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Abstract. In this paper, some new characterizations of partial isometries and strongly EP elements are
investigated. Especially, we discuss the existence of the solutions of certain equations in a given set to
characterize partial isometries, strongly EP elements and so on.

1. Introduction

Let R be an associative ring with 1. An element a ∈ R is said to be group invertible if there exists a#
∈ R

such that
aa#a = a, a#aa# = a#, aa# = a#a.

The element a# is called the group inverse of a, which is uniquely determined by the above equations [1].
The set of all group invertible elements of R will be denoted by R#.
An involution ∗ : a 7−→ a∗ in a ring R is an anti-isomorphism of degree 2, that is,

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

An element a+ in R is called the Moore-Penrose inverse (MP-inverse) of a [6] when satisfying the following
conditions.

aa+a = a, a+aa+ = a+, (aa+)∗ = aa+, (a+a)∗ = a+a.

If such a+ exists, then it is unique [6]. We write R+ for the set of all MP-invertible elements of R. a is said
to be EP if a ∈ R#

∩ R+ and satisfies a# = a+ [2, 9]. We then denote by REP the set of all EP elements of R. If
a ∈ R+ and a+ = a∗, the element a is called partial isometry. Furthermore, a is called strongly EP element if
a ∈ REP is a partial isometry. Denote by RPI and RSEP the set of all partial isometry elements and strongly
EP elements [7] of R.

In [3], D. Mosić and D. S. Djordjević presented some equivalent conditions for the element a in a ring
with involution to be a partial isometry. In addition, some characterizations of EP elements in ring with
involution were given. Recently, some studies on partial isometries and EP elements have come to some
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meaningful conclusions in [5, 8, 10, 11]. Moreover, the description of EP elements by using solutions of
equations has been explored in [8, 11, 12].

Inspired by the above articles, we consider the characterization of partial isometries and strongly EP
elements from the perspective of the solutions of the certain equations in this paper. We give some new
equivalent conditions for elements in a ring with involution to be partial isometries and strongly EP
elements. Let χa = {a, a#, a+, a∗, (a#)∗, (a+)∗}. It will be proved that the equation a∗x = a+xa#a has at least one
solution in χa if and only if a ∈ RPI. Also, we show that a ∈ RSEP if and only if the equation a∗x = xa+a#a has
at least one solution in χa. By constantly revising the above equation, we get similar results in the following
equations a∗xa = xa+a, a∗xa = xa+a and a∗xy = xa+y.

2. Results

Lemma 2.1. Let a ∈ R#
∩ R+ and x ∈ R. If a+a∗x = 0, then a∗x = 0.

Proof. Pre-multiply a+a∗x = 0 by a∗(a#)∗a, we arrive at the conclusion.

The proof of [3, Thoerem 2.3] shows that: Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if a∗a+ = a+a#.

Noting that a# = a#a+a. Hence a ∈ RSEP if and only if a∗a+ = a+a#a+a. This elicits the following equation.

a∗x = a+a#xa. (1)

Theorem 2.2. Let a ∈ R#
∩R+. Then a ∈ RPI if and only if the equation (1) has at least one solution in {a, a#, a+, (a#)∗}.

Proof. ⇒ Assume that a ∈ RPI, then a+ = a∗, this infers x = a is a solution.
⇐ (1) If x = a is a solution, then a∗a = a+a#a2 = a+a. Hence a ∈ RPI by [3, Theorem 2.1].
(2) If x = a# is a solution, then a∗a# = a+a#a#a = a+a#. We can soon deduce that a ∈ RPI by post-multiplying

it by a2.
(3) If x = a+ is a solution, then a∗a+ = a+a#a+a = a+a#. By [3, Theorem 2.3], a ∈ RPI.
(4) If x = (a#)∗ is a solution, then a∗(a#)∗ = a+a#(a#)∗a. Post-multiply the equality by aa+, we have

a+a#(a#)∗a = a+a#(a#)∗a2a+.

Pre-multiply the last equality by a3, we get

a(a#)∗a = a(a#)∗a2a+.

Again, pre-multiply the above mentioned equality by a∗a∗a+, one has a∗a = a∗a2a+, so

a = (a+)∗a∗a = (a+)∗a∗a2a+ = a2a+.

