Symmetric Bi-derivations and their Generalizations on Group Algebras

Mohammad Hossein Ahmadi Gandomani ${ }^{\text {a }}$, Mohammad Javad Mehdipour ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, GhiroKarzin Branch, Islamic Azad University, GhiroKarzin 74765-118, Iran
${ }^{b}$ Department of Mathematics, Shiraz University of Technology, Shiraz 71555-313, Iran

Abstract

Here, we investigate symmetric bi-derivations and their generalizations on $L_{0}^{\infty}(\mathfrak{G})^{*}$. For $\mathcal{K} \in \mathbb{N}$, we show that if $B: L_{0}^{\infty}(\mathfrak{F})^{*} \times L_{0}^{\infty}(\mathfrak{F})^{*} \rightarrow L_{0}^{\infty}(\mathfrak{F})^{*}$ is a symmetric bi-derivation such that $\left[B(m, m), m^{\kappa}\right] \in Z\left(L_{0}^{\infty}(\mathfrak{F})^{*}\right)$ for all $m \in L_{0}^{\infty}(\mathfrak{G})^{*}$, then B is the zero map. Furthermore, we characterize symmetric generalized biderivations on group algebras. We also prove that any symmetric Jordan bi-derivation on $L_{0}^{\infty}(\mathfrak{F})^{*}$ is a symmetric bi-derivation.

1. Introduction

Let \mathfrak{F} denote a locally compact abelian group with a fixed left Haar measure λ. The Banach algebras $L^{1}(\mathfrak{F})$ and $L^{\infty}(\mathfrak{5})$ are as defined in [7]. Let us remark that $L^{\infty}(\mathfrak{G})$ is the continuous dual of $L^{1}(\mathfrak{F})$. We denote by $L_{0}^{\infty}(\mathfrak{5})$ the subspace of $L^{\infty}(\mathfrak{F})$ consisting of all functions $g \in L^{\infty}(\mathfrak{F})$ that vanish at infinity; i.e. for each $\varepsilon>0$, there is a compact subset K of $\mathfrak{5}$ for which

$$
\left\|g \chi_{\mathfrak{G} \backslash K}\right\|_{\infty}<\varepsilon,
$$

where $\chi_{\mathfrak{G} \backslash K} \backslash$ denotes the characteristic function of $\mathfrak{G} \backslash K$ on \mathfrak{G}. For every $n \in L_{0}^{\infty}(\mathfrak{F})^{*}$ and $g \in L_{0}^{\infty}(\mathfrak{G})$ we define the functional $n g \in L_{0}^{\infty}(\mathfrak{G})^{*}$ by $\langle n g, \phi\rangle=\langle n, g \phi\rangle$, in which $\langle g \phi, \psi\rangle=\langle g, \phi * \psi\rangle$ and

$$
\phi * \psi(x)=\int_{\mathfrak{G}} \phi(y) \psi\left(y^{-1} x\right) d \lambda(y)
$$

for all $\phi, \psi \in L^{1}(\mathfrak{5})$ and $x \in\left(55\right.$. This let us endow $L_{0}^{\infty}(\mathfrak{5})^{*}$ with the first Arens product ". " defined by the formula

$$
\langle m \cdot n, g\rangle=\langle m, n g\rangle
$$

for all $m, n \in L_{0}^{\infty}(\mathfrak{F})^{*}$ and $g \in L_{0}^{\infty}(\mathfrak{G})$. Then $L_{0}^{\infty}(\mathfrak{G})^{*}$ is a Banach algebra with this product. For an extensive study of $L_{0}^{\infty}(\mathfrak{5})^{*}$ see [8].

Let \mathfrak{A} be an algebra and $B(.,):. \mathfrak{A} \times \mathfrak{A} \rightarrow \mathfrak{A}$ be a symmetric bi-linear mapping; that is, $B(x, y)=B(y, x)$, $B(\alpha x, y)=\alpha B(x, y)$ and

