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Abstract. In this paper, by the arithmetic-geometric mean inequality, we give a new generalization of
refined Young’s inequality. As applications we present some new generalizations of refinements of Young
inequalities for the determinants, traces and p-norms of τ -measurable operators.

1. Introduction

We start by reviewing some important facts concerning the classical Young’s inequality and its known
refinements.

The classical Young inequality which states that if a, b > 0 and 0 ≤ ν ≤ 1, then we have

aνb1−ν
≤ νa + (1 − ν)b. (1)

This inequality, though very simple, has attracted researchers working in operator theory due to its appli-
cations in this field.

Refining this inequality has taken the attention of many researchers in the field, where adding a positive
term to the left side is possible.
One of the first refinement of Young’s inequality is the squared version presented in [8] as follows

(aνb1−ν)2 + r2
0(a − b)2

≤ (νa + (1 − ν)b)2, (2)

where r0 = min{ν, 1 − ν}.

Later, Kittaneh and Manasrah [12] refined Young’s inequality so that

aνb1−ν + r0(
√

a −
√

b)2
≤ νa + (1 − ν)b, (3)

where r0 = min{ν, 1 − ν}. The inequalities (2) and (3), happened to be special cases of a more general
refinement stating that:
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Theorem 1.1 ([1]). If a, b > 0 and 0 ≤ ν ≤ 1, then for m = 1, 2, 3, . . . , we have

(aνb1−ν)m + rm
0 (a

m
2 − b

m
2 )2
≤ (νa + (1 − ν)b)m, (4)

where r0 = min{ν, 1 − ν}.

Recently, Manasrah and Kittaneh [2] gave a further generalizations and refinements of (2) and (3), as follows

Theorem 1.2. If a, b > 0 and 0 ≤ ν ≤ 1, then for m = 1, 2, 3, . . . , we have

rm
0 (a

m
2 − b

m
2 )2
≤ rm

0

(
(a + b)m

− 2m(ab)
m
2

)
≤ (νa + (1 − ν)b)m

− (aνb1−ν)m (5)

where r0 = min{ν, 1 − ν}.

J. Zhang and J. Wu [15], obtained the following refinement of inequality (1) as follows:

Theorem 1.3. Let a and b be two positive numbers and 0 < ν < 1, we have

(1) if 0 < ν < 1
4 , then

aνb1−ν + ν(
√

a −
√

b)2 + 2ν(
4√

ab −
√

b)2 + r(
√

b −
8√

ab3)2
≤ νa + (1 − ν)b, (6)

where r = min{4ν, 1 − 4ν},

(2) if 1
4 ≤ ν <

1
2 , then

aνb1−ν + ν(
√

a −
√

b)2 + (1 − 2ν)(
4√

ab −
√

b)2 + r(
4√

ab −
8√

ab3)2
≤ νa + (1 − ν)b, (7)

where r = min{2 − 4ν, 4ν − 1},

(3) if 1
2 ≤ ν <

3
4 , then

aνb1−ν + (1 − ν)(
√

a −
√

b)2 + (2ν − 1)(
4√

ab −
√

a)2 + r(
4√

ab −
8√

a3b)2

≤ νa + (1 − ν)b,
(8)

where r = min{3 − 4ν, 4ν − 2},

(4) if 3
4 ≤ ν < 1, then

aνb1−ν + (1 − ν)(
√

a −
√

b)2 + 2(1 − ν)(
4√

ab −
√

a)2 + r(
√

a −
8√

a3b)2

≤ νa + (1 − ν)b,
(9)

where r = min{4 − 4ν, 4ν − 3}.

For further reading related to generalized refinement of Young’s inequality, the reader is referred to recent
papers [4], [3], [9], [10] and [11].

One goal of this paper is to show the general refinements form governing Theorem 1.3. As applications
we show some new generalized refinements for the determinants, traces and p-norms of τ-measurable
operators.
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2. A generalized refinements of Young’s inequality

In this section, we show the main result of this paper. To do this, we need the following theorem
conserning the celebrated weighted arithmetic-geometric mean inequality

Theorem 2.1. Let n be a positive integer. For k = 1, 2, . . . ,n, let xk > 0, and let νk ≥ 0 satisfy
∑n

k=1 νk = 1. Then, we
have

n∏
k=1

xνk
k ≤

n∑
k=1

νkxk. (10)

We need also the following two lemmas.

