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Abstract.
We examine the existence and multiplicity of positive solutions for a class of nonlinear semipositone

fractional differential equations involving integral boundary conditions. The results are obtained in terms
of different intervals of the parameters by means of the Leray-Schauder and Guo-Krasnoselskii fixed point
theorems. Examples are included to verify our main results.

1. Introduction

Fractional Calculus has been recently applied in various areas of engineering, science, finance, applied
mathematics, and bio engineering. However, many researchers remain unaware of this field. Monographs
[4, 8, 11, 17, 18] are excellent source for the theory and its applications.

Among all subjects, the existence of positive solutions of singular nonlinear semipositone fractional
differential equations has been widely studied by many authors in recent years, see for example [2, 5–
7, 9, 12–15, 19–24].
Namely, Luca and Tudorache [13] considered the following system

Dαu(t) + µ f (t,u(t), v(t)) = 0 in (0, 1),n − 1 ≤ α ≤ n
Dβv(t) + λ1(t,u(t), v(t)) = 0 in (0, 1),m − 1 ≤ β ≤ m

u( j)(0) = 0, 0 ≤ j ≤ n − 2, u(1) =
∫ 1

0 u(s)dH(s),

v( j)(0) = 0, 0 ≤ j ≤ m − 2, v(1) =
∫ 1

0 v(s)dK(s),

where f , 1 : [0, 1] × [0,+∞),×[0,+∞) −→ (−∞,+∞) are sign-changing and continuous. They presented two
intervals for parameters µ and λ such that the above problem has at least one positive solution. But the
existence of positive solutions is not treated when the nonlinearities f and 1 are singular at t = 0 or/and
t = 1.
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Then, in [16], Henderson and Luca investigated the existence of positive solutions for a system of semiposi-
tone coupled fractional boundary value problems

Dαu(t) + µ f (t,u(t), v(t)) = 0 in (0, 1),n − 1 ≤ α ≤ n
Dβv(t) + λ1(t,u(t), v(t)) = 0 in (0, 1),m − 1 ≤ β ≤ m

u( j)(0) = 0, 0 ≤ j ≤ n − 2, u(1) =
∫ 1

0 v(s)dH(s),

v( j)(0) = 0, 0 ≤ j ≤ m − 2, v(1) =
∫ 1

0 u(s)dK(s),

for f , 1 : (0, 1) × [0,+∞),×[0,+∞) −→ (−∞,+∞) sign-changing continuous functions satisfying −p1(t) ≤
f (t,u, v) ≤ α1(t)β1(t,u, v) and −p2(t) ≤ 1(t,u, v) ≤ α2(t)β2(t,u, v) for all t ∈ (0, 1), u, v ∈ [0,+∞), with

pi, αi ∈ C((0, 1), [0,∞)) and βi ∈ C([0, 1] × [0,∞) × [0,∞), [0,∞)), 0 <
∫ 1

0 pi(s)d(s) < ∞, 0 <
∫ 1

0 αi(s)d(s) < ∞,
i = 1, 2.

More recently, in [19], Toumi and Wanassi discussed, in the scalar case, the existence of positive solu-
tion for the following problemDαu(t) + µ f (t,u(t)) = 0, t ∈ (0, 1),

u( j)(0) = 0, 0 ≤ j ≤ n − 2, u(1) = λ
∫ 1

0 u(s)ds,
(1)

where f : (0, 1) × [0,+∞),×[0,+∞) −→ (−∞,+∞) is sing-changing continuous function which may be
singular at t = 0 or/and t = 1 and satisfies −p(t) ≤ f (t,u) ≤ q(t)1(t,u) with p, q ∈ C((0, 1), [0,∞)) and
1 ∈ C([0, 1] × [0,∞), [0,∞)). The authors derived a new condition on p and q such that the existence of
positive solutions is proved. However, by developing asymptotic conditions on the nonlinearity f , they
obtained sufficient conditions to confirm the existence of multiple solutions, solely for µ = 1.

Motivated by the above cited works, the purpose of this paper focuses on the study of the existence
of positive solutions for the following singular boundary value problem with fractional order involving
semipositone nonlinearities

Dαu(t) + µ1 f (t,u(t), v(t)) = 0 in (0, 1), n − 1 ≤ α ≤ n
Dβv(t) + µ21(t,u(t), v(t)) = 0 in (0, 1), m − 1 ≤ β ≤ m

u( j)(0) = 0, 0 ≤ j ≤ n − 2, u(1) = λ1

∫ 1

0 u(s)ds,

v( j)(0) = 0, 0 ≤ j ≤ m − 2, v(1) = λ2

∫ 1

0 v(s)ds,

(2)

depending on the real parametersµ1, µ2 > 0,where n,m ∈N, n,m ≥ 3, 0 < λ1 < α, 0 < λ2 < β, Dδ denotes the
Riemann-Liouville derivative of order δ and f , 1 ∈ C((0, 1)× [0,+∞)× [0,+∞), (−∞,+∞)) are sign-changing
which may be singular at t = 0 or/and t = 1. In particular, we improve the existing results in the case
when the nonlinear terms satisfy more general conditions than those given in [13, 16, 19]. Moreover, by
using the positivity of the related Green’s function, existence and multiplicity results are derived, through
the well-known Leray-Schauder and Krasnoselskii fixed point theorems, from the construction of suitable
cones on Banach spaces. Such a construction follows by using adequate properties of the associated Green’s
function.

The paper is organized as follows. In Section 2 we recall some properties of the Green’s function and
lemmas which are needed later. Section 3 is devoted to establish existence of one or two positive solutions
for (2). In the last Section, some examples are given to illustrate our main results.

2. Preliminaries

In this section, we present the main tools that we will use throughout the paper.
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Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 for a measurable function f : (0,+∞)→ R
is defined as

Iα f (t) =
1

Γ(α)

∫ t

0
(t − s)α−1 f (s)ds, t > 0,

where Γ is the Euler Gamma function, provided that the right-hand side is pointwise defined on (0,+∞).

