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Abstract. Here, we investigate symmetric bi-derivations and their generalizations on L∞0 (G)∗. For κ ∈ N,
we show that if B : L∞0 (G)∗×L∞0 (G)∗ → L∞0 (G)∗ is a symmetric bi-derivation such that [B(m,m),mκ] ∈ Z(L∞0 (G)∗)
for all m ∈ L∞0 (G)∗, then B is the zero map. Furthermore, we characterize symmetric generalized bi-
derivations on group algebras. We also prove that any symmetric Jordan bi-derivation on L∞0 (G)∗ is a
symmetric bi-derivation.

1. Introduction

Let G denote a locally compact abelian group with a fixed left Haar measure λ. The Banach algebras
L1(G) and L∞(G) are as defined in [7]. Let us remark that L∞(G) is the continuous dual of L1(G). We denote
by L∞0 (G) the subspace of L∞(G) consisting of all functions 1 ∈ L∞(G) that vanish at infinity; i.e. for each
ε > 0, there is a compact subset K of G for which

‖1 χG \K‖∞ < ε,

where χG \K denotes the characteristic function ofG\K onG. For every n ∈ L∞0 (G)∗ and 1 ∈ L∞0 (G) we define
the functional n1 ∈ L∞0 (G)∗ by 〈n1, φ〉 = 〈n, 1φ〉, in which 〈1φ,ψ〉 = 〈1, φ ∗ ψ〉 and

φ ∗ ψ(x) =

∫
G

φ(y)ψ(y−1x) dλ(y)

for all φ,ψ ∈ L1(G) and x ∈ G. This let us endow L∞0 (G)∗ with the first Arens product “ · ” defined by the
formula

〈m · n, 1〉 = 〈m,n1〉

for all m,n ∈ L∞0 (G)∗ and 1 ∈ L∞0 (G). Then L∞0 (G)∗ is a Banach algebra with this product. For an extensive
study of L∞0 (G)∗ see [8].

Let A be an algebra and B(., .) : A × A → A be a symmetric bi-linear mapping; that is, B(x, y) = B(y, x),
B(αx, y) = αB(x, y) and

B(x + y, z) = B(x, z) + B(y, z)
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for all x, y, z ∈ A and α ∈ C. The mapping f : A→ A defined by f (x) = B(x, x) is called the trace of B. Let us
recall that B is called a symmetric bi-derivation if

B(xy, z) = B(x, z)y + xB(y, z)

for all x, y, z ∈ A. Also, B is called a symmetric generalized bi-derivation if there exists a symmetric bi-derivation
B̃ of A such that

B(xy, z) = xB(y, z) + B̃(x, z)y

for all x, y, z ∈ A. A symmetric generalized bi-derivation B associated with a symmetric bi-derivation B̃ is
denoted by BB̃. Finally, B is called a symmetric Jordan bi-derivation if

B(x2, y) = B(x, y)x + xB(x, y),

for all x, y ∈ A. For κ ∈N, a linear mapping T : A→ A is called κ−(skew) centralizing if

[T(x), xκ] ∈ Z(A) ( T(x) ◦ xκ ∈ Z(A))

for all x ∈ A, in a special case, if for every x ∈ A

[T(x), xκ] = 0 ( T(x) ◦ xκ = 0)),

then T is called κ−( skew) commuting, where Z(A) is the center of A, [x, y] = xy − yx and

x ◦ y := x · y + y · x

for all x, y ∈ A. In the case that, κ = 1, T is called (skew) centralizing and (skew) commuting, respectively.
Symmetric bi-derivations on rings have been introduced and studied by Maksa [9, 10]. Several authors

continued this investigations [2, 5, 15-18]. For example, Vukman [16] proved that if B : R × R → R is a
symmetric bi-derivation such that for every x ∈ R

[[ f (x), x], x] ∈ Z(R),

then B = 0, where R is a noncommutative prime ring of characteristic not two and three. He conjectured
that if there exists κ ∈N such that for every x ∈ R we have fκ(x) ∈ Z(R), then B = 0, where

fi+1(x) = [ fi(x), x]

for i > 1 and f1(x) = f (x). Deng [5] gave an affirmative answer to the Vukman’s conjecture. For related
results on symmetric bi-derivations on Banach algebras see [3, 13]; see also [4, 6, 12] for study of generalized
bi-derivations and Jordan bi-derivations.

