
Filomat 35:4 (2021), 1115–1131
https://doi.org/10.2298/FIL2104115S

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. A Diophantine problem means to find all solutions of an equation or system of equations in
integers, rational numbers, or sometimes more general number rings. The most frequently asked question
is whether a root of a polynomial equation with coefficients in a p-adic field Qp belongs to domains
Z∗p, Zp \ Z∗p, Qp \ Zp, Qp or not. This question is open even for lower degree polynomial equations. In
this paper, this problem is studied for cubic equations in a general form. The solvability criteria and the
number of roots of the general cubic equation over the mentioned domains are provided.

1. Introduction

A Diophantine problem means to find all solutions of a polynomial equation or a system of polynomial
equations in integers, rational numbers, or sometimes more general number rings and to give a bound for
those solutions (see [12]). Because of the topology and the completeness, a p-adic field Qp gives rise to
simpler Diophantine problems than a number field (a finite extension of the rational numbers), and one
tries to reduce certain classes of Diophantine problems to p-adic ones. For instance, Artin’s conjecture [3]
asserts that a form of degree d in n variables with coefficients in a p-adic fieldQp has a non-trivial zero over
Qp whenever n > d2. For quadratic and cubic forms, this conjecture is true (the quadratic case is known as
the Hasse-Minkowski theorem, for the cubic case see [13]). However, in general, this conjecture is known to
be false [9]. Nevertheless, it is ”semi-globally” true, i.e. the conjecture holds true for all but a finite number
of p-adic fields [4, 5]. Therefore, it gives hope that if the number of variables is not too small we should
still have a ”local-to-global ” principle (to get a global theorem from local ones, and to get solutions if the
number of variables is large) similar to the Hasse-Minkowski theorem [7, 8]. Here again, before dealing
with the global theory, one can study the local one over a p-adic field.

On the other hand, finding roots of a single variable polynomial is among the old problem of math-
ematics. In the field of real numbers, this problem found its own solution. However, to the best of our
knowledge, in the field of p-adic numbers – in the counterpart of the field of real number, less attention
has been paid to this problem in the literature. Recently, by concerning some problems of p-adic lattice
models of statistical mechanics, this problem is again raised up (for instance, see [25]). Namely, we may
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come across the following problem in one form or another: provide a solvability criterion for the polynomial
equation with coefficients in the p-adic field over some given set A ⊂ Qp. The most frequently asked question
in the p-adic lattice models of statistical mechanics is whether a root of a polynomial equation belongs
to domains Z∗p, Zp \ Z∗p, Qp \ Zp, Qp or not. However, this question was open even for lower degree
polynomial equations. The scenario is completely different from the field of real numbers to the field of
p-adic numbers. For instance, the quadratic equation x2 + 1 = 0 is not solvable in the real field but solvable
in the p-adic field for p ≡ 1 (mod 4). Vise versa, the cubic equation x3 +p = 0 is not solvable in the p-adic field
but solvable in the real field. Therefore, it is of independent interest to provide a solvability criterion for
lower degree polynomial equations over the p-adic field. The solvability criterion for quadratic equations
over the p-adic field was provided in all classical p-adic analysis books. Moreover, a local description of
roots of the quadratic equation was also studied in the paper [29]. Recently, in the series of papers [20–22],
[26–32, 34, 36], the solvability criteria and the number of roots of depressed cubic equations over the p-adic
field were studied. This paper is a continuation of the previous studies and we are aiming to study roots of
a general cubic equation over the p-adic field for p > 3. It is worth mentioning that any cubic equation can be
deduced to a depressed one by suitable linear transformation and a local description of roots of a depressed
cubic equation over domains Z∗p, Zp \Z∗p, Qp \Zp, Qp has been already studied in [20, 34]. However, by
means of results of the papers [20, 34], we cannot still derive a local description of roots of a general cubic
equation over domains Z∗p, Zp \Z∗p, Qp \Zp, Qp (examples are given in the next section). We have to care
on some special study in the general case. Thus, the main results of this paper cannot be derived from
the papers [20, 34] (a detailed explanation is given in the next section). In fact, all results in this paper are
extension and unification of the previous results. Meanwhile, applications of quadratic and cubic equations
in the p-adic lattice models of statistical mechanics were presented in the papers [1, 2, 23, 25, 29, 30, 33].
We would like to stress that quadratic and cubic equations have naturally arisen in the investigations of
p-adic Gibbs measures of Potts models on Cayley trees. First such investigations have been initiated in the
papers [16, 18]. The local description of roots of quadratic equations was also explored in [15]. Recently,
the location of roots of some complicated p-adic equations has been investigated in the papers [17, 19].

2. Preliminary

The fields Qp of p-adic numbers were introduced by German mathematician K. Hensel by motivating
an attempt to bring the ideas and techniques of the power series into number theory. Their canonical
representation is analogous to the expansion of analytic functions into power series. This is one of the
manifestations of the analogy between algebraic numbers and algebraic functions. Over the last century, p-
adic numbers and p-adic analysis have come to play a central role in modern number theory. This importance
comes from the fact that they afford a natural and powerful language for talking about congruences
between integers, and allow using the methods borrowed from analysis for studying such problems.
Recently, numerous applications of p-adic numbers have also shown up in theoretical physics and quantum
mechanics (for example, see [10, 11, 14, 35]).

For a fixed prime p, the fieldQp of p-adic numbers is a completion of the rational numbersQwith respect
to the non-Archimedean norm | · |p : Q→ R given by

|x|p =

{
p−r, x , 0,
0, x = 0, (1)

where x = pr m
n with r,m ∈ Z, n ∈ N, (m, p) = (n, p) = 1. A number r is called a p-order of x and it is denoted

by ordp(x) = r. Any p-adic number x ∈ Qp can be uniquely represented in the following canonical form

x = pordp(x)
(
x0 + x1 · p + x2 · p2 + · · ·

)
where x0 ∈ {1, 2, · · · p − 1} and xi ∈ {0, 1, 2, · · · p − 1} for i ≥ 1. We respectively denote the set of all p-adic
integers and units of Qp by Zp = {x ∈ Qp : |x|p ≤ 1}, Z∗p = {x ∈ Qp : |x|p = 1}. Any nonzero p-adic number

x ∈ Qp has a unique representation x =
x∗

|x|p
, where x∗ ∈ Z∗p (see [6]).
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Throughout this paper, we always assume that p > 3 unless otherwise stated.
Let us consider a general cubic equation

x3 + ax2 + bx + c = 0, (2)

where a, b, c ∈ Qp.
In this paper, the concerned problem is to provide the solvability criterion and the number of roots of the

general cubic equation (2) over domains Z∗p, Zp \Z∗p, Qp \Zp, Qp.
There are two ways to handle this problem. One way to do it is that we first deduce the general cubic

equation to the depressed one, then we apply the results of the papers [20] and [34]. However, this way
does not work for domains Z∗p, Zp \ Z∗p, Qp \ Zp in general. For example, the following cubic equation
x3 + x2

− 1 = 0 can be deduced to the following depressed cubic equation w3
−

1
3 w = 25

27 by the substitution

w = x + 1
3 . Since 1

25 = | 25
27 |5 < |

1
3 |5 = 1 and there does not exist

√
1
3 inQ5, the last depressed cubic equation has

a unique root w̄ which belongs toZ5 \Z∗5 (see [20, 34]). This means that the last depressed cubic equation is
not solvable inZ∗5.However, the given cubic equation x3 + x2

−1 = 0 has a root x̄ = w̄− 1
3 in which |x̄|5 = 1 or

equivalently x̄ ∈ Z∗p. This means that the given cubic equation is solvable in Z∗5. This example shows that
there is a cubic equation which is solvable in Z∗p but the depressed one is not solvable in Z∗p. The similar
examples can be also provided in domains Zp \Z∗p, Qp \Zp.

The second method is the Hensel lemma. We know that, by definition, two p-adic numbers are close
when their difference is divisible by a high power of p. This property enables p-adic numbers to encode
congruence information in a way that turns out to be powerful tools in the theory of polynomial equation.
In fact, Hensel’s lifting lemma allows us to lift a simple solution of a polynomial equation over the finite field
Fp up to the unique solution of the same polynomial equation over the ring Zp of p-adic integer numbers.
However, that solution cannot be lifted up any more to the fieldQp of p-adic numbers. At this point, we are
aiming to study the relation between solutions of the cubic equations over Qp and Zp. We shall show that,
indeed, any solution of any cubic equation over Qp (or over some special sets) can be uniquely determined
by a solution of another cubic equation over Z∗p. Consequently, in some sense, it is enough to study cubic
equations over Z∗p.

It is worth of mentioning that the solvability of the general cubic equation (2) over Qp is equivalent to
the solvability of the depressed cubic equation over Qp. Namely, we know that the general cubic equation
(2) can be deduced to the following depressed cubic equation

w3 + Aw = B (3)

where w = x + a
3 , A = 3b−a2

3 and B = −2a3+9ab−27c
27 . By means of results of [20, 34], we can give the solvability

criterion of the general cubic equation (2) over Qp in terms of A,B ∈ Qp.
Recall that a number a0 ∈ Z is called an rth power residue modulo p if the following congruent equation

xr
≡ a0 (mod p) is solvable in Z. Let a0 ∈ Z with (a0, p) = 1 and d = (r, p − 1). The following statements hold

true [24]: a number a0 is the rth power residue modulo p if and only if a
p−1

d ≡ 1 (mod p); If a
p−1

d
0 ≡ 1 (mod p),

then the congruent equation xr
≡ a0 (mod p) has d number of distinct (non-congruent) solutions in Z.

