(\operatorname{Tr}_{1}, T r_{2}, \ldots, T r_{n}\right)$ be the diagonal matrix with vertex transmissions of G. Then $D^{Q}(G)=\operatorname{Tr}(G)+D(G)$ is called the distance signless Laplacian matrix of G. The spectral radius of $D(G)$ is called the distance spectral radius of G, and the spectral radius of $D^{Q}(G)$ is called the distance signless Laplacian spectral radius of G. The distance spectral radius and distance signless Laplacian spectral radius of undirected graphs are well treated in the literature, see $[1-3,8,14]$.

In [21], it was proposed to study the convex combinations $D_{\alpha}(G)$ of $\operatorname{Tr}(G)$ and $D(G)$, defined by

$$
D_{\alpha}(G)=\alpha \operatorname{Tr}(G)+(1-\alpha) D(G), \quad 0 \leq \alpha \leq 1
$$

Since $D(G)=D_{0}(G), \operatorname{Tr}(G)=D_{1}(G)$ and $D^{Q}(G)=2 D_{\frac{1}{2}}(G)$, the matrices $D_{\alpha}(G)$ can underpin a unified theory of $D(G)$ and $D^{Q}(G)$. We call the eigenvalue with largest modulus of $D_{\alpha}(G)$ the D_{α} spectral radius of G, denoted by $\mu_{\alpha}(G)$. The collection of eigenvalues of $D_{\alpha}(G)$ together with multiplicities are called the D_{α}-spectrum of G. If $\alpha=1, D_{1}(G)=\operatorname{Tr}(G)$ the diagonal matrix with vertex transmissions of G which is not interesting. Unless stated otherwise, we assume that $0 \leq \alpha<1$ in the rest of this paper. Since G is a strongly connected digraph, then $D_{\alpha}(G)$ is a nonnegative irreducible matrix. It follows from the Perron Frobenius Theorem that $\mu_{\alpha}(G)$ is an eigenvalue of $D_{\alpha}(G)$, and there is a positive unit eigenvector corresponding to $\mu_{\alpha}(G)$. The positive unit eigenvector corresponding to $\mu_{\alpha}(G)$ is called the Perron vector of $D_{\alpha}(G)$. The D_{α} spectral radius of undirected graphs has been studied in the literature, see [6, 7, 9, 16]. We are interested in the D_{α} spectral radius of digraphs.

Recently, the distance spectral radius and distance signless Laplacian spectral radius of digraphs have been studied in some papers. For example, Lin et al. [17] characterized the extremal digraphs with the minimum distance spectral radius among all digraphs with given vertex connectivity. Lin and Shu [15] first gave sharp upper and lower bounds for the distance spectral radius of strongly connected digraphs, they then characterized the digraphs having the maximal and minimal distance spectral radii among all strongly connected digraphs, and they also determined the extremal digraphs with the minimal distance spectral radius among all strongly connected digraphs with given arc connectivity and dichromatic number, respectively. Xi and Wang [23] determined the strongly connected digraphs minimizing distance spectral radius among all strongly connected digraphs with given diameter d, for $d=1,2,3,4,5,6,7, n-1$. Li et al. [12] gave sharp upper and lower bounds for the distance signless Laplacian spectral radius of strongly connected digraphs, they also determined the extremal digraph with the minimum distance signless Laplacian spectral radius among all strongly connected digraphs with given dichromatic number. Li et al. [13], Xi and Wang [20] independently characterized the digraph minimizes the distance signless Laplacian spectral radius among all strongly connected digraphs with given vertex connectivity. Xi et al. [22] characterized the extremal digraph achieving the minimum distance signless Laplacian spectral radius among all strongly connected digraphs with given arc connectivity.

Compared with the much studied on distance and distance signless Laplacian spectral radius of digraphs, the study of generalized distance spectral radius has just been proposed by Xi et al. in [21]. Some basic spectral properties of generalized distance matrix of strongly connected digraphs are established and bounds for the generalized distance spectral radius were obtained. In [21], Xi et al. also determined the
digraphs which attain the minimum D_{α} spectral radius among all strongly connected digraphs with given parameters such as dichromatic number, vertex connectivity or arc connectivity.

In this paper, we first give some upper and lower bounds on D_{α} spectral radius of strongly connected digraphs. Moreover, for digraphs that are not transmission regular, we give a lower bound on the difference between the maximum vertex transmission and the D_{α} spectral radius. Finally, we obtain the D_{α} eigenvalues of the join of certain regular digraphs.

2. Bounds for the D_{α} spectral radius of strongly connected digraphs

In this section, we give some upper and lower bounds on the D_{α} spectral radius of digraphs.
Lemma 2.1. ([10]) Let $M=\left(m_{i j}\right)$ be an $n \times n$ nonnegative matrix with spectral radius $\rho(M)$, and let $R_{i}(M)$ be the i-th row sum of M. Then

$$
\min \left\{R_{i}(M): 1 \leq i \leq n\right\} \leq \rho(M) \leq \max \left\{R_{i}(M): 1 \leq i \leq n\right\}
$$

Moreover, if M is irreducible, then any equality holds if and only if $R_{1}(M)=R_{2}(M)=\cdots=R_{n}(M)$.
From Lemma 2.1, we have the following corollary.
Corollary 2.2. Let G be a strongly connected digraph with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Then

$$
\min _{v_{i} \in V(G)} \sqrt{\alpha T r_{i}^{2}+(1-\alpha) T_{i}} \leq \mu_{\alpha}(G) \leq \max _{v_{i} \in V(G)} \sqrt{\alpha T r_{i}^{2}+(1-\alpha) T_{i}}
$$

where $\operatorname{Tr}_{i}=\sum_{j=1}^{n} d_{i j}$ and $T_{i}=\sum_{t=1}^{n} d_{i t} T r_{t}$ are the transmission and 2-transmission of the vertex v_{i}, respectively.
Proof. Since $D_{\alpha}(G)=\alpha \operatorname{Tr}(G)+(1-\alpha) D(G)$, by a simple calculation, we have

$$
\begin{gathered}
R_{i}\left(D_{\alpha}(G)\right)=\operatorname{Tr}_{i}, R_{i}(D(G) \operatorname{Tr}(G))=\sum_{t=1}^{n} d_{i t} T r_{t}=T_{i} \\
R_{i}\left(D^{2}(G)\right)=\sum_{j=1}^{n} \sum_{t=1}^{n} d_{i t} d_{t j}=\sum_{t=1}^{n} \sum_{j=1}^{n} d_{i t} d_{t j}=\sum_{t=1}^{n} d_{i t} \sum_{j=1}^{n} d_{t j}=\sum_{t=1}^{n} d_{i t} T r_{t}=T_{i} .
\end{gathered}
$$

Then

$$
\begin{aligned}
R_{i}\left(D_{\alpha}^{2}(G)\right)= & R_{i}(\alpha \operatorname{Tr}(G)(\alpha \operatorname{Tr}(G)+(1-\alpha) D(G))) \\
& +R_{i}(\alpha(1-\alpha) D(G) \operatorname{Tr}(G))+R_{i}\left((1-\alpha)^{2} D^{2}(G)\right) \\
= & \alpha \operatorname{Tr}_{i} R_{i}\left(D_{\alpha}(G)\right)+\alpha(1-\alpha) T_{i}+(1-\alpha)^{2} T_{i} \\
= & \alpha \operatorname{Tr}_{i}^{2}+(1-\alpha) T_{i} .
\end{aligned}
$$

Hence, by Lemma 2.1, we have

$$
\mu_{\alpha}(G) \leq \max _{v_{i} \in V(G)} \sqrt{\alpha T r_{i}^{2}+(1-\alpha) T_{i}}
$$

The proof of the other part is similar.
Lemma 2.3. Let $B=\left(b_{i j}\right)$ be an $n \times n$ real matrix, and let μ be an eigenvalue of B with a left eigenvector X all of whose entries are nonnegative. Then

$$
\min \left\{R_{i}(B): 1 \leq i \leq n\right\} \leq \mu \leq \max \left\{R_{i}(B): 1 \leq i \leq n\right\},
$$

where $R_{i}(B)$ is the i-th row sum of B.

Proof. Since $X^{T} B=\mu X^{T}$. Without loss of generality, we may assume that $\sum_{j=1}^{n} x_{j}=1$. Then

$$
\mu=\mu \sum_{j=1}^{n} x_{j}=\sum_{j=1}^{n} \mu x_{j}=\sum_{j=1}^{n} \sum_{i=1}^{n} x_{i} b_{i j}=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} b_{i j}=\sum_{i=1}^{n} x_{i} \sum_{j=1}^{n} b_{i j}=\sum_{i=1}^{n} x_{i} R_{i}(B) .
$$

In other words, since the entries of X are nonnegative and sum to $1, \mu$ is a convex combination of the row sums of B. Therefore, $\min \left\{R_{i}(B): 1 \leq i \leq n\right\} \leq \mu \leq \max \left\{R_{i}(B): 1 \leq i \leq n\right\}$.