Lemma 2.2. Let m be a positive integer and let ν a positive number, such that 0 ≤ ν ≤ 1. Then we have
m∑

k=1

(
m
k

)
kνk(1 − ν)m−k = mν, (11)

and
m−1∑
k=0

(
m
k

)
(m − k)νk(1 − ν)m−k = m(1 − ν), (12)

m∑
k=1

(
m
k

)
k =

m−1∑
k=0

(
m
k

)
(m − k) = m2m−1, (13)

where
(m

k
)

is the binomial coefficient.

Proof. for any non-negative real numbers x1 and x2, we have

(x1 + x2)m =

m∑
k=0

(
m
k

)
xk

1xm−k
2 , (14)

by derivation of (14) with respect x1 and x2 respectively we find that

m(x1 + x2)m−1 =

m∑
k=1

(
m
k

)
kxk−1

1 xm−k
2 , (15)

and

m(x1 + x2)m−1 =

m−1∑
k=0

(
m
k

)
(m − k)xk

1xm−k−1
2 . (16)

By multiplying (15) and (16) by x1 and x2 respectively

mx1(x1 + x2)m−1 =

m∑
k=1

(
m
k

)
kxk

1xm−k
2 , (17)

and

mx2(x1 + x2)m−1 =

m−1∑
k=0

(
m
k

)
(m − k)xk

1xm−k
2 . (18)

By setting x1 = ν and x2 = 1 − ν in (17) and (18) respectively we deduces the result.
The equalities (13) follows by setting x1 = 1 and x2 = 1 in (17) and (18) respectively. This completes the
proof.
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Lemma 2.3. Let ν be a positive number such that 0 ≤ ν ≤ 1 and m be a positive integer.

1. If 0 ≤ ν ≤ 1
4 , then

(1 − ν)m
− 3νm

≥ 0.

2. If 1
4 ≤ ν ≤

1
2 , then

(1 − ν)m
− νm

− (1 − 2ν)m
≥ 0.

Proof. 1. Suppose that 0 ≤ ν ≤ 1
4 , set f (ν) = (1−ν)m

−3νm, then we have f ′ (ν) = −m
(
(1−ν)m−1 +3νm−1

)
≤ 0.

So f is decreasing, then

f (ν) ≥ f (
1
4

) =
3m
− 3

4m ≥ 0.

2. Suppose that 1
4 ≤ ν ≤

1
2 , we have

(1 − ν)m
− νm

− (1 − 2ν)m

=(1 − 2ν)((1 − ν)m−1 + . . . + νm−1) − (1 − 2ν)m

=(1 − 2ν)
(
(1 − ν)m−1 + . . . + νm−1

− (1 − 2ν)m−1
)

=(1 − 2ν)
(
(1 − ν)m−1

− (1 − 2ν)m−1 + . . . + νm−1
)

≥0.

The proof is complete.

Now we are ready to state and prove our first main result.

Theorem 2.4. Let a and b be two positive numbers and 0 < ν < 1. Then for m = 1, 2, 3, . . . , we have

(1) if 0 < ν < 1
4 , then

(aνb1−ν)m + νm(a
m
2 − b

m
2 )2 + 2νm((ab)

m
4 − b

m
2 )2 + rm(b

m
2 − (ab3)

m
8 )2

≤ (νa + (1 − ν)b)m,
(19)

where rm = min{4νm, (1 − ν)m
− 3νm

},

(2) if 1
4 ≤ ν <

1
2 , then

(aνb1−ν)m + νm((a + b)m
− 2m(ab)

m
2 ) + (1 − 2ν)m((ab)

m
4 − b

m
2 )2

+rm((ab)
m
4 − (ab3)

m
8 )2
≤ (νa + (1 − ν)b)m,

(20)

where rm = min{2(1 − 2ν)m, (2ν)m
− (1 − 2ν)m

},

(3) if 1
2 ≤ ν <

3
4 , then

(aνb1−ν)m + (1 − ν)m((a + b)m
− 2m(ab)