Definition 2.2. The Riemann-Liouville fractional derivative of order α > 0 for a measurable function f : (0,+∞)→
R is defined as

Dα f (t) =
1

Γ(n − α)

( d
dt

)n
∫ t

0
(t − s)n−α−1 f (s)ds =

( d
dt

)n
In−α f (t),

provided that the right-hand side is pointwise defined on (0,+∞). Here n = [α] + 1, [α] denotes the integer part of
the real number α.

In [2, 3, 19], a careful study of the linear problem has done and, in particular, of Green’s function. In the
same way, we continue and generalize our study based on this function. To this end, we recall the explicit
expression of the Green’s function related to problem (2) and its positive properties which usually are the
basic tool in the construction of the cone and the discussion of positive solutions of the considered problem.

Lemma 2.3. ([3]) Let n ≥ 3, n − 1 < α ≤ n and λ ∈ (0, α). Let y ∈ C([0, 1]). Then the boundary value problem Dαu(t) + y(t) = 0 in (0, 1),

u( j)(0) = 0, 0 ≤ j ≤ n − 2, u(1) = λ
∫ 1

0 u(s)ds,
(3)

has a unique solution

u(t) =

∫ 1

0
Gα,λ(t, s)y(s)ds,

where Gα,λ(t, s) is the Green function given by

Gα,λ(t, s) =
tα−1(1 − s)α−1(α − λ + λs) − (α − λ)((t − s)+)α−1

(α − λ)Γ(α)
, (4)

for all t,s ∈ [0, 1], with (t − s)+ = max(t − s, 0), s, t ∈ [0, 1].

The positive properties of the Green’s function will be of fundamental importance in many of our
arguments. Hence, we state the following proposition.

Proposition 2.4. ([3]) Let n − 1 < α ≤ n, n ≥ 3 and λ ∈ (0, α). Then Gα,λ defined by (4) satisfies the following
assertions:

i) Gα,λ is nonnegative continuous function on [0, 1] × [0, 1] and Gα,λ(t, s) > 0, for all t, s ∈ (0, 1).

ii) Gα,λ(t, s) ≤ ηαKα(s) for all t, s ∈ [0, 1], where Kα(s) =
s(1−s)α−1

Γ(α) and ηα = α
α−λ .

iii) Gα,λ(t, s) ≤ ηαtα−1kα(s) for all t, s ∈ [0, 1], where kα(s) =
(1−s)α−1

Γ(α) .

iv) Gα,λ(t, s) ≥ ηαν∗α,λtα−1Kα(s), ∀t, s ∈ [0, 1], where ν∗α,λ = λ
α .

v) Let θ ∈ (0, 1
2 ), s ∈ [0, 1], then mint∈[θ,1−θ] Gα,λ(t, s) ≥ γαKα(s), where

γα = (
θ

α − 1
+

λ
α − λ

)θα−1.
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In the sequel, we state a key lemma in which it is improved the results given in Lemma 2.3. More precisely,
a weaker condition on the linear term was assumed to prove the existence and uniqueness of solutions of
the linear problem.

Lemma 2.5. ([2]) Let n ≥ 3, n − 1 < α ≤ n and λ ∈ (0, α).
Let (1 − t)α−1p(t) ∈ C(0, 1) ∩ L1(0, 1). Then the boundary value problemDαw(t) + p(t) = 0 in (0, 1),

w( j)(0) = 0, 0 ≤ j ≤ n − 2, w(1) = λ
∫ 1

0 w(s)ds,
(5)

has a unique solution w(t) =
∫ 1

0 Gα,λ(t, s)p(s)ds ∈ C([0, 1]) satisfying

w(t) ≤ ηα
tα−1

Γ(α)

∫ 1

0
(1 − s)α−1

|p(s)|ds, ∀t ∈ [0, 1].

The proofs of our results are based on the nonlinear alternative of Leray-Schauder type and the Krasnosel-
skii’s fixed point theorem.

Theorem 2.6. ([1]) Let X be a Banach space and Ω ⊂ X closed and convex. Assume U is an open subset of Ω with
0 ∈ U and let S : U→ Ω be a completely continuous operator. Then either

(1) S has a fixed point in U, or
(2) there exists u ∈ ∂U and δ ∈ (0, 1) such that u = δS(u).

Theorem 2.7. ([10]) Let P be the cone of a real Banach space E and Ω1, Ω2 two bounded open balls of E centered at
the origin with Ω1 ⊂ Ω2. Suppose that T : P ∩ ( Ω2\ Ω1) −→ P is completely continuous operator such that either

(i) ||Tx|| ≥ ||x||, x ∈ P ∩ ∂Ω1 and ||Tx|| ≤ ||x||, x ∈ P ∩ ∂Ω2 , or
(ii) ||Tx|| ≤ ||x||, x ∈ P ∩ ∂Ω1 and ||Tx|| ≥ ||x||, x ∈ P ∩ ∂Ω2.
holds. Then the operator T has at least one fixed point in P ∩ ( Ω2\ Ω1).

