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Abstract. In this paper, we propose a new explicit iteration method using shrinking projection for solving
the split best proximity point and equilibrium problems. We prove its strong convergence under some
suitable conditions in Hilbert spaces. A numerical example are given to illustrate the effectiveness of the
proposed algorithm.

1. Introduction

Let H1 and H2 be two real Banach spaces. Let C and D be two subsets of H1 with d(C,D) = inf{‖c − d‖ :
c ∈ C and d ∈ D}, K a closed convex subset of H2, A : H1 → H2 a bounded linear operator. Let S : C→ D be
a mapping and f : K × K→ R be a bi-function. The SBPEP is

to find a element p ∈ C such that ‖p − Sp‖ = d(C,D), (1)

and

such that u := Ap ∈ K solves f (u, v) ≥ 0,∀v ∈ K. (2)

We denote the solution set of SBPEP by Ω = {p ∈ BestCS : Ap ∈ EP( f )}. If we consider only (1), then (1) is a
classical best proximity point problem.

This problem was first introduced by Tiammee and Suantai [1]. This problem is a generalization of the
common solution of best proximity point and equilibrium problem.

The best proximity point problem for nonlinear mappings is an interesting topic in the optimization
theory (see [2–4]). It can be reduced to fixed point problem

On the other hand, if we consider only (2), then (2) is a classical equilibrium point problem. Various
problems arising in physics, optimization and economics can be modeled as equilibirum problems. So
equilibrium problem plays very important role in solving existence of solution of these problems (see [5, 6]).
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Some authors have proposed some methods to find the solution of the best proximity point problems (see
[8, 11]) and equilibrium problem (see [5–7]).

In 2008, Takahashi et al. introduced a new projection method which is called shrinking projection method
by using the modification Mann’s iteration for obtaining strong convergence theorem for a countable family
of nonexpansive mapping in real Hilbert spaces.

Theorem 1.1. Let H be a Hilbert space and C be a nonempty closed convex subset of H. Let {Tn} and τ be a family of
nonexpansive mapping s of C into H such that F := ∩∞n=1F(Tn) = F(τ) , ∅ and let x0 ∈ H. Suppose that {Tn} satisfies
the NST-condition (I) with τ. For C1 = C and u1 = PC1 x0, define a sequence {un} in C as follows:

yn = αnun + (1 − αn)Tnun,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖un − z‖},
un+1 = PCn+1 x0, n ∈N,

(3)

where 0 ≤ αn ≤ a < 1 for all n ∈N. Then un converges strongly to a point z0 = PFx0

In 2019, Tiammee and Suantai [1] introduced the following iterative process to approximate a solution
of SBPEP in Hilbert space:

x0 ∈ C0,

un = (1 − αn)xn + αnPCSxn, ∀n ≥ 1,

xn+1 = PC

[
un + γA∗(T f

rn
− I)Aun

]
, n ∈N,

(4)

where {αn} ⊂ (0, 1] with lim supn→∞ αn < 1, rn ⊂ (0,∞) with lim infn→∞ rn > 0 and γ ∈
(
0, 1
‖A∗‖2

)
is a constant.

It was proved that the sequence {xn} generated by (4) converges weakly to Ω.
In this paper, we construction some iterative algorithm which is the modified shrinking projection

method for solving the SBPEP when the nonlinear mapping is best proximally nonexpansive in Hilbert
spaces. Strong convergence theorem are established. The results obtained in this paper can be established
as the common best proximity point problem and equilibrium problem. We also give an numerical example
to support our main convergence theorem.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and the norm ‖ · ‖. Recall that a mapping T : H→ H
is said to be

1. nonexpansive if
‖Tx − Ty‖ ≤ ‖x − y‖ for allx, y ∈ H;

2. quasi-nonexpansive if F(T) , ∅ and

‖Tx − q‖ ≤ ‖x − q‖ for all x ∈ H, q ∈ F(T),

where F(T) = {x ∈ C : Tx = x}. Observe that nonexpansive operators are quasi-nonexpansive.
Let A and B be two nonempty closed convex subsets of H. We define A0 and B0 by the following sets:

A0 = {x ∈ A : ‖x − y‖ = D(A,B), for some y ∈ B},
B0 = {y ∈ B : ‖x − y‖ = D(A,B), for some x ∈ A}.