It follows that a ∈ REP by [12, Corollary 2.14].
Now, we observe that

a+a = (a+a)∗ = a∗(a+)∗ = a∗(a#)∗ = a+a#(a#)∗a.

and then
a = aa+a = aa+a#(a#)∗a = a#(a#)∗a.

Thus a+a = aa+ = a#(a#)∗aa+ = a#(a#)∗ = a+(a+)∗. It is immediate that a∗ = a+aa∗ = a+(a+)∗a∗ = a+aa+ = a+,
which leads to a ∈ RPI.

Question 2.3. If x = a∗ or x = (a+)∗ is a solution of the equation (1), does a ∈ RPI ?

Modifying the equation (1), we have the equation as follows.

a∗x = a+xa#a. (2)
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Theorem 2.4. Let a ∈ R#
∩ R+. Then a ∈ RPI if and only if the equation (2) has at least one solution in χa.

Proof. ⇒ Obviously, x = a is a solution of the above equation.
⇐ (1) If x = a is a solution, then a∗a = a+aa#a = a+a. This means a ∈ RPI by [3, Theorem 2.1].
(2) If x = a# is a solution, then a∗a# = a+a#a#a = a+a#. It evident that a ∈ RPI.
(3) If x = a+ is a solution, then a∗a+ = a+a+a#a. Multiply the equality on the right by a, we have

a∗a+a = a+a+a. Taking involution of the above equality, we deduce that a+a2 = a+a(a+)∗. Pre-multiply the last
equality by a, we get a2 = a(a+)∗. Multiply the equation from the right by a∗, we get a2a∗ = a2a+. Per-multiply
the equation by a+a#, one has a∗ = a+. Hence a ∈ RPI.

(4) If x = a∗ is a solution, then a∗a∗ = a+a∗a#a, this gives a∗a∗(1 − a+a) = 0. Notice that

a∗(1 − a+a) = (a#)∗a∗a∗(1 − a+a) = 0,

which means a∗ = a∗a+a = (a+a2)∗. Apply involution to the equation, one has a = a+a2. It follows from [8,
Corollary 2.12] that a ∈ REP. We further obtain that

a∗a∗ = a+a∗a#a = a+a∗aa# = a+a∗aa+ = a+a∗,

it follows that a2 = a(a+)∗. Hence a ∈ RPI.
(5) If x = (a#)∗ is a solution, then a∗(a#)∗ = a+(a#)∗a#a. We soon get that a∗(a#)∗(1 − a+a) = 0. This gives

a∗(1 − a+a) = a∗a∗(a#)∗(1 − a+a) = 0.

It is easy to see a ∈ REP. On the other hand,

a+a = a∗(a+)∗ = a∗(a#)∗ = a+(a#)∗a#a = a+(a+)∗a+a = a+(a+)∗.

Consequently, a ∈ RPI.
(6) If x = (a+)∗ is a solution, then a∗(a+)∗ = a+(a+)∗a#a, which means that a+a = a+(a+)∗a#a. It is straightfor-

ward that
a = aa+a = aa+(a+)∗a#a = (a+)∗a#a.

Post-multiply the last equation by a, we have a2 = (a+)∗a. Hence a ∈ RPI.

Observing the proof of Theorem 2.4, we have the following corollary.

Corollary 2.5. Let a ∈ R#
∩ R+. Then a ∈ RPI if and only if a∗a+a = a+a+a.

Next, we revise the equation (2) as follows.

a∗x = xa+a#a. (3)

Theorem 2.6. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if the equation (3) has at least one solution in χa.

Proof. ⇒ Since a ∈ RSEP, x = a is a solution by [4, Theorem 2.2(iv)].
⇐ (1) If x = a is a solution, then a∗a = aa+a#a = aa#. By [3, Theorem 2.3(v)], we know a ∈ RSEP.
(2) If x = a# is a solution, then a∗a# = a#a+a#a = a#a#. It is immediate that a ∈ RSEP by [3, Theorem 2.3(xiv)].
(3) If x = a+ is a solution, then a∗a+ = a+a+a#a. Post-multiply it by a, we have

a∗a+a = a+a+a.

Hence a ∈ RPI by Corollary 2.5. In addition, we know

a∗a∗ = a∗a+ = a+a+a#a = a∗a∗a#a.