3. Main results

This section is devoted to give existence results for the nonlinear boundary value problem (2). We shall
prove existence and multiplicity results for some suitable values of positive real parameters µ1 and µ2.
In the sequel we need the following notations. For a function b ∈ C(0, 1) and a real α > 0, we denote

ϕα(b) =

∫ 1

0
kα(s)|b(s)|ds,

where kα is given by Proposition 2.4 (iii) and for each θ ∈ [0, 1
2 ), we denote

φθα(b) =

∫ 1−θ

θ
Kα(s)|b(s)|ds,

where Kα is given by Proposition 2.4 (ii).
Hereinafter, we adopt combinations of the following hypotheses:

(H1) The functions f , 1 ∈ C([0, 1]×[0+∞)×[0,∞), (−∞,+∞)) and there exist functions p1, p2 ∈ C([0, 1], [0,+∞))
such that p1(t), p2(t) , 0 on any subinterval of (0, 1) and satisfying

f (t,u, v) ≥ −p1(t) and 1(t,u, v) ≥ −p2(t) for any t ∈ [0, 1] and u, v ∈ [0,+∞).
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(H2) The functions f , 1 ∈ C((0, 1) × [0 + ∞) × [0,∞), (−∞,+∞)), and there exist functions p1, p2, q1, q2 ∈

C((0, 1), [0,+∞)) such that p1(t), p2(t), q1(t), q2(t) , 0 on any subinterval of (0, 1) and h1, h2 ∈ C([0, 1] ×
[0,+∞) × [0,+∞), [0,+∞)) such that

−p1(t) ≤ f (t,u, v) ≤ q1(t)h1(t,u, v), −p2(t) ≤ 1(t,u, v) ≤ q2(t)h2(t,u, v)

for all t ∈ (0, 1), u, v ∈ [0,+∞).
(H3) f (t, 0, 0) > 0, 1(t, 0, 0) > 0 for all t ∈ [0, 1].
(H4) ϕα(p1), ϕβ(p2), φ0

α(q1), φ0
β(q2) ∈ (0,+∞).

Remark 3.1. It is clear that (H4) implies that
0 < φθα(p1), φθβ (p2), φθα(q1), φθβ (q2) < ∞ for each θ ∈ [0, 1

2 ).

In fact, for θ ∈ [0, 1
2 ), we have

0 < φθα(p1) =

∫ 1−θ

θ
Kα(s)p1(s)ds ≤

∫ 1

0
Kα(s)p1(s)ds ≤

∫ 1

0
kα(s)p1(s)ds = ϕα(p1) < ∞.

Similarly for φθβ (p2), φθα(q1), φθβ (q2).

In this work, we intend to prove the existence of positive solution (u, v) of problem (2), that is (u, v) ∈
C([0, 1]) × C([0, 1]) satisfying problem (2) and u(t) > 0 or v(t) > 0 ∀t ∈ (0, 1]. To overcome the difficulty of
positivity, we consider an auxiliary (intermediary) boundary value problem which will help us, combining
with the assumptions imposed on f and 1, to obtain positive solutions of the nonlinear problem.
Therefore, consider the following auxiliary problem

Dαx(t) + µ1( f (t, [x(t) − w1(t)]∗, [y(t) − w2(t)]∗) + p1(t)) = 0, 0 < t < 1,
Dβy(t) + µ2(1(t, [x(t) − w1(t)]∗, [y(t) − w2(t)]∗) + p2(t)) = 0, 0 < t < 1,

x( j)(0) = 0, 0 ≤ j ≤ n − 2, x(1) = λ1

∫ 1

0 x(s)ds,

y( j)(0) = 0, 0 ≤ j ≤ m − 2, y(1) = λ2

∫ 1

0 y(s)ds,

(6)

where

[x(t) − w(t)]∗ =

{
x(t) − w(t), if x(t) − w(t) ≥ 0
0, if x(t) − w(t) < 0,

and (w1,w2) is the unique solution of the boundary value problem
Dαw1(t) + µ1p1(t) = 0, 0 < t < 1,
Dβw2(t) + µ2p2(t) = 0, 0 < t < 1,

w( j)
1 (0) = 0, 0 ≤ j ≤ n − 2, w1(1) = λ1

∫ 1

0 w1(s)ds,

w( j)
2 (0) = 0, 0 ≤ j ≤ m − 2, w2(1) = λ2

∫ 1

0 w2(s)ds.

By Lemma 2.5, w1 and w2 satisfy

w1(t) ≤ µ1ηαtα−1ϕα(p1), ∀t ∈ [0, 1], (7)

w2(t) ≤ µ2ηβtβ−1ϕβ(p2), ∀t ∈ [0, 1], (8)

We shall prove that there exists solution (x, y) for the boundary value problem (6) such that x(t) > w1(t) or
y(t) > w2(t) for any t ∈ (0, 1]. Then, it is easy to verify that (x − w1, y − w2) represents a positive solution of
boundary value problem (2).
So, we will concentrate our study on the boundary value problem (6). We consider the Banach space
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E = C([0, 1]) × C([0, 1]) endowed with standard norm
∥∥∥(x, y)

∥∥∥ = ‖x‖ +
∥∥∥y

∥∥∥ where ‖x‖ = max0≤t≤1 |x(t)| , x ∈ E.
We define the cone P by

P = {(x, y) ∈ E : x(t) ≥ 0, y(t) ≥ 0, x(t) ≥ νtα−1
‖x‖ , y(t) ≥ νtβ−1

∥∥∥y
∥∥∥ ,∀t ∈ [0, 1]},

where ν = min(ν∗α,λ1
, ν∗β,λ2

) and ν∗α,λ1
, ν∗β,λ2

are given by Proposition 2.4 (iv).
For r > 0, let

Ωr = {(x, y) ∈ P :
∥∥∥(x, y)

∥∥∥ < r}.

Next, we define the operator T : E→ E as follows

T(x, y)(t) :=
(
T1(x, y)(t),T2(x, y)(t)

)
, ∀ t ∈ [0, 1],

where

T1(x, y)(t) = µ1

∫ 1

0
Gα,λ1 (t, s)( f (s, [x(s) − w1(s)]∗, [y(s) − w2(s)]∗) + p1(s))ds,

and

T2(x, y)(t) = µ2

∫ 1

0
Gβ,λ2 (t, s)(1(s, [x(s) − w1(s)]∗, [y(s) − w2(s)]∗) + p2(s))ds,

with Gα,λ1 and Gβ,λ2 are defined by (4).

It is clear that if (x, y) is a fixed point of operator T, then (x, y) is a solution of problem (6).

Lemma 3.2. If (H1) and (H4) or (H2) and (H4) hold. Then T : P→ P is completely continuous.