From Lemma 2.3, we have the following corollary which is necessary for the proof of Theorem 2.5 (below).
Corollary 2.4. Let G be a strongly connected digraph with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let $p(x)$ be a polynomial on x, $\mu_{\alpha}(G)$ be the spectral radius of $D_{\alpha}(G)$. Then

$$
\min _{1 \leq i \leq n}\left\{R_{i}\left(p\left(D_{\alpha}(G)\right)\right)\right\} \leq p\left(\mu_{\alpha}(G)\right) \leq \max _{1 \leq i \leq n}\left\{R_{i}\left(p\left(D_{\alpha}(G)\right)\right)\right\}
$$

where $R_{i}\left(p\left(D_{\alpha}(G)\right)\right)$ is the i-th row sum of matrix $p\left(D_{\alpha}(G)\right)$. Moreover, if the row sums of $p\left(D_{\alpha}(G)\right)$ are not all equal, then both inequalities are strict.
Proof. Since $D_{\alpha}(G)$ is a nonnegative irreducible matrix, there exists a left positive vector $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ such that $X^{T} D_{\alpha}(G)=\mu_{\alpha}(G) X^{T}$. Then

$$
X^{T} p\left(D_{\alpha}(G)\right)=p\left(\mu_{\alpha}(G)\right) X^{T}
$$

Hence, by Lemma 2.3, the result follows.
Theorem 2.5. Let $G=(V(G), E(G))$ be a strongly connected digraph on n vertices with transmission sequence $\left\{T r_{1}, T r_{2}, \ldots, T r_{n}\right\}$. Let $T r_{\max }$ and $T r_{\text {min }}$ denote the maximum and minimum vertex transmission of G, respectively. Then

$$
\mu_{\alpha}(G) \geq \frac{(1-\alpha)\left(T r_{\min }-1\right)+\sqrt{(1-\alpha)^{2}\left(T r_{\min }-1\right)^{2}+4\left[\alpha T r_{\min }^{2}+(1-\alpha) W(G)-(1-\alpha)(n-1) T r_{\min }\right]}}{2}
$$

and if $\alpha \in\left[\frac{1}{2}, 1\right)$,

$$
\mu_{\alpha}(G) \leq \frac{(1-\alpha)\left(T r_{\max }-1\right)+\sqrt{(1-\alpha)^{2}\left(T r_{\max }-1\right)^{2}+4\left[\alpha T r_{\max }^{2}+(1-\alpha) W(G)-(1-\alpha)(n-1) T r_{\max }\right]}}{2}
$$

where $W(G)=\sum_{i=1}^{n} \sum_{j=1}^{n} d_{i j}$.
Proof. Since $D_{\alpha}(G)=\alpha \operatorname{Tr}(G)+(1-\alpha) D(G)$, by a simple calculation, we have

$$
\left.D_{\alpha}^{2}(G)=\alpha^{2} \operatorname{Tr}^{2}(G)+\alpha(1-\alpha) \operatorname{Tr}(G) D(G)\right)+\alpha(1-\alpha) D(G) \operatorname{Tr}(G)+(1-\alpha)^{2} D^{2}(G)
$$

Therefore, from the proof of Corollary 2.2, the i-th row sum of $D_{\alpha}^{2}(G)$ is

$$
R_{i}\left(D_{\alpha}^{2}(G)\right)=\alpha T r_{i}^{2}+(1-\alpha) T_{i}
$$

where $T_{i}=\sum_{t=1}^{n} d_{i t} T r_{t}$. However, let $W(G)=\sum_{i=1}^{n} \sum_{j=1}^{n} d_{i j}$, then

$$
\begin{aligned}
\sum_{t=1}^{n} d_{i t} T r_{t} & =\sum_{t=1}^{n} T r_{t}+\sum_{t=1}^{n}\left(d_{i t}-1\right) T r_{t}=W(G)-T r_{i}+\sum_{t=1, t \neq i}^{n}\left(d_{i t}-1\right) T r_{t} \\
& \geq W(G)-T r_{i}+T r_{\min } \sum_{t=1, t \neq i}^{n}\left(d_{i t}-1\right) \\
& =W(G)-T r_{i}+T r_{\min } T r_{i}-(n-1) T r_{\min } \\
& =W(G)+\left(T r_{\min }-1\right) T r_{i}-(n-1) T r_{\min }
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{t=1}^{n} d_{i t} T r_{t} & =W(G)-T r_{i}+\sum_{t=1, t \neq i}^{n}\left(d_{i t}-1\right) T r_{t} \\
& \leq W(G)-T r_{i}+T r_{\max } \sum_{t=1, t \neq i}^{n}\left(d_{i t}-1\right) \\
& =W(G)-T r_{i}+T r_{\max } T r_{i}-(n-1) T r_{\max } \\
& =W(G)+\left(T r_{\max }-1\right) T r_{i}-(n-1) T r_{\max }
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
R_{i}\left(D_{\alpha}^{2}(G)\right)=\alpha \operatorname{Tr}_{i}^{2}+(1-\alpha) \sum_{t=1}^{n} d_{i t} \operatorname{Tr}_{t} \geq \alpha \operatorname{Tr}_{i}^{2}+(1-\alpha)\left[W(G)+\left(\operatorname{Tr}_{\min }-1\right) \operatorname{Tr}-(n-1) T r_{\min }\right] \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{i}\left(D_{\alpha}^{2}(G)\right) \leq \alpha T r_{i}^{2}+(1-\alpha)\left[W(G)+\left(T r_{\max }-1\right) T r_{i}-(n-1) T r_{\max }\right] \tag{2}
\end{equation*}
$$

Let $p(x)=x^{2}-(1-\alpha)\left(\operatorname{Tr}_{\text {min }}-1\right) x$. Then the i-th row sum of $p\left(D_{\alpha}(G)\right)$ is

$$
\begin{aligned}
R_{i}\left(p\left(D_{\alpha}(G)\right)\right) & =R_{i}\left(D_{\alpha}^{2}(G)-(1-\alpha)\left(T r_{\min }-1\right) D_{\alpha}(G)\right) \\
& =R_{i}\left(D_{\alpha}^{2}(G)\right)-(1-\alpha)\left(\operatorname{Tr}_{\min }-1\right) R_{i}\left(D_{\alpha}(G)\right) \\
& =R_{i}\left(D_{\alpha}^{2}(G)\right)-(1-\alpha)\left(\operatorname{Tr}_{\min }-1\right) \operatorname{Tr}_{i} .
\end{aligned}
$$

Furthermore, combining (1), we have

$$
\begin{aligned}
R_{i}\left(p\left(D_{\alpha}(G)\right)\right) & \geq \alpha \operatorname{Tr}_{i}^{2}+(1-\alpha)\left[W(G)+\left(T r_{\min }-1\right) T r_{i}-(n-1) T r_{\min }\right]-(1-\alpha)\left(T r_{\min }-1\right) T r_{i} \\
& =\alpha \operatorname{Tr}_{i}^{2}+(1-\alpha) W(G)-(1-\alpha)(n-1) T r_{\min } .
\end{aligned}
$$

From the above inequality, for $i=1,2, \ldots, n$, we have

$$
R_{i}\left(p\left(D_{\alpha}(G)\right)\right) \geq \alpha T r_{\min }^{2}+(1-\alpha) W(G)-(1-\alpha)(n-1) T r_{\min }
$$

From this inequality and Corollary 2.4, we get

$$
p\left(\mu_{\alpha}(G)\right)=\mu_{\alpha}^{2}(G)-(1-\alpha)\left(\operatorname{Tr}_{\min }-1\right) \mu_{\alpha}(G) \geq \alpha \operatorname{Tr}_{\min }^{2}+(1-\alpha) W(G)-(1-\alpha)(n-1) T r_{\min },
$$

which can reduce that

$$
\mu_{\alpha}(G) \geq \frac{(1-\alpha)\left(T r_{\min }-1\right)+\sqrt{(1-\alpha)^{2}\left(T r_{\min }-1\right)^{2}+4\left[\alpha T r_{\min }^{2}+(1-\alpha) W(G)-(1-\alpha)(n-1) T r_{\min }\right]}}{2}
$$

Similarly, using the polynomial $p(x)=x^{2}-(1-\alpha)\left(\operatorname{Tr}_{\max }-1\right) x$ and (2), we can obtain the upper bound in the theorem.

Now, we give a lower and upper bound on the D_{α} spectral radius of digraphs in terms of the maximum transmission, the maximum second transmission, the minimum transmission and the minimum second transmission of G.

Theorem 2.6. Let G be a strongly connected digraph with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Then

$$
\frac{\alpha T r_{\min }+\sqrt{\alpha^{2} T r_{\min }^{2}+4(1-\alpha) T_{\min }}}{2} \leq \mu_{\alpha}(G) \leq \frac{\alpha T r_{\max }+\sqrt{\alpha^{2} T r_{\max }^{2}+4(1-\alpha) T_{\max }}}{2}
$$

where $T r_{\text {max }}$ and $T r_{\text {min }}$ are the maximum transmission and the minimum transmission of G, respectively, $T_{\max }$ and $T_{\text {min }}$ are the maximum second transmission and the minimum second transmission of G, respectively.

Proof. Since $D_{\alpha}(G)=\alpha \operatorname{Tr}(G)+(1-\alpha) D(G)$, from the proof of Corollary 2.2, we get

$$
\begin{aligned}
R_{i}\left(D_{\alpha}^{2}(G)\right) & =\alpha \operatorname{Tr}_{i} R_{i}\left(D_{\alpha}(G)\right)+\alpha(1-\alpha) T_{i}+(1-\alpha)^{2} T_{i} \\
& \leq \alpha \operatorname{Tr}_{\max } R_{i}\left(D_{\alpha}(G)\right)+(1-\alpha) T_{\max } .
\end{aligned}
$$

So we have

$$
R_{i}\left(D_{\alpha}^{2}(G)-\alpha T r_{\max } D_{\alpha}(G)\right) \leq(1-\alpha) T_{\max }
$$

Since G is a strongly connected digraph, there is a positive left eigenvector X corresponding to $\mu_{\alpha}(G)$. Hence $D_{\alpha}^{2}(G)-\alpha T r_{\max } D_{\alpha}(G)$ has an eigenvalue $\mu_{\alpha}^{2}(G)-\alpha T r_{\max } \mu_{\alpha}(G)$ with positive left eigenvector X. By Lemma 2.3, we have

$$
\mu_{\alpha}^{2}(G)-\alpha T r_{\max } \mu_{\alpha}(G) \leq \max _{1 \leq i \leq n} R_{i}\left(D_{\alpha}^{2}(G)-\alpha \operatorname{Tr}_{\max } D_{\alpha}(G)\right) \leq(1-\alpha) T_{\max }
$$

that is

$$
\mu_{\alpha}(G) \leq \frac{\alpha T r_{\max }+\sqrt{\alpha^{2} T r_{\max }^{2}+4(1-\alpha) T_{\max }}}{2}
$$

The proof of the other part is similar.
Next, we present another upper bound on the D_{α} spectral radius of digraphs.
Theorem 2.7. Let $G=(V(G), E(G))$ be a strongly connected digraph on $n \geq 2$ vertices with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, the diameter d and transmission sequence $\left\{\operatorname{Tr}_{1}, \operatorname{Tr}_{2}, \ldots, T r_{n}\right\}$, where $\operatorname{Tr}_{1} \geq \operatorname{Tr}_{2} \geq \cdots \geq T r_{n}$. Let $\phi_{1}=\operatorname{Tr}_{1}$ and for $2 \leq l \leq n$,

$$
\begin{equation*}
\phi_{l}=\frac{\alpha \operatorname{Tr}_{1}+\operatorname{Tr}_{l}-(1-\alpha) d+\sqrt{\left(\operatorname{Tr}_{l}-\alpha \operatorname{Tr}_{1}+(1-\alpha) d\right)^{2}+4(1-\alpha) d \sum_{k=1}^{l-1}\left(\operatorname{Tr}_{k}-\operatorname{Tr}_{l}\right)}}{2} \tag{3}
\end{equation*}
$$

and $\phi_{s}=\min _{1 \leq l \leq n}\left\{\phi_{l}\right\}$ for some $s \in\{1,2, \ldots, n\}$. Then $\mu_{\alpha}(G) \leq \phi_{s}$. Moreover, $\mu_{\alpha}(G)=\phi_{s}$ if and only if G is a transmission regular digraph.