Let a ∈ Qp be a nonzero p-adic number such that a = a∗
|a|p

and a∗ ∈ Z∗p with a∗ = a0 + a1 · p + a2 · p2 + · · · .

We say that there exists r
√

a in Qp, written r
√

a − ∃, if the monomial equation xr = a is solvable in Qp. The
criterion of the existence of r

√
a was presented in [22]. Particularly, there exists

√
a in Qp, written

√
a − ∃, if

a
p−1

2
0 ≡ 1 (mod p) and logp |a|p is even. Moreover, there exists 3

√
a in Qp, written 3

√
a − ∃, if a

p−1
(3,p−1)

0 ≡ 1 (mod p)
and logp |a|p is divisible by 3.

Now, we describe the solvability domain of the general cubic equation (2) over Qp in terms of A,B

defined above. If abc , 0, then we have that a =
a∗

|a|p
, b =

b∗

|b|p
, c =

c∗

|c|p
with a∗, b∗, c∗ ∈ Z∗p where

a∗ = a0 + a1p + a2p2 + · · · , b∗ = b0 + b1p + b2p2 + · · · , c∗ = c0 + c1p + c2p2 + · · ·
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and a0, b0, c0 ∈ {1, 2, · · · p − 1}, ai, bi, ci ∈ {0, 1, 2, · · · p − 1} for any i ∈N.
Let ∆ = a2b2

− 4b3
− 4a3c − 27c2 + 18abc = −4A3

− 27B2 be the discriminant of the cubic equation (2). At
the same time, it is the discriminant of the depressed cubic equation (3).

If AB∆ , 0, then we have that A = A∗
|A|p
, B = B∗

|B|p
, ∆ = ∆∗

|∆|p
with A∗,B∗,∆∗ ∈ Z∗p where

∆∗ = D0 + D1p + D2p2 + · · · , A∗ = A0 + A1p + A2p2 + · · · , B∗ = B0 + B1p + B2p2 + · · · .

and A0,B0,D0 ∈ {1, 2, · · · , p − 1}, Ai,Bi,Di ∈ {0, 1, · · · , p − 1}, i ∈ N. We set D0 ≡ −4A3
0 − 27B2

0 (mod p) and
un+3 = B0un − A0un+1 with u1 = 0, u2 = −A0, and u3 = B0 for n ≥ 1.

We define a set Φ = Φ1 ∪Φ2 ∪Φ3 where

Φ1 =
{
(A,B) ∈ Qp ×Qp : |A|3p < |B|

2
p,

3√

B − ∃
}
,

Φ2 =
{
(A,B) ∈ Qp ×Qp : |A|3p = |B|2p, D0u2

p−2 . 9A2
0 (mod p)

}
,

Φ3 =
{
(A,B) ∈ Qp ×Qp : |A|3p > |B|

2
p

}
.

The set Φ ⊂ Qp × Qp is the solvability domain of the depressed cubic equation (3) over Qp (see [20, 34]).
Consequently, the set Φ is also the solvability domain of the general cubic equation (2) over Qp. The aim of
this paper is to describe the solvability domain Φ of the general cubic equation (2) in terms of a, b, c ∈ Qp.

LetA ⊂ Z be any subset. We introduce the following set

Z∗p

pA
:=

{
x ∈ Qp : logp |x|p ∈ A

}
.

It is easy to check that
Z∗p

pA
=

⋃
i∈A

Spi (0),

where Spi (0) = {x ∈ Qp : |x|p = pi
} is the sphere with the radius pi.

The proof of the following proposition is straightforward.

Proposition 2.1. Let p be any prime, a, b, c ∈ Qp, and A ⊂ Z be any subset. The cubic equation (2) is solvable in

the set
Z∗p

pA
if and only if there exists a pair (y∗, k) ∈ Z∗p ×A such that y∗ is a solution of the following cubic equation

y3 + Aky2 + Bky + Ck = 0 (4)

where Ak = apk, Bk = bp2k and Ck = cp3k. Moreover, in this case, a solution of the cubic equation (2) has the form

x =
y∗

pk
.

This shows that it is enough to study the solvability of the general cubic equation (2) over Z∗p.

Let S =
{
|a|p, |b|p, |c|p

}
and max(S) = max

{
|a|p, |b|p, |c|p

}
. We define the set M(S) = {s ∈ S : s = max(S)}. Let

|M(S)| be the number of elements of the set M(S).

Proposition 2.2. Let p be any prime. Suppose the cubic equation (2) is solvable in Z∗p where a, b, c ∈ Qp. Then the
following statements hold true:

(i) If |M(S)| = 1, then max(S) = 1;

(ii) If |M(S)| ≥ 2, then max(S) ≥ 1.
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Proof. Let the cubic equation (2) be solvable in Z∗p. Then one can get that

|a|p = |ax2
|p = |x3 + bx + c| ≤ max{1, |b|p, |c|p},

|b|p = |bx|p = |x3 + ax2 + c| ≤ max{1, |a|p, |c|p},

|c|p = |x3 + ax2 + bx| ≤ max{1, |a|p, |b|p},

1 = |x3
|p = |ax2 + bx + c| ≤ max{|a|p, |b|p, |c|p}.

If |M(S)| = 1, then |a|p , |b|p , |c|p with max{|a|p, |b|p, |c|p} = 1; or |a|p = |b|p < |c|p = 1; or |a|p = |c|p < |b|p = 1; or
|b|p = |c|p < |a|p = 1. If |M(S)| = 2, then |a|p < |b|p = |c|p with |b|p = |c|p ≥ 1; or |b|p < |a|p = |c|p with |a|p = |c|p ≥ 1;
or |c|p < |a|p = |b|p with |a|p = |b|p ≥ 1. If |M(S)| = 3, then |a|p = |b|p = |c|p ≥ 1. This completes the proof.

This proposition gives necessary conditions for the solvability of the general cubic equation (2) overZ∗p.
To get the solvability criterion over Z∗p, we need Hensel’s lifting lemma.

Lemma 2.3 (Hensel’s Lemma, [6]). Let f (x) be a polynomial whose coefficients are p-adic integers. Let θ be a
p-adic integer such that for some i ≥ 0 we have f (θ) ≡ 0 (mod p2i+1), f ′(θ) ≡ 0 (mod pi), f ′(θ) . 0 (mod pi+1).
Then f (x) has a unique p-adic integer root x0 which satisfies x0 ≡ θ (mod pi+1).

3. The Solvability Criteria

In this section, we present the solvability criterion of the general cubic equation (2) overAwhere

A ∈
{
Z∗p, Zp \Z

∗

p, Qp \Zp, Qp

}
.

We introduce some notations. Let δ1 = b2
−4ac, δ2 = a2

−4b, δ3 = −2a3
−27c,A = 3b−a2

3 ,B = −2a3+9ab−27c
27 , and

∆ = a2b2
−4a3c−4b3

−27c2 +18abc = −4A3
−27B2. We set D = −4(A|A|p)3

−27(B|B|p)2, D0 ≡ −4A3
0−27B2

0 (mod p)
and un+3 = B0un − A0un+1 with u1 = 0, u2 = −A0, and u3 = B0 for n ≥ 1.

Throughout this paper,
(
α ∨ β

)
stands for

(
α or β

)
.

3.1. The solvability criterion over Z∗p
Theorem 3.1. Let p > 3 be a prime. Then the general cubic equation (2) is solvable in Z∗p if and only if one of the
following conditions holds

A. 1. |a|p = 1, |b|p < 1, |c|p < 1;

2. |b|p = 1, |a|p < 1, |c|p < 1,
√
−b − ∃;

3. |c|p = 1, |a|p < 1, |b|p < 1, 3
√
−c − ∃.

B. 4. |a|p < |b|p = |c|p, |b|p = |c|p > 1;

5. |b|p < |a|p = |c|p, |a|p = |c|p > 1,
√
−ac − ∃;

6. |c|p < |a|p = |b|p, |a|p = |b|p > 1;

7. |a|p < |b|p = |c|p = 1, D0u2
p−2 . 9b2

0 (mod p);

8. |b|p < |a|p = |c|p = 1,
(
|δ3|p < 1

)
∨

(
|δ3|p = 1, D0u2

p−2 . a4
0 (mod p)

)
;

9. |c|p < |a|p = |b|p = 1,
(
|δ2|p = 1,

√
δ2 − ∃

)
∨ (|δ2|p < 1,

√
∆ − ∃).

C. 10. |a|p = |b|p = |c|p > 1,
(
|δ1|p = |a|2p = |b|2p = |c|2p,

√
δ1 − ∃

)
∨ (|δ1|p < |a|2p = |b|2p = |c|2p,

√
∆ − ∃);

11. |a|p = |b|p = |c|p = 1, (A,B) ∈ Φ.



M. Saburov et al. / Filomat 35:4 (2021), 1115–1131 1120

Proof. Let S =
{
|a|p, |b|p, |c|p

}
.

Let |M(S)| = 1. We know that, due to Proposition 2.2, if the cubic equation (2) is solvable in Z∗p, then
max(S) = 1. It means that we have either |a|p , |b|p , |c|p with max{|a|p, |b|p, |c|p} = 1 or |a|p = |b|p < |c|p = 1
or |a|p = |c|p < |b|p = 1 or |b|p = |c|p < |a|p = 1. We shall study each case separately. Consider the function
fa,b,c(x) = x3 + ax2 + bx + c.