Pre-multiply it by (a#)∗, one has a∗ = a∗a#a, which implies a ∈ REP. Consequently, a ∈ RSEP.
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(4) If x = a∗ is a solution, then a∗a∗ = a∗a+a#a. Pre-multiply it by a+(a+)∗, we get

a+a∗ = a+a+a#a = a+a∗(a+)∗a#.

By Lemma 2.1, we have a∗ = a∗(a+)∗a# = a+aa#. Then we multiply the equality on the right by a and obtain
that a∗a = a+a, which shows a ∈ RPI. Now, we have a∗a∗ = a∗a+a#a = a∗a∗a#a, it follows from the proof of (3)
that a ∈ RSEP

(5) If x = (a#)∗ is a solution, then a∗(a#)∗ = (a#)∗a+a#a. Pre-multiply it by a∗a∗, one has

a∗a∗ = a∗a+a#a.

It follows from (4) that a ∈ RSEP.
(6) If x = (a+)∗ is a solution, then a∗(a+)∗ = (a+)∗a+a#a, that is a+a = (a+)∗a+a#a. Multiply it from the right

by a, one has a+a2 = (a+)∗. Hence a ∈ RSEP by [3, Theorem 2.3(xviii)].

Lemma 2.7. Let a ∈ R#
∩ R+ and x ∈ R. If a+a+x = 0, then a+x = 0.

Proof. Since a+a+x = 0, a∗a+x = a∗aa+a+x = 0. Pre-multiply the equality by (a#)∗, one has (a#)∗a∗a+x = 0.
Noting that (a#)∗a∗a+ = (a#)∗a∗a+aa+ = (a+a2a#)∗a+ = a+. Then a+x = 0.

Further, we get the following equation by post-multiplying the equation (3) by a.

a∗xa = xa+a. (4)

Theorem 2.8. Let a ∈ R#
∩ R+. Then a ∈ RPI if and only if the equation (4) has at least one solution in χa.

Proof. ⇒ x = a+ is a solution because a∗ = a+.
⇐ (1) If x = a is a solution, then a∗a2 = aa+a = a. Thus, we deduce that a ∈ RPI by [3, Theorem 2.3(xix)].
(2) If x = a# is a solution, then a∗a#a = a#a+a = a#. Hence a ∈ RPI from [3, Theorem 2.3].
(3) If x = a+ is a solution, then a∗a+a = a+a+a. It follows from Corollary 2.5 that a ∈ RPI.
(4) If x = a∗ is a solution, then a∗a∗a = a∗a+a. Pre-multiply the equation by a+(a+)∗, one has a+a∗a = a+a+a,

it follows
a+a∗ = a+a∗aa+ = a+a+aa+ = a+a+.

Post-multiply the last equality by (a+)∗, one has a+a+a = a+a+(a+)∗. By Lemma 2.7, we have a+a = a+(a+)∗, it
follows that a∗ = a+aa∗ = a+(a+)∗a∗ = a+. Thus a ∈ RPI.

(5) If x = (a#)∗ is a solution, then a∗(a#)∗a = (a#)∗a+a. Multiply it by a∗a∗ from the left, we obtain

a∗a∗a = a∗a+a.

From the proof of (4), a ∈ RPI.
(6) If x = (a+)∗ is a solution, then a∗(a+)∗a = (a+)∗a+a. That is a+a2 = (a+)∗, this gives a2 = aa+a2 = a(a+)∗,

which implies a ∈ RPI.

From the proof of (4) in Theorem 2.8, we have the following corollary.

Corollary 2.9. Let a ∈ R#
∩ R+. Then the following conditions are equivalent:

1) a ∈ RPI;
2) a+a∗ = a+a+;
3) a∗a+ = a+a+.

Naturally, by observing the equation (1), equation (2) and equation (3), we come up with the following
equation.

a∗x = a+a#ax. (5)

Considering whether a is a partial isometry in relation to the solution of the equation (5) leads to the
following problem.



S. Zhao et al. / Filomat 35:4 (2021), 1087–1093 1091

Question 2.10. Let a ∈ R#
∩ R+. If a∗a+a = a+a#a, does a ∈ RPI ?