Proof. Firstly, we will show that $\mu_{\alpha}(G) \leq \phi_{l}$ for all $1 \leq l \leq n$.
Case 1: $l=1$.
It is obvious that $\mu_{\alpha}(G) \leq T r_{1}=\phi_{1}$ by Lemma 2.1 and the definition of $D_{\alpha}(G)$.
Case 2: $2 \leq l \leq n$.
By (3), it is obvious that $\phi_{l}>\alpha T r_{1}-(1-\alpha) d$, and $\left(\phi_{l}-\alpha T r_{1}+(1-\alpha) d\right)\left(\phi_{l}-T r_{l}\right)=(1-\alpha) d \sum_{k=1}^{l-1}\left(T r_{k}-T r_{l}\right)$.
Let $U=\operatorname{diag}\left\{x_{1}, x_{2}, \ldots, x_{l-1}, 1,1, \ldots, 1\right\}$ be an $n \times n$ diagonal matrix, where $x_{i}=1+\frac{T r_{i} T r_{l}}{\phi_{l}-\alpha T r_{1}+(1-\alpha) d} \geq 1$ for $i \in\{1,2, \ldots, l-1\}$. Then

$$
\begin{gather*}
x_{1} \geq x_{2} \geq \cdots \geq x_{l-1} \geq 1 \\
(1-\alpha) d \sum_{k=1}^{l-1}\left(x_{k}-1\right)=(1-\alpha) d \sum_{k=1}^{l-1} \frac{T r_{k}-T r_{l}}{\phi_{l}-\alpha T r_{1}+(1-\alpha) d}=\phi_{l}-\operatorname{Tr}_{l} \tag{4}
\end{gather*}
$$

and

$$
U^{-1}=\operatorname{diag}\left\{x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{l-1}^{-1}, 1,1, \ldots, 1\right\}
$$

Let $D_{\alpha}(G)=\left(\omega_{i j}\right)_{n \times n}=\alpha \operatorname{Tr}(G)+(1-\alpha) D(G)$ be the generalized distance matrix of G and $P=U^{-1} D_{\alpha}(G) U$. Obviously, P and $D_{\alpha}(G)$ have the same eigenvalues, thus $\mu_{\alpha}(G)=\rho(P)$, where $\rho(P)$ denotes the spectral radius of matrix P. Let $R_{i}(P)$ be the i-th row sum of $P, 1 \leq i \leq n$. Now we will prove that $R_{i}(P) \leq \phi_{l}$ for any $1 \leq i \leq n$.

Subcase 2.1: $1 \leq i \leq l-1$.

$$
\begin{aligned}
R_{i}(P) & =\sum_{k=1}^{l-1} \frac{x_{k}}{x_{i}} \omega_{i k}+\sum_{k=l}^{n} \frac{1}{x_{i}} \omega_{i k}=\frac{1}{x_{i}} \sum_{k=1}^{l-1}\left(x_{k}-1\right) \omega_{i k}+\frac{1}{x_{i}} \sum_{k=1}^{n} \omega_{i k} \\
& =\frac{1}{x_{i}} T r_{i}+\frac{1}{x_{i}} \sum_{k=1}^{l-1}\left(x_{k}-1\right) \omega_{i k} \\
& =\frac{1}{x_{i}} T r_{i}+\frac{1}{x_{i}}\left(\left(x_{i}-1\right) \omega_{i i}+\sum_{k=1, k \neq i}^{l-1}\left(x_{k}-1\right) \omega_{i k}\right) \\
& \leq \frac{1}{x_{i}} \operatorname{Tr}_{i}+\frac{1}{x_{i}}\left(\left(x_{i}-1\right) \alpha T r_{i}+\sum_{k=1, k \neq i}^{l-1}\left(x_{k}-1\right)(1-a) d\right) \\
& \leq \frac{1}{x_{i}} \operatorname{Tr}_{i}+\frac{1}{x_{i}}\left(\left(x_{i}-1\right) \alpha \operatorname{Tr} r_{1}+\sum_{k=1, k \neq i}^{l-1}\left(x_{k}-1\right)(1-a) d\right) \\
& =\frac{1}{x_{i}}\left(\operatorname{Tr}_{i}+\left(x_{i}-1\right)(\alpha \operatorname{Tr}-(1-a) d)+(1-a) d \sum_{k=1}^{l-1}\left(x_{k}-1\right)\right) \\
& =\frac{1}{x_{i}}\left(\operatorname{Tr}_{i}+(\alpha \operatorname{Tr}-(1-a) d) \frac{T r_{i}-\operatorname{Tr} r_{l}}{\phi_{l}-\alpha \operatorname{Tr} r_{1}+(1-\alpha) d}+\phi_{l}-\operatorname{Tr} r_{l}\right)(\text { using }(4)) \\
& =\frac{\phi_{l}-\alpha \operatorname{Tr} r_{1}+(1-\alpha) d}{\phi_{l}-\alpha T r_{1}+(1-\alpha) d+\operatorname{Tr}-\operatorname{Tr}} \cdot \frac{\phi_{l}\left(\phi_{l}-\alpha \operatorname{Tr} r_{1}+(1-\alpha) d+\operatorname{Tr} r_{i}-\operatorname{Tr} r_{l}\right)}{\phi_{l}-\alpha T r_{1}+(1-\alpha) d} \\
& =\phi_{l}
\end{aligned}
$$

with equality if and only if (i) and (ii) hold:
(i) $x_{i}=1$ or $\omega_{i i}=\alpha T r_{1}$ for $x_{i}>1$,
(ii) $x_{k}=1$ or $\omega_{i k}=(1-\alpha) d$ for $x_{k}>1$ if $1 \leq k \leq l-1$ with $k \neq i$.

Subcase 2.2: $l \leq i \leq n$.

$$
\begin{aligned}
R_{i}(P) & =\sum_{k=1}^{l-1} x_{k} \omega_{i k}+\sum_{k=l}^{n} \omega_{i k}=\sum_{k=1}^{l-1}\left(x_{k}-1\right) \omega_{i k}+\sum_{k=1}^{n} \omega_{i k} \\
& =\sum_{k=1}^{l-1}\left(x_{k}-1\right) \omega_{i k}+T r_{i} \\
& \leq \sum_{k=1}^{l-1}\left(x_{k}-1\right) \omega_{i k}+T r_{l} \\
& \leq(1-a) d \sum_{k=1}^{l-1}\left(x_{k}-1\right)+T r_{l}=\phi_{l}(\operatorname{using}(4)),
\end{aligned}
$$

with equality if and only if (iii) and (iv) hold:
(iii) $T r_{i}=T r_{l}$,
(iv) $x_{k}=1$ or $\omega_{i k}=(1-\alpha) d$ for $x_{k}>1$ if $1 \leq k \leq l-1$.

Hence, by Lemma 2.1, $\mu_{\alpha}(G)=\rho(P) \leq \max _{1 \leq i \leq n} R_{i}(P) \leq \phi_{l}$ for any $2 \leq l \leq n$. Thus $\mu_{\alpha}(G)=\rho(P) \leq \max _{1 \leq i \leq n} R_{i}(P) \leq$ $\min _{2 \leq l \leq n} \phi_{l}$.

Combining the above two cases, $\mu_{\alpha}(G) \leq \min _{1 \leq l \leq n} \phi_{l}$.
In the following, we will give the sufficient and necessary condition of the equality. Let $\phi_{s}=\min _{1 \leq l \leq n} \phi_{l}$ for some $s \in\{1,2, \ldots, n\}$. Then we consider the following two cases.

Case 1: $s=1$.
It is obvious that $\mu_{\alpha}(G)=\phi_{1}=T r_{1}$ if and only if G is a transmission regular digraph by Lemma 2.1.
Case 2: $2 \leq s \leq n$.
Clearly, $D_{\alpha}(G)$ and P are irreducible nonnegative matrices because G is a strongly connected digraph. Then $\mu_{\alpha}(G)=\phi_{s}$ if and only if $\phi_{1} \geq \phi_{s}, \rho(P)=\max _{1 \leq i \leq n} R_{i}(P)$ and $\max _{1 \leq i \leq n} R_{i}(P)=\phi_{s}$. Noting that $\rho(P)=\max _{1 \leq i \leq n} R_{i}(P)$ if and only if the row sums of $P, R_{1}(P), R_{2}(P), \ldots, R_{n}(P)$ are all equal by Lemma 2.1. Hence, we have $\mu_{\alpha}(G)=\phi_{s}$ if and only if $R_{1}(P)=R_{2}(P)=\cdots=R_{n}(P)=\phi_{s}$ and $\phi_{1} \geq \phi_{s}$.

Noting that $R_{1}(P)=R_{2}(P)=\cdots=R_{n}(P)=\phi_{s}$ if and only if P satisfies the following four conditions:
(i) $x_{i}=1$ or $\omega_{i i}=\alpha \operatorname{Tr}_{1}$ for $x_{i}>1$ holds for all $1 \leq i \leq s-1$,
(ii) $x_{k}=1$ or $\omega_{i k}=(1-\alpha) d$ for $x_{k}>1$ if $1 \leq k \leq s-1$ with $k \neq i$ holds for all $1 \leq i \leq s-1$,
(iii) $\operatorname{Tr}_{s}=T r_{s+1}=\cdots=T r_{n}$,
(iv) $x_{k}=1$ or $\omega_{i k}=(1-\alpha) d$ for $x_{k}>1$ if $1 \leq k \leq s-1$ holds for all $s \leq i \leq n$.