m
2 ) + (2ν − 1)m((ab)

m
4 − a

m
2 )2

+rm((ab)
m
4 − (a3b)

m
8 )2
≤ (νa + (1 − ν)b)m,

(21)

where rm = min{2(2ν − 1)m, (2 − 2ν)m
− (2ν − 1)m

},

(4) if 3
4 ≤ ν < 1, then

(aνb1−ν)m + (1 − ν)m(a
m
2 − b

m
2 )2 + 2(1 − ν)m((ab)

m
4 − a

m
2 )2

+rm(a
m
2 − (a3b)

m
8 )2
≤ (νa + (1 − ν)b)m,

(22)

where rm = min{4(1 − ν)m, νm
− 3(1 − ν)m

}.
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Proof. 1. Suppose that 0 < ν < 1
4 . We claim that

(νa + (1 − ν)b)m
− νm(a

m
2 − b

m
2 )2
− 2νm((ab)

m
4 − b

m
2 )2
− rm(b

m
2 − (ab3)

m
8 )2

≥ (aνb1−ν)m

We have, the following identities

(νa + (1 − ν)b)m
− νm(a

m
2 − b

m
2 )2
− 2νm((ab)

m
4 − b

m
2 )2
− rm(b

m
2 − (ab3)

m
8 )2

=

m∑
k=0

(
m
k

)
νk(1 − ν)m−kakbm−k

− νm
(
am + bm

− 2(ab)
m
2

)
−2νm

(
(ab)

m
2 + bm

− 2(ab3)
m
4

)
− rm

(
bm + (ab3)

m
4 − 2(ab7)

m
8

)
=

m−1∑
k=1

(
m
k

)
νk(1 − ν)m−kakbm−k +

(
(1 − ν)m

− 3νm
− rm

)
bm

+
(
4νm
− rm

)
(ab3)

m
4 + 2rm(ab7)

m
8

=

m+1∑
k=0

νkxk,

where xk is given by:
x0 := bm, with ν0 := (1 − ν)m

− 3νm
− rm,

and for 1 ≤ k ≤ m − 1,

xk := akbm−k, with νk :=
(
m
k

)
νk(1 − ν)m−k,

and

xm := (ab3)
m
4 , with νm := 4νm

− rm,

xm+1 := (ab7)
m
8 , with νm+1 := 2rm.

By using Lemma 2.3, we have
(a) xk > 0 for all k ∈ {0, 1, . . . ,m + 1},
(b) νk ≥ 0 for all k ∈ {0, 1, . . . ,m + 1}, with

∑m+1
k=0 νk = 1.

So, by the arithmetic-geometric mean inequality,

m+1∑
k=0

νkxk ≥

m+1∏
k=0

xνk
k = aα(m)bβ(m),

where

α(m) =

m−1∑
k=1

(
m
k

)
kνk(1 − ν)m−k +

m
4

(
4νm
− rm

)
+

m
4

rm

=

m∑
k=1

(
m
k

)
kνk(1 − ν)m−k = mν, (by Lemma 2.2)
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and

β(m) =

m−1∑
k=1

(
m
k

)
(m − k)νk(1 − ν)m−k + m

(
(1 − ν)m

− 3νm
− rm

)
+

3m
4

(
4νm
− rm

)
+

7m
4

rm

=

m−1∑
k=0

(
m
k

)
(m − k)νk(1 − ν)m−k = (1 − ν)m, (by Lemma 2.2).

(2) Suppose that 1
4 ≤ ν ≤

1
2 . We claim that

(νa + (1 − ν)b)m
− νm((a + b)m

− 2m(ab)
m
2 ) − (1 − 2ν)m((ab)

m
4 − b

m
2 )2

−rm((ab)
m
4 − (ab3)

m
8 )2
≥ (aνb1−ν)m.

