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Abstract. Let an n×n -matrix A have m < n (m ≥ 2) different eigenvalues λ j of the algebraic multiplicity µ j

( j = 1, ...,m). It is proved that there are µ j × µ j-matrices A j, each of which has a unique eigenvalue λ j, such
that A is similar to the block-diagonal matrix D̂ = diag (A1,A2, ...,Am). I.e. there is an invertible matrix T,
such that T−1AT = D̂. Besides, a sharp bound for the number κT := ‖T‖‖T−1

‖ is derived. As applications of
these results we obtain norm estimates for matrix functions non-regular on the convex hull of the spectra.
These estimates generalize and refine the previously published results. In addition, a new bound for the
spectral variation of matrices is derived. In the appropriate situations it refines the well known bounds.

1. Introduction

Let Cn be the n-dimensional complex Euclidean space with a scalar product (., .), the Euclidean norm
‖.‖ =

√
(., .) and unit matrix I. Cn1×n2 denotes the set of all complex n1 × n2-matrices.

For an A ∈ Cn×n, σ(A) denotes the spectrum, ‖A‖ is the spectral norm, i.e. the operator norm with respect
to the Euclidean vector norm; A∗ is the adjoint matrix; ‖A‖F = (trace A∗A)1/2 is the Frobenius norm; λ j
( j = 1, ...,m) (m ≥ 2) are the different eigenvalues of A enumerated in an arbitrary way; µ j is the algebraic
multiplicity of λ j. So

δ := min
j,k=1,...,m; k, j

|λ j − λk| > 0 (1.1)

and µ1 + ... + µm = n. The aim of this paper is to show that there are matrices A j ∈ Cµ j×µ j ( j = 1, ...,m) and
an invertible matrix T ∈ Cn×n, such that

T−1AT = D̂, where D̂ = diag (A1,A2, ...,Am). (1.2)

Besides, each block A j has the unique eigenvalue λ j of the algebraic multiplicity µ j ( j = 1, ...,m). In addition,
we obtain an estimate for the (block-condition) number κT := ‖T‖‖T−1

‖ and consider some applications of
these results.

The paper consists of 7 sections. In Section 2, the preliminary results are presented. The main result
of this paper-Theorem 3.1 is formulated in Section 3. The proof of Theorem 3.1 is divided into a series of
lemmas which are presented in Sections 4 and 5. In Section 6 we discuss applications of Theorem 3.1. In
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particular, we obtain norm estimates for matrix functions non-regular on the convex hull of the spectra and
generalize the inequalities for functions of diagonalizable matrices. In addition, we obtain a bound for the
spectral variation of two matrices, which refines the Elsner result, cf. [24, p. 168]. In Section 7 an illustrative
example is given

2. Preliminary results

Let λ̂k (k = 1, ...,n) be all the eigenvalues of A taken with the multiplicities and enumerated in the
following way:

λ̂1 = λ̂2 = ... = λ̂µ1 = λ1,

λ̂µ1+1 = λ̂µ1+2 = ... = λ̂µ1+µ2 = λ2, ...,

λ̂µ1+µ2+...+µm−1+1 = λ̂µ1+µ2+...+µm−1+2 = ... = λ̂µ1+µ2+...+µm = λm.

By the Schur theorem [19] for any matrix A ∈ Cn×n there is a non-unique unitary transform, such that A can
be reduced to the triangular form:

A =


a11 a12 a13 ... a1,n−1 a1n
0 a22 a23 ... a2,n−1 a2n
. . . ... .
0 0 0 ... an−1,n−1 an−1,n
0 0 0 ... 0 ann

 .
Besides, the diagonal entries are the eigenvalues enumerated as

a11 = a22 = ... = aµ1,µ1 = λ1,

aµ1+1,µ1+1 = aµ1+2,µ1+2 = ... = aµ1+µ2,µ1+µ2 = λ2, ...

aµ1+µ2+...+µm−1+1,µ1+µ2+...+µm−1+1 = aµ1+µ2+...+µm−1+2,µ1+µ2+...+µm−1+2

= ... = aµ1+µ2+...+µm,µ1+µ2+...+µm = λm.

Let {ek}
n
k=1 be the corresponding orthonormal basis of the upper-triangular representation (the Schur basis).