Proof. The operators T1 and T2 are well defined. To show this, let (x, y) ∈ P with ‖(x, y)‖ = M. Then we
obtain

[x(s) − w1(s)]∗ ≤ x(s) ≤ ‖x‖ ≤ ‖(x, y)‖ = M, ∀ s ∈ [0, 1]

[y(s) − w2(s)]∗ ≤ y(s) ≤ ‖y‖ ≤ ‖(x, y)‖ = M, ∀ s ∈ [0, 1].

If (H1) and (H4) hold, then we conclude that T1(x, y)(t) < ∞ and T2(x, y)(t) < ∞ for all t ∈ [0, 1]. If (H2) and
(H4) are satisfied, we obtain for all t ∈ [0, 1]

T1(x, y)(t) ≤ µ1ηα

∫ 1

0
Kα(s)( f (s, [x(s) − w1(s)]∗, [y(s) − w2(s)]∗) + p1(s))ds

≤ µ1ηα

∫ 1

0
Kα(s)(q1(s)h1(s, [x(s) − w1(s)]∗, [y(s) − w2(s)]∗) + p1(s))ds

≤ µ1ηαL(φ0
α(q1) + φ0

α(p1)) < ∞,

where
L = 1 + max

t∈[0,1],u,v∈[0,M]
h1(t,u, v).

Similarly
T2(x, y)(t) < ∞.

In addition, by Proposition 2.4 (iv) we deduce that

T1(x, y)(t) ≥ νtα−1
‖T1(x, y)‖, T2(x, y)(t) ≥ νtβ−1

‖T2(x, y)‖, t ∈ [0, 1].

Then T(Ω) ⊂ Ω. By using standard arguments, we conclude that T : P → P is a compelety continuous
operator.
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Now, we prove the following existence results.

Theorem 3.3. Assume that conditions (H1), (H3) and (H4) hold. Then there exist µ0
1, µ

0
2 > 0 such that problem (2)

has at least one positive solution for every 0 < µ1 ≤ µ0
1 and 0 < µ2 ≤ µ0

2.

Proof. Let ρ ∈ (0, 1). Using (H1) and (H3), we deduce that there exists R0 ∈ (0, 1] such that

f (t,u, v) ≥ ρ f (t, 0, 0), 1(t,u, v) ≥ ρ1(t, 0, 0), ∀t ∈ [0, 1], u, v ∈ [0,R0]. (9)

Define
M1 = max

t∈[0,1],u,v∈[0,R0]
{ f (t,u, v) + p1(t)} ≥ max

t∈[0,1]
{ρ f (t, 0, 0) + p1(t)} > 0,

M2 = max
t∈[0,1],u,v∈[0,R0]

{1(t,u, v) + p2(t)} ≥ max
t∈[0,1]
{ρ1(t, 0, 0) + p2(t)} > 0,

and
µ0

1 =
R0

4ηαM1φ0
α(1)

, µ0
2 =

R0

4ηβM2φ0
β(1)

.

Let µ1 ∈ (0, µ0
1] and µ2 ∈ (0, µ0

2]. Define the set U = {(x, y) ∈ P, ‖(x, y)‖ < R0}. We suppose that there exist
(x, y) ∈ ∂U and δ ∈ (0, 1) such that (x, y) = δT(x, y), that is x = δT1(x, y) and y = δT2(x, y).
Then

[x(t) − w1(t)]∗ ≤ x(t) ≤ R0,

[y(t) − w2(t)]∗ ≤ y(t) ≤ R0.

Therefore by Proposition 2.4, for all t ∈ [0, 1], we have

x(t) = δT1(x, y)(t) ≤ T1(x, y)(t) = µ1

∫ 1

0
Gα(t, s)( f (s, [x(s) − w1(s)]∗, [y(s) − w2(s)]∗) + p1(s))ds

≤ µ1ηαM1

∫ 1

0
Kα(s)ds = µ1ηαM1φ

0
α(1) ≤

R0

4
,

y(t) = δT2(x, y)(t) ≤ T2(x, y)(t) = µ2

∫ 1

0
Gβ(t, s)(1(s, [x(s) − w1(s)]∗, [y(s) − w2(s)]∗) + p2(s))ds

≤ µ2ηβM2

∫ 1

0
Kβ(s)ds = µ1ηβM2φ

0
β(1) ≤

R0

4
.

Thus, ‖x‖ ≤ R0
4 and ‖y‖ ≤ R0

4 . Then R0 = ‖(x, y)‖ ≤ R0
2 , which is a contradiction. Hence, by Theorem 2.6, we

deduce that T has a fixed point (x1, y1) ∈ U ⊂ P.
Now, by (9), we have

x1(t) = T1(x1, y1)

≥ µ1

∫ 1

0
Gα(t, s)(ρ f (s, 0, 0) + p1(s))ds

> µ1

∫ 1

0
Gα(t, s)p1(s)ds = w1(t), ∀t ∈ (0, 1],

or

y1(t) = T2(x1, y1)

≥ µ2

∫ 1

0
Gα(t, s)(ρ1(s, 0, 0) + p2(s))ds

> µ2

∫ 1

0
Gα(t, s)p2(s)ds = w2(t), ∀t ∈ (0, 1],
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Thus, x1(t) > w1(t), y1(t) > w2(t) for all t ∈ (0, 1]. Let u(t) = x1(t)−w1(t) and v(t) = y1(t)−w2(t) for all t ∈ [0, 1].
Then, u(t) > 0 or v(t) > 0 for all t ∈ (0, 1]. So, (u(t), v(t)) is a positive solution of problem (2).

Theorem 3.4. Suppose that conditions (H2) and (H4) are satisfied. In addition, suppose that there exists θ ∈ (0, 1
2 )

such that

f∞ := lim
u+v→+∞

min
t∈[θ,1−θ]

f (t,u, v)
u + v

= +∞ or 1∞ := lim
u+v→+∞

min
t∈[θ,1−θ]

1(t,u, v)
u + v

= +∞.