We have, the following identities

(νa + (1 − ν)b)m
− νm((a + b)m

− 2m(ab)
m
2 )

−(1 − 2ν)m((ab)
m
4 − b

m
2 )2
− rm((ab)

m
4 − (ab3)

m
8 )2

=

m∑
k=0

(
m
k

)
νk(1 − ν)m−kakbm−k

− νm
( m∑

k=0

(
m
k

)
akbm−k

− 2m(ab)
m
2

)
−(1 − 2ν)m

(
(ab)

m
2 + bm

− 2(ab3)
m
4

)
− rm

(
(ab)

m
2 + (ab3)

m
4 − 2(a3b5)

m
8

)
=

m∑
k=1

(
m
k

)(
νk(1 − ν)m−k

− νm
)
akbm−k

+
(
2mνm

− (1 − 2ν)m
− rm

)
(ab)

m
2

+
(
2(1 − 2ν)m

− rm

)
(ab3)

m
4 +

(
(1 − ν)m

− νm
− (1 − 2ν)m

)
bm

+2rm(a3b5)
m
8

=

m+3∑
k=0

νkxk,

where xk is given by:
x0 := bm, with ν0 := (1 − ν)m

− νm
− (1 − 2ν)m,

and for 1 ≤ k ≤ m,

xk := akbm−k, with νk :=
(
m
k

)
(νk(1 − ν)m−k

− νm),

and
xm+1 := (ab)

m
2 , with νm+1 := 2mνm

− (1 − 2ν)m
− rm,

xm+2 := (ab3)
m
4 , with νm+2 := 2(1 − 2ν)m

− rm,

xm+3 := (a3b5)
m
8 , with νm+3 := 2rm.

By using Lemma 2.3, we have
(a) xk > 0 for all k ∈ {0, 1, . . . ,m + 2,m + 3},
(b) νk ≥ 0 for all k ∈ {0, 1, . . . ,m + 2,m + 3}, with

∑m+3
k=0 νk = 1.
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So, by the arithmetic-geometric mean inequality,

m+3∑
k=0

νkxk ≥

m+3∏
k=0

xνk
k = aα(m)bβ(m),

where

α(m) =

m∑
k=1

(
m
k

)
k(νk(1 − ν)m−k

− νm) +
m
2

(
2mνm

− (1 − 2ν)m
− rm

)
+

m
4

(
2(1 − 2ν)m

− rm

)
+

3m
4

rm

=

m∑
k=1

(
m
k

)
kνk(1 − ν)m−k

− νm
m∑

k=1

(
m
k

)
k + 2m−1mνm

= mν, (by Lemma 2.2)

and

β(m) =

m∑
k=1

(
m
k

)
(m − k)(νk(1 − ν)m−k

− νm) +
m
2

(
2mνm

− (1 − 2ν)m
− rm

)
+

3m
4

(
2(1 − 2ν)m

− rm

)
+ m

(
(1 − ν)m

− νm
− (1 − 2ν)m

)
+

5m
4

rm

=

m−1∑
k=0

(
m
k

)
(m − k)νk(1 − ν)m−k

− νm
m−1∑
k=0

(
m
k

)
(m − k) + 2m−1mνm

= m(1 − ν) (by Lemma 2.2).

(3) Suppose that 1
2 ≤ ν ≤

3
4 then 1

4 ≤ 1 − ν ≤ 1
2 . So by changing a, b and ν by b, a and 1 − ν, respectively in

inequality (20), the desired inequality (21) is obtained.
(4) Suppose that 3

4 ≤ ν ≤ 1 then 0 ≤ 1 − ν ≤ 1
4 . So by changing a, b and ν by b, a and 1 − ν, respectively in

inequality (19), the desired inequality (22) is obtained.

Remark 2.5. The Theorem 2.4, extends the Theorem 1.3 obtained by J. Zhang and J. Wu which the case m = 1.

3. Applications to refined Young type inequalities for the traces, determinants and p-norms

In this section, we give applications of Theorem 2.4 to establish some new refinements to certain Young
type inequalities for the traces, determinants, and p-norms of positive τ-measurable operators.