$$
B(x+y, z)=B(x, z)+B(y, z)
$$

[^0]for all $x, y, z \in \mathfrak{H}$ and $\alpha \in \mathbb{C}$. The mapping $f: \mathfrak{A} \rightarrow \mathfrak{H}$ defined by $f(x)=B(x, x)$ is called the trace of B. Let us recall that B is called a symmetric bi-derivation if
$$
B(x y, z)=B(x, z) y+x B(y, z)
$$
for all $x, y, z \in \mathfrak{H}$. Also, B is called a symmetric generalized bi-derivation if there exists a symmetric bi-derivation \tilde{B} of \mathfrak{A} such that
$$
B(x y, z)=x B(y, z)+\tilde{B}(x, z) y
$$
for all $x, y, z \in \mathfrak{A}$. A symmetric generalized bi-derivation B associated with a symmetric bi-derivation \tilde{B} is denoted by $B_{\tilde{B}}$. Finally, B is called a symmetric Jordan bi-derivation if
$$
B\left(x^{2}, y\right)=B(x, y) x+x B(x, y)
$$
for all $x, y \in \mathfrak{A}$. For $\kappa \in \mathbb{N}$, a linear mapping $T: \mathfrak{H} \rightarrow \mathfrak{A}$ is called κ-(skew) centralizing if
$$
\left[T(x), x^{\kappa}\right] \in \mathrm{Z}(\mathfrak{H}) \quad\left(T(x) \circ x^{\kappa} \in \mathrm{Z}(\mathfrak{H})\right)
$$
for all $x \in \mathfrak{A}$, in a special case, if for every $x \in \mathfrak{A}$
$$
\left.\left[T(x), x^{\kappa}\right]=0 \quad\left(T(x) \circ x^{\kappa}=0\right)\right)
$$
then T is called $\mathcal{K}-($ skew $)$ commuting, where $Z(\mathfrak{A})$ is the center of $\mathfrak{U},[x, y]=x y-y x$ and
$$
x \circ y:=x \cdot y+y \cdot x
$$
for all $x, y \in \mathfrak{A}$. In the case that, $\kappa=1, T$ is called (skew) centralizing and (skew) commuting, respectively.
Symmetric bi-derivations on rings have been introduced and studied by Maksa [9, 10]. Several authors continued this investigations [2, 5, 15-18]. For example, Vukman [16] proved that if $B: R \times R \rightarrow R$ is a symmetric bi-derivation such that for every $x \in R$
$$
[[f(x), x], x] \in \mathrm{Z}(R)
$$
then $B=0$, where R is a noncommutative prime ring of characteristic not two and three. He conjectured that if there exists $\kappa \in \mathbb{N}$ such that for every $x \in R$ we have $f_{\kappa}(x) \in Z(R)$, then $B=0$, where
$$
f_{i+1}(x)=\left[f_{i}(x), x\right]
$$
for $i>1$ and $f_{1}(x)=f(x)$. Deng [5] gave an affirmative answer to the Vukman's conjecture. For related results on symmetric bi-derivations on Banach algebras see [3,13]; see also [4, 6, 12] for study of generalized bi-derivations and Jordan bi-derivations.

An easy application of the Hahn-Banach's theorem shows that $L_{0}^{\infty}(\mathfrak{5})^{*}$ is not a semiprime ring, when $\mathfrak{5}$ is a non-discrete locally compact group. Also, note that if $\Lambda(5)$ denotes the set of all weak*-cluster points of the canonical images of the bounded approximate identities, bounded by one, of $L^{1}(\mathfrak{W})$ in $L_{0}^{\infty}(\mathfrak{F})^{*}$, then for every nonzero element r in

$$
\operatorname{Ann}_{r}\left(L_{0}^{\infty}(\mathfrak{5})^{*}\right)=\left\{n-u \cdot n: n \in L_{0}^{\infty}(\mathfrak{5})^{*}, u \in \Lambda(\mathfrak{5})\right\}
$$

the mapping $B(\ldots,):. L_{0}^{\infty}(\mathfrak{5})^{*} \times L_{0}^{\infty}(\mathfrak{5})^{*} \rightarrow L_{0}^{\infty}(\mathfrak{F})^{*}$ defined by