Thus we only need to show that $(i)-(i v)$ hold if and only if G is a transmission regular digraph.
If $(i)-(i v)$ hold, we consider the following cases.
Subcase 2.1: $x_{1}=1$
Then $x_{1}=x_{2}=\cdots=x_{s-1}=1$ by $x_{1} \geq x_{2} \geq \cdots \geq x_{s-1} \geq 1$, and thus $\operatorname{Tr}_{1}=T r_{2}=\cdots=\operatorname{Tr}_{s-1}=T r_{s}$. Furthermore, from (iii), we have G is a transmission regular digraph.

Subcase 2.2: $x_{1} \geq x_{2} \geq \cdots \geq x_{t-1}>1$ and $x_{t}=\cdots=x_{s-1}=1$ for some $t \in\{2, \ldots, s\}$.
Then $\omega_{i i}=\alpha \operatorname{Tr}_{i}=\alpha \operatorname{Tr}_{1}$ for $1 \leq i \leq t-1$ by (i), and $\operatorname{Tr}_{t}=\cdots=\operatorname{Tr}_{s-1}=\operatorname{Tr}_{s}=\cdots=\operatorname{Tr} r_{n}$ by (iii). Thus $\operatorname{Tr}_{1}=\operatorname{Tr}_{2}=\cdots=\operatorname{Tr}_{t-1}>\operatorname{Tr}_{t}=\cdots=\operatorname{Tr}_{s-1}=\operatorname{Tr}_{s}=\cdots=\operatorname{Tr}_{n}$. By (ii) and (iv), we have $\omega_{i k}=(1-\alpha) d$ for all $k \in\{1,2, \ldots, t-1\}$ and $i \in\{1,2, \ldots, n\} \backslash\{k\}$, which implies that $d_{i k}=d$ for all $k \in\{1,2, \ldots, t-1\}$ and $i \in\{1,2, \ldots, n\} \backslash\{k\}$. If $d \geq 2$, it is obvious that such digraphs are not exist. If $d=1$, then G is a complete digraph, $T r_{1}=T r_{2}=\cdots=T r_{t-1}=T r_{t}=\cdots=T r_{s-1}=T r_{s}=\cdots=T r_{n}$, which is a contradiction. Therefore, there are no digraphs in this case.

Conversely, if G is a transmission regular digraph, then $T r_{1}=T r_{2}=\cdots=\operatorname{Tr} r_{n}$ and $\phi_{1}=\phi_{2}=\cdots=\phi_{n}=$ $T r_{1}$, the result follows.

In the next theorem, we show the equivalence between the A_{α} spectrum and the D_{α} spectrum of a strongly connected regular digraph of diameter two.

Lemma 2.8. ([10]) Let A be an $n \times n$ real matrix, which has eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ in any prescribed order, and let X be a unit vector such that $A X=\lambda_{1} X$. Then, there is a unitary matrix $U=\left[X, \beta_{2}, \ldots, \beta_{n}\right]$ such that $U^{*} A U=T=\left(t_{i j}\right)$ is an upper triangular matrix with diagonal entries $t_{i i}=\lambda_{i}, i=1,2, \ldots, n$.

Theorem 2.9. Let G be a strongly connected r-regular digraph on n vertices with diameter $d \leq 2$. If $r, \lambda_{\alpha}^{2}, \ldots, \lambda_{\alpha}^{n}$ are the eigenvalues of the matrix $A_{\alpha}(G)$ of G, then the D_{α} eigenvalues of G are $2 n-2-r$ and $2 \alpha n-2-\lambda_{\alpha}^{i}, i=2,3, \ldots, n$.

Proof. If $d=1$, then G is a complete digraph, the result is trivial.
Now, let G be a digraph of diameter 2. Then, $A_{\alpha}(G)=\alpha r I+(1-\alpha) A(G), D(G)=2(J-I-A(G))+A(G)=$ $2 J-2 I-A(G)$. The transmission of each vertex $u \in V(G)$ is

$$
\operatorname{Tr}(u)=d^{+}(u)+2\left(n-1-d^{+}(u)\right)=r+2(n-1-r)=2 n-2-r .
$$

Furthermore,

$$
\begin{aligned}
D_{\alpha}(G) & =\alpha \operatorname{Tr}(G)+(1-\alpha) D(G)=\alpha(2 n-r-2) I+(1-\alpha)(2 J-2 I-A(G)) \\
& =(2 \alpha n-\alpha r-2) I+2(1-\alpha) J-(1-\alpha) A(G) \\
& =(2 \alpha n-2) I+2(1-\alpha) J-(\alpha r I+(1-\alpha) A(G)) \\
& =(2 \alpha n-2) I+2(1-\alpha) J-A_{\alpha}(G) .
\end{aligned}
$$

Since G is an r-regular digraph, $\mathbf{1}=(1,1, \ldots, 1)^{T}$ is an eigenvector of the matrix $A_{\alpha}(G)$ corresponding to the eigenvalue r. Let $z=\frac{1}{\sqrt{n}} \mathbf{1}$, then by Lemma 2.8 , there exists a unitary matrix $U=\left[z, z_{2}, \ldots, z_{n}\right]$ such
that $U^{*} A_{\alpha}(G) U=T=\left(t_{i j}\right)$ is an upper triangular matrix with diagonal entries $t_{11}=r, t_{i i}=\lambda_{\alpha}^{i}, i=2, \ldots, n$. Therefore,

$$
\begin{aligned}
U^{*} D_{\alpha}(G) U & =U^{*}\left((2 \alpha n-2) I+2(1-\alpha) J-A_{\alpha}(G)\right) U \\
& =(2 \alpha n-2) I+2(1-\alpha) U^{*} J U-U^{*} A_{\alpha}(G) U \\
& =(2 \alpha n-2) I+2(1-\alpha) \operatorname{diag}\{n, 0, \ldots, 0\}-T .
\end{aligned}
$$

Hence, the eigenvalues of $D_{\alpha}(G)$ are $2 n-2-r$ and $2 \alpha n-2-\lambda_{\alpha}^{i}, i=2,3, \ldots, n$.
Corollary 2.10. Let G be a strongly connected r-regular digraph on n vertices with diameter 2 . If $\left\{r, q_{2}, \cdots, q_{n}\right\}$ are the eigenvalues of the adjacency matrix $A(G)$ of G, then the D_{α} eigenvalues of G are $2 n-2-r$ and $2 \alpha n-\alpha r-2-(1-\alpha) q_{i}$, $i=2,3, \ldots, n$.
Proof. From Theorem 2.9, we get

$$
D_{\alpha}(G)=(2 \alpha n-\alpha r-2) I+2(1-\alpha) J-(1-\alpha) A(G)
$$

Hence, the eigenvalues of $D_{\alpha}(G)$ are $2 n-2-r$ and $2 \alpha n-\alpha r-2-(1-\alpha) q_{i}, i=2,3, \ldots, n$.
Theorem 2.11. Let $G=(V(G), E(G))$ be a strongly connected digraph on $n \geq 2$ vertices with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, transmission sequence $\left\{T r_{1}, T r_{2}, \ldots, T r_{n}\right\}$. if $S=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is a clique of G such that $N^{+}\left(v_{i}\right) \backslash S=N^{+}\left(v_{j}\right) \backslash S$ for all $i, j \in\{1,2, \ldots, p\}$, then $v=\operatorname{Tr}_{i}=\operatorname{Tr}_{j}$ for all $i, j \in\{1,2, \ldots, p\}$ and $\alpha v-(1-\alpha)$ is an eigenvalue of $D_{\alpha}(G)$ with multiplicity at least $p-1$.
Proof. Since the vertices in S share the same outneighborhoods in $V(G) \backslash S$, any vertex v_{i} in S is at the same distance from v_{i} to all vertices in $V(G) \backslash S$, and any vertex in S is at distance 1 to any other vertex in S. Thus all vertices in S have the same transmission, say v. To show that $\alpha v-(1-\alpha)$ is an eigenvalue of $D_{\alpha}(G)$ with multiplicity $p-1$, it suffices to observe that the matrix $(\alpha v-(1-\alpha)) I_{n}-D_{\alpha}(G)$ contains p identical rows.

3. Lower bound on the difference between the maximum vertex transmission and the D_{α} spectral radius

Lemma 3.1. ([19]) If $a, b>0$, then $a(x-y)^{2}+b y^{2} \geq a b x^{2} /(a+b)$ with equality if and only if $y=a x /(a+b)$.
Theorem 3.2. Let $G=(V(G), E(G))$ be a strongly connected non-transmission irregular digraph on n vertices with transmission sequence $\left\{\operatorname{Tr}_{1}, T r_{2}, \ldots, T r_{n}\right\}$, where $\operatorname{Tr}_{1} \geq \operatorname{Tr}_{2} \geq \cdots \geq \operatorname{Tr}_{n}$. Let $\operatorname{Tr}_{i}^{-}=\sum_{j=1}^{n} d_{j i}$. If $\operatorname{Tr}_{1} \geq \operatorname{Tr}_{i}^{-}$, for all $i=1,2, \ldots, n$, then

$$
T r_{1}-\mu_{\alpha}(G)>\frac{(1-\alpha)(n+2) \operatorname{Tr}_{1}\left(n \operatorname{Tr}_{1}-W(G)\right)}{4 W(G)\left(n T r_{1}-W(G)\right)+(1-\alpha)(n+2) n T r_{1}}
$$

where $W(G)=\sum_{i=1}^{n} \sum_{j=1}^{n} d_{i j}$.
Proof. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ be the Perron vector of $D_{\alpha}(G)$ corresponding to $\mu_{\alpha}(G)$, where x_{i} corresponding to the vertex v_{i}. Obviously, $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=1$. Suppose that u, v are two vertices satisfying $x_{u}=\max _{1 \leq i \leq n} x_{i}$ and $x_{v}=\min _{1 \leq i \leq n} x_{i}$, respectively. Taking $W(G)=\sum_{i=1}^{n} \sum_{j=1}^{n} d_{i j}$. Since G is not transmission regular, we have $x_{u}>x_{v}$, and thus