Let M ⊂ B(H) be a finite von Neumann algebra on the separable Hilbert space H , namely, M is a
∗-subalgebra of B(H) containing the identity 1,which is closed for the weak operator topology. A trace τ on
the von Neumann algebraM is a map τ : M+

7→ [0,+∞) which is additive, positively homogeneous and
unitarily invariant, that is, τ(x) = τ(u∗xu) for all x ∈ M+ and unitary u ∈ M, whereM+ = {x ∈ M, x ≥ 0}. A
trace τ is called

1. faithful is for all x ∈ M+, τ(x) = 0 implies that x = 0,
2. semi-finite is for every x ∈ M+, with τ(x) > 0, there exists 0 ≤ y ≤ x, such that 0 < τ(y) < ∞,
3. normal if xi ↑i x ∈ M+, implies that τ(xi) ↑i τ(x).

A trace is called finite if τ(1) < ∞.
For 0 < p < +∞, Lp(M, τ) is defined as the set of all τ-measurable operators x affiliated withM such that

||x||p = τ(|x|p)
1
p < +∞.

Lp(M, τ) is a Banach space under ||.||p for 1 ≤ p < +∞, see [14] for more information.
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Definition 3.1. [7] LetM be a finite von Neumann algebra acting on a separable Hilbert space H , with a normal
faithful finite trace τ. For x ∈ M, we define the determinant of x by ∆τ(x) = exp τ(log |x|) if |x| is invertible, and
otherwise we define ∆τ(x) = inf ∆τ(|x| + ε1), the infimum takes over all scalars ε > 0.

Now we shall stat some known properties of determinant of τ-measurable operators (see [5],[6]) which we
shall need later

1. ∆τ(1) = 1, ∆τ(xy) = ∆τ(x)∆τ(y),
2. ∆τ(x) = ∆τ(x∗) = ∆τ(|x|), ∆τ(|x|α) = ∆τ(|x|)α, α ∈ R+,
3. ∆τ(x−1) = (∆τ(x))−1, if x is invertible inM,
4. ∆τ(x) ≤ ∆τ(y), if 0 ≤ x ≤ y,
5. limε−→0+ ∆τ(x + ε1) = ∆τ(x), if 0 ≤ x.

The version Young’s inequalities for the trace, determinants and p-norm, states as follows: for any x, y, z ∈
M

+ and for all positive integer m we have(
(τ(xνy1−ν)

)m
≤

(
τ(νx + (1 − ν)y)

)m
, (23)

(
∆τ(xνy1−ν)

)m
≤

(
∆τ(νx + (1 − ν)y)

)m
, (24)

||xνzy1−ν
||

m
p ≤

[
ν||xz||p + (1 − ν)||zy||p

]m
. (25)

By using inequalities (4) and (5) J. Shao [13] proved the next inequalities:

(
∆τ(xνy1−ν)

)m
+ rm

0

(
((∆τ(x))

m
2 − (∆τ(y))

m
2 )

)2
≤

(
∆τ(νx + (1 − ν)y)

)m
,

(
(τ(xνy1−ν)

)m
+ rm

0

(
((τ(x))

m
2 − (τ(y))

m
2

)2
≤

(
τ(νx + (1 − ν)y)

)m
,

||xνzy1−ν
||

m
p + rm

0

(
(||xz||p)

m
2 − (||zy||p)

m
2

)2
≤

[
ν||xz||p + (1 − ν)||zy||p

]m
,

(
∆τ(xνy1−ν)

)m
+ rm

0

(
(∆τ(x) + ∆τ(y))m

− 2m(∆τ(xy))
m
2

)
≤

(
∆τ(νx + (1 − ν)y)

)m
,

(
(τ(xνy1−ν)

)m
+ rm

0

(
(τ(x) + τ(y))m

− 2m(τ(x)τ(y))
m
2

)
≤

(
τ(νx + (1 − ν)y)

)m

and

||xνzy1−ν
||

m
p + rm

0

(
(||xz||p + ||zy||p)m

− 2m(||xz||p||zy||p)
m
2

)
≤

[
ν||xz||p + (1 − ν)||zy||p

]m
.

where r0 = min{ν, 1 − ν}.
As applications of Theorem 2.4, we give further improvements to the above inequalities.