Then there exist µ∗1, µ
∗

2 > 0 such that for any 0 < µ1 ≤ µ∗1 and 0 < µ2 ≤ µ∗2 problem (2) has at least one positive
solution.

Proof. We choose r > max{1, 2ηαϕα(p1)
ν ,

2ηβϕβ(p2)
ν } and we putµ∗1 = min{1, r

2ηαM1(φ0
α(p1)+φ0

α(q1)) } andµ∗2 = min{1, r
2ηβM2(φ0

β(p2)+φ0
β(q2)) }

with Mi = 1 + max
t∈[0,1],u,v∈[0,r]

hi(t,u, v), i = 1, 2.

Let µ1 ∈ (0, µ∗1] and µ2 ∈ (0, µ∗2] . Then, for any (x, y) ∈ ∂Ωr and s ∈ [0, 1], we have

[x(s) − w1(s)]∗ ≤ x(s) ≤ ‖x‖ ≤ r,

[y(s) − w2(s)]∗ ≤ y(s) ≤ ‖y‖ ≤ r.

Therefore, by Proposition 2.4 (ii) we obtain for any (x, y) ∈ ∂Ωr and t ∈ [0, 1],

T1(x, y)(t) ≤ µ1ηα

∫ 1

0
Kα(s)(q1(s)h1(s, [x(s) − w1(s)]∗, [y(s) − w2(s)]∗) + p1(s))ds

≤ µ1ηαM1

∫ 1

0
Kα(s)(q1(s) + p1(s))ds

≤ µ∗1ηαM1(φ0
α(p1) + φ0

α(q1))

≤
r
2
,

and, similarly to the calculation of T1(x, y)(t), we get

T2(x, y)(t) ≤ µ2ηβ

∫ 1

0
Kβ(s)(q2(s)h2(s, [x(s) − w1(s)]∗, [y(s) − w2(s)]∗) + p2(s))ds

≤ µ∗2ηβM2(φ0
β(p2) + φ0

β(q2))

≤
r
2
.

Thus ∥∥∥T(x, y)
∥∥∥ =

∥∥∥T1(x, y)
∥∥∥ +

∥∥∥T2(x, y)
∥∥∥ ≤ ∥∥∥(x, y)

∥∥∥ , for all (x, y) ∈ ∂Ωr. (10)

On the other hand, by hypothesis, for A = max
{

8
µ1νγαφθα(1)θα−1 ,

8
µ2νγβφθβ (1)θβ−1

}
there exists B > 0 such that

f (t,u, v) ≥ A(u + v) or 1(t,u, v) ≥ A(u + v), ∀t ∈ [θ, 1 − θ], u + v ≥ B.
Now, choose

R = max{2r,
4B
νθα−1 ,

4B
νθβ−1 }.

First, we suppose that f∞ = ∞, that is, f (t,u, v) ≥ A(u + v) for all t ∈ [θ, 1 − θ], u + v ≥ B. So, for any
(x, y) ∈ ∂ΩR, we get ‖x‖ +

∥∥∥y
∥∥∥ = R. Thus, we deduce that ‖x‖ ≥ R

2 or
∥∥∥y

∥∥∥ ≥ R
2 .
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Assume that ‖x‖ ≥ R
2 . Then, by (7), for (x, y) ∈ ∂ΩR and t ∈ [0, 1], we have

x(t) − w1(t) ≥ x(t) − µ1ηαtα−1ϕα(p1)

≥ x(t) −
x(t)
ν ‖x‖

ηαϕα(p1)

≥ x(t)(1 −
2ηαϕα(p1)

νR
)

≥ x(t)(1 −
ηαϕα(p1)

νr
)

≥
x(t)
2
≥ 0.

Then, for t ∈ [θ, 1 − θ], we obtain

[x(t) − w1(t)]∗ = x(t) − w1(t) ≥
x(t)
2
≥
ν
2

tα−1
‖x‖

≥
ν
4
θα−1R ≥ B.

So

[x(t) − w1(t)]∗ + [y(t) − w2(t)]∗ ≥ [x(t) − w1(t)]∗ = x(t) − w1(t) ≥ B.

Therefore, for any (x, y) ∈ ∂ΩR, t ∈ [θ, 1 − θ], we deduce

f (t, [x(t) − w1(t)]∗, [y(t) − w2(t)]∗) ≥ A([x(t) − w1(t)]∗ + [y(t) − w2(t)]∗) ≥ A[x(t) − w1(t)]∗ ≥
A
2

x(t). (11)

Using (11) and Proposition 2.4 (v), we obtain for any (x, y) ∈ ∂ΩR,
and t ∈ [θ, 1 − θ],

T1(x, y)(t) ≥ µ1γα

∫ 1−θ

θ
Kα(s)( f (s, [x(s) − w1(s)]∗, [y(s) − w2(s)]∗) + p1(s))ds

≥ µ1γα
A
2

∫ 1−θ

θ
Kα(s)[x(s) − w1(s)]∗ds

≥ µ1γα
ν
8
φθα(1)θα−1AR = R.

Thus,∥∥∥T1(x, y)
∥∥∥ ≥ ∥∥∥(x, y)

∥∥∥ , for all (x, y) ∈ ∂ΩR.

Then ∥∥∥T(x, y)
∥∥∥ ≥ ∥∥∥(x, y)

∥∥∥ , for all (x, y) ∈ ∂ΩR. (12)

If
∥∥∥y

∥∥∥ ≥ R
2 , then by the same manner, we prove again relation (12).

Now, we suppose that 1∞ = ∞, that is, 1(t,u, v) ≥ A(u + v) for all t ∈ [θ, 1 − θ], u + v ≥ B. So, for any
(x, y) ∈ ∂ΩR, we get ‖x‖ +

∥∥∥y
∥∥∥ = R. Thus, we deduce that ‖x‖ ≥ R

2 or
∥∥∥y

∥∥∥ ≥ R
2 .