$$
\begin{aligned}
\mu_{\alpha}(G) & =x^{T} D_{\alpha}(G) x=\alpha \sum_{i=1}^{n} \operatorname{Tr}_{i} x_{i}^{2}+(1-\alpha) \sum_{i=1}^{n} \sum_{j=1}^{n} d_{i j} x_{i} x_{j} \\
& <\alpha \sum_{i=1}^{n} \operatorname{Tr} r_{i} x_{u}^{2}+(1-\alpha) \sum_{i=1}^{n} \sum_{j=1}^{n} d_{i j} x_{u}^{2} \\
& =\alpha W(G) x_{u}^{2}+(1-\alpha) W(G) x_{u}^{2}
\end{aligned}
$$

which implies that $x_{u}^{2}>\frac{\mu_{\alpha}(G)}{W(G)}$. And we have

$$
\begin{aligned}
2 \operatorname{Tr}_{1}-2 \mu_{\alpha}(G)= & 2 \operatorname{Tr}_{1}-2 x^{T} D_{\alpha}(G) x \\
= & 2 \operatorname{Tr}_{1}-2 \alpha \sum_{i=1}^{n} \operatorname{Tr} r_{i}^{2}-2(1-\alpha) \sum_{i=1}^{n} \sum_{j=1}^{n} d_{i j} x_{i} x_{j} \\
= & 2 T r_{1} \sum_{i=1}^{n} x_{i}^{2}-2 \alpha \sum_{i=1}^{n} T r_{i} x_{i}^{2}+(1-\alpha) \sum_{i=1}^{n} \sum_{j=1}^{n} d_{i j}\left(x_{i}-x_{j}\right)^{2} \\
& -(1-\alpha) \sum_{i=1}^{n} \sum_{j=1}^{n} d_{i j}\left(x_{i}^{2}+x_{j}^{2}\right) .
\end{aligned}
$$

Taking $\operatorname{Tr}_{i}^{-}=\sum_{j=1}^{n} d_{j i}$, then $\sum_{i=1}^{n} \sum_{j=1}^{n} d_{i j}\left(x_{i}^{2}+x_{j}^{2}\right)=\sum_{i=1}^{n} \operatorname{Tr}_{i} x_{i}^{2}+\sum_{i=1}^{n} \operatorname{Tr}_{i}^{-} x_{i}^{2}$. Therefore,

$$
\left.\begin{array}{rl}
2 \operatorname{Tr}_{1}-2 \mu_{\alpha}(G) & =\sum_{i=1}^{n}\left(2 \operatorname{Tr}_{1}-(1+\alpha) \operatorname{Tr}_{i}-(1-\alpha) \operatorname{Tr}_{i}^{-}\right) x_{i}^{2}+(1-\alpha) \sum_{i=1}^{n} \sum_{j=1}^{n} d_{i j}\left(x_{i}-x_{j}\right)^{2} \\
& \geq \sum_{i=1}^{n}\left(2 \operatorname{Tr}_{1}-(1+\alpha) \operatorname{Tr}_{i}-(1-\alpha) \operatorname{Tr}\right. \\
-
\end{array}\right) x_{v}^{2}+(1-\alpha) \sum_{i=1}^{n} \sum_{j=1}^{n} d_{i j}\left(x_{i}-x_{j}\right)^{2} .
$$

Suppose $P=v_{1} v_{2} \ldots v_{s+1}$ be the shortest directed path from v and u, where $v_{1}=v, v_{s+1}=u$, and $s \geq 1$. Now we need to estimate $\sum_{i=1}^{n} \sum_{j=1}^{n} d_{i j}\left(x_{i}-x_{j}\right)^{2}$. Obviously,

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=1}^{n} d_{i j}\left(x_{i}-x_{j}\right)^{2} & =\sum_{v_{i} \in P} \sum_{j=1}^{n} d_{i j}\left(x_{i}-x_{j}\right)^{2}+\sum_{v_{i} \in V(G) \backslash P} \sum_{j=1}^{n} d_{i j}\left(x_{i}-x_{j}\right)^{2} \\
& >\sum_{v_{i} \in P} \sum_{v_{j} \in P} d_{i j}\left(x_{i}-x_{j}\right)^{2}+\sum_{v_{i} \in V(G) \backslash P}\left(d_{i u}\left(x_{i}-x_{u}\right)^{2}+d_{i v}\left(x_{i}-x_{v}\right)^{2}\right) .
\end{aligned}
$$

For any $v_{i} \in V(G) \backslash P$, by Cauchy-Schwarz inequality, we have

$$
d_{i u}\left(x_{i}-x_{u}\right)^{2}+d_{i v}\left(x_{i}-x_{v}\right)^{2} \geq\left(x_{i}-x_{u}\right)^{2}+\left(x_{i}-x_{v}\right)^{2} \geq \frac{1}{2}\left(x_{u}-x_{v}\right)^{2},
$$

and then

$$
\sum_{v_{i} \in V(G) \backslash P}\left(d_{i u}\left(x_{i}-x_{u}\right)^{2}+d_{i v}\left(x_{i}-x_{v}\right)^{2}\right) \geq \sum_{v_{i} \in V(G) \backslash P} \frac{1}{2}\left(x_{u}-x_{v}\right)^{2}=\frac{n-s-1}{2}\left(x_{u}-x_{v}\right)^{2} .
$$

Then we consider the following two cases.

Case 1: $s=1$. In this case, we have

$$
\begin{aligned}
2 \operatorname{Tr}_{1}-2 \mu_{\alpha}(G) & \geq\left(2 n \operatorname{Tr}_{1}-2 W(G)\right) x_{v}^{2}+(1-\alpha) \sum_{i=1}^{n} \sum_{j=1}^{n} d_{i j}\left(x_{i}-x_{j}\right)^{2} \\
& >2\left(n \operatorname{Tr}_{1}-W(G)\right) x_{v}^{2}+(1-\alpha) \sum_{v_{i} \in P} \sum_{v_{j} \in P} d_{i j}\left(x_{i}-x_{j}\right)^{2}+(1-\alpha) \frac{n-2}{2}\left(x_{u}-x_{v}\right)^{2} \\
& \geq 2\left(n T r_{1}-W(G)\right) x_{v}^{2}+2(1-\alpha)\left(x_{u}-x_{v}\right)^{2}+(1-\alpha) \frac{n-2}{2}\left(x_{u}-x_{v}\right)^{2} \\
& =2\left(n T r_{1}-W(G)\right) x_{v}^{2}+(1-\alpha) \frac{n+2}{2}\left(x_{u}-x_{v}\right)^{2} \\
& \geq \frac{2(1-\alpha)(n+2)\left(n T r_{1}-W(G)\right)}{4\left(n T r_{1}-W(G)\right)+(1-\alpha)(n+2)} x_{u}^{2}(\text { using Lemma 3.1 })
\end{aligned}
$$

Then we have $\operatorname{Tr}_{1}-\mu_{\alpha}(G)>\frac{(1-\alpha)(n+2)\left(n T r_{1}-W(G)\right)}{4\left(n T r_{1}-W(G)\right)+(1-\alpha)(n+2)} x_{u}^{2}$. Recall that $x_{u}^{2}>\frac{\mu_{\alpha}(G)}{W(G)}$. Therefore,

$$
\operatorname{Tr}_{1}-\mu_{\alpha}(G)>\frac{(1-\alpha)(n+2)\left(n T r_{1}-W(G)\right)}{4\left(n T r_{1}-W(G)\right)+(1-\alpha)(n+2)} \cdot \frac{\mu_{\alpha}(G)}{W(G)}
$$

i.e.,

$$
\operatorname{Tr}_{1}-\mu_{\alpha}(G)>\frac{(1-\alpha)(n+2) \operatorname{Tr}_{1}\left(n \operatorname{Tr}_{1}-W(G)\right)}{4 W(G)\left(n T r_{1}-W(G)\right)+(1-\alpha)(n+2) n T r_{1}}
$$

Case 2: $s \geq 2$. For the vertex $v_{i+1}(1 \leq i \leq s-1)$ of the shortest directed path P from v and u, by Cauchy-Schwarz inequality, we get

$$
\begin{aligned}
d_{v_{1} v_{i+1}}\left(x_{1}-x_{i+1}\right)^{2}+d_{v_{i+1} v_{s+1}}\left(x_{i+1}-x_{s+1}\right)^{2} & \geq \min \{i, s-i\}\left(\left(x_{1}-x_{i+1}\right)^{2}+\left(x_{i+1}-x_{s+1}\right)^{2}\right) \\
& \geq \frac{1}{2} \min \{i, s-i\}\left(x_{1}-x_{s+1}\right)^{2}
\end{aligned}
$$

and thus

$$
\begin{aligned}
\sum_{v_{i} \in P} \sum_{v_{j} \in P} d_{i j}\left(x_{i}-x_{j}\right)^{2}> & d_{v_{1} v_{2}}\left(x_{1}-x_{2}\right)^{2}+d_{v_{1} v_{3}}\left(x_{1}-x_{3}\right)^{2}+\cdots+d_{v_{1} v_{s+1}}\left(x_{1}-x_{s+1}\right)^{2} \\
& +d_{v_{2} v_{3}}\left(x_{2}-x_{3}\right)^{2}+d_{v_{2} v_{4}}\left(x_{2}-x_{4}\right)^{2}+\cdots+d_{v_{2} v_{s+1}}\left(x_{2}-x_{s+1}\right)^{2} \\
& +d_{v_{3} v_{4}}\left(x_{3}-x_{4}\right)^{2}+d_{v_{3} v_{5}}\left(x_{3}-x_{5}\right)^{2}+\cdots+d_{v_{3} v_{s+1}}\left(x_{3}-x_{s+1}\right)^{2} \\
& +\cdots+d_{v_{s} v_{s+1}}\left(x_{s}-x_{s+1}\right)^{2} \\
> & d_{v_{1} v_{s+1}}\left(x_{1}-x_{s+1}\right)^{2}+\sum_{i=1}^{s-1}\left(d_{v_{1} v_{i+1}}\left(x_{1}-x_{i+1}\right)^{2}+d_{v_{i+1} v_{s+1}}\left(x_{i+1}-x_{s+1}\right)^{2}\right) \\
\geq & s\left(x_{1}-x_{s+1}\right)^{2}+\frac{1}{2} \sum_{i=1}^{s-1} \min \{i, s-i\}\left(x_{1}-x_{s+1}\right)^{2} .
\end{aligned}
$$