Case A.1: Let |a|p = 1. We want to show that the general cubic equation (2) has a solution in Z∗p. Let us
choose x̄ = −a0. We then get that fa,b,c(x̄) ≡ x̄3 + a0x̄2

≡ 0 (mod p) and f ′a,b,c(x̄) ≡ 3x̄2 + 2a0x̄ ≡ a2
0 . 0 (mod p).

According to Hensel’s lemma, there exists x ∈ Zp such that fa,b,c(x) = 0 and x ≡ x̄ (mod p). Since x̄ . 0 (mod p),
we have that x ∈ Z∗p.

Case A.2: Let |b|p = 1. We want to show that the general cubic equation (2) is solvable in Z∗p if and only

if
√
−b − ∃.

If part: Let x ∈ Z∗p be a solution of the cubic equation (2). Then we get x3
0 + b0x0 ≡ x0(x2

0 + b0) ≡ x2
0 + b0 ≡

0 (mod p). It means (−b0)
p−1

2 ≡ 1 (mod p) or there exists
√
−b.

Only if part: Let
√
−b − ∃. Let us choose x̄ such that x̄2 + b0 ≡ 0 (mod p). We then obtain that

fa,b,c(x̄) ≡ x̄(x̄2 + b0) ≡ 0 (mod p) and f ′a,b,c(x̄) ≡ 3x̄2 + b0 ≡ −2b0 . 0 (mod p). Due to Hensel’s lemma, there
exists x ∈ Zp such that fa,b,c(x) = 0 and x ≡ x̄ (mod p). Since x̄ . 0 (mod p), we have that x ∈ Z∗p.

Case A.3: Let |c|p = 1. We want to show that the cubic equation (2) is solvable in Z∗p if and only if
3
√
−c − ∃.

If part: Let x ∈ Z∗p be a solution of the cubic equation (2). Then we have x3
0 + c0 ≡ 0 (mod p). It means

(−c0)
p−1

(3,p−1) ≡ 0 (mod p) or equivalently there exists 3
√
−c.

Only if part: Let 3
√
−c − ∃. Let us choose x̄ such that x̄3 + c0 ≡ 0 (mod p). We then get fa,b,c(x̄) ≡ x̄3 + c0 ≡

0 (mod p) and f ′a,b,c(x̄) ≡ 3x̄2 . 0 (mod p). Again, due to Hensel’s lemma, there exists x ∈ Zp such that
fa,b,c(x) = 0 and x ≡ x̄ (mod p). Since x̄ . 0 (mod p), we have that x ∈ Z∗p.

Let |M(S)| = 2. We know due to Proposition 2.2 that if the cubic equation (2) is solvable in Z∗p, then
max(S) ≥ 1. It means that we have either one of the following conditions: |a|p < |b|p = |c|p with |b|p = |c|p ≥ 1;
or |b|p < |a|p = |c|p with |a|p = |c|p ≥ 1; or |c|p < |a|p = |b|p with |a|p = |b|p ≥ 1.

Case B.4: Let |a|p < |b|p = |c|p, |b|p = |c|p > 1. We want to show that the cubic equation (2) is solvable
in Z∗p. Since |b|p = |c|p = pk for some k ≥ 1, it is clear that the solvability of the following two cubic
equations x3 + ax2 + bx + c = 0 and pkx3 + pkax + b∗x + c∗ = 0 are equivalent. Moreover, any solution of the
first cubic equation is a solution of the second one and vise versa. On the other hand, the second cubic
equation is suitable to apply Hensel’s lemma. Let us choose x̄ such that b0x̄ + c0 ≡ 0 (mod p). Suppose that
1b,c(x) = pkx3 + pkax + b∗x + c∗. We have that 1b,c(x̄) ≡ b0x̄ + c0 ≡ 0 (mod p) and 1′b,c(x̄) ≡ b0 . 0 (mod p). Due to
Hensel’s lemma, there exists x ∈ Zp such that 1b,c(x) = 0 and x ≡ x̄ (mod p). Since x̄ . 0 (mod p), we have that
x ∈ Z∗p.

Case B.5: Let |b|p < |a|p = |c|p, |a|p = |c|p > 1. We want to show that the cubic equation (2) is solvable in
Z∗p if and only if there exists

√
−ac. Since |a|p = |c|p = pk for some k ≥ 1, it is clear that the solvability of the

following two cubic equations x3 +ax2 +bx+ c = 0 and pkx3 +a∗x+pkbx+ c∗ = 0 are equivalent and moreover,
any solution of the first cubic equation is a solution of the second one and vise versa. On the other hand,
the second cubic equation is suitable to apply Hensel’s lemma.

If part: Let x ∈ Z∗p be a solution of the cubic equation (2). Then we have that a0x2
0 + c0 ≡ 0 (mod p). It

means that (−a0c0)
p−1

2 ≡ 1 (mod p) or equivalently there exists
√
−ac.

Only if part: We assume that there exists
√
−ac. Let us choose x̄ such that a0x̄2 + c0 ≡ 0 (mod p).

Suppose that 1a,c(x) = pkx3 + a∗x + pkbx + c∗. We then obtain that 1a,c(x̄) ≡ a0x̄2 + c0 ≡ 0 (mod p) and
1
′

a,c(x̄) ≡ 2a0x̄ . 0 (mod p). According to Hensel’s lemma, there exists x ∈ Zp such that 1a,c(x) = 0 and
x ≡ x̄ (mod p). Since x̄ . 0 (mod p), we have that x ∈ Z∗p.

Case B.6: Let |c|p < |a|p = |b|p, |a|p = |b|p > 1. We want to show that the cubic equation (2) is solvable in
Z∗p. Since |a|p = |b|p = pk for some k ≥ 1, it is clear that the solvability of the following two cubic equations
x3 + ax2 + bx + c = 0 and pkx3 + a∗x + b∗x + pkc = 0 are equivalent and moreover, any solution of the first cubic
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equation is a solution of the second one and vise versa. On the other hand, the second cubic equation is
suitable to apply Hensel’s lemma.

Let us choose x̄ such that a0x̄ + b0 ≡ 0 (mod p). Suppose that 1a,b(x) = pkx3 + a∗x + b∗x + pkc. We then have
that 1a,b(x̄) ≡ x̄(a0x̄ + b0) ≡ 0 (mod p) and 1

′

a,b(x̄) ≡ 2a0x̄ + b0 ≡ a0x̄ . 0 (mod p). Due to Hensel’s lemma, there
exists x ∈ Zp such that 1a,b(x) = 0 and x ≡ x̄ (mod p). Since x̄ . 0 (mod p), we have that x ∈ Z∗p.

Case B.7: Let |a|p < |b|p = |c|p = 1. We want to show that the cubic equation (2) is solvable in Z∗p if and
only if D0u2

p−2 . 9b2
0 (mod p).

If part: Let x ∈ Z∗p be a solution of the cubic equation (2). Then we have that x3
0 + b0x0 + c0 ≡ 0 (mod p).

Since the last equation is solvable in Fp (x0 is a solution), one should have that D0u2
p−2 . 9b2

0 (mod p) (see
[20, 34]).

Only if part: We assume that D0u2
p−2 . 9b2

0 (mod p). Then there exists x̄ such that x̄3 +b0x0 + c0 ≡ 0 (mod p)
and 3x̄2 + b0 . 0 (mod p) which imply fa,b,c(x̄) ≡ x̄3 + b0x̄ + c0 ≡ 0 (mod p) and f ′a,b,c(x̄) ≡ 3x̄2 + b0 . 0 (mod p).
Based on Hensel’s lemma, there exists x ∈ Zp such that fa,b,c(x) = 0 and x ≡ x̄ (mod p). Since x̄ . 0 (mod p),
we have that x ∈ Z∗p.

Case B.8: Let |b|p < |a|p = |c|p = 1 and δ3 = −2a3
−27c. In this case, by means of the substitution w = x + a

3 ,
we may get the following depressed cubic equation w3 + Aw = B where A = 3b−a2

3 and B = −2a3+9ab−27c
27 . It is

clear that |A|p = |3b − a2
|p = 1 |B|p = | − 2a3 + 9ab − 27c|p = |9ab + δ3| ≤ max{|b|p, |δ3|p} ≤ 1.

Case 8(i): Let |δ3|p < 1. In this case, we want to show that the cubic equation (2) is solvable overZ∗p. We
have |B|p < |A|p = 1. In this case (see [20, 34]), the depressed cubic equation w3 + Aw = B is always solvable
and one of its solutions w1 in Zp \Z∗p. Since |x|p =

∣∣∣w1 −
a
3

∣∣∣ = 1, the cubic equation (2) is solvable over Z∗p.
Case 8(ii): Let |δ3|p = 1. We want to show that the cubic equation (2) is solvable over Z∗p if and

only if D0u2
p−2 . a4

0 (mod p). In this case, one can see that |B|p = |A|p = 1. We then have that D0 ≡

−4A3
0 − 27B2

0 (mod p), 3A0 ≡ −a2
0 (mod p) and 27B0 ≡ −4a3

0c0 − 27c2
0 (mod p). In this case (see [20, 34]), the

depressed cubic equation w3 + Aw = B is solvable if and only if D0u2
p−2 . 9A2

0 ≡ a4
0 (mod p). Moreover, all

solutions of the last depressed cubic equation belong to Z∗p. Now, we want to show that all solutions of
the cubic equation (2) such that x = w − a

3 also belong to the set Z∗p. Equivalently, we want to show that
3w . a (mod p).