$$
B(m, n)=r \cdot m \cdot n
$$

is a nonzero bi-derivation. These facts lead us to investigate symmetric bi-derivations on $L_{0}^{\infty}(\mathfrak{G})^{*}$.
In this paper, we first study symmetric bi-derivations on $L_{0}^{\infty}(\mathfrak{G})^{*}$ and prove that they map $L_{0}^{\infty}(\mathfrak{G})^{*} \times L_{0}^{\infty}(\mathfrak{G})^{*}$ into the radical of $L_{0}^{\infty}(\mathfrak{5})^{*}$. We also show that if $B: L_{0}^{\infty}(\mathfrak{5})^{*} \times L_{0}^{\infty}(\mathfrak{F})^{*} \rightarrow L_{0}^{\infty}(\mathfrak{F})^{*}$ is a symmetric bi-derivation and f is κ-centralizing for some $\kappa \in \mathbb{N}$, then B is zero map. In the case that, B is a symmetric generalized bi-derivation, we prove that there exists $\theta \in L_{0}^{\infty}(\mathfrak{G})^{*}$ such that $B(m, n)=m \cdot n \cdot \theta$ for all $m, n \in L_{0}^{\infty}(\mathfrak{G})^{*}$. Finally, we study symmetric Jordan bi-derivations on $L_{0}^{\infty}(\mathfrak{F})^{*}$ and establish that they are symmetric bi-derivations.

2. Symmetric bi-derivations and their generalizations

In the sequel, we use the symbols D, G_{D} and J for symmetric bi-derivations, symmetric generalized bi-derivations and symmetric Jordan bi-derivations, respectively. The following result is an analogue of Singer-Wermer conjecture [14] for bi-derivations.

Proposition 2.1. Let $D: L_{0}^{\infty}(\mathfrak{G})^{*} \times L_{0}^{\infty}(\mathfrak{G})^{*} \rightarrow L_{0}^{\infty}(\mathfrak{G})^{*}$ be a symmetric bi-derivation. Then D maps $L_{0}^{\infty}(\mathfrak{G})^{*} \times L_{0}^{\infty}(\mathfrak{G})^{*}$ into the radical of $L_{0}^{\infty}(\mathfrak{G})^{*}$.

Proof. For every $m \in L_{0}^{\infty}(\mathfrak{G})^{*}$ we define the mapping $\Delta_{m}: L_{0}^{\infty}(\mathfrak{5})^{*} \rightarrow L_{0}^{\infty}(\mathfrak{5})^{*}$ by

$$
\Delta_{m}(n)=D(m, n)
$$

For every $m \in L_{0}^{\infty}(\mathfrak{G})^{*}, \Delta_{m}$ is a derivation on $L_{0}^{\infty}(\mathfrak{G})^{*}$ and hence Δ_{m} maps $L_{0}^{\infty}(\mathfrak{G})^{*}$ into its radical for all $m \in L_{0}^{\infty}(\mathfrak{5})^{*} ;$ see [11]. Since

$$
D\left(L_{0}^{\infty}(\mathfrak{G})^{*} \times L_{0}^{\infty}(\mathfrak{G})^{*}\right)=\cup_{m} \Delta_{m}\left(L_{0}^{\infty}(\mathfrak{G})^{*}\right),
$$

D maps $L_{0}^{\infty}(\mathfrak{G})^{*} \times L_{0}^{\infty}(\mathfrak{F})^{*}$ into the radical of $L_{0}^{\infty}(\mathfrak{G})^{*}$.
Before, we prove the main result of this paper, let us remark that if $u \in \Lambda(\mathfrak{G})$, then $m \cdot u=m$ and $u \cdot \phi=\phi$ for all $m \in L_{0}^{\infty}(\mathfrak{F})^{*}$ and $\phi \in L^{1}(\mathfrak{F})$.

Theorem 2.2. Let $D: L_{0}^{\infty}(\mathfrak{G})^{*} \times L_{0}^{\infty}(\mathfrak{F})^{*} \rightarrow L_{0}^{\infty}(\mathfrak{5})^{*}$ be a symmetric bi-derivation and f be the trace of D. Then the following assertions are equivalent.
(a) there exists $\kappa \in \mathbb{N}$ such that $f\left(m^{\kappa}\right)=0$ for all $m \in L_{0}^{\infty}(\mathfrak{b})^{*}$;
(b) there exists $\kappa \in \mathbb{N}$ such that f is κ-commuting;
(c) there exists $\kappa \in \mathbb{N}$ such that f is κ-centralizing;
(d) there exists $\kappa \in \mathbb{N}$ such that f is κ-skew commuting;
(e) there exists $\kappa \in \mathbb{N}$ such that f is κ-skew centralizing;
(f) $D=0$.