Before giving our results, we need to recall the following two lemmas.
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Lemma 3.2 ([7]). Let x, y ∈ M+. Then we have

∆τ(x) + ∆τ(y) ≤ ∆τ(x + y)

Lemma 3.3 ([16]). Let x, y ∈ Lp(M, τ) be a positive operators, where 1 ≤ p < +∞, z ∈ M, and 0 ≤ ν ≤ 1. Then we
have

||xνzy1−ν
||p ≤ ||xz||νp||zy||1−νp

In particular,

τ(xνy1−ν) ≤ τ(x)ντ(y)1−ν.

The first result of this section concerns the determinants of τ-measurable operators and reads as follows.

Theorem 3.4. Let x, y ∈ M+, and 0 < ν < 1. Then for m = 1, 2, 3, . . . ,
(1) if 0 < ν < 1

4 , then(
∆τ(xνy1−ν)

)m
+ νm

(
((∆τ(x))

m
2 − (∆τ(y))

m
2 )

)2

+2νm
(
[∆τ(xy)]

m
4 − [∆τ(y)]

m
2

)2

+rm

(
[∆τ(y)]

m
2 − [∆τ(xy3)]

m
8

)2

≤ ∆τ

(
νx + (1 − ν)y

)m
, (26)

where rm = min{4νm, (1 − ν)m
− 3νm

},

(2) if 1
4 ≤ ν <

1
2 , then(

∆τ(xνy1−ν)
)m

+ νm
(
(∆τ(x) + ∆τ(y))m

− 2m(∆τ(xy))
m
2

)
+(1 − 2ν)m

(
[∆τ(xy)]

m
4 − [∆τ(y)]

m
2

)2

+rm

(
[∆τ(xy)]

m
4 − [∆τ(xy3)]

m
8

)2

≤ ∆τ

(
νx + (1 − ν)y

)m
, (27)

where rm = min{2(1 − 2ν)m, (2ν)m
− (1 − 2ν)m

}.

(3) if 1
2 ≤ ν <

3
4 , then(

∆τ(xνy1−ν)
)m

+ (1 − ν)m
(
(∆τ(x) + ∆τ(y))m

− 2m(∆τ(xy))
m
2

)
+(2ν − 1)m

(
[∆τ(xy)]

m
4 − [∆τ(x)]

m
2

)2

+rm

(
[∆τ(xy)]

m
4 − [∆τ(x3y)]

m
8

)2

≤ ∆τ

(
νx + (1 − ν)y

)m
, (28)

where rm = min{2(2ν − 1)m, (2 − 2ν)m
− (2ν − 1)m

},

(4) if 3
4 ≤ ν < 1, then(

∆τ(xνy1−ν)
)m

+ (1 − ν)m
(
((∆τ(x))

m
2 − (∆τ(y))

m
2 )

)2

+2(1 − ν)m
(
[∆τ(xy)]

m
4 − [∆τ(x)]

m
2

)2

+rm

(
[∆τ(x)]

m
2 − [∆τ(x3y)]

m
8

)2

≤ ∆τ

(
νx + (1 − ν)y

)m
, (29)

where rm = min{4(1 − ν)m, νm
− 3(1 − ν)m

}.
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Proof. Suppose that 0 < ν < 1
4 , applying Theorem 2.4 and Lemma 3.2, we have

∆τ

(
νx + (1 − ν)y

)m
≥

[
ν∆τ(x) + (1 − ν)∆τ(y)

]m
(by Lemma 3.2)

≥

[(
∆τ(x)

)ν(
∆τ(y)

)1−ν]m
+ νm

(
((∆τ(x))

m
2 − (∆τ(y))

m
2 )

)2

+2νm
(
[∆τ(x)∆τ(y)]

m
4 − [∆τ(y)]

m
2

)2
+ rm

(
[∆τ(y)]

m
2 − [∆τ(x)∆3

τ(y)]
m
8

)2

(by Theorem 2.4)

=
(
∆τ(xνy1−ν)

)m
+ νm

(
((∆τ(x))

m
2 − (∆τ(y))

m
2 )

)2

+2νm
(
[∆τ(xy)]

m
4 − [∆τ(y)]

m
2

)2
+ rm

(
[∆τ(y)]

m
2 − [∆τ(xy3)]

m
8

)2
.

By the same process we can show the inequalities (27), (28) and (29).