Suppose the contrary, i.e., 3w ≡ a (mod p). One can get that (3w)3 + 3(3b − a2)(3w) − (−2a3 + 9ab − 27c) ≡
a3

0 − 3a3
0 + 2a3

0 + 27c0 (mod p) ≡ 27c0 . 0 (mod p). However, this is a contradiction. Therefore, we have that
3w . a (mod p) or |x|p =

∣∣∣w − a
3

∣∣∣
p = 1. Consequently, all solutions of the cubic equation (2) belong to Z∗p.

Case B.9: Let |c|p < |a|p = |b|p = 1 and δ2 = a2
− 4b. The cubic equation (2) can be written as

x(2x + a)2
− xδ2 + 4c = 0. (5)

Case 9(i): Assume that |δ2|p = 1. We want to show that the cubic equation (2) is solvable inZ∗p if and only if
there exists

√
δ2.

If part: Let x ∈ Z∗p be a solution of the cubic equation (2). Since |δ2|p = 1 and x ∈ Z∗p, we obtain from (5)
that [(2x + a)]2

≡ δ2 (mod p). Thus, there exists
√
δ2.

Only if part: Assume that there exists
√
δ2. We choose x̄ such that 2x̄+a ≡ δ2 (mod p). Then (2x̄+a)2

−δ2 ≡

0 (mod p). Suppose that fa,b,c(x) = x3 + ax2 + bx + c. We then get 4 fa,b,c(x̄) = x̄((2x̄ + a)2
− δ2) + 4c ≡ 0 (mod p)

and 4 f ′a,b,c(x̄) ≡ 4x̄(2x̄ + a) . 0 (mod p). Based on Hensel’s lemma, there exists x ∈ Zp such that fa,b,c(x) = 0
and x ≡ x̄ (mod p). Since x̄ . 0 (mod p), we have that x ∈ Z∗p.

Case 9(ii): Let |δ2|p < 1. We want to show that the cubic equation (2) is solvable inZ∗p if and only if there

exists
√

∆.
Let us again consider the depressed cubic equation w3 + Aw = B where w = x + a

3 , A = 3b−a2

3 and
B = −2a3+9ab−27c

27 . Then |A|p = | − δ2 − b|p = 1, |B|p = |ab − 2aδ2 − 27c|p = 1.
We also get that 3A0 ≡ −b0 (mod p), 27B0 ≡ a0b0 (mod p) and 27D0 ≡ 27(−4A3

0−27B2
0) ≡ −4(3A0)3

−(27B0)2
≡

b2
0(4b0 − a2

0) ≡ 0 (mod p). Then (see [20, 34]) the depressed cubic equation w3 + Aw = B is always solvable and
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all solutions belong to Z∗p. Moreover, we have that (see [20, 34])

A) If ∆ = 0, then w1 = − 3B
A , w2 = w3 = 3B

2A are solutions of the cubic equation w3 + Aw = B.

B) Let 0 < |∆|p < 1.

a) If there exists
√

∆, then the cubic equation w3 + Aw = B has three solutions w1,w2,w3 such that
w1 ≡ −

3B
A (mod p) and w2 ≡ w3 ≡

3B
2A (mod p).

b) If there does not exist
√

∆, then the cubic equation w3 + Aw = B has a unique solutions w1 such
that w1 ≡ −

3B
A (mod p).

Let us analyze each case.
Suppose that there exists

√
∆. We want to show that

∣∣∣w1 −
a
3

∣∣∣
p < 1 and

∣∣∣w2 −
a
3

∣∣∣
p =

∣∣∣w3 −
a
3

∣∣∣
p = 1.

Since 9Aw1 ≡ −27B (mod p), 9A ≡ −3b0 (mod p) and −27B ≡ −a0b0 (mod p), we get that 3w1 ≡ a0 (mod p),
i.e.,

∣∣∣w1 −
a
3

∣∣∣
p < 1.

Suppose that 3w2 ≡ 3w3 ≡ a (mod p). Since 18Aw2 ≡ 18Aw3 ≡ 27B (mod p) and 9A ≡ −3b0 (mod p),
27B ≡ a0b0 (mod p), we get that −6w2 ≡ −6w3 ≡ a0 (mod p). It shows that 9w2 ≡ 9w3 ≡ 0 (mod p) which
contradicts to w2,w3 ∈ Z∗p. Thus, 3w2 ≡ 3w3 . a (mod p) and

∣∣∣w2 −
a
3

∣∣∣
p =

∣∣∣w3 −
a
3

∣∣∣
p = 1.

Suppose that there does not exist
√

∆. As we already showed that
∣∣∣w1 −

a
3

∣∣∣
p < 1.

Therefore, if there exists
√

∆, then the cubic equation (2) has solutions x1, x2, x3 in which |x1|p =
∣∣∣w1 −

a
3

∣∣∣
p <

1, |x2|p =
∣∣∣w2 −

a
3

∣∣∣
p = 1, and |x3|p =

∣∣∣w3 −
a
3

∣∣∣
p = 1. This means that the cubic equation (2) is solvable in Z∗p. If

there does not exists
√

∆, then the cubic equation (2) has a unique solution x1 in which |x1|p =
∣∣∣w1 −

a
3

∣∣∣
p < 1.

This means that the cubic equation (2) is not solvable inZ∗p. Consequently, the cubic equation (2) is solvable

in Z∗p if and only if there exists
√

∆.
Let |M(S)| = 3. We know that, due to Proposition 2.2, if the cubic equation (2) is solvable in Z∗p, then

max(S) ≥ 1. It means that |a|p = |b|p = |c|p ≥ 1.
Case C.10: Let |a|p = |b|p = |c|p > 1 with |a|p = |b|p = |c|p = pk or a = p−ka∗, b = p−kb∗, c = p−kc∗ where k ≥ 1.

Let δ1 = b2
−4ac = p−2kψwhereψ = b∗2−4a∗c∗. We can rewrite the cubic equation (2) as pkx3+a∗x2+b∗x+c∗ = 0.

We get from the last equation that

4a∗pkx3 + (2a∗x + b∗)2
− ψ = 0, (6)

pk(2a∗x)3 + 2(a∗)2
[
(2a∗x + b∗)2

− ψ
]

= 0. (7)

Case 10(i): Assume that |δ1|p = |a|2p = |b|2p = |c|2p. It means that |ψ|p = 1. We want to show that the cubic
equation (2) is solvable in Z∗p if and only if there exists

√
δ1.

If part: Let x ∈ Z∗p be a solution of the cubic equation (2). We get from (6) that (2a∗x + b∗)2
≡ ψ (mod p). It

means that there exists
√
ψ or equivalently

√
δ1.

Only if part: Assume that there exists
√
δ1 (or

√
ψ). We choose x̄ such that 2a∗x̄ + b∗ ≡ ψ (mod p) and

(2a∗x̄ + b∗)2
− ψ ≡ 0 (mod p). Suppose that f̄a,b,c(x) = pkx3 + a∗x2 + b∗x + c∗. We then have that (2a∗)3 f̄a,b,c(x̄) =

pk(2a∗x̄)3 + 2(a∗)2
[
(2a∗x̄ + b∗)2

− ψ
]
≡ 0 (mod p) and (2a∗)3 f̄ ′a,b,c(x̄) . 0 (mod p). Due to Hensel’s lemma, there

exists x ∈ Zp such that f̄a,b,c(x) = 0 and x ≡ x̄ (mod p). Since x̄ . 0 (mod p), we have that x ∈ Z∗p.
Case 10(ii): Assume that |δ1|p < |a|2p = |b|2p = |c|2p. It means that |ψ|p < 1. We want to show that the

cubic equation (2) is solvable in Z∗p if and only if there exists
√

∆. We can rewrite the cubic equation

(2) as z3 + Az − B = 0 where z = pkx + a∗
3 , A =

3pkb∗−(a∗)2

3 and B =
−2(a∗)3+9pka∗b∗−27p2kc∗

27 . It is clear that
|A|p = |3pkb∗ − (a∗)2

|p = 1 and |B|p = | − 2(a∗)3 + 9pka∗b∗ − 27p2kc∗|p = 1.

Let A = A0 + A1p + · · · , B = B0 + B1p + · · · and D = −4A
3
− 27B

2
where A0, B0 ∈ {1, 2, · · · , p− 1}, Ai, Bi ∈

{0, 1, · · · , p − 1}, i ≥ 1.
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We have that 3A0 ≡ −a2
0 (mod p), 27B0 ≡ −2a3

0 (mod p) and 27D0 ≡ −4(3A0)3
− (27B0)2

≡ 0 (mod p). Then
(see [20, 34]) the depressed cubic equation z3 + Az − B = 0 is always solvable and all its solutions belong to
Z∗p. Moreover, we have that (see [20, 34])

A) If D = 0, then z1 = − 3B
A
, z2 = z3 = 3B

2A
are solutions of the cubic equation z3 + Az − B = 0.

B) Let 0 < |D|p < 1.

a) If there exists
√

D, then the cubic equation z3 + Az − B = 0 has three solutions z1, z2, z3 such that
z1 ≡ −

3B
A

(mod p) and z2 ≡ z3 ≡
3B
2A

(mod p).

b) If there does not exists
√

D, then the cubic equation z3 + Az − B = 0 has a unique solutions z1

such that z1 ≡ −
3B
A

(mod p).