Subcase 2.1: $s \geq 2$ is even. Based on the above inequality, we have

$$
\begin{aligned}
\sum_{v_{i} \in P} \sum_{v_{j} \in P} d_{i j}\left(x_{i}-x_{j}\right)^{2} & >s\left(x_{1}-x_{s+1}\right)^{2}+\frac{\left(x_{1}-x_{s+1}\right)^{2}}{2}\left[\left(1+2+\ldots+\frac{s}{2}\right)+\left(1+2+\ldots+\frac{s-2}{2}\right)\right] \\
& =\frac{s^{2}+8 s}{8}\left(x_{u}-x_{v}\right)^{2} .
\end{aligned}
$$

Furthermore, we get

$$
\begin{aligned}
2 \operatorname{Tr}_{1}-2 \mu_{\alpha}(G) & >2\left(n T r_{1}-W(G)\right) x_{v}^{2}+(1-\alpha) \sum_{v_{i} \in P} \sum_{v_{j} \in P} d_{i j}\left(x_{i}-x_{j}\right)^{2}+(1-\alpha) \frac{n-s-1}{2}\left(x_{u}-x_{v}\right)^{2} \\
& >\left(2 n T r_{1}-2 W(G)\right) x_{v}^{2}+(1-\alpha) \frac{s^{2}+8 s}{8}\left(x_{u}-x_{v}\right)^{2}+(1-\alpha) \frac{n-s-1}{2}\left(x_{u}-x_{v}\right)^{2} \\
& =\left(2 n T r_{1}-2 W(G)\right) x_{v}^{2}+(1-\alpha) \frac{s^{2}+4 s+4 n-4}{8}\left(x_{u}-x_{v}\right)^{2} \\
& >\frac{2(1-\alpha)\left(s^{2}+4 s+4 n-4\right)\left(n T r_{1}-W(G)\right)}{16\left(n T r_{1}-W(G)\right)+(1-\alpha)\left(s^{2}+4 s+4 n-4\right)} x_{u}^{2} \text { (using Lemma 3.1). }
\end{aligned}
$$

Then we have

$$
\operatorname{Tr}_{1}-\mu_{\alpha}(G)>\frac{(1-\alpha)\left(s^{2}+4 s+4 n-4\right)\left(n T r_{1}-W(G)\right)}{16\left(n T r_{1}-W(G)\right)+(1-\alpha)\left(s^{2}+4 s+4 n-4\right)} x_{u}^{2}
$$

Since $x_{u}^{2}>\frac{\mu_{\alpha}(G)}{W(G)}$, we have

$$
\operatorname{Tr}_{1}-\mu_{\alpha}(G)>\frac{(1-\alpha)\left(s^{2}+4 s+4 n-4\right)\left(n T r_{1}-W(G)\right)}{16\left(n T r_{1}-W(G)\right)+(1-\alpha)\left(s^{2}+4 s+4 n-4\right)} \frac{\mu_{\alpha}(G)}{W(G)}
$$

i.e.,

$$
\operatorname{Tr}_{1}-\mu_{\alpha}(G)>\frac{(1-\alpha)\left(s^{2}+4 s+4 n-4\right) T r_{1}\left(n T r_{1}-W(G)\right)}{16 W(G)\left(n T r_{1}-W(G)\right)+(1-\alpha)\left(s^{2}+4 s+4 n-4\right) n T r_{1}}
$$

Suppose $f(t)=\frac{(1-\alpha)(4 n+t) T r_{1}\left(n T r_{1}-W(G)\right)}{16 W(G)\left(n T r_{1}-W(G)\right)+(1-\alpha)(4 n+t) n T r_{1}}$. Then we can easily known that $f(t)$ is monotonically increasing function on $t>0$. Therefore, we get

$$
\begin{aligned}
T r_{1}-\mu_{\alpha}(G) & >\frac{(1-\alpha)(4 n+8) T r_{1}\left(n T r_{1}-W(G)\right)}{16 W(G)\left(n T r_{1}-W(G)\right)+(1-\alpha)(4 n+8) n T r_{1}} \\
& =\frac{(1-\alpha)(n+2) T r_{1}\left(n T r_{1}-W(G)\right)}{4 W(G)\left(n T r_{1}-W(G)\right)+(1-\alpha)(n+2) n T r_{1}}
\end{aligned}
$$

Subcase 2.2: $s \geq 3$ is odd. Then we have

$$
\begin{aligned}
\sum_{v_{i} \in P} \sum_{v_{j} \in P} d_{i j}\left(x_{i}-x_{j}\right)^{2} & >s\left(x_{1}-x_{s+1}\right)^{2}+\frac{\left(x_{1}-x_{s+1}\right)^{2}}{2}\left[2 \times\left(1+2+\ldots+\frac{s-1}{2}\right)\right] \\
& =\frac{s^{2}+8 s-1}{8}\left(x_{u}-x_{v}\right)^{2}
\end{aligned}
$$

Furthermore, we get

$$
\begin{aligned}
2 \operatorname{Tr}_{1}-2 \mu_{\alpha}(G) & >2\left(n T r_{1}-W(G)\right) x_{v}^{2}+(1-\alpha) \sum_{v_{i} \in P} \sum_{v_{j} \in P} d_{i j}\left(x_{i}-x_{j}\right)^{2}+(1-\alpha) \frac{n-s-1}{2}\left(x_{u}-x_{v}\right)^{2} \\
& >2\left(n T r_{1}-W(G)\right) x_{v}^{2}+(1-\alpha) \frac{s^{2}+8 s-1}{8}\left(x_{u}-x_{v}\right)^{2}+(1-\alpha) \frac{n-s-1}{2}\left(x_{u}-x_{v}\right)^{2} \\
& =2\left(n T r_{1}-W(G)\right) x_{v}^{2}+(1-\alpha) \frac{s^{2}+4 s+4 n-5}{8}\left(x_{u}-x_{v}\right)^{2} \\
& >\frac{2(1-\alpha)\left(s^{2}+4 s+4 n-5\right)\left(n T r_{1}-W(G)\right)}{16\left(n T r_{1}-W(G)\right)+(1-\alpha)\left(s^{2}+4 s+4 n-5\right)} x_{u}^{2}(\text { using Lemma 3.1). }
\end{aligned}
$$

Thus, as early, we get

$$
\begin{aligned}
\operatorname{Tr}_{1}-\mu_{\alpha}(G) & >\frac{(1-\alpha)\left(s^{2}+4 s+4 n-5\right)\left(n T r_{1}-W(G)\right)}{16\left(n T r_{1}-W(G)\right)+(1-\alpha)\left(s^{2}+4 s+4 n-5\right)} x_{u}^{2} \\
& >\frac{(1-\alpha)\left(s^{2}+4 s+4 n-4\right)\left(n T r_{1}-W(G)\right)}{16\left(n T r_{1}-W(G)\right)+(1-\alpha)\left(s^{2}+4 s+4 n-4\right)} \frac{\mu_{\alpha}(G)}{W(G)}
\end{aligned}
$$

which implies,

$$
\operatorname{Tr}_{1}-\mu_{\alpha}(G)>\frac{(1-\alpha)\left(s^{2}+4 s+4 n-5\right) T r_{1}\left(n T r_{1}-W(G)\right)}{16 W(G)\left(n T r_{1}-W(G)\right)+(1-\alpha)\left(s^{2}+4 s+4 n-5\right) n T r_{1}}
$$

By the monotonicity of $f(t)=\frac{(1-\alpha)(4 n+t) T r_{1}\left(n T r_{1}-W(G)\right)}{16 W(G)\left(n T r_{1}-W(G)\right)+(1-\alpha)(4 n+t) n T r_{1}}$, we obtain

$$
\begin{aligned}
\operatorname{Tr}_{1}-\mu_{\alpha}(G) & >\frac{(1-\alpha)(4 n+16) \operatorname{Tr}_{1}\left(n T r_{1}-W(G)\right)}{16 W(G)\left(n T r_{1}-W(G)\right)+(1-\alpha)(4 n+16) n T r_{1}} \\
& =\frac{(1-\alpha)(n+4) \operatorname{Tr}_{1}\left(n \operatorname{Tr}_{1}-W(G)\right)}{4 W(G)\left(n T r_{1}-W(G)\right)+(1-\alpha)(n+4) n T r_{1}} \\
& >\frac{(1-\alpha)(n+2) \operatorname{Tr}_{1}\left(n \operatorname{Tr}_{1}-W(G)\right)}{4 W(G)\left(n T r_{1}-W(G)\right)+(1-\alpha)(n+2) n T r_{1}} .
\end{aligned}
$$

Therefore, the result follows by combining Cases 1 and 2.

4. The D_{α}-spectrum of the join of digraphs

Let G_{1} and G_{2} be two disjoint digraphs, the join of G_{1} and G_{2}, denoted by $G_{1} \vee G_{2}$, is the digraph such that $V\left(G_{1} \vee G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1} \vee G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{(u, v),(v, u): u \in V\left(G_{1}\right)\right.$ and $\left.v \in V\left(G_{2}\right)\right\}$.

In this section, we give the D_{α}-spectrum of the join of two regular digraphs. For the rest of this section, I and J denote the unit and the all-one matrices of corresponding orders, respectively. Let M be an $n \times n$ matrix. The characteristic polynomial of M is defined as $p_{M}(\lambda)=\operatorname{det}(\lambda I-M)$, where $\operatorname{det}(*)$ denotes the determinant of $*$.