Proof. Let $\kappa \in \mathbb{N}$ and $m \in L_{0}^{\infty}(\mathfrak{G})^{*}$. Choose $u \in \Lambda(\mathfrak{G})$ and set $m^{0}=u$. Then

$$
\begin{aligned}
f\left(m^{\kappa}\right) & =D\left(m^{\kappa}, m^{\kappa}\right) \\
& =D\left(m, m^{\kappa}\right) \cdot m^{\kappa-1}+m \cdot D\left(m^{\kappa-1}, m^{\kappa}\right) \\
& =D\left(m, m \cdot m^{\kappa-1}\right) \cdot m^{\kappa-1} \\
& =D(m, m) \cdot m^{2 \kappa-2}+m \cdot D\left(m, m^{\kappa-1}\right) \cdot m^{\kappa-1} \\
& =D(m, m) \cdot m^{2 \kappa-2} \\
& =f(m) \cdot m^{2 \kappa-2} .
\end{aligned}
$$

We also have

$$
f(m) \cdot m^{k}=\left[f(m), m^{k}\right]=\left\langle f(m), m^{k}\right\rangle .
$$

Theses facts imply that the assertions (a)-(e) are equivalent. To complete the proof, it suffices to show that $(\mathrm{b}) \Rightarrow(\mathrm{f})$. So let f be κ-commuting. Then

$$
\begin{equation*}
f(m) \cdot m^{\kappa}=0 \tag{1}
\end{equation*}
$$

for all $m \in L_{0}^{\infty}(\mathfrak{G})^{*}$. Hence $f(u)=0$. Replacing m by $m+u$ in (1), we get

$$
\begin{align*}
0 & =f(m+u) \cdot(m+u)^{\kappa} \\
& =(f(m)+f(u)+2 D(m, u)) \cdot(m+u)^{\kappa} \tag{2}\\
& =(f(m)+2 D(m, u)) \cdot(m+u)^{\kappa} .
\end{align*}
$$

A simple calculation implies that

$$
(m+u)^{\kappa}=\sum_{j=0}^{\kappa-1}\binom{\kappa-1}{j} m^{\kappa-j}+\sum_{j=0}^{\kappa-1}\binom{\kappa-1}{j} u \cdot m^{\kappa-j-1}
$$

This together with (1) and (2) shows that

$$
\begin{equation*}
\sum_{j=1}^{\kappa}\binom{\kappa}{j} f(m) \cdot m^{\kappa-j}+2 \sum_{j=0}^{\kappa}\binom{\kappa}{j} D(m, u) \cdot m^{\kappa-j}=0 \tag{3}
\end{equation*}
$$

Set

$$
\begin{aligned}
& \mathfrak{A}(m):=\sum_{j \text { even, } j=2}^{\kappa}\binom{\kappa}{j} f(m) \cdot m^{\kappa-j}, \\
& \mathfrak{B}(m):=\sum_{j \text { odd, } j=1}^{\kappa}\binom{\kappa}{j} f(m) \cdot m^{\kappa-j}, \\
& \mathfrak{C}(m):=2 \sum_{j \text { even, }, j=0}^{\kappa}\binom{\kappa}{j} D(m, u) \cdot m^{\kappa-j}
\end{aligned}
$$

and

$$
\mathfrak{D}(m):=2 \sum_{j \text { odd, }, j=1}^{\kappa}\binom{\kappa}{j} D(m, u) \cdot m^{\kappa-j} .
$$

Hence the relation (3) can be rewritten as

$$
\begin{equation*}
\mathfrak{A}(m)+\mathfrak{B}(m)+\mathfrak{C}(m)+\mathfrak{D}(m)=0 \tag{4}
\end{equation*}
$$

Replacing m by $-m$ in (4), we arrive at

$$
\begin{equation*}
\mathfrak{H}(m)-\mathfrak{B}(m)-\mathfrak{C}(m)+\mathfrak{D}(m)=0 . \tag{5}
\end{equation*}
$$

Regarding (4) and (5) we deduce that

$$
\begin{equation*}
\mathfrak{A}(m)+\mathfrak{D}(m)=0 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathfrak{B}(m)+\mathfrak{C}(m)=0 . \tag{7}
\end{equation*}
$$