Denote

Qi =

i∑
k=1

(., ek)ek (i = 1, ...,n); ∆Qk = (., ek)ek (k = 1, ...,n);

P0 = 0,P1 =

µ1∑
k=1

∆Qk,P2 =

µ1+µ2∑
k=1

∆Qk, ...,P j =

µ1+µ2+...+µ j∑
k=1

∆Qk

and

∆P j = P j − P j−1 =

ν j∑
k=ν j−1+1

∆Qk , where ν0 = 0, ν j = µ1 + µ2 + ... + µ j ( j = 1, ...,m).

In addition, put A jk = ∆P jA∆Pk ( j , k) and A j = ∆P jA∆P j ( j, k = 1, ...,m). We can see that each P j is an
orthogonal invariant projection of A and

A =


A1 A12 A13 ... A1m
0 A2 A23 ... A2m
. . . ... .
0 0 0 ... Am

 . (2.1)
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Besides, if µ j = 1, then A j = λ j∆P j and ∆P j is one dimensional. If µ j > 1, then

A j =

ν j∑
k=ν j−1+1

∆QkA
ν j∑

i=ν j−1

∆Qi =

ν j∑
k=ν j−1+1

∆QkA∆Qk +

ν j∑
i=ν j−1+1

i−1∑
k=ν j−1+1

∆QkA∆Qi

= λ j

ν j∑
k=ν j−1+1

∆Qk + V j = λ j∆P j + V j,

where

V j =

ν j∑
i=ν j−1+1

i−1∑
k=ν j−1+1

∆QkAQi.

In the matrix form the blocks A j have the form

A1 =


λ1 a12 a13 ... a1,µ1−1 a1µ1

0 λ1 a23 ... a2n−1 a2n
. . . ... .
0 0 0 ... λ1 aµ1−1,µ1

0 0 0 ... 0 λ1

 ,

A2 =


λ2 aµ1+1,µ1+2 aµ1+1,µ1+3 ... aµ1+1,µ1+µ2−1 aµ1+1,µ1+µ2

0 λ2 aµ1+2,µ1+3 ... aµ1+2,µ1+µ2−1 aµ1+2,µ1+µ2

. . . ... .
0 0 0 ... λ2 aµ1+µ2−1,µ1+µ2

0 0 0 ... 0 λ2

 ,
etc. Besides, each V j is a strictly upper-triangular (nilpotent) part of A j. So A j has the unique eigenvalue λ j
of the algebraic multiplicity µ j: σ(A j) = {λ j}. We thus have proved the following result.

Lemma 2.1. An arbitrary matrix A ∈ Cn×n can be reduced by a unitary transform to the block triangular form (2.1)
with A j = λ j∆P j + V j ∈ Cµ j×µ j , where V j is either a nilpotent operator, or V j = 0. Besides, A j has the unique
eigenvalue λ j of the algebraic multiplicity µ j.

3. Statement of the main result

The following quantity (the departure from normality) plays an essential role hereafter:

1(A) := [‖A‖2F −
m∑

k=1

µk|λk|
2]1/2.

1(A) enjoys the following properties:

12(A) ≤ 2‖AI‖
2
F (AI = (A − A∗)/2i) and 12(A) ≤ ‖A‖2F − |trace A2

|,

cf. [15, Section 3.1]. If A is normal, then 1(A) = 0. Introduce also the notations

d j :=
j∑

k=0

j!
(( j − k)!k!)3/2

( j = 0, ...,n − 2), θ(A) :=
n−2∑
k=0

dk1
k(A)
δk+1

and

γ(A) :=
(
1 +
1(A)θ(A)
√

m − 1

)2(m−1)

.

It is not hard to check that d j ≤ 2 j. Now we are in a position to formulate the main result of this paper.
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Theorem 3.1. Let an n × n-matrix A have m ≤ n (m ≥ 2) different eigenvalues λ j of the algebraic multiplicity µ j
( j = 1, ...,m). Then there are µ j × µ j-matrices A j each of which has a unique eigenvalue λ j and such that (1.2) holds
with the block-diagonal matrix D̂ = diag (A1,A2, ...,Am) . Moreover,

κT = ‖T‖‖T−1
‖ ≤ γ(A). (3.1)

As it was above mentioned, the proof of this theorem is presented in the next two sections. Theorem 3.1 is
sharp: if A is normal, then 1(A) = 0 and γ(A) = 1. Thus we obtain the equality κT = 1.