Theorem 4.1. Let G_{i} be r_{i}-regular strongly connected digraph with order n_{i}, for $i=1,2$. Then the characteristic polynomial of $D_{\alpha}\left(G_{1} \vee G_{2}\right)$ is

$$
P_{D_{\alpha}\left(G_{1} \vee G_{2}\right)}(\lambda)=(-1)^{n_{1}+n_{2}} \frac{P_{A_{\alpha}\left(G_{1}\right)}\left(\alpha n_{2}+2 \alpha n_{1}-2-\lambda\right) P_{A_{\alpha}\left(G_{2}\right)}\left(\alpha n_{1}+2 \alpha n_{2}-2-\lambda\right)}{\left(\lambda-\alpha n_{2}-2 \alpha n_{1}+r_{1}+2\right)\left(\lambda-\alpha n_{1}-2 \alpha n_{2}+r_{2}+2\right)} f(\lambda)
$$

where $f(\lambda)=\left(\lambda-\alpha n_{2}-2 n_{1}+r_{1}+2\right)\left(\lambda-\alpha n_{1}-2 n_{2}+r_{2}+2\right)-(1-\alpha)^{2} n_{1} n_{2}$.
Proof. One can easily see

$$
D_{\alpha}\left(G_{1} \vee G_{2}\right)=\left(\begin{array}{cc}
\alpha n_{2} I_{n_{1}}+M_{1} & (1-\alpha) J_{n_{1} \times n_{2}} \\
(1-\alpha) J_{n_{2} \times n_{1}} & \alpha n_{1} I_{n_{2}}+M_{2}
\end{array}\right)
$$

where $M_{i}=\alpha\left(2 n_{i}-r_{i}-2\right) I_{n_{i}}+2(1-\alpha)\left(J_{n_{i}}-I_{n_{i}}\right)-(1-\alpha) A\left(G_{i}\right)=\left(2 \alpha n_{i}-2\right) I_{n_{i}}+2(1-\alpha) J_{n_{i}}-A_{\alpha}\left(G_{i}\right)$.
Then the characteristic polynomial of $D_{\alpha}\left(G_{1} \vee G_{2}\right)$ is

$$
P_{D_{\alpha}\left(G_{1} \vee G_{2}\right)}(\lambda)=\left|\begin{array}{cc}
\lambda I_{n_{1}}-\alpha n_{2} I_{n_{1}}-M_{1} & -(1-\alpha) J_{n_{1} \times n_{2}} \tag{5}\\
-(1-\alpha) J_{n_{2} \times n_{1}} & \lambda I_{n_{2}}-\alpha n_{1} I_{n_{2}}-M_{2}
\end{array}\right|
$$

Let $m_{1}=\lambda-\alpha n_{2}-\alpha\left(2 n_{1}-r_{1}-2\right)$ and $m_{2}=\lambda-\alpha n_{1}-\alpha\left(2 n_{2}-r_{2}-2\right)$. We use $A\left(G_{1}\right)=\left(a_{i j}\right)_{n_{1} \times n_{1}}$ denotes the adjacency matrix of G_{1} and $A\left(G_{2}\right)=\left(a_{i j}^{\prime}\right)_{n_{2} \times n_{2}}$ denotes the adjacency matrix of G_{2}. The determinant (5) can
be written as

$$
\begin{array}{|cccccccc|}
m_{1} & -(1-\alpha)\left(2-a_{12}\right) & \cdots & -(1-\alpha)\left(2-a_{1 n_{1}}\right) & -(1-\alpha) & -(1-\alpha) & \cdots & -(1-\alpha) \tag{6}\\
-(1-\alpha)\left(2-a_{21}\right) & m_{1} & \cdots & -(1-\alpha)\left(2-a_{2 n_{1}}\right) & -(1-\alpha) & -(1-\alpha) & \cdots & -(1-\alpha) \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
-(1-\alpha)\left(2-a_{n_{1} 1}\right) & -(1-\alpha)\left(2-a_{n_{1} 2}\right) & \cdots & m_{1} & -(1-\alpha) & -(1-\alpha) & \cdots & -(1-\alpha) \\
-(1-\alpha) & -(1-\alpha) & \cdots & -(1-\alpha) & m_{2} & -(1-\alpha)\left(2-a_{12}^{\prime}\right) & \cdots & -(1-\alpha)\left(2-a_{12 n_{2}}^{\prime}\right) \\
-(1-\alpha) & -(1-\alpha) & \cdots & -(1-\alpha) & -(1-\alpha)\left(2-a_{21}^{\prime}\right) & m_{2} & \cdots & -(1-\alpha)\left(2-a_{2 n_{2}}^{\prime}\right) \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
-(1-\alpha) & -(1-\alpha) & \cdots & -(1-\alpha) & -(1-\alpha)\left(2-a_{n_{2} 1}^{\prime}\right) & -(1-\alpha)\left(2-a_{n_{2} 2}^{\prime}\right) & \cdots & m_{2}
\end{array} .
$$

We now perform the number of transformations that leave the value of the determinant (6) unchanged. Subtract the row $\left(n_{1}+1\right)$ from the rows $\left(n_{1}+2\right),\left(n_{1}+3\right), \ldots,\left(n_{1}+n_{2}\right)$ of (6). Later on, adding the columns $\left(n_{1}+2\right),\left(n_{1}+3\right), \ldots,\left(n_{1}+n_{2}\right)$ to the column $\left(n_{1}+1\right)$ of the obtained matrix, we arrive at the following determinant

$$
\begin{equation*}
P_{D_{\alpha}\left(G_{1} \vee G_{2}\right)}(\lambda)=\left|W_{1}\right||R|, \tag{7}
\end{equation*}
$$

where

$$
\begin{gathered}
|R|=\left|\begin{array}{ccccc}
m_{1} & -(1-\alpha)\left(2-a_{12}\right) & \cdots & -(1-\alpha)\left(2-a_{1 n_{1}}\right) & -(1-\alpha) n_{2} \\
-(1-\alpha)\left(2-a_{21}\right) & m_{1} & \cdots & -(1-\alpha)\left(2-a_{2 n_{1}}\right) & -(1-\alpha) n_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
-(1-\alpha)\left(2-a_{n_{1} 1}\right) & -(1-\alpha)\left(2-a_{n_{1} 2}\right) & \cdots & m_{1} & -(1-\alpha) n_{2} \\
-(1-\alpha) & -(1-\alpha) & \cdots & -(1-\alpha) & m_{2}-(1-\alpha)\left(2 n_{2}-r_{2}-2\right)
\end{array}\right|, \\
\left|W_{1}\right|=\left|\begin{array}{cccc}
m_{2}+(1-\alpha)\left(2-a_{12}^{\prime}\right) & -(1-\alpha)\left(a_{13}^{\prime}-a_{23}^{\prime}\right) & \cdots & -(1-\alpha)\left(a_{1 n_{2}}^{\prime}-a_{2 n_{2}}^{\prime}\right) \\
-(1-\alpha)\left(a_{12}^{\prime}-a_{32}^{\prime}\right) & m_{2}+(1-\alpha)\left(2-a_{13}^{\prime}\right) & \cdots & -(1-\alpha)\left(a_{1 n_{2}}^{\prime}-a_{3 n_{2}}^{\prime}\right) \\
\vdots & \vdots & \ddots & \vdots \\
-(1-\alpha)\left(a_{12}^{\prime}-a_{n_{2} 2}^{\prime}\right) & -(1-\alpha)\left(a_{13}^{\prime}-a_{n_{2} 3}^{\prime}\right) & \cdots & m_{2}+(1-\alpha)\left(2-a_{1 n_{2}}^{\prime}\right)
\end{array}\right|
\end{gathered}
$$

For the determinant $|R|$ in (7), subtract the first row from the rows $2,3, \ldots, n_{1}$. Later on, adding columns $2,3, \ldots, n_{1}$ to the first column of the obtained matrix, then we get the following determinant:

$$
|R|=\left|\begin{array}{ccccc}
m_{1}-(1-\alpha)\left(2 n_{1}-r_{1}-2\right) & -(1-\alpha)\left(2-a_{12}\right) & \cdots & -(1-\alpha)\left(2-a_{1 n_{1}}\right) & -(1-\alpha) n_{2} \tag{8}\\
0 & m_{1}+(1-\alpha)\left(2-a_{12}\right) & \cdots & -(1-\alpha)\left(a_{1 n_{1}}-a_{2 n_{1}}\right) & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & -(1-\alpha)\left(a_{12}-a_{n_{1} 2}\right) & \cdots & m_{1}+(1-\alpha)\left(2-a_{1 n_{1}}\right) & 0 \\
-(1-\alpha) n_{1} & -(1-\alpha) & \cdots & -(1-\alpha) & m_{2}-(1-\alpha)\left(2 n_{2}-r_{2}-2\right)
\end{array}\right| .
$$

Expand the determinant in (8) along the last column to obtain

$$
\begin{equation*}
|R|=\left[\left(m_{1}-(1-\alpha)\left(2 n_{1}-r_{1}-2\right)\right)\left(m_{2}-(1-\alpha)\left(2 n_{2}-r_{2}-2\right)\right)-(1-\alpha)^{2} n_{1} n_{2}\right]\left|W_{2}\right|, \tag{9}
\end{equation*}
$$

where

$$
\left|W_{2}\right|=\left|\begin{array}{cccc}
m_{1}+(1-\alpha)\left(2-a_{12}\right) & -(1-\alpha)\left(a_{13}-a_{23}\right) & \cdots & -(1-\alpha)\left(a_{1 n_{1}}-a_{2 n_{1}}\right) \\
-(1-\alpha)\left(a_{12}-a_{32}\right) & m_{1}+(1-\alpha)\left(2-a_{13}\right) & \cdots & -(1-\alpha)\left(a_{1 n_{1}}-a_{3 n_{1}}\right) \\
\vdots & \vdots & \ddots & \vdots \\
-(1-\alpha)\left(a_{12}-a_{n_{1} 2}\right) & -(1-\alpha)\left(a_{13}-a_{n_{1} 3}\right) & \cdots & m_{1}+(1-\alpha)\left(2-a_{1 n_{1}}\right)
\end{array}\right| .
$$

Furthermore, by (9), (7) can be written as

$$
\begin{equation*}
P_{D_{\alpha}\left(G_{1} \vee G_{2}\right)}(\lambda)=\left[\left(m_{1}-(1-\alpha)\left(2 n_{1}-r_{1}-2\right)\right)\left(m_{2}-(1-\alpha)\left(2 n_{2}-r_{2}-2\right)\right)-(1-\alpha)^{2} n_{1} n_{2}\right]\left|W_{2} \| W_{1}\right| . \tag{10}
\end{equation*}
$$