If ‖x‖ ≥ R
2 , then for any (x, y) ∈ ∂ΩR we obtain in a similar manner that x(t) −w1(t) ≥ x(t)

2 for all t ∈ [0, 1] and

T2(x, y)(t) ≥ µ2γβ

∫ 1−θ

θ
Kβ(s)(1(s, [x(s) − w1(s)]∗, [y(s) − w2(s)]∗) + p2(s))ds

≥ µ2γβ
A
2

∫ 1−θ

θ
Kβ(s)[x(s) − w1(s)]∗ds

≥ µ2γβ
ν
8
θβ−1φθβ (1)AR = R.
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Therefore∥∥∥T2(x, y)
∥∥∥ ≥ ∥∥∥(x, y)

∥∥∥ , for all (x, y) ∈ ∂ΩR.

Hence∥∥∥T(x, y)
∥∥∥ ≥ ∥∥∥(x, y)

∥∥∥ , for all (x, y) ∈ ∂ΩR. (13)

If
∥∥∥y

∥∥∥ ≥ R
2 , then by the same manner, we prove again relation (13). Therefore, by Theorem 2.7 and

inequalities (10) and (12) or (10) and (13), we conclude that T has a fixed point (x, y) ∈ ΩR\Ωr, that is

r ≤
∥∥∥(x, y)

∥∥∥ ≤ R. (14)

Now, since
∥∥∥(x, y)

∥∥∥ ≥ r, then ‖x‖ ≥ r
2 or

∥∥∥y
∥∥∥ ≥ r

2 .
First, if ‖x‖ ≥ r

2 , then, by (7), we obtain for t ∈ [0, 1]

x(t) − w1(t) ≥ x(t) − µ1ηαtα−1ϕα(p1) ≥ tα−1[ν
r
2
− ηαϕα(p1)] ≥ 0.

By the same manner if
∥∥∥y

∥∥∥ ≥ r
2 we get, by (8),

y(t) − w2(t) ≥ tβ−1[ν
r
2
− ηβϕβ(p2)] ≥ 0, t ∈ [0, 1].

Let u(t) = x1(t)−w1(t) and v(t) = y1(t)−w2(t) for all t ∈ [0, 1]. Then (u(t), v(t)) is a positive solution of problem
(2) with u(t) ≥ tα−1[ν r

2 − ηαϕα(p1)] and v(t) ≥ tβ−1[ν r
2 − ηβϕβ(p2)] for all t ∈ [0, 1].

Theorem 3.5. Suppose that conditions (H2) and (H4) hold. In addition, if we have

(A1) there exists θ ∈ (0, 1
2 ) such that

f ∗∞ := lim
u+v→+∞

min
t∈[θ,1−θ]

f (t,u, v) = ∞ or 1∗∞ := lim
u+v→+∞

min
t∈[θ,1−θ]

1(t,u, v) = ∞

(A2) h∞i := lim
u+v→+∞

max
t∈[0,1]

hi(t,u,v)
u+v = 0, i = 1, 2.

Then there exist µ∗1, µ
∗

2 > 0 such that for any µ1 ≥ µ∗1 and µ2 ≥ µ∗2 problem (2) has at least one positive solution.

Proof. Suppose that (A1) holds. Then for A = max
{

4ηαϕα(p1)
νγαφθα(1) ,

4ηβϕβ(p2)
νγβφθβ (1)

}
there exists L > 0 such that

f (t,u, v) ≥ A, ∀t ∈ [θ, 1 − θ], u + v ≥ L, (15)

or

1(t,u, v) ≥ A, ∀t ∈ [θ, 1 − θ], u + v ≥ L. (16)

We defineµ∗1 = L
ηαϕα(p1)θα−1 andµ∗2 = L

ηβϕβ(p2)θβ−1 . Letµ1 ≥ µ∗1 andµ2 ≥ µ∗2. Choose R = max{ 4µ1ηαϕα(p1)
ν ,

4µ2ηβϕβ(p2)
ν }.

First, if f ∗∞ = ∞, then (15) holds. Let (x, y) ∈ ∂ΩR. Then ‖x‖+
∥∥∥y

∥∥∥ = R, hence ‖x‖ ≥ R
2 or

∥∥∥y
∥∥∥ ≥ R

2 . We suppose
that ‖x‖ ≥ R

2 . Then for any t ∈ [0, 1] we have

x(t) − w1(t) ≥ νtα−1
‖x‖ − µ1tα−1ηαϕα(p1) ≥ tα−1[ν

R
2
− µ1ηαϕα(p1)]

≥ µ1ηαϕα(p1)tα−1
≥ µ∗1ηαϕα(p1)tα−1

≥
L
θα−1 tα−1

≥ 0.
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Thus, for any (x, y) ∈ ∂ΩR and t ∈ [θ, 1 − θ], we have

[x(t) − w1(t)]∗ + [y(t) − w2(t)]∗ ≥ [x(t) − w1(t)]∗ = x(t) − w1(t) ≥
L
θα−1 tα−1

≥ L,

and so, for any (x, y) ∈ ∂ΩR and t ∈ [θ, 1 − θ], we deduce

f (t, [x(t) − w1(t)]∗, [y(t) − w2(t)]∗) ≥ A.

Then, for any (x, y) ∈ ∂ΩR and t ∈ [θ, 1 − θ] we obtain

T1(x, y)(t) ≥ µ1γα

∫ 1−θ

θ
Kα(s)( f (s, [x(s) − w1(s)]∗, [y(s) − w2(s)]∗) + p1(s))ds

≥ µ1γαA
∫ 1−θ

θ
Kα(s)ds

≥ µ1γαφ
θ
α(1)A ≥ R.