Since D = p2kψ
[
(a∗)2

− 4pkb∗)
]

+ 2p3ka∗b∗c∗ − 27p4k(c∗)2 and |ψ|p < 1, we then have that |D|p ≤ p−(2k+1). If

|D|p = p−L, then L ≥ 2k + 1.

Suppose that there exists
√

D. Then z1 ≡ −
3B
A

(mod p), 2Az2 − 3B ≡ plt2
1 (mod pl+1) and 2Az3 − 3B ≡

plt2
2 (mod pl+1) where l = L

2 . We want to show that
∣∣∣z1 −

a∗
3

∣∣∣
p = 1 and

∣∣∣z2 −
a∗
3

∣∣∣
p =

∣∣∣z3 −
a∗
3

∣∣∣
p = 1

pk . Indeed, we

get that 3z1 − a∗ ≡ 3(a∗)3 + 12pka∗b∗ + 27p2kc∗ ≡ 3(a∗)3 . 0 (mod p). On the other hand, since L is even and
L ≥ 2k+1, we get that 2l = L ≥ 2k+2 or l ≥ k+1.We then have that 6Az2−2Aa∗ ≡ 3(2Az2−3B)− (2Aa∗−9B) ≡
−(2Aa∗ − 9B) ≡ −9p2kc∗ + pka∗b∗ ≡ pka∗b∗ . 0 (mod pk+1). It means that

∣∣∣z2 −
a∗
3

∣∣∣
p = 1

pk . Similarly, we can obtain

that
∣∣∣z3 −

a∗
3

∣∣∣
p = 1

pk .

Hence, we have that |x1|p =
∣∣∣∣ 1

pk

(
z1 −

a∗
3

)∣∣∣∣
p

= pk > 1 and |x2|p = |x3|p =
∣∣∣∣ 1

pk

(
z2 −

a∗
3

)∣∣∣∣
p

= 1.

If there does not exist
√

D, then z1 ≡ −
3B
A

(mod p) and
∣∣∣z1 −

a
3

∣∣∣
p = 1 or equivalently |x1|p = pk.

Therefore, the cubic equation (2) is solvable in Z∗p if and only if there exists
√

D. Since D = p6k∆, there

exists
√

D if and only if so does
√

∆. Consequently, the cubic equation (2) is solvable in Z∗p if and only if

there exists
√

∆.
Case C.11: Let |a|p = |b|p = |c|p = 1. We want to show that the cubic equation (2) is solvable in Z∗p if and

only if (A,B) ∈ Φ.Let us consider the depressed cubic equation w3+Aw = B. It is clear that |A|p = |3b−a2
|p ≤ 1

and |B|p = | − 2a3 + 9ab − 27c|p ≤ 1. Then, the last depressed cubic equation is solvable in Qp if and only if
(A,B) ∈ Φ.

We know (see [20, 34]) that if |A|3p < |B|2p < 1 or |A|3p = |B|2p < 1 or |B|2p < |A|3p < 1 with (A,B) ∈ Φ, then all
solutions of the depressed cubic equation w3 + Aw = B in Zp \Z∗p. In this case, since x = w − a

3 , it implies
that all solutions of the cubic equation (2) belong to Z∗p.

Let |A|p < |B|p = 1, (A,B) ∈ Φ. We want to show that |x|p =
∣∣∣w − a

3

∣∣∣
p = 1 or 3w . a (mod p) for any solution

x. Suppose the contrary, i.e., 3w ≡ a (mod p). One can get that (3w)3 + 3(3b − a2)(3w) − (−2a3 + 9ab − 27c) ≡
a3 + 2a3

− 9ab + 27c ≡ 3a(a2
− 3b) + 27c ≡ 27c ≡ 0 (mod p). However, it contradicts to c . 0 (mod p). Therefore,

all solutions of the cubic equation (2) belong to Z∗p.
Let |B|p < |A|p = 1, (A,B) ∈ Φ. We want to show that |x|p =

∣∣∣w − a
3

∣∣∣
p = 1 or 3w . a (mod p) for any solution

x. Suppose the contrary, i.e., 3w ≡ a (mod p). Similarly, one can check that (3w)3 + 3(3b − a2)(3w) − (−2a3 +
9ab − 27c) ≡ −2a3 + 9ab ≡ −2a3 + 9ab − 27c + 27c ≡ 27c ≡ 0 (mod p). However, it contradicts to c . 0 (mod p).
It means that all solutions of the cubic equation (2) belong to Z∗p.

Let |A|p = |B|p = 1, (A,B) ∈ Φ. In this case, the similar calculation also shows that |x|p =
∣∣∣w − a

3

∣∣∣
p = 1. It

means that all solutions of the cubic equation (2) belong to Z∗p. Therefore the cubic equation (2) is solvable
over Z∗p if and only if (A,B) ∈ Φ. This completes the proof.
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3.2. The solvability criterion over Qp

We are aiming to describe the solvability domain Φ of the general cubic equation (2) in terms of a, b, c ∈ Qp

except one case |a|p =
√
|b|p = 3

√
|c|p in which we have to stick on A,B ∈ Qp.

Theorem 3.2. Let p > 3 be a prime. Then the general cubic equation (2) is solvable over Qp if and only if one of the
following conditions holds

A. 1.
√
|b|p < |a|p, 3

√
|c|p < |a|p;

2. |a|p <
√
|b|p, 3

√
|c|p <

√
|b|p;

3. |a|p < 3
√
|c|p,

√
|b|p < 3

√
|c|p,

3
√
−c − ∃.

B. 4. |a|p <
√
|b|p = 3

√
|c|p, D0u2

p−2 . 9b2
0 (mod p);

5.
√
|b|p < |a|p = 3

√
|c|p,

(
|δ3|p < |a|3p = |c|p

)
∨

(
|δ3|p = |a|3p = |c|p, D0u2

p−2 . a4
0 (mod p)

)
;

6. 3
√
|c|p < |a|p =

√
|b|p.

C. 7. |a|p =
√
|b|p = 3

√
|c|p, (A,B) ∈ Φ.

Proof. Let x ∈ Qp be a nonzero p-adic number and |x|p = pk where k ∈ Z. Due to Corollary 2.1, x is a solution
of the cubic equation (2) in Qp if and only if y = pkx is a solution of the cubic equation (4).

Let ∆1 = B2
k − 4AkCk, ∆2 = A2

k − 4Bk, ∆3 = −2A3
k − 27Ck, Ã =

3Bk−A2
k

3 , B̃ =
−2A3

k+9AkBk−27Ck

27 , and ∆k =

A2
kB2

k − 4A3
kCk − 4B3

k − 27C2
k + 18AkBkCk = −4Ã3

− 27B̃2. It is clear that A∗k = a∗, B∗k = b∗ and C∗k = c∗ where
|Ak|p = p−k

|a|p, |Bk|p = p−2k
|b|p and |Ck|p = p−3k

|c|p. We set D̃0 ≡ −4Ã3
0 − 27B̃2

0 (mod p) and ũn+3 = B̃0ũn − Ã0ũn+1

with ũ1 = 0, ũ2 = −Ã0, and ũ3 = B̃0 for n ≥ 1. We know that, due to Theorem 3.1, the cubic equation (4) is
solvable over Z∗p if and only if either one of the following conditions holds true

1. I. |Ak|p = 1, |Bk|p < 1, |Ck|p < 1;

II. |Bk|p = 1, |Ak|p < 1, |Ck|p < 1 and
√
−Bk − ∃;

III. |Ck|p = 1, |Ak|p < 1, |Bk|p < 1 and 3√
−Ck − ∃.

2. I. |Ak|p < |Bk|p = |Ck|p, |Bk|p = |Ck|p > 1,

II. |Bk|p < |Ak|p = |Ck|p, |Ak|p = |Ck|p > 1,
√
−AkCk − ∃,

III. |Ck|p < |Ak|p = |Bk|p, |Ak|p = |Bk|p > 1,

IV. |Ak|p < |Bk|p = |Ck|p = 1, D̃0ũ2
p−2 . 9b2

0 (mod p),

V. |Bk|p < |Ak|p = |Ck|p = 1, and

(i) |∆3|p < 1, or
(ii) |∆3|p = 1, D̃0ũ2

p−2 . a4
0 (mod p)

VI. |Ck|p < |Ak|p = |Bk|p = 1, and

(i) |∆2|p = 1,
√

∆2 − ∃, or

(ii) |∆2|p < 1,
√

∆k − ∃

3. I. |Ak|p = |Bk|p = |Ck|p > 1 and

(i) |∆1|p = |Ak|
2
p = |Bk|

2
p = |Ck|

2
p,
√

∆1 − ∃ or

(ii) |∆1|p < |Ak|
2
p = |Bk|

2
p = |Ck|

2
p,
√

∆k − ∃

II. |Ak|p = |Bk|p = |Ck|p = 1, (A,B) ∈ Φ.
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We want to describe all p-adic numbers a, b, c ∈ Qp for which at least one of the conditions given above
is satisfied for some k ∈ Z.