At this point, it is convenient to consider separately the cases κ even and odd. Suppose first that κ is even. According to (7), we infer that

$$
\begin{align*}
0 & =\mathfrak{B}(m)+\mathfrak{C}(m) \\
& =\sum_{j \text { odd, } j=1}^{\kappa-1}\binom{\kappa}{j} f(m) \cdot m^{\kappa-j}+2 \sum_{j \text { even, } j=0}^{\kappa}\binom{\kappa}{j} D(m, u) \cdot m^{\kappa-j} \tag{8}\\
& =\sum_{j \text { odd, } j=1}^{\kappa-1}\binom{\kappa}{j} f(m) \cdot m^{\kappa-j}+2 \sum_{j \text { even }, j=0}^{\kappa-2}\binom{\kappa}{j} D(m, u) \cdot m^{\kappa-j} \\
& +2 D(m, u) .
\end{align*}
$$

Since for any $r \in \operatorname{Ann}_{r}\left(L_{0}^{\infty}(\mathfrak{G})^{*}\right)$

$$
\sum_{j \text { odd, }, j=1}^{\kappa-1}\binom{\kappa}{j} f(r) \cdot r^{\kappa-j}=\sum_{j e v e n, j=0}^{\kappa-2}\binom{\kappa}{j} D(r, u) \cdot r^{\kappa-j}=0
$$

it follows from (8) that

$$
\begin{equation*}
D(r, u)=0 \tag{9}
\end{equation*}
$$

Taking $m-u \cdot m$ for r in (9), we arrive at

$$
\begin{aligned}
0 & =D(m-u \cdot m, u) \\
& =D(m, u)-D(u \cdot m, u) \\
& =D(m, u)-D(u, u) \cdot m-u \cdot D(m, u) \\
& =D(m, u)-f(u) \cdot m
\end{aligned}
$$

Since $f(u)=0$, it follows that

$$
D(m, u)=0
$$

for all $m \in L_{0}^{\infty}(\mathfrak{5})^{*}$. Hence $\mathfrak{D}=0$. From this and (6) we infer that

$$
\begin{equation*}
\sum_{j \text { even, } j=2}^{\kappa}\binom{\kappa}{j} f(m) \cdot m^{\kappa-j}=0 \tag{10}
\end{equation*}
$$

Let i be even and $2 \leq i \leq \kappa-2$. From (10) we conclude that

$$
\begin{align*}
0 & =\sum_{j \text { even, } j=2}^{\kappa}\binom{\kappa}{j} f(m) \cdot m^{\kappa+i-j} \\
& =\sum_{j \text { even, }, j=2}^{j=i}\binom{\kappa}{j} f(m) \cdot m^{\kappa} \cdot m^{i-j} \\
& +\sum_{j \text { even, } j=i+2}^{\kappa}\binom{\kappa}{j} f(m) \cdot m^{\kappa+i-j} \tag{11}\\
& =\sum_{j \text { even, } j=i+2}^{\kappa}\binom{\kappa}{j} f(m) \cdot m^{\kappa+i-j} .
\end{align*}
$$

If $i=\kappa-2$, then by (11)

$$
f(m) \cdot m^{\kappa-2}=0 .
$$

Hence (10) and (11) reduce to

$$
\sum_{j e v e n, j=4}^{\kappa}\binom{\kappa}{j} f(m) \cdot m^{\kappa-j}=0
$$

and

$$
\sum_{j \text { even, } j=i+2}^{\kappa-2}\binom{\kappa}{j} f(m) \cdot m^{\kappa+i-j}=0
$$

Continuing this procedure, we obtain $f(m)=0$ for all $m \in L_{0}^{\infty}(\mathfrak{G})^{*}$ and therefore, $D=0$.
Suppose now that κ is odd. By (6) we have

$$
\mathfrak{H}(m)+\mathfrak{D}(m)=0
$$

for all $m \in L_{0}^{\infty}(\mathfrak{G})^{*}$. As before, we have $D(m, u)=0$ for all $m \in L_{0}^{\infty}(\mathfrak{G})^{*}$. So $\mathfrak{C}=0$. The same computation as for even κ yields $f=0$ and therefore, $D=0$.

As an immediate consequence of Theorem 2.2 we give the following result.

Corollary 2.3. Let $D: L_{0}^{\infty}(\mathfrak{5})^{*} \times L_{0}^{\infty}(\mathfrak{G})^{*} \rightarrow L_{0}^{\infty}(\mathfrak{F})^{*}$ be a symmetric bi-derivation and f be the trace of D. Then the following assertions are equivalent.
(a) f is (skew) centralizing;
(b) there exists $\kappa \in \mathbb{N}$ such that f is κ-(skew) centralizing;
(c) for every $\kappa \in \mathbb{N}, f$ is κ-(skew) centralizing;
(d) $D=0$.