We recall some useful definitions and lemmas, which will be used in the later sections.
Let C be a nonempty closed convex subset of Hilbert space H. For any x ∈ H, its projection onto C is

defined as
PC(x) = argmin{‖y − x‖ : y ∈ C}

The mapping PC : H→ C is called a projection operator, which has the well-known properties in the following
lemma.
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Lemma 2.1. Let C be a nonempty closed convex subset of Hilbert space H. Then for all x, y ∈ H and z ∈ C,

• 〈PCx − x, z − PCx〉 ≥ 0;

• ‖PCx − PCy‖2 ≤ 〈PCx − PCy, x − y〉;

• ‖PCx − z‖2 ≤ ‖x − z‖2 − ‖PCx − x‖2;

• ‖z − PCx‖2 + ‖x − PCx‖2 ≤ ‖x − z‖2

A Banach space (X, ‖ · ‖) said to satisfy Opial’s condition if, for each sequence {xn} in X which converges
weakly to a point x ∈ X, we have

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖, ∀y ∈ X, y , x.

It is well-known that each Hilbert space satisfies Opial’s condition.

Lemma 2.2 ([8]). Let A,B be two nonempty subsets of a uniformly convex Banach spaces X such that A is closed
and convex. Suppose that T : A→ B is a mapping such that T(A0) ⊆ B0. Then F(PAT|A0 ) = BestA(T).

Definition 2.3 ([8]). Let A and B be two nonempty subsets of a real Hilbert space H and C a subset of A. A
mapping T : A→ B is said to be C-nonexpansive if

‖Tx − Tz‖ ≤ ‖x − z‖

for all x ∈ A and z ∈ C. If C = BestAT, we say that T is a best proximally nonexpansive mapping.

Definition 2.4 (see [10]). Let A and B be closed subsets of a metric space (X, d). Then, A and B are said to satisfy
the P-property if, for x1, x2 ∈ A0 and y1, y2 ∈ B0, the following implication holds:

d(x1, y1) = d(x2, y2) = D(A,B)→ d(x1, x2) = d(y1, y2).

Notic that, for any pair (A,B) of nonempty closed and convex subsets of a real Hilbert space, H has the
P-property.

Lemma 2.5 (see [11]). Let A,B be two nonempty subsets of a uniformly convex Banach space X such that A is closed
and convex. Suppose that T : A→ B is mapping such that T(A0) ⊆ B0. Then, T|A0 satisfies the proximal property if
and only if I − PAT|A0 is demiclosed at zero.

Lemma 2.6 (see [5]). Let K be a nonempty closed convex subset of H and F be a bi-function of K×K intoR satisfying
the following conditions:

(A1) F(x, x) = 0 for all x ∈ K;
(A2) is monotone, that is, F(x, y) + F(y, x) ≤ 0 for all x, y ∈ K;
(A3) for each x, y ∈ K,

lim sup
t→0+

F(tz + (1 − t)x, y) ≤ F(x, y);

(A4) for each x ∈ K, y 7→ F(x, y) is convex and lower semi-continuous.

Let r > 0 and x ∈ H. Then, there exists z ∈ K such that

F(z, y) +
1
r
〈y − z, z − x〉 ≥ 0, for all x, y ∈ K.