If all the eigenvalues are different: m = n, then Theorem 3.1 coincides with Theorem 6.1 from [15] (see
also [13]). Besides, κT is the condition number. About the recent interesting investigations of the similarity
of matrices see the papers [6, 7, 11, 17] and references therein.

4. An inequality for the norm of T

Recall that P j are the orthogonal invariant projections defined in Section 2 and ∆P j = P j − P j−1; A jk and
A j are also defined in Section 2. Put

Pk = I − Pk,Bk = PkAPk and Ck = ∆PkAPk (k = 1, ...,m − 1).

By Lemma 2.1 A j has the unique eigenvalue λ j and A is represented by (2.1). Represent B j and C j in the
block form:

B j = P jAP j =


A j+1 A j+1, j+2 ... A j+1,m

0 A j+2 ... A j+2,m
. . ... .
0 0 . Am


and

C j = ∆P jAP j =
(

A j, j+1 A j, j+2 ... A j,m

)
( j = 1, ...,m − 1).

Since B j is a block triangular matrix, it is not hard to see that

σ(B j) = ∪m
k= j+1σ(Ak) = ∪m

k= j+1λk ( j = 1, ...,m − 1),

cf. [15, Lemma 6.2]. So due to Lemma 2.1

σ(B j) ∩ σ(A j) = ∅ ( j = 1, ...,m − 1). (4.1)

Under this condition, the equation

A jX j − X jB j = −C j ( j = 1, ...,m − 1) (4.2)

has a unique solution
X j : P jC

n
→ ∆P jC

n, (4.3)

e.g. [2, Section VII.2] or [3].

Lemma 4.1. Let X j be a solution to (4.2). Then

(I − Xm−1)(I − Xm−2) · · · (I − X1) A (I + X1)(I + X2) · · · (I + Xm−1) = D̂. (4.4)

Proof. Due to (4.3) we can write X j = ∆P jX jP j. But ∆P jP j = P j∆P j = 0. Therefore X jA j = B jX j = X jC j =
C jX j = 0 and

X2
j = 0. (4.5)

Since P j is a projection invariant to A: P jAP j = AP j, we can write P jAP j = 0. Thus, A = A1 + B1 + C1 and
consequently,

(I − X1)A(I + X1) = (I − X1)(A1 + B1 + C1)(I + X1) =
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A1 + B1 + C1 − X1B1 + A1X1 = A1 + B1.

Furthermore, B1 = A2 + B2 + C2. Hence,

(P1 − X2)B1(P1 + X2) = (P1 − X1)(A2 + B2 + C2)(P1 + X1) =

A2 + B2 + C2 − X2B2 + A2X2 = A2 + B2.

Therefore,
(I − X2)(A1 + B1)(I + X2) = (P1 + P1 − X2)(A1 + B1)(P1 + P1 + X2) =

A1 + (P1 − X2)(A1 + B1)(P1 + X2) = A1 + A2 + B2.

Consequently,

(I − X2)(A1 + B1)(I + X2) = (I − X2)(I − X1)A(I + X1)(I + X2) = A1 + A2 + B2.

Continuing this process and taking into account that Bm−1 = Am, we obtain

(I − Xm−1)(I − Xm−2) · · · (I − X1) A (I + X1)(I + X2) · · · (I + Xm−1) = A1 + ... + Am = D̂,

as claimed. �

Take
T = (I + X1)(I + X2) · · · (I + Xm−1). (4.6)

According to (4.5)
(I + X j)(I − X j) = (I − X j)(I + X j) = I.

So the matrix I − X j is inverse to I + X j. Thus,

T−1 = (I − Xm−1)(I − Xm−2) · · · (I − X1) (4.7)

and (4.4) can be written as (1.2). We thus arrive at

Corollary 4.2. Let an n × n-matrix A have m ≤ n (m ≥ 2) different eigenvalues λ j of the algebraic multiplicity µ j
( j = 1, ...,m). Then there are µ j × µ j-matrices A j each of which has a unique eigenvalue λ j and such that (1.2) holds
with T defined by (4.6).