Corollary 2.4. Let $D: L_{0}^{\infty}(\mathfrak{F})^{*} \times L_{0}^{\infty}(\mathfrak{W})^{*} \rightarrow L_{0}^{\infty}(\mathfrak{F})^{*}$ be a symmetric bi-derivation and f be the trace of D. Then the following assertions are equivalent.
(a) f is commuting;
(b) f is centralizing;
(c) f is skew commuting;
(d) f is skew centralizing;
(e) $D=0$.

In the following, we investigate the structure of symmetric generalized bi-derivations whose traces are κ-centralizing.

Theorem 2.5. Let $G_{D}: L_{0}^{\infty}(\mathfrak{5})^{*} \times L_{0}^{\infty}(\mathfrak{5})^{*} \rightarrow L_{0}^{\infty}(\mathfrak{5})^{*}$ be a symmetric generalized bi-derivation and $\kappa \in \mathbb{N}$. If F is the trace of G, then the following assertions are equivalent.
(a) F is κ-commuting;
(b) F is κ-centralizing;
(c) there exists an element θ in $L_{0}^{\infty}(\mathfrak{G})^{*}$ such that $G(m, n)=m \cdot n \cdot \theta$ for all $m, n \in L_{0}^{\infty}(\mathfrak{G})^{*}$.

Proof. Choose $u \in \Lambda(\mathfrak{G})$. First note that the Banach algebra $u \cdot L_{0}^{\infty}(\mathfrak{G})^{*}$ is isometrically isomorphic to the commutative Banach algebra $M(\mathfrak{5})$; see [8]. Hence for every $k, m, n \in L_{0}^{\infty}(\mathfrak{G})^{*}$, we have

$$
\begin{align*}
k \cdot m \cdot n & =k \cdot u \cdot m \cdot u \cdot n \\
& =k \cdot u \cdot n \cdot u \cdot m \tag{12}\\
& =k \cdot n \cdot m
\end{align*}
$$

Also, for every $k, m, n \in L_{0}^{\infty}(5)^{*}$, we have

$$
\begin{aligned}
G(k, n) & =k \cdot G(u, n)+D(k, n) \\
& =k \cdot G(n, u)+D(k, n) \\
& =k \cdot n \cdot G(u, u)+k \cdot D(n, u)+D(k, n) \\
& =k \cdot n \cdot G(u, u)+D(k, n) .
\end{aligned}
$$

Now let f be the trace of D. Then

$$
\begin{aligned}
{\left[F(m), m^{\kappa}\right] } & =F(m) \cdot m^{\kappa}-m^{\kappa} \cdot F(m) \\
& =\left(m^{2} \cdot G(u, u)+f(m)\right) \cdot m^{\kappa}-m^{\kappa} \cdot\left(m^{2} \cdot G(u, u)+f(m)\right) \\
& =m^{\kappa+2} \cdot G(u, u)+f(m) \cdot m^{\kappa}-m^{\kappa+2} \cdot G(u, u)-m^{\kappa} \cdot f(m) \\
& =f(m) \cdot m^{\kappa} .
\end{aligned}
$$

So if F is k-centralizing, then f is κ-commuting. Hence $D=0$ by Theorem 2.2. Thus

$$
\begin{aligned}
G(m, n) & =m \cdot n \cdot G(u, u)+D(m, n) \\
& =m \cdot n \cdot G(u, u)
\end{aligned}
$$

for all $m, n \in L_{0}^{\infty}(\mathfrak{5})^{*}$. That is, (b) implies (c). Also, the implication (a) \Rightarrow (b) is trivial. Finally, (c) implies (a) by (12).

Theorem 2.6. Let $G_{D}: L_{0}^{\infty}(\mathfrak{F})^{*} \times L_{0}^{\infty}(\mathfrak{5})^{*} \rightarrow L_{0}^{\infty}(\mathfrak{F})^{*}$ be a symmetric generalized bi-derivation and $\kappa \in \mathbb{N}$. If F is the trace of G, then the following statements hold.
(i) If F is κ-skew centralizing, then there exists an element θ in $L^{1}(\mathfrak{5})$ such that $G(m, n)=m \cdot n \cdot \theta$ for all $m, n \in L_{0}^{\infty}(\mathfrak{G})^{*}$.
(ii) If F is κ-skew commuting, then $G=0$ on $L_{0}^{\infty}(\mathfrak{G})^{*} \times L_{0}^{\infty}(\mathfrak{F})^{*}$.