An easy application of the Hahn-Banach’s theorem shows that L∞0 (G)∗ is not a semiprime ring, when G
is a non-discrete locally compact group. Also, note that if Λ(G) denotes the set of all weak∗-cluster points
of the canonical images of the bounded approximate identities, bounded by one, of L1(G) in L∞0 (G)∗, then
for every nonzero element r in

Annr(L∞0 (G)∗) = {n − u · n : n ∈ L∞0 (G)∗,u ∈ Λ(G)},

the mapping B(., .) : L∞0 (G)∗ × L∞0 (G)∗ → L∞0 (G)∗ defined by

B(m,n) = r ·m · n

is a nonzero bi-derivation. These facts lead us to investigate symmetric bi-derivations on L∞0 (G)∗.
In this paper, we first study symmetric bi-derivations on L∞0 (G)∗ and prove that they map L∞0 (G)∗×L∞0 (G)∗

into the radical of L∞0 (G)∗. We also show that if B : L∞0 (G)∗ × L∞0 (G)∗ → L∞0 (G)∗ is a symmetric bi-derivation
and f is κ−centralizing for some κ ∈ N, then B is zero map. In the case that, B is a symmetric generalized
bi-derivation, we prove that there exists θ ∈ L∞0 (G)∗ such that B(m,n) = m ·n ·θ for all m,n ∈ L∞0 (G)∗. Finally,
we study symmetric Jordan bi-derivations on L∞0 (G)∗ and establish that they are symmetric bi-derivations.
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2. Symmetric bi-derivations and their generalizations

In the sequel, we use the symbols D, GD and J for symmetric bi-derivations, symmetric generalized
bi-derivations and symmetric Jordan bi-derivations, respectively. The following result is an analogue of
Singer-Wermer conjecture [14] for bi-derivations.

Proposition 2.1. Let D : L∞0 (G)∗×L∞0 (G)∗ → L∞0 (G)∗ be a symmetric bi-derivation. Then D maps L∞0 (G)∗×L∞0 (G)∗

into the radical of L∞0 (G)∗.

Proof. For every m ∈ L∞0 (G)∗ we define the mapping ∆m : L∞0 (G)∗ → L∞0 (G)∗ by

∆m(n) = D(m,n).

For every m ∈ L∞0 (G)∗, ∆m is a derivation on L∞0 (G)∗ and hence ∆m maps L∞0 (G)∗ into its radical for all
m ∈ L∞0 (G)∗; see [11]. Since

D(L∞0 (G)∗ × L∞0 (G)∗) = ∪m∆m(L∞0 (G)∗),

D maps L∞0 (G)∗ × L∞0 (G)∗ into the radical of L∞0 (G)∗. �

Before, we prove the main result of this paper, let us remark that if u ∈ Λ(G), then m ·u = m and u ·φ = φ
for all m ∈ L∞0 (G)∗ and φ ∈ L1(G).

Theorem 2.2. Let D : L∞0 (G)∗ × L∞0 (G)∗ → L∞0 (G)∗ be a symmetric bi-derivation and f be the trace of D. Then the
following assertions are equivalent.

(a) there exists κ ∈N such that f (mκ) = 0 for all m ∈ L∞0 (G)∗;
(b) there exists κ ∈N such that f is κ−commuting;
(c) there exists κ ∈N such that f is κ−centralizing;
(d) there exists κ ∈N such that f is κ−skew commuting;
(e) there exists κ ∈N such that f is κ−skew centralizing;
(f) D = 0.

Proof. Let κ ∈N and m ∈ L∞0 (G)∗. Choose u ∈ Λ(G) and set m0 = u. Then

f (mκ) = D(mκ,mκ)
= D(m,mκ) ·mκ−1 + m ·D(mκ−1,mκ)
= D(m,m ·mκ−1) ·mκ−1

= D(m,m) ·m2κ−2 + m ·D(m,mκ−1) ·mκ−1

= D(m,m) ·m2κ−2

= f (m) ·m2κ−2.

We also have
f (m) ·mk = [ f (m),mk] = 〈 f (m),mk

〉.

Theses facts imply that the assertions (a)-(e) are equivalent. To complete the proof, it suffices to show that
(b)⇒(f). So let f be κ−commuting. Then

f (m) ·mκ = 0 (1)

for all m ∈ L∞0 (G)∗. Hence f (u) = 0. Replacing m by m + u in (1), we get

0 = f (m + u) · (m + u)κ

= ( f (m) + f (u) + 2D(m,u)) · (m + u)κ (2)
= ( f (m) + 2D(m,u)) · (m + u)κ.
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A simple calculation implies that

(m + u)κ =

κ−1∑
j=0

(
κ − 1

j

)
mκ− j +

κ−1∑
j=0

(
κ − 1

j

)
u ·mκ− j−1.

This together with (1) and (2) shows that
κ∑

j=1

(
κ
j

)
f (m) ·mκ− j + 2

κ∑
j=0

(
κ
j

)
D(m,u) ·mκ− j = 0. (3)

Set

A(m) :=
κ∑

j even, j=2

(
κ
j

)
f (m) ·mκ− j,

B(m) :=
κ∑

j odd, j=1

(
κ
j

)
f (m) ·mκ− j,

C(m) := 2
κ∑

j even, j=0

(
κ
j

)
D(m,u) ·mκ− j

and

D(m) := 2
κ∑

j odd, j=1

(
κ
j

)
D(m,u) ·mκ− j.