By the inequalities between the arithmetic and geometric means from (4.6) and (4.7) we get

‖T‖ ≤
m−1∏
j=1

(1 + ‖X j‖) ≤

1 +
1

m − 1

m−1∑
j=1

‖X j‖


m−1

(4.8)

and

‖T−1
‖ ≤

1 +
1

m − 1

m−1∑
k=1

‖Xk‖


m−1

. (4.9)

5. Proof of Theorem 3.1

Consider the Sylvester equation
BX − XB̃ = C, (5.1)

where B ∈ Cn1×n1 , B̃ ∈ Cn2×n2 and C ∈ Cn1×n2 are given; X ∈ Cn1×n2 should be found. Assume that the
eigenvalues λk(B) and λ j(B̃) of B and B̃, respectively, satisfy the condition.

ρ0(B, B̃) := distance (σ(B), σ(B̃)) = min
j,k
|λk(B) − λ j(B̃)| > 0. (5.2)
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Then equation (5.1) has a unique solution X [3]. Due to [15, Corollary 5.8] (see also Corollary 6.2 from [14])
the inequality

‖X‖F ≤ ‖C‖F
n1+n2−2∑

p=0

1

ρp+1
0 (B, B̃)

p∑
k=0

(p
k)
1k(B̃)1p−k(B)√

(p − k)!k!
(5.3)

is valid and therefore

‖X‖F ≤ ‖C‖F
n1+n2−2∑

p=0

dp1̂
p

ρp+1
0 (B, B̃)

, (5.4)

where 1̂ = max{1(B), 1(B̃)}.
Let us go back to equation (4.2). In this case B = A j, B̃ = B j, C = C j, n1 = µ j, n2 = n̂ j := dim P jCn, and

due to (1.1), ρ0(A j,B j) ≥ δ ( j = 1, ...,n). In addition, µ j + n̂ j ≤ n. Now (5.4) implies

‖X j‖F ≤ ‖C j‖F

n−2∑
k=0

dk1̂
k
j

δk+1
, (5.5)

where 1̂ j = max{1(B j), 1(A j)}.
Recall that {ek}

n
k=1 denotes the Schur basis. So

Aek =

k∑
j=1

a jke j with a jk = (Aek, e j) ( j = 1, ...,n).

We can write A = DA +VA (σ(A) = σ(DA)) with a normal (diagonal) matrix DA defined by DAe j = akkek = λ̂ jek
(k = 1, ...,n) and a nilpotent (strictly upper-triangular) matrix VA defined by VAek = a1ke1 + ... + ak−1,kek−1
(k = 2, ...,n), VAe1 = 0. DA and VA will be called the diagonal part and nilpotent part of A, respectively. It can
be VA = 0, i.e. A is normal.

Besides, 1(A) = ‖VA‖F. In addition, the nilpotent part V j of A j is ∆P jVA∆P j and the nilpotent part W j of
B j is P jVAP j. So V j and W j are orthogonal, and

1(A j) = ‖V j‖F ≤ ‖VA‖F = 1(A), 1(B j) = ‖W j‖F ≤ ‖VA‖
2
F = 1(A).

Thus, from (5.5) it follows

‖X j‖F ≤ ‖C j‖F

n−2∑
k=0

dk1
k(A)
δk+1

= ‖C j‖Fθ(A). (5.6)

It can be directly checked that

‖C j‖
2
F =

m∑
k= j+1

‖A jk‖
2
F

and
m−1∑
j=1

‖C j‖
2
F =

m−1∑
j=1

m∑
k= j+1

‖A jk‖
2
F ≤

m∑
j=1

m∑
k= j

‖A jk‖
2
F −

m∑
j=1

‖A j j‖
2
F = ‖A‖2F −

m∑
j=1

‖A j j‖
2
F.