Lemma 2.7 (see [12]). Let K be a nonempty closed convex subset of H and let F be a bi-function of K × K into R
satisfying (A1) − (A4). For r > 0 and x ∈ H, define a mapping TF

r : H→ K as follows:

TF
r (x) =

{
z ∈ K : F(z, y) +

1
r
〈y − z, z − x〉 ≥ 0 ∀y ∈ K

}
(5)

for all x ∈ H. Then the following hold:
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1. TF
r is single-valued;

2. TF
r is firmly-nonexpansive, that is, for any x, y ∈ H,

‖TF
r (x) − TF

r (y)‖2 ≤ 〈TF
r (x) − TF

r (y), x − y〉;

3. F(TF
r ) = EP(F) for all r > 0;

4. EP(F) is closed and convex.

Lemma 2.8 (see [13]). Let K be a nonempty closed convex subset of H. For x ∈ H, let the mapping TF
r be the same

as in Lemma 2.7. Then for r, s > 0 and x, y ∈ H,

‖TF
r (x) − TF

r (y)‖ ≤ ‖y − x‖ +
|s − r|

s
‖TF

s (y) − y‖.

3. Main results

In this section, by using shrinking projection method, we obtain a strong convergence theorem for
finding the solution of the SBPEP in real Hilbert spaces.

Theorem 3.1 (Strong convergence theorem). Let H1 and H2 be two real Hilbert spaces and C,D ⊂ H1,K ⊂ H2
be nonempty closed convex subsets of H1 and H2, respectively. Let A : H1 → H2 be a bounded linear operator. Let
S : C → D be best proximally nonexpansive mapping such that S(C0) ⊂ D0 with BestCS , ∅ and f : K × K → R a
bi-function with EP( f ) , ∅. Suppose that S satisfies the proximal property. Let {xn} be a sequence generated by

x0 ∈ C0,

un = (1 − αn)xn + αnPCSxn, ∀n ≥ 1,

yn = PC

[
un + γA∗(T f

rn
− I)Aun

]
,

Cn+1 = {v ∈ Cn : ‖yn − v‖ ≤ ‖un − v‖ ≤ ‖xn − v‖},
xn+1 = PCn+1 (x0), n ∈N,

(6)

where {αn} ⊂ (0, 1] with lim supn→∞ αn < 1 and γ ∈
(
0, 1
‖A∗‖2

)
is a constant. Suppose that Ω = {p ∈ BestCS : Ap ∈

EP( f )} , ∅, then the sequence {xn} converges strongly to an element x∗ ∈ Ω.

Proof. It is clear that Cn+1 is closed and convex for all n ∈ N. Let p ∈ Ω. Since ‖PCSxn − Sxn‖ = D(A,B) and
‖p − Sp‖ = D(A,B), using P-property, we have

‖PCSxn − p‖ = ‖Sxn − Sp‖. (7)

Since S is best proximally nonexpansive, and (7) we obtain

‖un − p‖ = ‖(1 − αn)xn + αnPCSxn − p‖
= ‖(1 − αn)(xn − p) + αn(PCSxn − p)‖
≤ (1 − αn)‖xn − p‖ + αn‖(PCSxn − p‖
= (1 − αn)‖xn − p‖ + αn‖Sxn − Sp‖
= ‖xn − p‖

(8)

Next, it follows from Lemma 2.7 that

2γ〈un − p,A∗(T f
rn
− I)Aun〉 ≤ −γ‖(T

f
rn
− I)Aun‖

2 (9)
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From (9) we have

‖yn − p‖2 = ‖PC

[
un + γA∗(T f

rn
− I)Aun

]
− p‖2

= ‖PC

[
un + γA∗(T f

rn
− I)Aun

]
− PCp‖2

≤ ‖un + γA∗(T f
rn
− I)Aun − p‖2

= ‖un − p‖2 + γ2
‖A∗‖2‖(TF

rn
− I)Aun‖

2 + 2γ〈un − p,A∗(T f
rn
− I)Aun〉

≤ ‖un − p‖2 + γ2
‖A∗‖2‖(T f

rn
− I)Aun‖

2
− γ‖(T f

rn
− I)Aun‖

2

= ‖un − p‖2 − γ(1 − γ‖A∗‖2)‖(T f
rn
− I)Aun‖

2.