Firstly, we look at the condition 2.I: |Ak|p < |Bk|p = |Ck|p, |Bk|p = |Ck|p > 1. Since |Bk|p = |Ck|p, we obtain

that k = logp
|c|p
|b|p

. It follows from |Bk|p > 1 and |Ck|p > 1 that |c|2p < |b|3p. Moreover, from |Ak|p < |Bk|p and

|Ak|p < |Ck|p we get that |a|p|c|p < |b|2p. Therefore, if 3
√
|c|p <

√
|b|p and |a|p|c|p < |b|2p, then the condition 2.I is

satisfied with k = logp
|c|p
|b|p
∈ Z. It is clear that G = G1 ∪G2 ∪G3 where

G =
{
(a, b, c) ∈ Q3

p : 3
√
|c|p <

√
|b|p, |a|p|c|p < |b|2p

}
,

G1 =
{
(a, b, c) ∈ Q3

p : 3
√
|c|p <

√
|b|p, |a|p|c|p < |b|2p,

√
|b|p < |a|p

}
,

G2 =
{
(a, b, c) ∈ Q3

p : 3
√
|c|p <

√
|b|p, |a|p|c|p < |b|2p,

√
|b|p = |a|p

}
=

{
(a, b, c) ∈ Q3

p : 3
√
|c|p <

√
|b|p = |a|p

}
,

G3 =
{
(a, b, c) ∈ Q3

p : 3
√
|c|p <

√
|b|p, |a|p|c|p < |b|2p,

√
|b|p > |a|p

}
=

{
(a, b, c) ∈ Q3

p : 3
√
|c|p <

√
|b|p, |a|p <

√
|b|p

}
.

Case A.1
Condition 1.I: |Ak|p = 1, |Bk|p < 1, |Ck|p < 1. From |Ak|p = 1, we obtain that k = logp |a|p. It follows from

|Bk|p < 1 and |Ck|p < 1 that |b|p < |a|2p and |c|p < |a|3p respectively. Therefore, if
√
|b|p < |a|p and 3

√
|c|p < |a|p, then

the condition 1.I is satisfied with k = logp |a|p ∈ Z. Let

H =
{
(a, b, c) ∈ Q3

p :
√
|b|p < |a|p, 3

√
|c|p < |a|p

}
.

Condition 2.II: |Bk|p < |Ak|p = |Ck|p, |Ak|p = |Ck|p > 1 and
√
−AkCk − ∃. From |Ak|p = |Ck|p, we obtain

that 2k = logp
|c|p
|a|p

. It follows from |Ak|p > 1 and |Ck|p > 1 that |c|p < |a|3p. Moreover, from |Bk|p < |Ak|p and

|Bk|p < |Ck|p we get that |b|2p < |a|p|c|p. It is clear that the existence of
√
−AkCk is equivalent to the existence

of
√
−ac. Therefore, if 3

√
|c|p < |a|p, |a|p|c|p > |b|2p and

√
−ac − ∃, then the condition 2.II is satisfied with

k = 1
2 logp

|c|p
|a|p
∈ Z. Let

H1 =
{
(a, b, c) ∈ Q3

p : 3
√
|c|p < |a|p, |a|p|c|p > |b|2p,

√
−ac − ∃

}
.

Condition 2.III: |Ck|p < |Ak|p = |Bk|p, |Ak|p = |Bk|p > 1. From |Ak|p = |Bk|p, we obtain that k = logp
|b|p
|a|p

.
It follows from |Ak|p > 1 and |Bk|p > 1 that |b|p < |a|2p. Moreover, from |Ck|p < |Ak|p and |Ck|p < |Bk|p we
get that |a|p|c|p < |b|2p. Therefore, if

√
|b|p < |a|p and |a|p|c|p < |b|2p, then the condition 2.III is satisfied with

k = logp
|b|p
|a|p
∈ Z. Let

H2 =
{
(a, b, c) ∈ Q3

p :
√
|b|p < |a|p, |a|p|c|p < |b|2p

}
.

Condition 3.I: |Ak|p = |Bk|p = |Ck|p > 1 and (i) |∆1|p < |Ak|
2
p = |Bk|

2
p = |Ck|

2
p,
√

∆k − ∃ or (ii) |∆1|p = |Ak|
2
p =

|Bk|
2
p = |Ck|

2
p,
√

∆1 − ∃. From |Ak|p = |Bk|k, |Ak|p = |Ck|p and |Bk|p = |Ck|p, we obtain that k = logp
|b|p
|a|p
, 2k =

logp
|c|p
|a|p

and k = logp
|c|p
|b|p

respectively. It means that |b|2p = |a|p|c|p. Moreover, from |Ak|p > 1, |Bk|p > 1 and
|Ck|p > 1, we have that |b|p < |a|2p, |c|p < |a|3p and |c|2p < |b|3p. In addition, from |∆1|p ≤ 1, we obtain that

|δ1|p ≤ |b|2p = |a|p|c|p. We can check that the existence of
√

∆k and
√

∆1 are equivalent to the existence of
√

∆
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and
√
δ1 respectively. Therefore, if |b|2p = |a|p|c|p, 3

√
|c|p <

√
|b|p < |a|p and (i) |δ1|p < |b|2p = |a|p|c|p,

√
∆−∃ or (ii)

|δ1|p = |b|2p = |a|p|c|p,
√
δ1 − ∃, then the condition 3.I is satisfied with k = logp

|b|p
|a|p

= 1
2 logp

|c|p
|a|p

= logp
|c|p
|b|p
∈ Z.

Let

H3 =
{
(a, b, c) ∈ Q3

p : |b|2p = |a|p|c|p, 3
√
|c|p <

√
|b|p < |a|p, |δ1|p < |b|2p,

√

∆ − ∃
}
,

H4 =
{
(a, b, c) ∈ Q3

p : |b|2p = |a|p|c|p, 3
√
|c|p <

√
|b|p < |a|p, |δ1|p = |b|2p,

√
δ1 − ∃

}
.

We want to show that H1 ⊂ H. Since |c|p < |a|3p, we can get that |b|2p < |a|p|c|p < |a|4p. It means that√
|b|p < |a|p. Therefore, we have that H1 ⊂ H. Next, we want to show that H2 = G1 ⊂ H. It is clear that

G1 ⊂ H2 and G1 ⊂ H. From
√
|b|p < |a|p and |a|p|c|p < |b|2p we get that |a|p|c|p < |b|2p < |a|4p or 3

√
|c|p < |a|p

and we have that |c|2p < |a|3p|c|p < |a|2p|b|2p or |c|p < |a|p|b|p. Moreover, we obtain that |c|2p < |a|p|b|p|c|p < |b|3p or
3
√
|c|p <

√
|b|p. Hence, G1 = H2. Lastly, it is clear that H3 ⊂ H and H4 ⊂ H. Consequently, the set H contains

the sets H1,H2 = G,H3,H4 and it is nothing but the condition A.1.
Case A.2:

Condition 1.II: |Bk|p = 1, |Ak|p < 1, |Ck|p < 1 and
√
−Bk − ∃. From |Bk|p = 1, we obtain that 2k = logp |b|p.

It follows from |Ak|p < 1 and |Ck|p < 1 that |a|2p < |b|p and |c|2p < |b|3p respectively. It is clear that the existence

of
√
−Bk is equivalent to the existence of

√
−b. Therefore, if |a|p <

√
|b|p, 3

√
|c|p <

√
|b|p and

√
−b−∃, then the

condition 1.II is satisfied with k = 1
2 logp |b|p ∈ Z. Let

I1 =
{
(a, b, c) : |a|p <

√
|b|p, 3

√
|c|p <

√
|b|p,

√

−b − ∃
}
.

It is clear that I1 ⊂ G3. Moreover, the set G3 is nothing but the condition A.2.
Case A.3:

Condition 1.III: |Ck|p = 1, |Ak|p < 1, |Bk|p < 1 and 3√
−Ck − ∃. From |Ck|p = 1, we obtain that 3k = logp |b|p.

It follows from |Ak|p < 1 and |Bk|p < 1 that |a|3p < |c|p and |b|3p < |c|2p respectively. It is clear that the existence
of 3√
−Ck is equivalent to the existence of 3

√
−c. Therefore, if |a|p < 3

√
|c|p,

√
|b|p < 3

√
|c|p and 3

√
−c, then the

condition 1.III is satisfied with k = 1
3 logp |c|p ∈ Z.

Case B.4:
Condition 2.IV: |Ak|p < |Bk|p = |Ck|p = 1, D̃0ũ2

p−2 . 9Ã2
0 (mod p). From |Bk|p = 1 and |Ck|p = 1, we obtain

that 2k = logp |b|p and 3k = logp |c|p. It means that |b|3p = |c|2p. Moreover, it follows from |Ak|p < 1, |Ak|p < |Bk|p

and |Ak|p < |Ck|p that |a|2p < |b|p and |a|3p < |c|p. We can check that D̃0ũ2
p−2 . 9Ã2

0 (mod p) is equivalent to

D0u2
p−2 . 9b2

0 (mod p). Therefore, if |a|p <
√
|b|p = 3

√
|c|p and D0u2

p−2 . 9b2
0 (mod p), then the condition 2.IV

is satisfied with k = 1
2 logp |b|p = 1

3 logp |c|p ∈ Z.
Case B.5:

Condition 2.V: |Bk|p < |Ak|p = |Ck|p = 1 and (i) |∆3|p < 1 or (ii) |∆3|p = 1, D̃0ũ2
p−2 . 9Ã2

0 (mod p). From
|Ak|p = 1 and |Ck|p = 1, we obtain that k = logp |a|p and 3k = logp |c|p. It means that |a|3p = |c|p. Moreover, from
|Bk|p < 1, |Bk|p < |Ak|p and |Bk|p < |Ck|p we get that |b|p < |a|2p and |b|3p < |c|2p. Furthermore, from |∆3|p ≤ 1 we
obtain that |δ3|p ≤ |a|3p = |c|p. We can check that D̃0ũ2

p−2 . 9Ã2
0 (mod p) is equivalent to D0u2

p−2 . a4
0 (mod p).