Since ‖Akk‖F ≥ µk|λk|, we have
m−1∑
j=1

m∑
k= j+1

‖A jk‖
2
F ≤ 1

2(A),

and consequently,
m−1∑
j=1

‖C j‖
2
F ≤ 1

2(A). (5.7)
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Take T as is in (4.6). Then (4.8), (4.9) and (5.6) imply

‖T‖ ≤

1 +
1

m − 1

m−1∑
k=1

‖Xk‖F


m−1

≤

1 +
θ(A)
m − 1

m−1∑
k=1

‖Ck‖F


m−1

and

‖T−1
‖ ≤

1 +
θ(A)
m − 1

m−1∑
k=1

‖Ck‖F


m−1

.

But by the Schwarz inequality and (5.7),

(
m−1∑
j=1

‖C j‖F)2
≤ (m − 1)

m−1∑
j=1

‖C j‖
2
F ≤ (m − 1)12(A).

Thus,

‖T‖2 ≤
(
1 +

θ(A)
√

m − 1
1(A)

)2(m−1)

= γ(A)

and ‖T−1
‖

2
≤ γ(A). Now (4.4) proves the theorem. �

6. Applications of Theorem 3.1

Let f (z) be a scalar function, regular on σ(A). Define f (A) by the usual way via the Cauchy integral [2].
Since A j are mutually orthogonal, we have

f (D̂) = diag ( f (A1, ..., f (Am)) and ‖ f (D̂)‖ = max
j
‖∆P j f (A j)‖. (6.1)

Let

r(z) =

n∑
k=0

ckzn−k

be the interpolation Lagrange-Silvester polynomial such that r(λ̂ j) = f (λ̂ j) (λ̂ j ∈ σ(A), j = 1, ...,n) and
r(A) = f (A), cf. [10, Section V.1].

Now (1.2) implies

f (A) =

n∑
k=0

ckAn−k = T−1
n∑

k=0

ckD̂n−kT = T−1r(D̂)T = T−1 f (D̂)T.

Hence, (6.1) and (3.1) imply

Corollary 6.1. Let A ∈ Cn×n. Then there is an invertible matrix T, such that

‖ f (A)‖ ≤ κT max
j
‖∆P j f (A j)‖ ≤ γ(A) max

j
‖∆P j f (A j)‖.

Due to Theorem 3.5 from the book [15] we have

‖ f (A j)‖ ≤
µ j−1∑
k=0

| f (k)(λ j)|
1k(A j)
√

k!
.

Take into account that 1(A j) ≤ 1(A) (see Section 5). Now Theorem 3.1 immediately implies.
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Corollary 6.2. Let A ∈ Cn×n. Then

‖ f (A)‖ ≤ γ(A) max
j

µ j−1∑
k=0

| f (k)(λ j)|
1k(A)
(k!)3/2

.

This corollary generalizes Corollary 6.1 from [15]. Moreover, in contrast to [15, Theorem 3.5] it can be
applied to matrix functions non-regular on the convex hull of the spectra. For example, we have

‖etA
‖ ≤ γ(A)eα(A)t

µ̂−1∑
k=0

tk 1
k(A)

(k!)3/2
(t ≥ 0),

where α(A) = maxk Re λk and µ̂ = max j µ j.
About the recent interesting results devoted to matrix-valued functions see the papers [9, 18] and

references therein.
Now consider the resolvent. Then by (1.2) for |z| > max{‖A‖, ‖D̂‖}we have

Rz(A) = (A − zI)−1 = −

∞∑
k=0

Ak

zk+1
= −T−1

∞∑
k=0

D̂k

zk+1
T = T−1Rz(D̂)T.

Extending this relation analytically to all regular z and taking into account that

Rz(D̂) =

m∑
k=1

Rz(A j) and ‖Rz(D̂)‖ = max
j
‖∆P jRz(A j)‖ (z ∈ σ(A)), (6.2)

we get

Corollary 6.3. Let A ∈ Cn×n. Then there is an invertible matrix T, such that

‖Rz(A)‖ ≤ κT max
j
‖∆P jRz(A j)‖ ≤ γ(A) max

j
‖∆P jRz(A j)‖

for any regular z of A.