(10)

Since γ ∈ (0,
1
‖A∗‖2

), γ(1 − γ‖A∗‖2) > 0. It follows from (8) and (10) that

‖yn − p‖ ≤ ‖un − p‖ ≤ ‖xn − p‖ for all n ∈N, (11)

this show Ω ⊂ Cn and Cn , ∅ for all n ∈ N. It is easy to see that Ω is a closed convex set, so there exists a
unique element q = PΩ(x0) ∈ Ω ⊂ Cn. Because xn = PCn (x0), then ‖xn − x0‖ ≤ ‖q− x0‖ for all n ∈N. It follows
that {xn − x0} is bounded. So are {un} and {yn}. Since Cn+1 ⊂ Cn and xn+1 = PCn+1 ⊂ Cn, then

‖xn+1 − x0‖ ≥ ‖xn − x0‖, for all n ∈N. (12)

It follows that limn→∞ ‖xn − x0‖ exists. Next, we will show that {xn} is a Cauchy sequence. Let m,n ∈Nwith
m > n. Since xm = PCm (x0) ⊂ Cn and Lemma (2.1), we have

‖xn − xm‖
2 + ‖x0 − xm‖

2 = ‖xn − PC(x0)‖2 + ‖x0 − PC(x0)‖2 ≤ ‖xn − x0‖
2.

It follows that limn→∞ ‖xn − xm‖ = 0, so {xn} is a Cauchy sequence. Let xn → x∗. Next we will show that
x∗ ∈ Ω. Since xn+1 = PCn+1 ∈ Cn+1, we obtain

‖yn − xn‖ ≤ ‖yn − xn‖ + ‖xn+1 − xn‖ ≤ 2‖xn − xn+1‖ → 0,
‖un − xn‖ ≤ ‖un − xn‖ + ‖xn+1 − xn‖ ≤ 2‖xn − xn+1‖ → 0,
‖yn − un‖ ≤ ‖yn − xn‖ + ‖xn − un‖ → 0.

(13)

Moreover, from (10), we obtain

‖(T f
rn
− I)Aun‖

2
≤

γ

(1 − γ‖A∗‖2)
{‖un − p‖2 − ‖yn − p‖2}

=
γ

(1 − γ‖A∗‖2)
{‖un − p‖ − ‖yn − p‖}{‖un − p‖ + ‖yn − p‖}

=
γ

(1 − γ‖A∗‖2)
‖un − yn‖{‖un − p‖ + ‖yn − p‖}, (14)

which implies, by (13), that

lim
n→∞
‖(T f

rn
− I)Aun‖ = 0. (15)

Since x→ x∗, A is a bounded linear operator and (13), we have

lim
n→∞
‖Aun − Ax∗‖ = 0 (16)

So, by (15), (16) and Lemma 2.8, we have that for r > 0

‖T f
r Ax∗ − Ax∗‖ ≤ ‖T f

rn
Ax∗ − T f

rn
Aun‖ + ‖T f

rn
Aun − Aun‖ + ‖Aun − Ax∗‖

≤ ‖Aun − Ax∗‖ +
rn − r

rn
‖T f

rn
Aun − Aun‖ + ‖T f

rn
Aun − Aun‖

+ ‖Aun − Ax∗‖ → 0,
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which implies that Ax∗ ∈ F(T f
r ) = EP(F) for r > 0.

By (6) and (13), we obtain

‖PCSxn − xn‖ =
1
αn
‖xn − un‖ → 0. (17)

Since S satisfies the proximal property, by Lemma 2.5, we have I − PCS|C0 is demiclosed at zero. It follows
that x∗ ∈ F(PCS|C0 ) = BestCS. The proof is completed.

By setting H1 = H2, A := I in Theorem 3.1, we have immediately the following collaries.