Therefore, if
√
|b|p < |a|p = 3

√
|c|p and (i) |δ3|p < |a|3p = |c|p or (ii) |δ3|p = |a|3p = |c|p, D0u2

p−2 . a4
0 (mod p), then

the condition 2.V is satisfied with k = logp |a|p = 1
3 logp |c|p ∈ Z.

Case B.6:
Condition 2.VI: |Ck|p < |Ak|p = |Bk|p = 1 and (i) |∆2|p < 1,

√
∆k − ∃ or (ii) |∆2|p = 1,

√
∆2 − ∃. From

|Ak|p = 1 and |Bk|p = 1, we obtain that k = logp |a|p and 2k = logp |b|p. It means that |a|2p = |b|p. Moreover,
from |Ck|p < 1, |Ck|p < |Ak|p and |Ck|p < |Bk|p we have that |c|p < |a|3p and |c|2p < |b|3p. Meanwhile, from |∆2|p ≤ 1
we obtain that |δ3|p ≤ |a|2p = |b|p. We can check that the existence of

√
∆k and

√
∆2 are equivalent to the
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existence of
√

∆ and
√
δ2 respectively. Therefore, if 3

√
|c|p < |a|p =

√
|b|p and (i) |δ2|p < |a|2p = |b|p,

√
∆ − ∃ or

(ii) |δ2|p = |a|2p = |b|p,
√
δ2 − ∃, then the condition 2.VI is satisfied with k = logp |a|p = 1

2 logp |b|p ∈ Z. Let

I2 =
{
(a, b, c) : 3

√
|c|p < |a|p =

√
|b|p, |δ2|p < |a|2p = |b|p,

√

∆ − ∃
}
,

I3 =
{
(a, b, c) : 3

√
|c|p < |a|p =

√
|b|p, |δ2|p = |a|2p = |b|p,

√
δ2 − ∃

}
.

It is clear that I2 ⊂ G2 and I3 ⊂ G2. Consequently, the set G2 contains the sets I1, I2 and it is nothing but the
condition B.6.
Case C.7:

Condition 3.II: |Ak|p = |Bk|p = |Ck|p = 1 and (Ã, B̃) ∈ Φ. From |Ak|p = 1, |Bk|p = 1 and |Ck|p = 1, we obtain
that k = logp |a|p, 2k = logp |b|p and 3k = logp |c|p respectively. It means that |b|p = |a|2p, |c|p = |a|3p and |c|2p = |b|3p.

We can check that (Ã, B̃) ∈ Φ is equivalent to (A,B) ∈ Φ. Therefore, if 3
√
|c|p =

√
|b|p = |a|p and (A,B) ∈ Φ, then

the condition 3.II is satisfied with k = logp |a|p = 1
2 logp |b|p = 1

3 logp |c|p ∈ Z.
We have considered all the conditions which completes the proofs.

3.3. Descriptions of p-adic absolute values of roots
The following theorem describes the p-adic absolute values of roots of the general cubic equation (2)

without knowing their exact values. Its proof follows from Theorem 3.2.

Theorem 3.3 (Descriptions of roots of the general cubic equation). Let p > 3 be a prime.

1. Let
√
|b|p < |a|p, 3

√
|c|p < |a|p. Then the cubic equation (2) always has a root x1 in which |x1|p = |a|p. Moreover,

(i) If |a|p|c|p < |b|2p, then it has two more roots x2 and x3 in which |x2|p =
|b|p
|a|p

and |x3|p =
|c|p
|b|p
. In this case, we

have |x3|p < |x2|p < |x1|p;

(ii) If
(
|a|p|c|p = |b|2p > |δ1|p,

√
∆ − ∃

)
∨

(
|a|p|c|p = |b|2p = |δ1|p,

√
δ1 − ∃

)
, then it has two more roots x2 and

x3 in which |x2|p = |x3|p =
|b|p
|a|p

=
|c|p
|b|p

=
√
|c|p
|a|p
. In this case, we have |x3|p = |x2|p < |x1|p;

(iii) If |a|p|c|p > |b|2p,
√
−ac − ∃, then it has two more roots x2 and x3 in which |x2|p = |x3|p =

√
|c|p
|a|p
. In this

case, we have |x3|p = |x2|p < |x1|p.

2. Let |a|p <
√
|b|p, 3

√
|c|p <

√
|b|p. Then the cubic equation (2) always has a root x1 in which |x1|p =

|c|p
|b|p
.

Moreover, if
√
−b−∃, then it has two more roots x2 and x3 in which |x2|p = |x3|p =

√
|b|p. In this case, we have

|x1|p < |x2|p = |x3|p.

3. Let |a|p < 3
√
|c|p,

√
|b|p < 3

√
|c|p,

3
√
−c−∃.Then the cubic equation (2) always has a root x1 in which |x1|p = 3

√
|c|p.

Moreover, if p ≡ 1 (mod 3), then it has two more roots x2 and x3 in which |x2|p = |x3|p = 3
√
|c|p. In this case,

we have |x1|p = |x2|p = |x3|p.

4. Let |a|p <
√
|b|p = 3

√
|c|p, D0u2

p−2 . 9b2
0 (mod p). Then the cubic equation (2) always has a root x1 in which

|x1|p =
√
|b|p = 3

√
|c|p. Moreover, if

(
|D|p = 1, up−2 ≡ 0 (mod p)

)
∨

(
0 ≤ |D|p < 1,

√
D − ∃

)
, then it has two

more roots x2 and x3 in which |x2|p = |x3|p =
√
|b|p = 3

√
|c|p. In this case, we have |x1|p = |x2|p = |x3|p.

5. Let
√
|b|p < |a|p = 3

√
|c|p,

(
|δ3|p < |a|3p = |c|p

)
∨

(
|δ3|p = |a|3p = |c|p,D0u2

p−2 . a4
0(mod p)

)
. Then the cubic equation

(2) always has a root x1 in which |x1|p = |a|p = 3
√
|c|p. If |δ3|p < |a|3p = |c|p with p ≡ ±1 (mod 12) or

|δ3|p = |a|3p = |c|p with
(
|D|p = 1, up−2 ≡ 0 (mod p)

)
∨

(
0 ≤ |D|p < 1,

√
D − ∃

)
, then it has two more roots x2

and x3 in which |x2|p = |x3|p = |a|p = 3
√
|c|p. In this case, we have |x1|p = |x2|p = |x3|p.
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6. Let 3
√
|c|p < |a|p =

√
|b|p. Then the cubic equation (2) always has a root x1 in which |x1|p =

|c|p
|b|p
. Moreover,

if
(
|δ1|p < |b|p = |a|2p,

√
∆ − ∃

)
∨

(
|δ1|p = |b|p = |a|2p,

√
δ1 − ∃

)
, then it has two more roots x2 and x3 in which

|x2|p = |x3|p = |a|p =
√
|b|p. In this case, we have |x1|p < |x2|p = |x3|p.

7. Let |a|p =
√
|b|p = 3

√
|c|p and (A,B) ∈ Φ. Then the cubic equation (2) always has a root x1 in which |x1|p = |a|p =√

|b|p = 3
√
|c|p. Moreover, if one has that

(i)
(
|B|2p < |A|3p,

√
−A − ∃

)
or

(ii)
(
|A|3p = |B|2p,

(
|D|p = 1, up−2 ≡ 0 (mod p)

)
∨

(
0 ≤ |D|p < 1,

√
D − ∃

))
or

(iii)
(
|A|3p < |B|2p,

3√B − ∃, p ≡ 1 (mod 3)
)
,

then it has two more roots x2 and x3 in which |x2|p = |x3|p = |a|p =
√
|b|p = 3

√
|c|p. In this case, we have

|x1|p = |x2|p = |x3|p.

Theorem 3.3 takes the following form for the depressed cubic equation

x3 + ax = b. (8)

We set D = −4(a|a|p)3
− 27(b|b|p)2, D0 ≡ −4a3

0 − 27b2
0 (mod p) and un+3 = b0un − a0un+1 with u1 = 0, u2 = −a0,

and u3 = b0 for n ≥ 1.

Theorem 3.4 (Descriptions of roots of the depressed cubic equation). Let p > 3 be a prime.

1. Let |b|2p < |a|3p. Then the cubic equation (8) always has a root x1 in which |x1|p =
|b|p
|a|p
. Moreover, if

√
−a − ∃,

then it has two more roots x2 and x3 in which |x2|p = |x3|p =
√
|a|p. In this case, we have |x1|p < |x2|p = |x3|p.

2. Let |a|3p = |b|2p and D0u2
p−2 . 9a2

0 (mod p). Then the cubic equation (8) always has a root x1 in which

|x1|p =
√
|a|p = 3

√
|b|p. Moreover, if

(
|D|p = 1, up−2 ≡ 0 (mod p)

)
∨

(
0 ≤ |D|p < 1,

√
D − ∃

)
, then it has two

more roots x2 and x3 in which |x2|p = |x3|p =
√
|a|p = 3

√
|b|p. In this case, we have |x1|p = |x2|p = |x3|p.

3. Let |a|3p < |b|2p and
3√
b − ∃. Then the cubic equation (8) always has a root x1 in which |x1|p = 3

√
|b|p. Moreover,

if p ≡ 1 (mod 3), then it has two more roots x2 and x3 in which |x2|p = |x3|p = 3
√
|b|p. In this case, we have

|x1|p = |x2|p = |x3|p.