Hence,
∥∥∥T1(x, y)

∥∥∥ ≥ R, for all (x, y) ∈ ∂ΩR. Therefore∥∥∥T(x, y)
∥∥∥ ≥ ∥∥∥(x, y)

∥∥∥ = R, ∀(x, y) ∈ ∂ΩR. (17)

If
∥∥∥y

∥∥∥ ≥ R
2 , then by the same manner, we prove again inequality (17).

Now, suppose that 1∗∞ = ∞, then (16) holds. Similarly we prove (17). On the other hand, by (A2), for
ε = min{ 1

4µ1ηαφ0
α(q1) ,

1
4µ2ηβφ0

β(q2) } there exists M > 0 such that

hi(t,u, v) ≤ ε(u + v), ∀(u + v) ≥M, ∀t ∈ [0, 1], i = 1, 2.

So

hi(t,u, v) ≤ li + ε(u + v), ∀t ∈ [0, 1],u, v ≥ 0, i = 1, 2,

where li = max
t∈[0,1],u,v≥0,u+v≤M

hi(t,u, v). Put l = max(l1, l2) and fix a positive real R1 such that

R1 > max
{
2R, µ1ηα

(
lφ0
α(q1) + φ0

α(p1)
)(1

2
− µ1ηαεφ

0
α(q1)

)−1
, µ2ηβ

(
lφ0
β(q2) + φ0

β(p2)
)(1

2
− µ2ηβεφ

0
β(q2)

)−1}
.

Therefore, for any (x, y) ∈ ∂ΩR1 and t ∈ [0, 1], we have

T1(x, y)(t) ≤ µ1ηα

∫ 1

0
Kα(s)( f (s, [x(s) − w1(s)]∗, [y(s) − w2(s)]∗) + p1(s))ds

≤ µ1ηα

∫ 1

0
Kα(s)(q1(s)h1(s, [x(s) − w1(s)]∗, [y(s) − w2(s)]∗) + p1(s))ds

≤ µ1ηα

∫ 1

0
Kα(s)(q1(s)(l + ε([x(s) − w1(s)]∗ + [y(s) − w2(s)]∗)) + p1(s))ds

≤ µ1l ηαφ0
α(q1) + µ1ηαεφ

0
α(q1)R1 + µ1ηαφ

0
α(p1)

≤ R1(
1
2
− µ1ηαεφ

0
α(q1)) + µ1ηαεφ

0
α(q1)R1

≤
R1

2
.

Thus ∥∥∥T1(x, y)
∥∥∥ ≤ 1

2

∥∥∥(x, y)
∥∥∥ , ∀(x, y) ∈ ∂ΩR1 .
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Similary, we prove∥∥∥T2(x, y)
∥∥∥ ≤ 1

2

∥∥∥(x, y)
∥∥∥ , ∀(x, y) ∈ ∂ΩR1 .

Hence, we obtain∥∥∥T(x, y)
∥∥∥ ≤ ∥∥∥(x, y)

∥∥∥ , ∀(x, y) ∈ ∂ΩR1 . (18)

Therefore, by Theorem 2.7 and inequalities (17) and (18), we conclude that T has a fixed point (x1, y1) ∈
ΩR1\ΩR, that is

R ≤
∥∥∥(x1, y1)

∥∥∥ ≤ R1.

Since
∥∥∥(x1, y1)

∥∥∥ ≥ R, then ‖x1‖ ≥
R
2 and ‖y1‖ ≥

R
2 .

Assume that ‖x1‖ ≥
R
2 , then

x1(t) − w1(t) ≥ tα−1(ν
R
2
− µ1ηαϕα(p1)) ≥ µ1ηαϕα(p1)tα−1

≥
L
θα−1 tα−1

≥ 0, for all t ∈ [0, 1].

Similarly, if ‖y1‖ ≥
R
2 , then we conclude again that y1(t) − w2(t) ≥ L

θβ−1 tβ−1
≥ 0, for all t ∈ [0, 1]. Let

u(t) = x1(t) − w1(t) and v(t) = y1(t) − w2(t) for all t ∈ [0, 1]. Then (u(t), v(t)) is a positive solution of problem
(2) with u(t) ≥ L

θα−1 tα−1, v(t) ≥ L
θβ−1 tβ−1 for all t ∈ [0, 1].

Now, we give the multiplicity result.

Theorem 3.6. Suppose that (H3) and (H4) hold. In addition suppose that

f∞ := lim
u+v→+∞

min
t∈[θ,1−θ]

f (t,u, v)
u + v

= +∞ or 1∞ := lim
u+v→+∞

min
t∈[θ,1−θ]

1(t,u, v)
u + v

= +∞,

(H′

1) The functions f , 1 ∈ C([0, 1]×[0+∞)×[0,∞), (−∞,+∞)) and there exist functions p1, p2, q1, q2 ∈ C([0, 1], [0,+∞))
and h1, h2 ∈ C([0, 1] × [0,+∞) × [0,+∞), [0,+∞)) such that

−p1(t) ≤ f (t,u, v) ≤ q1(t)h1(t,u, v), −p2(t) ≤ 1(t,u, v) ≤ q2(t)h2(t,u, v)

for all t ∈ [0, 1], u, v ∈ [0,+∞). hold.
Then the problem (2) has at least two positive solutions for µ1 > 0 and µ2 > 0 sufficiently small.

Proof. Applying Theorem 3.3 and Theorem 3.4, we conclude that, for 0 < µ1 ≤ min{µ0
1, µ

∗

1} and 0 < µ2 ≤

min{µ0
2, µ

∗

2}, problem (2) has at least two positive solutions satisfying 0 ≤ ‖(u1 + w1, v1 + w2)‖ ≤ 1 and
‖(u2 + w1, v2 + w2)‖ > 1.

4. Examples

In this section, we consider some examples which illustrate our main results.