Corollary 3.2. Let H be a real Hilbert spaces, and C,D be nonempty closed convex subsets of H. Let S : C → D
be best proximally nonexpansive mapping such that S(C0) ⊂ D0 with BestCS , ∅ and f : C × C → R a bi-function
satisfying (A1−A4) with EP( f ) , ∅. Suppose that S satisfies the proximal property. Let {xn} be a sequence generated
by 

x0 ∈ C0,

un = (1 − αn)xn + αnPCSxn,

xn+1 = (1 − γ)un + γT f
rn

un, n ∈N,

where {αn} ⊂ (0, 1] with lim supn→∞ αn < 1 and γ ∈
(
0, 1
‖A∗‖2

)
is a constant. Suppose that BestCS∩ EP( f ) , ∅, then

the sequence {xn} converges waekly to an element x∗ ∈ BestCS ∩ EP( f ).

4. Numerical Example

We give an example and numerical result for supporting our main theorem. Moreover, we compare
convergence behavior and efficiency of our algorithms with the modified Mann algorithm, introduced by
Tiammee and Suantai [1]. All numerical experimental results are performs on Intel Core-i5 with 4.00 GB
RAM, MacOS Catalina 10.15, under MATLAB computing environment.

Example 4.1. Let H1 = R2,H2 = R, C = [−1, 0] × [0, 1],D = [3, 7] × [0, 1] and K = [−3, 0]. Define two mappings
A : R2

→ R and S : C → D by A(x(1), x(2)) = 3x(1) for all (x(1), x(2)) ∈ R2 and S(x(1), x(2)) = (3 − x(1), x(2)

2 ) for all

(x(1), x(2)) ∈ C. Then C0 = {(0, z) : 0 ≤ z ≤ 1}. Let f (u, v) = (u − 1)(v − u) for all u, v ∈ K. Choose αn =
n

2n + 1
and γ =

1
20

. It is easy to check that f satisfies all conditions in Theorem 3.1 such that EP( f ) = {0} and S is a best
proximally nonexpansive mappings such that S(C0) ⊆ D0 and BestCS = {(0, 0)}.

Then Algorithm (6) can be simplified as

x0 ∈ {(0, z) : 0 ≤ z ≤ 1}

un =

0,
(3n + 2)x(2)

n

4n + 2

 ,
yn =

(
0,u(2)

n

)
xn+1 =

0,
y(2)

n + x(2)
n

2


(18)

Next, choosing the initial point x0 = (0, 1) and the stopping criterion for our testing method is En = ‖xn+1−xn‖ ≤

1 × 10−9. The following table shows the numerical experiment of the proposed algorithm. From Table 1, we observe
that the sequence {xn} converges to (0, 0) which is a best proximity point of S and A(0, 0) = 0 is an equilibrium point
of f .

Moreover, we compare the performance of Algorithm 6 (SPM-iter) and Algorithm in [1] (Mann-iter), all controllers
are setting in Table 2. In numerical experiment, it is revealed that the sequence generated by Mann-iter of Suantai
and Tiamme [1] converges more quickly than by Algorithm 6 do.
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n xn En
0 (0, 1) -
1 (0, 0.9167) 0.0833
2 (0, 0.8250) 0.0917
3 (0, 0.7366) 0.0884
...

...
...

143 (0, 8.2596e-09) 1.1752e-09
144 (0, 7.2307e-09) 1.0288e-09
145 (0, 6.3300e-09) 9.0071e-10

Table 1: Numerical results for Algorithm 6

Method Setting

SPM-iter (Algorithm 6) αn =
n

2n + 1
, rn =

n
n + 1

, γ =
1

20
and x0 = (0, 1)

Mann-iter [1] αn =
n

2n + 1
, rn =

n
n + 1

, γ =
1

20
and x0 = (0, 1)

Table 2: Algorithms and their setting controls

Number of iterations
0 50 100 150

E
rr

o
r

0

0.05

0.1

0.15

0.2

0.25

SPM-Iter

Mann-Iter

Figure 1: The error ploting of En = ‖xn+1 − xn‖
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