Proof. (i) Suppose that F is κ-skew centralizing. So

$$
\left\langle F(m), m^{\kappa}\right\rangle \in \mathrm{Z}\left(L_{0}^{\infty}(\mathfrak{5})^{*}\right)
$$

for all $m \in L_{0}^{\infty}(\mathfrak{G})^{*}$. Then

$$
\left[F(m), m^{k+1}\right]=\left[\left\langle F(m), m^{\kappa}\right\rangle, m\right]=0
$$

This implies that F is $(\mathcal{\kappa}+1)$-commuting. In view of Theorem 2.5, there exists $\theta \in L_{0}^{\infty}(\mathfrak{5})^{*}$ such that

$$
G(m, n)=m \cdot n \cdot \theta
$$

for all $m, n \in L_{0}^{\infty}(\mathfrak{F})^{*}$. Choose $u \in \Lambda(\mathfrak{F})$. Then

$$
\begin{aligned}
2 u \cdot \theta & =G(u, u)+u \cdot G(u, u) \\
& =F(u) \cdot u^{\kappa}+u^{\kappa} \cdot F(u) \\
& =\left\langle F(u), u^{\kappa}\right\rangle .
\end{aligned}
$$

Thus

$$
u \cdot \theta \in Z\left(L_{0}^{\infty}(\mathfrak{5})^{*}\right)
$$

The proof will be complete, if we note that $Z\left(L_{0}^{\infty}(\mathfrak{G})^{*}\right)=L^{1}(\mathfrak{5})$ and

$$
\begin{equation*}
G(m, n)=m \cdot n \cdot \theta=m \cdot n \cdot u \cdot \theta \tag{13}
\end{equation*}
$$

(ii) Let F be κ-skew commuting. By (i) there exists $\theta \in Z\left(L_{0}^{\infty}(\mathfrak{G})^{*}\right)$ such that

$$
G(m, n)=m \cdot n \cdot \theta
$$

for all $m, n \in L_{0}^{\infty}(\mathfrak{5})^{*}$. If $u \in \Lambda(\mathfrak{5})$, then

$$
\begin{aligned}
0 & =\left\langle F(u), u^{\kappa}\right\rangle \\
& =F(u) \cdot u+u \cdot F(u) \\
& =u \cdot \theta+u \cdot \theta \\
& =2 u \cdot \theta
\end{aligned}
$$

This together with (13) shows that $G=0$.
As an immediate corollary of Theorems 2.5 and 2.6 we present the next result.
Corollary 2.7. Let $G_{D}: L_{0}^{\infty}(\mathfrak{G})^{*} \times L_{0}^{\infty}(\mathfrak{F})^{*} \rightarrow L_{0}^{\infty}(\mathfrak{F})^{*}$ be a symmetric generalized bi-derivation and F be the trace of G. Then the following assertions are equivalent.
(a) F is (skew) centralizing;
(b) there exists $\kappa \in \mathbb{N}$ such that F is $\kappa-(s k e w)$ centralizing;
(c) for every $\kappa \in \mathbb{N}, F$ is $\kappa-($ skew $)$ centralizing.

We conclude the paper with the following result.
Theorem 2.8. Let $J: L_{0}^{\infty}(\mathfrak{5})^{*} \times L_{0}^{\infty}(\mathfrak{5})^{*} \rightarrow L_{0}^{\infty}(\mathfrak{F})^{*}$ be a symmetric Jordan bi-derivation. Then J is a symmetric bi-derivation.