The second result of this section concerns the traces of τ-measurable operators and reads as follows.

Theorem 3.5. Let x, y ∈ M+, and 0 < ν < 1. Then for m = 1, 2, 3, . . . , we have

(1) if 0 < ν < 1
4 , then(
τ(xνy1−ν)

)m
+ νm

(
((τ(x))

m
2 − (τ(y))

m
2

)2

+2νm
(
[τ(x)τ(y)]

m
4 − (τ(y))

m
2

)2

+rm

(
[τ(y)]

m
2 − (τ(x)τ3(y))

m
8

)2

≤

[
τ(νx + (1 − ν)y)

]m
, (30)

where rm = min{4νm, (1 − ν)m
− 3νm

},

(2) if 1
4 ≤ ν <

1
2 , then(
τ(xνy1−ν)

)m
+ νm

(
(τ(x) + τ(y))m

− 2m(τ(x)τ(y))
m
2

)
+(1 − 2ν)m

(
[τ(x)τ(y)]

m
4 − (τ(y))

m
2

)2

+rm

(
[τ(x)τ(y)]

m
4 − (τ(x)τ3(y))

m
8

)2

≤

[
τ(νx + (1 − ν)y)

]m
, (31)

where rm = min{2(1 − 2ν)m, (2ν)m
− (1 − 2ν)m

},

(3) if 1
2 ≤ ν <

3
4 , then(
τ(xνy1−ν)

)m
+ (1 − ν)m

(
(τ(x) + τ(y))m

− 2m(τ(x)τ(y))
m
2

)
+(2ν − 1)m

(
[τ(x)τ(y)]

m
4 − (τ(x))

m
2

)2

+rm

(
[τ(x)τ(y)]

m
4 − (τ3(x)τ(y))

m
8

)2

≤

[
τ(νx + (1 − ν)y)

]m
, (32)

where rm = min{2(2ν − 1)m, (2 − 2ν)m
− (2ν − 1)m

},
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(4) if 3
4 ≤ ν < 1, then(

τ(xνy1−ν)
)m

+ (1 − ν)m
(
(τ(x))

m
2 − (τ(y))

m
2

)2

+2(1 − ν)m
(
[τ(x)τ(y)]

m
4 − (τ(x))

m
2

)2

+rm

(
[τ(x)]

m
2 − (τ3(x)τ(y))

m
8

)2

≤

[
τ(νx + (1 − ν)y)

]m
, (33)

where rm = min{4(1 − ν)m, νm
− 3(1 − ν)m

}.

Proof. Suppose that 0 < ν < 1
4 , applying Theorem 2.4 and Lemma 3.3, we have

(
τ(xνy1−ν)

)m
+ νm

(
(τ(x))

m
2 − (τ(y))

m
2

)2
+ 2νm

(
[τ(x)τ(y)]

m
4 − (τ(y))

m
2

)2

+rm

(
[τ(y)]

m
4 − (τ(x)τ3(y))

m
8

)2

≤

[
(τ(x))ν(τ(y))1−ν

]m
+ νm

(
(τ(x))

m
2 − (τ(y))

m
2

)2

+2νm
(
[τ(x)τ(y)]

m
4 − (τ(y))

m
2

)2
+ rm

(
[τ(y)]

m
2 − (τ(x)τ3(y))

m
8

)2

(by Lemma 3.3)

≤

[
τ(νx + (1 − ν)y)

]m
(by Theorem 2.4).

By the same process we can show the inequalities (31), (32) and (33).

The third result of this section concerns the p-norms of τ-measurable operators and reads as follows.