Hence the relation (3) can be rewritten as

A(m) +B(m) + C(m) +D(m) = 0. (4)

Replacing m by −m in (4), we arrive at

A(m) −B(m) − C(m) +D(m) = 0. (5)

Regarding (4) and (5) we deduce that

A(m) +D(m) = 0 (6)

and

B(m) + C(m) = 0. (7)

At this point, it is convenient to consider separately the cases κ even and odd. Suppose first that κ is even.
According to (7), we infer that

0 = B(m) + C(m)

=

κ−1∑
j odd, j=1

(
κ
j

)
f (m) ·mκ− j + 2

κ∑
j even, j=0

(
κ
j

)
D(m,u) ·mκ− j (8)

=

κ−1∑
j odd, j=1

(
κ
j

)
f (m) ·mκ− j + 2

κ−2∑
j even, j=0

(
κ
j

)
D(m,u) ·mκ− j

+ 2D(m,u).

Since for any r ∈ Annr(L∞0 (G)∗)

κ−1∑
j odd, j=1

(
κ
j

)
f (r) · rκ− j =

κ−2∑
j even, j=0

(
κ
j

)
D(r,u) · rκ− j = 0,
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it follows from (8) that

D(r,u) = 0. (9)

Taking m − u ·m for r in (9), we arrive at

0 = D(m − u ·m,u)
= D(m,u) −D(u ·m,u)
= D(m,u) −D(u,u) ·m − u ·D(m,u)
= D(m,u) − f (u) ·m.

Since f (u) = 0, it follows that

D(m,u) = 0

for all m ∈ L∞0 (G)∗. Hence D = 0. From this and (6) we infer that

κ∑
j even, j=2

(
κ
j

)
f (m) ·mκ− j = 0. (10)

Let i be even and 2 ≤ i ≤ κ − 2. From (10) we conclude that

0 =

κ∑
j even, j=2

(
κ
j

)
f (m) ·mκ+i− j

=

j=i∑
j even, j=2

(
κ
j

)
f (m) ·mκ

·mi− j

+

κ∑
j even, j=i+2

(
κ
j

)
f (m) ·mκ+i− j (11)

=

κ∑
j even, j=i+2

(
κ
j

)
f (m) ·mκ+i− j.

If i = κ − 2, then by (11)
f (m) ·mκ−2 = 0.

Hence (10) and (11) reduce to
κ∑

j even, j=4

(
κ
j

)
f (m) ·mκ− j = 0

and
κ−2∑

j even, j=i+2

(
κ
j

)
f (m) ·mκ+i− j = 0.

Continuing this procedure, we obtain f (m) = 0 for all m ∈ L∞0 (G)∗ and therefore, D = 0.
Suppose now that κ is odd. By (6) we have

A(m) +D(m) = 0

for all m ∈ L∞0 (G)∗. As before, we have D(m,u) = 0 for all m ∈ L∞0 (G)∗. So C = 0. The same computation as
for even κ yields f = 0 and therefore, D = 0. �

As an immediate consequence of Theorem 2.2 we give the following result.
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Corollary 2.3. Let D : L∞0 (G)∗ × L∞0 (G)∗ → L∞0 (G)∗ be a symmetric bi-derivation and f be the trace of D. Then the
following assertions are equivalent.

(a) f is (skew) centralizing;
(b) there exists κ ∈N such that f is κ−(skew) centralizing;
(c) for every κ ∈N, f is κ−(skew) centralizing;
(d) D = 0.

Corollary 2.4. Let D : L∞0 (G)∗ × L∞0 (G)∗ → L∞0 (G)∗ be a symmetric bi-derivation and f be the trace of D. Then the
following assertions are equivalent.

(a) f is commuting;
(b) f is centralizing;
(c) f is skew commuting;
(d) f is skew centralizing;
(e) D = 0.

In the following, we investigate the structure of symmetric generalized bi-derivations whose traces are
κ−centralizing.

Theorem 2.5. Let GD : L∞0 (G)∗ × L∞0 (G)∗ → L∞0 (G)∗ be a symmetric generalized bi-derivation and κ ∈ N. If F is
the trace of G, then the following assertions are equivalent.

(a) F is κ−commuting;
(b) F is κ−centralizing;
(c) there exists an element θ in L∞0 (G)∗ such that G(m,n) = m · n · θ for all m,n ∈ L∞0 (G)∗.