Proof. For every $m \in L_{0}^{\infty}(\mathfrak{G})^{*}$, we define the mapping $\Delta_{m}: L_{0}^{\infty}(\mathfrak{G})^{*} \rightarrow L_{0}^{\infty}(\mathfrak{G})^{*}$ by $\Delta_{m}(n)=J(m, n)$. Then

$$
\begin{aligned}
\Delta_{m}\left(n^{2}\right) & =J\left(m, n^{2}\right) \\
& =J(m, n) \cdot n+n \cdot J(m, n) \\
& =\Delta_{m}(n) \cdot n+n \cdot \Delta_{m}(n)
\end{aligned}
$$

for all $m, n \in L_{0}^{\infty}(\mathfrak{G})^{*}$. This shows that Δ_{m} is a Jordan derivation of $L_{0}^{\infty}(\mathfrak{G})^{*}$ for all $m \in L_{0}^{\infty}(\mathfrak{F})^{*}$. By [1] every Jordan derivation of $L_{0}^{\infty}(\mathfrak{W})^{*}$ is a derivation of $L_{0}^{\infty}(\mathfrak{F})^{*}$. Hence Δ_{m} is a derivation of $L_{0}^{\infty}(\mathfrak{W})^{*}$. Thus

$$
\begin{aligned}
J(m \cdot k, n)=\Delta_{n}(m \cdot k) & =\Delta_{n}(m) \cdot k+m \cdot \Delta_{n}(k) \\
& =J(m, n) \cdot k+m \cdot J(k, n) .
\end{aligned}
$$

Consequently, J is a bi-derivation.

Acknowledgement.

The authors would like to thank the referee of the paper for invaluable comments.

References

[1] M. H. Ahmadi Gandomani, M. J. Mehdipour, Jordan, Jordan right and Jordan left derivations on convolution algebras, Bull. Iranian Math. Soc. 45 (1) (2019) 189-204.
[2] M. Ashraf, On symmetric biderivations in rings, Rend. Istit. Mat. Univ. Trieste XXXI (1999) 25-36.
[3] J. Bae, W. Park, Approximate bi-homomorphisms and bi-derivations in C*-ternary algebras, Bull. Korean Math. Soc. 47 (2010) 195-209.
[4] M. Bresar, On generalized bi-derivations and related maps, J. Algebra 122 (1995) 764-786.
[5] Q. Deng, On a conjecture of Vukman, Internat. J. Math. Math. Sci. 20 (2) (1997) 263-266.
[6] A. Fosner, On generalized α-bi derivations, Mediterr. J. Math. 12 (1) (2015) 1-7.
[7] E. Hewitt, K. Ross, Abstract Harmonic Analysis I, Springer-Verlag, New York, 1970.
[8] A. T. Lau, J. Pym, Concerning the second dual of the group algebra of a locally compact group, J. London Math. Soc. 41 (1990) 445-460.
[9] G. Maksa, A remark on symmetric biadditive function having nonnegative diagonalization, Glas. Mat. Ser. III 46 (1980) 279 - 282.
[10] G. Maksa, On the trace of symmetric bi-derivations, C. R. Math. Rep. Acad. Sci. Canada 9 (1987) 303-307.
[11] M. J. Mehdipour, Z. Saeedi, Derivations on group algebras of a locally compact abelian group, Monatsh. Math. 180 (3) (2016) 595-605.
[12] N. M. Muthana, Left centralizer traces, generalized biderivations, left bi-multipliers and generalized Jordan biderivations, Aligarh Bull. Math. 26 (2007) 33-45.
[13] C. Park, Biderivations and bihomomorphisms in Banach algebras, Filomat 33 (8) (2019) 2317--2328.
[14] I. M. Singer, J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955) 260--264.
[15] J. Vukman, Symmetric bi-derivations on prime and semi-prime rings, Aequationes Math. 38 (2-3) (1989) 245-254.
[16] J. Vukman, Two results concerning symmetric bi-derivations on prime rings, Aequations Math. 40 (1990) 181-189.
[17] Y. Wang, Biderivations of triangular rings, Lin. Multilin. Alg. 64 (10) (2016) 1952-1959.
[18] Y. Wang, Permuting triderivations of prime and semiprime rings, Miskolc Math. Notes 18 (2017) 489--497.

[^0]: 2010 Mathematics Subject Classification. Primary 43A15; Secondary 47B47, 16W25
 Keywords. Locally compact abelian group, bi-derivation, κ-centralizing mapping, κ-skew centralizing mapping
 Received: 28 March 2020; Accepted: 28 June 2020
 Communicated by Dragan S. Djordjević
 Email addresses: ahmadig.mh@gmail.com (Mohammad Hossein Ahmadi Gandomani), mehdipour@sutech.ac.ir (Mohammad Javad Mehdipour)