But due to Theorem 3.2 from [15] we have

‖Rz(A j)‖ ≤
µ j−1∑
k=0

1k(A j)

ρk+1(A j, z)
√

k!
(z < σ(A j)),

where ρ(A, z) is the distance between z and the spectrum of A. Clearly, ρ(A j, z) ≥ ρ(A, z) ( j = 1, ...,m). Now
Theorem 3.1 and (6.2) imply

Corollary 6.4. Let A ∈ Cn×n. Then

‖Rz(A)‖ ≤ γ(A)
µ̂−1∑
k=0

1k(A)

ρk+1(A, z)
√

k!
(λ < σ(A)).

Furthermore, let A and Ã be complex n × n-matrices. Recall that

svA(Ã) := max
t∈σ(Ã)

min
s∈σ(A)

|t − s|

is the spectral variation of Ã with respect to A, cf. [24]. We need the following technical lemma.
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Lemma 6.5. Let A and Ã be linear operators in Cn and q := ‖A − Ã‖. In addition, let

‖Rλ(A)‖ ≤ F
(

1
ρ(A, λ)

)
(λ < σ(A)),

where F(x) is a monotonically increasing continuous function of a non-negative variable x, such that F(0) = 0 and
F(∞) = ∞. Then svA(Ã) ≤ z(F, q), where z(F, q) is the unique positive root of the equation qF(1/z) = 1.

For the proof see [15, Lemma 1.10]. Now Corollary 6.4 implies svA(Ã) ≤ z(A, q), where z(A, q) is the unique
positive root of the equation

qγ(A)
µ̂−1∑
k=0

1k(A)

zk+1
√

k!
= 1.

This equation is equivalent to the algebraic one

zµ̂ = qγ(A)
µ̂−1∑
k=0

1k(A)zµ̂−k−1

√
k!

. (6.3)

Various estimates for the roots of algebraic equations, can be found for instance, in [4, 20] and references
therein. For example, if

ζ(A, q) := qγ(A)
µ̂−1∑
k=0

1k(A)
√

k!
< 1, (6.4)

then due to Lemma 3.17 from [15], we have zµ̂(A, q) ≤ ζ(A, q) . So we arrive at

Corollary 6.6. Let A and Ã be n × n-matrices. Then svA(Ã) ≤ z(A, q). If, in addition, condition (6.4) holds, then
svµ̂A(Ã) ≤ ζ(A, q).

In the next section we compare our results with the Elsner inequality:

svA(Ã) ≤ q1/n(‖A‖ + ‖Ã‖)1−1/n, (6.5)

cf. [24, p. 168].

7. Example

To illustrate Corollary 6.6 consider the matrices

A =


−1 a12 a13 a14
0 −1 a23 a24
0 0 1 a34
0 0 0 1

 and Ã =


−1 a12 a13 a14
a21 −1 a23 a24
a31 a32 1 a34
a41 a42 a43 1


The eigenvalues of A are λ1 = λ2 = −1, λ3 = λ4 = 1. So m = 2, µ1 = µ2 = 2, δ = 2,

12(A) =

4∑
k=1

k−1∑
j=1

|a jk|
2,

d0 = 1, d1 = 1, and d2 ≤ 4. Hence,

θ(A) ≤ θ1(A) :=
1
2

(1 +
1(A)

2
+ 12(A)) and γ(A) ≤ γ1(A),
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where γ1(A) := (1 + 1(A)θ1(A))2. According to (6.3) consider the equation z2 = qγ1(A)(z + 1(A)). So one can
take z(A, q) = z1(A, q), where

z1(A, q) :=
1
2

qγ1(A) +

√
1
4

q2γ2
1(A) + qγ1(A)1(A).

Due to Corollary 6.6 we have
svA(Ã) ≤ z1(A, q). (7.1)

The Elsner inequality (6.5) gives us
svA(Ã) ≤ q1/4(‖A‖ + ‖Ã‖)3/4. (7.2)

We can see that under the condition

z1(A, q) < q1/4(‖A‖ + ‖Ã‖)3/4 (7.3)

inequality (7.1) is sharper than (7.2). For example, if A is ”close” to normal, then 1(A) is ”small” and γ1(A)
is ”close” to one, and (7.3) is certainly holds. So our results can considerably improve (6.5) if we have
an information about the multiplicities on the eigenvalues of A. About the recent perturbation results for
matrices see the interesting papers [1, 5, 8, 16, 22, 23] and references given therein.
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