Example 4.1. We consider the system of fractional differential equations
D

7
2 u(t) + µ1((u(t) + v(t))2

−
1

(1−t)2 ) = 0 in (0, 1),
D

7
2 v(t) + µ2(exp(u(t) + v(t)) − 1

1−t ) = 0 in (0, 1),

u(0) = u′(0) = 0, u(1) =
∫ 1

0 u(s)ds,

v(0) = v′(0) = 0, v(1) = 1
2

∫ 1

0 v(s)ds,

(19)
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Let α = β = 7
2 , λ1 = 1, λ2 = 1

2 , p1(t) = 1
(1−t)2 , p2(t) = 1

1−t , q1(t) = 1
t , q2(t) = 1

√
t

for all t ∈ (0, 1). Let h1(t,u, v) =

(u + v)2t, h2(t,u, v) = exp(u + v)
√

t for all t ∈ [0, 1], f (t,u, v) = (u + v)2
−

1
(1−t)2 and 1(t,u, v) = exp(u + v) − 1

1−t .
For θ = 1

4 , we verify that f∞ = 1∞ = +∞. By direct calculs, we obtain ϕα(p1) ' 0.2006, ϕβ(p2) ' 0.12036,
φ0
α(p1) ' 0.08024, φ0

α(q1) ' 0.08597,φ0
β(p2) ' 0.03438 and φ0

β(q2) ' 0.03692. Therefore, using notation of proof of
Theorem 3.4, we choose r = 4 and R = 100. Then a simple calculs yields to µ∗1 = 0.13223 and µ∗2 ' 0.008638. Hence,
Theorem 3.4 ensures the existence of positive solution of problem (19) for every µ1 ≤ 0.13223 and µ2 ≤ 0.008638.

Example 4.2. We consider the following nonlinear fractional differential equation

D
5
2 u(t) + µ1(

√
u(t) + v(t) − 1√

(1−t)3
) = 0 in (0, 1),

D
7
2 v(t) + µ2(ln(1 + u(t) + v(t)) − 1√

(1−t)3
) = 0 in (0, 1),

u(0) = u′(0) = 0, u(1) = 2
∫ 1

0 u(s)ds,

v(0) = v′(0) = 0, v(1) = 2
∫ 1

0 v(s)ds,

(20)

Set α = 5
2 , β = 7

2 , p1(t) = p2(t) = 1√
(1−t)3

, q1(t) = 1
t , q2(t) = 1√

t2(1−t)
, h1(t,u, v) = (

√
u + v)t, h2(t,u, v) =

ln(1 + u + v)
√

t2(1 − t), f (t,u, v) =
√

u + v− 1√
(1−t)3

and 1(t,u, v) = ln(1 + u + v)− 1√
(1−t)3

. We verify that h∞i = 0,

i = 1, 2 and for θ = 1
3 , f ∗∞ = 1∗∞ = +∞. We get also ϕα(p1) ' 0.75225, ϕβ(p2) ' 0.15045, φ0

α(p1) ' 0.37613,
φ0
α(q1) ' 0.3009, φ0

β(p2) ' 0.05015 and φ0
β(q2) ' 0.1003. A simple calculation yields to µ∗1 ' 8.289 and µ∗2 ' 266.43.

Thus, by Theorem 3.5, we conclude that problem (20) has at least one positive solution for every µ1 ≥ 8.289 and
µ2 ≥ 266.43.

Example 4.3. We consider the following system
D

7
2 u(t) + µ1((2 + u(t) + v(t))

3
2 + t cos u(t)) = 0, in (0, 1),

D
7
2 v(t) + µ2(exp(u(t) + v(t)) + t cos v(t)) = 0, in (0, 1),

u(0) = u′(0) = 0, u(1) = 3
2

∫ 1

0 u(s)ds,

v(0) = v′(0) = 0, v(1) = 2
∫ 1

0 v(s)ds,

(21)

Let α = 7
2 , β = 7

2 , f (t,u, v) = (2 + u + v)
3
2 + t cos u and 1(t,u, v) = exp(u + v) + t cos v, p1(t) = p2(t) = t, for

all t ∈ [0, 1], and then hypthesis (H1) is verified. Also, assumption (H3) is satisfied, because f (t, 0, 0) = 1 + t and
1(t, 0, 0) = 1 + t, for all t ∈ [0, 1].
Let ρ = 1

3 and R0 = 1. Then

f (t,u, v) ≥ ρ f (t, 0, 0) =
1
3

(1 + t), 1(t,u, v) ≥ ρ f (t, 0, 0) =
1
3

(1 + t), f or all t ∈ [0, 1] u, v ∈ [0, 1],

and
M1 = max

t∈[0,1],u,v∈[0,1]
{ f (t,u, v) + p1(t)} ' 7.1861,

M2 = max
t∈[0,1],u,v∈[0,1]

{1(t,u, v) + p2(t)} ' 8.3890.

In addition, we have φ0
α(p1) = φ0

β(p2) ' 0.076728, φ0
α(q1) = φ0

β(q2) ' 0.038687. A simple calculation yeilds to

µ0
1 = R0

4ηαM1φ0
α(1) ' 0.5138 and µ0

2 = R0

4ηβM2φ0
β(1) ' 0.3306. Thus, by Theorem 3.3, for µ1 ≤ µ0

1 and µ2 ≤ µ0
2, we conclude

that problem (21) has at least one positive solution.
On the other hand, hypothesis (H′

1) is verified for q1(t) = q2(t) = 1 and h1(t,u, v) = (2 + u + v)
3
2 + t, h2(t,u, v) =

exp(u + v) + t for all t ∈ [0, 1]. Also, for θ = 1
3 , we verify that f∞ = 1∞ = +∞. Then, by direct calculs, we get

µ∗1 ' 0.31442 and µ∗2 = 0.01377. Thus, by Theorem 3.6, we deduce that (21) has at least two positive solutions for
µ1 ≤ min{µ0

1, µ
∗

1} ' 0.31442 and µ2 ≤ min{µ0
2, µ

∗

2} ' 0.01377.
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