Theorem 3.6. Let x, y ∈ Lp(M, τ) be a positive operators, where 1 ≤ p < +∞, z ∈ M, and 0 ≤ ν ≤ 1. Then for
m = 1, 2, 3, . . . , we have:

(1) if 0 < ν < 1
4 , then

||xνzy1−ν
||

m
p + νm

(
(||xz||p)

m
2 − (||zy||p)

m
2

)2

+2νm
(
(||xz||p||zy||p)

m
4 − (||zy||p)

m
2

)2

+rm

(
(||zy||p)

m
2 − (||xz||p||zy||3p)

m
8

)2

≤

[
ν||xz||p + (1 − ν)||zy||p

]m
, (34)

where rm = min{4νm, (1 − ν)m
− 3νm

},

(2) if 1
4 ≤ ν <

1
2 , then

||xνzy1−ν
||

m
p + νm

(
(||xz||p + ||zy||p)m

− 2m(||xz||p||zy||p)
m
2

)
+(1 − 2ν)m

(
(||xz||p||zy||p)

m
4 − (||zy||p)

m
2

)2

+rm

(
(||xz||p||zy||p)

m
4 − (||xz||p||zy||3p)

m
8

)2

≤

[
ν||xz||p + (1 − ν)||zy||p

]m
, (35)

where rm = min{2(1 − 2ν)m, (2ν)m
− (1 − 2ν)m

}.
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(3) if 1
2 ≤ ν <

3
4 , then

||xνzy1−ν
||

m
p + (1 − ν)m

(
(||xz||p + ||zy||p)m

− 2m(||xz||p||zy||p)
m
2

)
+(2ν − 1)m

(
(||xz||p||zy||p)

m
4 − (||xz||p)

m
2

)2

+rm

(
(||xz||p||zy||p)

m
4 − (||xz||3p||zy||p)

m
8

)2

≤

[
ν||xz||p + (1 − ν)||zy||p

]m
, (36)

where rm = min{2(2ν − 1)m, (2 − 2ν)m
− (2ν − 1)m

},

(4) if 3
4 ≤ ν < 1, then

||xνzy1−ν
||

m
p +

(
(||xz||p)

m
2 − (||zy||p)

m
2

)2

+2(1 − ν)m
(
(||xz||p||zy||p)

m
4 − (||xz||p)

m
2

)2

+rm

(
(||xz||p)

m
2 − (||xz||3p||zy||p)

m
8

)2

≤

[
ν||xz||p + (1 − ν)||zy||p

]m
, (37)

where rm = min{4(1 − ν)m, νm
− 3(1 − ν)m

}.

Proof. Suppose that 0 < ν < 1
4 , applying Theorem 2.4 and Lemma 3.3, we have

||xνzy1−ν
||

m
p + νm

(
(||xz||p)

m
2 − (||zy||p)

m
2

)2

+2νm
(
(||xz||p||zy||p)

m
4 − (||zy||p)

m
2

)2

+rm

(
(||zy||p)

m
2 − (||xz||p||zy||3p)

m
8

)2

≤

[
||xz||νp||zy||1−νp

]m
+ νm

(
(||xz||p)

m
2 − (||zy||p)

m
2

)2

+2νm
(
(||xz||p||zy||p)

m
4 − (||zy||p)

m
2

)2

+rm

(
(||zy||p)

m
2 − (||xz||p||zy||3p)

m
8

)2
(by Lemma 3.3)

≤

[
ν||xz||p + (1 − ν)||zy||p

]m
(by Theorem 2.4).

By the same process we can show the inequalities (35), (36) and (37).

4. Concluding remarks

The paper starts with an introduction in which we make some recalls concern (scalar) Young’s inequality
and its refinements obtained by several authors.

The purpose of this work is devoted to generalize some refinement of Young’s inequality and provide
several applications.

In Section 2, we establish in Theorem 2.4 a new generalized refinement of Young inequality. This
theorem will generalize the result (see Theorem 1.3 ), obtained by J. Zhang and J. Wu in [15].

In Section 3, we make some recalls concern the determinants, p-norms and traces of τ-measurable
operators.
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As a consequence of Theorem 2.4, we deduce (see Theorem 3.4) a new refinement of Young’s type
inequality for the determinants of positive τ-measurable operators.

In the second application of Theorem 2.4, we provide a new refinement of Young’s type inequality (see
Theorem 3.5), for the traces.

A last application of Theorem 2.4 is to give (see Theorem 3.6) a new refinement of Young’s type inequality
for the p-norm of positive τ-measurable operators.

We hope that our work will provide more other applications.

Acknowledgements. The authors would like to express their deep thanks to the anonymous referees
for their helpful comments and suggestions on the initial version of the manuscript which lead to the
improvement of this paper.
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