For the determinant $\left|W_{2}\right|$, we have

$$
\begin{align*}
& W_{2}=\frac{1}{m_{1}+(1-\alpha)\left(r_{1}+2\right)} \times \\
&\left|\begin{array}{ccccc}
m_{1}+(1-\alpha)\left(r_{1}+2\right) & (1-\alpha) a_{12} & (1-\alpha) a_{13} & \cdots & (1-\alpha) a_{1 n_{1}} \\
0 & m_{1}+(1-\alpha)\left(2-a_{12}\right) & -(1-\alpha)\left(a_{13}-a_{23}\right) & \cdots & -(1-\alpha)\left(a_{1 n_{1}}-a_{2 n_{1}}\right) \\
0 & -(1-\alpha)\left(a_{12}-a_{32}\right) & m_{1}+(1-\alpha)\left(2-a_{13}\right) & \cdots & -(1-\alpha)\left(a_{1 n_{1}}-a_{3 n_{1}}\right) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & -(1-\alpha)\left(a_{12}-a_{n_{1} 2}\right) & -(1-\alpha)\left(a_{13}-a_{n_{1} 3}\right) & \cdots & m_{1}+(1-\alpha)\left(2-a_{1 n_{1}}\right)
\end{array}\right| . \tag{11}
\end{align*}
$$

Therefore, by subtracting the columns $2,3, \ldots, n_{1}$ of the determinant (11) from the first column, and later on, add the first row of the obtained matrix to the rows $2,3, \ldots, n_{1}$, we get

$$
\begin{align*}
\left|W_{2}\right| & =\frac{1}{m_{1}+(1-\alpha)\left(r_{1}+2\right)} \times \\
& \left|\begin{array}{ccccc}
m_{1}+2(1-\alpha) & (1-\alpha) a_{12} & (1-\alpha) a_{13} & \cdots & (1-\alpha) a_{1 n_{1}} \\
(1-\alpha) a_{21} & m_{1}+2(1-\alpha) & (1-\alpha) a_{23} & \cdots & (1-\alpha) a_{2 n_{1}} \\
(1-\alpha) a_{31} & (1-\alpha) a_{32} & m_{1}+2(1-\alpha) & \cdots & (1-\alpha) a_{3 n_{1}} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
(1-\alpha) a_{n_{1} 1} & (1-\alpha) a_{n_{1} 2} & (1-\alpha) a_{n_{1} 3} & \cdots & m_{1}+2(1-\alpha)
\end{array}\right| \\
& =\frac{(-1)^{n_{1}}}{m_{1}+(1-\alpha)\left(r_{1}+2\right)} \times \\
& \left|\begin{array}{ccccc}
-m_{1}-2(1-\alpha) & -(1-\alpha) a_{12} & -(1-\alpha) a_{13} & \cdots & -(1-\alpha) a_{1 n_{1}} \\
-(1-\alpha) a_{21} & -m_{1}-2(1-\alpha) & -(1-\alpha) a_{23} & \cdots & -(1-\alpha) a_{2 n_{1}} \\
-(1-\alpha) a_{31} & -(1-\alpha) a_{32} & -m_{1}-2(1-\alpha) & \cdots & -(1-\alpha) a_{3 n_{1}} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-(1-\alpha) a_{n_{1} 1} & -(1-\alpha) a_{n_{1} 2} & -(1-\alpha) a_{n_{1} 3} & \cdots & -m_{1}-2(1-\alpha)
\end{array}\right| \\
& =\frac{(-1)^{n_{1}}}{m_{1}+(1-\alpha)\left(r_{1}+2\right)} P_{A_{\alpha}\left(G_{1}\right)}\left(\alpha n_{2}+2 \alpha n_{1}-2-\lambda\right) . \tag{12}
\end{align*}
$$

Similar as the calculate of the determinant $\left|W_{2}\right|$, we get the determinant $\left|W_{1}\right|$ is

$$
\begin{equation*}
\left|W_{1}\right|=\frac{(-1)^{n_{2}}}{m_{2}+(1-\alpha)\left(r_{2}+2\right)} P_{A_{\alpha}\left(G_{2}\right)}\left(\alpha n_{1}+2 \alpha n_{2}-2-\lambda\right) . \tag{13}
\end{equation*}
$$

Substituting (12), (13), m_{1} and m_{2} in (10), we get the desired result.
For two strongly connected regular digraphs G_{1} and G_{2}, the previous theorem establishes the relationship between the D_{α} eigenvalues of $G_{1} \vee G_{2}$ and the A_{α} eigenvalues of G_{1}, G_{2}. Since G_{i} is r_{i}-regular, it follows that $A_{\alpha}\left(G_{i}\right)=\alpha r_{i} I_{n_{i}}+(1-\alpha) A\left(G_{i}\right)$, which implies that λ is an eigenvalue of $A\left(G_{i}\right)$ if and only if $\alpha r_{i}+(1-\alpha) \lambda$ is an eigenvalue of $A_{\alpha}\left(G_{i}\right)$. Combining this observation and Theorem 4.1, we can easily obtain the following result.

Corollary 4.2. Let G_{i} be r_{i}-regular strongly connected digraph with order n_{i}, for $i=1,2$. Then the D_{α} eigenvalues of $G_{1} \vee G_{2}$ are as follows:

$$
\begin{aligned}
& \left(2 n_{1}+n_{2}-r_{1}\right) \alpha-2-(1-\alpha) \lambda_{k}\left(A\left(G_{1}\right)\right) \text { for } 2 \leq k \leq n_{1}, \\
& \left(2 n_{2}+n_{1}-r_{2}\right) \alpha-2-(1-\alpha) \lambda_{k}\left(A\left(G_{2}\right)\right) \text { for } 2 \leq k \leq n_{2},
\end{aligned}
$$

and the remaining two D_{α} eigenvalues of $G_{1} \vee G_{2}$ are the two roots of the equation $\left(\lambda-\alpha n_{2}-2 n_{1}+r_{1}+2\right)\left(\lambda-\alpha n_{1}-\right.$ $\left.2 n_{2}+r_{2}+2\right)-(1-\alpha)^{2} n_{1} n_{2}=0$, where $\lambda_{k}\left(A\left(G_{i}\right)\right)$ for $2 \leq k \leq n_{i}$ denote the eigenvalues of the adjacency matrix $A\left(G_{i}\right)$ except for r_{i}.

References

[1] A. Alhevaz, M. Baghipur, E. Hashemi, Further results on the distance signless Laplacian spectrum of graphs, Asian-Eur. J. Math. 11 (2018) 19-33.
[2] A. Alhevaz, M. Baghipur, E. Hashemi, H.S. Ramane, On the distance signless Laplacian spectrum of graphs, Bull. Malays. Math. Sci. 42 (2019) 2603-2621.
[3] M. Aouchiche, P.Hansen, Distance spectra of graphs: A survey, Linear Algebra Appl. 458 (2014) 301-386.
[4] A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.
[5] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London, 1976.
[6] S.Y. Cui, J.X. He, G.X. Tian, The generalized distance matrix, Linear Algebra Appl. 563 (2019) 1-23.
[7] S.Y. Cui, G.X. Tian, L. Zhang, On the generalized distance spectral radius of graphs, arXiv:1901.07695v1.
[8] R.C. Díaz, A.I. Julio, O. Rojo, New bounds on the distance Laplacian and distance signless Laplacian spectral radii, arXiv:1804.06335v2.
[9] H.Y. Gao, B. Zhou, On the distance α-spectral radius of a connected graph, arXiv:1901.10180v1.
[10] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985.
[11] J.B. Jensen, G. Gutin, Digraphs Theory, Algorithms and Applications, Springer, 2001.
[12] D. Li, G.P. Wang, J.X. Meng, Some results on the distance and distance signless Laplacian spectral radius of graphs and digraphs, Appl. Math. Comput. 293 (2017) 218-225.
[13] D. Li, G.P. Wang, J.X. Meng, On the distance signless Laplacian spectral radius of graphs and digraphs, Electron. J. Linear Algebra 32 (2017) 438-446.
[14] H.Q. Lin, X.W. Lu, Bounds on the distance signless Laplacian spectral radius in terms of clique number, Linear Multilinear Algebra 63 (2015) 1750-1759.
[15] H.Q. Lin, J.L. Shu, The distance spectral radius of digraphs, Discrete Appl. Math. 161 (2013) 2537-2543.
[16] H.Q. Lin, J. Xue, J.L. Shu, On the D_{α}-spectra of graphs, Linear Multilinear Algebra, 69 (2021) 997-1019.
[17] H.Q. Lin, W.H. Yang, H.L. Zhang, J.L. Shu, Distance spectral radius of digraphs with given connectivity, Discrete Math. 312 (2012) 1849-1856.
[18] J.P. Liu, X.Z. Wu, J.S. Chen, B.L. Liu, The A_{α} spectral radius characterization of some digraphs, Linear Algebra Appl. 563 (2019) 63-74.
[19] L.S. Shi, The spectral radius of irregular graphs, Linear Algebra Appl. 431 (2009) 189-196.
[20] W.G. Xi, L.G. Wang, The signless Laplacian and distance signless Laplacian spectral radius of digraphs with some given parameters, Discrete Appl. Math. 227 (2017) 136-141.
[21] W.G. Xi, W. So, L.G. Wang, The generalized distance matrix of digraphs, Linear Algebra Appl. 577 (2019) 270-286.
[22] W.G. Xi, W. So, L.G. Wang, The (distance) signless Laplacian spectral radius of digraphs with given arc connectivity, Linear Algebra Appl. 581 (2019) 85-111.
[23] W.G. Xi, W. So, L.G. Wang, On the distance spectral radius of digraphs with given diameter, Linear Multilinear Algebra, 69 (2021) 2547-2557.

[^0]: 2010 Mathematics Subject Classification. Primary 05C50; Secondary 15A18
 Keywords. strongly connected digraph, D_{α} spectral radius, bounds
 Received: 02 Apirl 2020; Revised: 22 July 2020; Accepted: 08 August 2020
 Communicated by Paola Bonacini
 This work is supported by the National Natural Science Foundation of China (No. 12001434) and Chinese Universities Scientific Fund (No. 2452020021).

 Email address: xiyanxwg@163.com (Weige Xi)