Proof. Choose u ∈ Λ(G). First note that the Banach algebra u · L∞0 (G)∗ is isometrically isomorphic to the
commutative Banach algebra M(G); see [8]. Hence for every k,m,n ∈ L∞0 (G)∗, we have

k ·m · n = k · u ·m · u · n
= k · u · n · u ·m (12)
= k · n ·m.

Also, for every k,m,n ∈ L∞0 (G)∗, we have

G(k,n) = k · G(u,n) + D(k,n)
= k · G(n,u) + D(k,n)
= k · n · G(u,u) + k ·D(n,u) + D(k,n)
= k · n · G(u,u) + D(k,n).

Now let f be the trace of D. Then

[F(m),mκ] = F(m) ·mκ
−mκ

· F(m)
= (m2

· G(u,u) + f (m)) ·mκ
−mκ

· (m2
· G(u,u) + f (m))

= mκ+2
· G(u,u) + f (m) ·mκ

−mκ+2
· G(u,u) −mκ

· f (m)
= f (m) ·mκ.

So if F is k−centralizing, then f is κ−commuting. Hence D = 0 by Theorem 2.2. Thus

G(m,n) = m · n · G(u,u) + D(m,n)
= m · n · G(u,u)

for all m,n ∈ L∞0 (G)∗. That is, (b) implies (c). Also, the implication (a)⇒(b) is trivial. Finally, (c) implies (a)
by (12). �
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Theorem 2.6. Let GD : L∞0 (G)∗ × L∞0 (G)∗ → L∞0 (G)∗ be a symmetric generalized bi-derivation and κ ∈ N. If F is
the trace of G, then the following statements hold.

(i) If F is κ−skew centralizing, then there exists an element θ in L1(G) such that G(m,n) = m · n · θ for all
m,n ∈ L∞0 (G)∗.

(ii) If F is κ−skew commuting, then G = 0 on L∞0 (G)∗ × L∞0 (G)∗.

Proof. (i) Suppose that F is κ−skew centralizing. So

〈F(m),mκ
〉 ∈ Z(L∞0 (G)∗)

for all m ∈ L∞0 (G)∗. Then
[F(m),mk+1] = [〈F(m),mκ

〉,m] = 0.

This implies that F is (κ + 1)−commuting. In view of Theorem 2.5, there exists θ ∈ L∞0 (G)∗ such that

G(m,n) = m · n · θ

for all m,n ∈ L∞0 (G)∗. Choose u ∈ Λ(G). Then

2u · θ = G(u,u) + u · G(u,u)
= F(u) · uκ + uκ · F(u)
= 〈F(u),uκ〉.

Thus
u · θ ∈ Z(L∞0 (G)∗).

The proof will be complete, if we note that Z(L∞0 (G)∗) = L1(G) and

G(m,n) = m · n · θ = m · n · u · θ. (13)

(ii) Let F be κ−skew commuting. By (i) there exists θ ∈ Z(L∞0 (G)∗) such that

G(m,n) = m · n · θ

for all m,n ∈ L∞0 (G)∗. If u ∈ Λ(G), then

0 = 〈F(u),uκ〉
= F(u) · u + u · F(u)
= u · θ + u · θ
= 2 u · θ.

This together with (13) shows that G = 0. �

As an immediate corollary of Theorems 2.5 and 2.6 we present the next result.

Corollary 2.7. Let GD : L∞0 (G)∗ × L∞0 (G)∗ → L∞0 (G)∗ be a symmetric generalized bi-derivation and F be the trace of
G. Then the following assertions are equivalent.

(a) F is (skew) centralizing;
(b) there exists κ ∈N such that F is κ−(skew) centralizing;
(c) for every κ ∈N, F is κ−(skew) centralizing.

We conclude the paper with the following result.

Theorem 2.8. Let J : L∞0 (G)∗ × L∞0 (G)∗ → L∞0 (G)∗ be a symmetric Jordan bi-derivation. Then J is a symmetric
bi-derivation.
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Proof. For every m ∈ L∞0 (G)∗, we define the mapping ∆m : L∞0 (G)∗ → L∞0 (G)∗ by ∆m(n) = J(m,n). Then

∆m(n2) = J(m,n2)
= J(m,n) · n + n · J(m,n)
= ∆m(n) · n + n · ∆m(n)

for all m,n ∈ L∞0 (G)∗. This shows that ∆m is a Jordan derivation of L∞0 (G)∗ for all m ∈ L∞0 (G)∗. By [1] every
Jordan derivation of L∞0 (G)∗ is a derivation of L∞0 (G)∗. Hence ∆m is a derivation of L∞0 (G)∗. Thus

J(m · k,n) = ∆n(m · k) = ∆n(m) · k + m · ∆n(k)
= J(m,n) · k + m · J(k,n).

Consequently, J is a bi-derivation. �
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