3.4. The solvability criterion over Zp \Z∗p
Theorem 3.5. Let p > 3 be a prime. Then the cubic equation (2) is solvable over Zp \ Z∗p if and only if one of the
following conditions holds

1.
√
|b|p < |a|p, 3

√
|c|p < |a|p, and

(i) |b|2p > |a|p|c|p, |c|p < |b|p

(ii) |b|2p = |a|p|c|p,
(
|a|p < 1

)
∨

(
|a|p ≥ 1, |c|p < |b|p < |a|p, (|δ1|p < |b|2p,

√
∆ − ∃) ∨

(
|δ1|p = |b|2p,

√
δ1 − ∃

))
(iii) |b|2p < |a|p|c|p,

(
|a|p < 1

)
∨

(
|a|p ≥ 1, |c|p < |a|p,

√
−ac − ∃

)
;

2. |a|p <
√
|b|p, 3

√
|c|p <

√
|b|p, |c|p < |b|p;

3. |a|p < 3
√
|c|p,

√
|b|p < 3

√
|c|p, |c|p < 1, 3

√
−c − ∃.

4. |a|p <
√
|b|p = 3

√
|c|p < 1, D0u2

p−2 . 9b2
0 (mod p);
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5.
√
|b|p < |a|p = 3

√
|c|p < 1,

(
|δ3|p < |a|3p

)
∨

(
|δ3|p = |a|3p, D0u2

p−2 . a4
0 (mod p)

)
6. 3

√
|c|p < |a|p =

√
|b|p, |c|p < |b|p.

7. |a|p =
√
|b|p = 3

√
|c|p < 1, (A,B) ∈ Φ.

Proof. Basically, we derive all assertions from Theorem 3.3.
Case 1:

√
|b|p < |a|p, 3

√
|c|p < |a|p. For this case, we consider three subclasses

Let |b|2p > |a|p|c|p. Then we always have three solutions |x1|p = |a|p, |x2|p =
|b|p
|a|p
, and |x3|p =

|c|p
|b|p

where
|x3|p < |x2|p < |x1|p. In order to have a root in Zp \Z∗p, we should have at least x3 ∈ Zp \Z∗p. It means that
|c|p < |b|p. Therefore, if

√
|b|p < |a|p, 3

√
|c|p < |a|p, |b|2p > |a|p|c|p, and |c|p < |b|p, then the cubic equation (2) has at

least one root over Zp \Z∗p.

Let |b|2p = |a|p|c|p. In this case, if
(
|δ1|p < |b|2p,

√
∆ − ∃

)
∨

(
|δ1|p = |b|2p,

√
δ1 − ∃

)
, then the cubic equation (2)

has three roots |x1|p = logp |a|p and |x2|p = |x3|p =
|b|p
|a|p

=
|c|p
|b|p

=
√
|c|p
|a|p

where |x3|p = |x2|p < |x1|p otherwise it has a
unique root |x1|p = |a|p. Consequently, if either one of the following conditions is satisfied

1.
√
|b|p < |a|p, 3

√
|c|p < |a|p, |a|p|c|p = |b|2p, |c|p < |b|p < |a|p, |a|p ≥ 1 and

(i) |δ1|p < |b|2p = |a|p|c|p,
√

∆ − ∃ or

(ii) |δ1|p = |b|2p = |a|p|c|p,
√
δ1 − ∃

2.
√
|b|p < |a|p, 3

√
|c|p < |a|p, |b|2p = |a|p|c|p and |a|p < 1,

then the cubic equation (2) has at least one root over Zp \Z∗p.

Let |b|2p < |a|p|c|p. If
√
−ac − ∃, then the cubic equation (2) has three roots |x1|p = |a|p, |x2|p = |x3|p =

√
|c|p
|a|p

where |x3|p = |x2|p < |x1|p otherwise it has a unique root |x1|p = |a|p. Therefore, if either one of the following
two conditions is satisfied

1.
√
|b|p < |a|p, 3

√
|c|p < |a|p, |b|2p < |a|p|c|p, |a|p ≥ 1, |c|p < |a|p and

√
−ac − ∃ or

2.
√
|b|p < |a|p, 3

√
|c|p < |a|p, |b|2p < |a|p|c|p and |a|p < 1,

then the cubic equation (2) has at least one root over Zp \Z∗p.

Case 2: |a|p <
√
|b|p and 3

√
|c|p <

√
|b|p. The cubic equation (2) always has a root x1 in which |x1|p =

|c|p
|b|p
.

Moreover, if
√
−b− ∃, then it has two more roots x2 and x3 in which |x2|p = |x3|p =

√
|b|p where |x1|p < |x2|p =

|x3|p. Therefore, if |a|p <
√
|b|p, 3

√
|c|p <

√
|b|p and |c|p < |b|p, then the cubic equation (2) has at least one root

over Zp \Z∗p.
Case 3: |a|p < 3

√
|c|p,

√
|b|p < 3

√
|c|p and 3

√
−c − ∃. The cubic equation (2) always has a root x1 in which

|x1|p = 3
√
|c|p. Moreover, if p ≡ 1 (mod 3), then it has two more roots x2 and x3 in which |x2|p = |x3|p = 3

√
|c|p

where |x1|p = |x2|p = |x3|p. Therefore, if |a|p < 3
√
|c|p,

√
|b|p < 3

√
|c|p, |c|p < 1 and 3

√
−c − ∃, then the cubic

equation (2) has at least one root over Zp \Z∗p.
Case 4: |a|p <

√
|b|p = 3

√
|c|p and D0u2

p−2 . 9b2
0 (mod p). The cubic equation (2) always has a root x1 in

which |x1|p =
√
|b|p = 3

√
|c|p. Moreover, if

(
|D|p = 1, up−2 ≡ 0 (mod p)

)
∨

(
0 ≤ |D|p < 1,

√
D − ∃

)
, then it has

two more roots x2 and x3 in which |x2|p = |x3|p =
√
|b|p = 3

√
|c|p where |x1|p = |x2|p = |x3|p. Therefore, if

|a|p <
√
|b|p = 3

√
|c|p < 1 and D0u2

p−2 . 9b2
0 (mod p), then the cubic equation (2) has at least one root over

Zp \Z∗p.
Case 5:

√
|b|p < |a|p = 3

√
|c|p and
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1. |δ3|p < |a|3p = |c|p or

2. |δ3|p = |a|3p = |c|p, D0u2
p−2 . a4

0 (mod p).

Regardless of how many roots does the cubic equation (2) have, the p-adic absolute value of its roots is
equal to |a|p = 3

√
|c|p. Therefore, if

√
|b|p < |a|p = 3

√
|c|p < 1 and

1. |δ3|p < |a|3p = |c|p or

2. |δ3|p = |a|3p = |c|p, D0u2
p−2 ≡ a4

0 (mod p)

then the cubic equation (2) has at least one root over Zp \Z∗p.

Case 6: 3
√
|c|p < |a|p =

√
|b|p. The cubic equation (2) always has a root x1 in which |x1|p =

|c|p
|b|p
. Moreover,

if |δ1|p < |b|p = |a|2p and
√

∆ − ∃ or |δ1|p = |b|p = |a|2p and
√
δ1 − ∃ then it has two more solutions x2 and x3 in

which |x2|p = |x3|p = |a|p =
√
|b|p where |x1|p < |x2|p = |x3|p. Therefore, if 3

√
|c|p < |a|p =

√
|b|p and |c|p < |b|p, then

the cubic equation (2) has at least one root over Zp \Z∗p.
Case 7: Let |a|p =

√
|b|p = 3

√
|c|p and (A,B) ∈ Φ. Regardless of how many roots does the cubic equation (2)

have, the p-adic absolute value of its roots is equal to |a|p =
√
|b|p = 3

√
|c|p. Therefore, if |a|p =

√
|b|p = 3

√
|c|p < 1

and (A,B) ∈ Φ, then the cubic equation (2) has at least one root over Zp \Z∗p. This completes the proof.

3.5. The solvability criterion over Qp \Zp

Theorem 3.6. Let p > 3 be a prime. Then the cubic equation (2) is solvable over Qp \ Zp if and only if one of the
following conditions holds

1.
√
|b|p < |a|p, 3

√
|c|p < |a|p, |a|p > 1;

2. |a|p <
√
|b|p, 3

√
|c|p <

√
|b|p,

(
|c|p > |b|p

)
∨

(
|c|p ≤ |b|p, |b|p > 1,

√
−b − ∃

)
;

3. |a|p < 3
√
|c|p,

√
|b|p < 3

√
|c|p, |c|p > 1, 3

√
−c − ∃.

4. |a|p <
√
|b|p = 3

√
|c|p,

√
|b|p = 3

√
|c|p > 1, D0u2

p−2 . 9b2
0 (mod p);

5.
√
|b|p < |a|p = 3

√
|c|p, |a|p = 3

√
|c|p > 1,

(
|δ3|p < |a|3p

)
∨

(
|δ3|p = |a|3p,D0u2

p−2 . a4
0(mod p)

)
6. 3

√
|c|p < |a|p =

√
|b|p with (|c|p > |b|p) or(
|c|p ≤ |b|p, |a|p =

√
|b|p > 1,

(
|δ2|p < |a|2p,

√

∆ − ∃
)
∨

(
|δ2|p = |a|2p,

√
δ2 − ∃

))
7. |a|p =

√
|b|p = 3

√
|c|p > 1, (A,B) ∈ Φ.

The proof is similar to the proof of Theorem 3.5
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