Lemma 2.11. Let a ∈ R#
∩ R+. If a∗a+a+ = a+a+a+, then a ∈ RPI.

Proof. Since a∗a+a+ = a+a+a+, we get a∗a+a+a = a+a+a+a. Applying the involution on the equality, we have

a+a(a+)∗a = a+a(a+)∗(a+)∗.

Pre-multiply the last equality by a, we have

a(a+)∗(a − (a+)∗) = 0.

Noting that (a+)∗ = aa+(a+)∗, then a2a+(a+)∗(a − (a+)∗) = 0. Multiply it by a# on the left, one has

(a+)∗(a − (a+)∗) = 0.

Hence a∗a+ = a+a+. By Corollary 2.9, a ∈ RPI.

The proof of Lemma 2.11 infers the following corollary.

Corollary 2.12. Let a ∈ R#
∩ R+. If a(a+)∗x = 0, then (a+)∗x = 0.

Lemma 2.13. Let a ∈ R#
∩ R+. If a∗a∗a+ = a∗a+a+, then a ∈ RPI.

Proof. Pre-multiply the equality a∗a∗a+ = a∗a+a+ by (a+)∗, we have

aa+a∗a+ = aa+a+a+,

it follows that a+a∗a+ = a+a+a+. So a+a∗a+a = a+a+a+a. Applying the involution on the last equality, one has

a+a2(a+)∗ = a+a(a+)∗(a+)∗ = a+a(a+)∗a+a(a+)∗.

Multiply it on the right by a∗a#a, we have a+a2 = a+a(a+)∗. Therefore a2 = a(a+)∗, which implies a ∈ RPI.

The proof of Lemma 2.13 implies the following corollary.

Corollary 2.14. Let a ∈ R#
∩ R+. If xa(a+)∗ = 0, then xa = 0.

Lemma 2.15. Let a ∈ R#
∩ R+. If a3 = a(a+)∗a, then a ∈ RPI.

Proof. Since
a3 = a(a+)∗a = a(aa+(a+)∗a+a)a = a2a+(a+)∗a+a2,

we know that
a = a#a3a# = a#a2a+(a+)∗a+a2a# = aa+(a+)∗a+a = (a+)∗.

Then it is obvious that a ∈ RPI.

Theorem 2.16. Let a ∈ R#
∩ R+. Then a ∈ RPI if and only if the equation a∗xy = xa+y has at least one solution in

χ2
a = {(x, y)|x, y ∈ χa}.

Proof. ⇒ If a ∈ RPI, then a∗ = a+, this implies
{

x = a∗

y = a is a solution.

⇐ (1) If y = a, then a∗xa = xa+a. We know from Theorem 2.8 that a ∈ RPI.
(2) If y = a#, then a∗xa# = xa+a#. Post-multiply the equation by a2, one gets a∗xa = xa+a. It is immediate

from Theorem 2.8 that a ∈ RPI.
(3) If y = a+, then we have the following equation

a∗xa+ = xa+a+. (6)
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(i) If x = a, then a∗aa+ = aa+a+, that is a∗ = aa+a+. This clearly forces

(1 − aa+)a∗ = (1 − aa+)aa+a+ = 0,

it follows a = a2a+ which yields a ∈ REP. Thus a∗ = aa+a+ = a+. Consequently, a ∈ RPI.
(ii) If x = a#, then a∗a#a+ = a#a+a+. It is clear that

(1 − aa+)a∗a#a+ = (1 − aa+)a#a+a+ = 0.

Multiply the equality on the right by a3a+, we get (1 − aa+)a∗ = 0. This gives a ∈ REP. Hence, we obtain that

a∗ = a∗aa+ = a∗a+a = a∗a#a+a2 = a#a+a+a2 = a#a+a = a# = a+,

which proves a ∈ RPI.
(iii) If x = a+, then a∗a+a+ = a+a+a+. By Lemma 2.11, a ∈ RPI.
(iv) If x = a∗, then a∗a∗a+ = a∗a+a+. By Lemma 2.13, we know that a ∈ RPI.
(v) If x = (a#)∗, then a∗(a#)∗a+ = (a#)∗a+a+. Post-multiply the equality by a and applying the involution,

one has
a+aa#a = a+a(a+)∗a#,

that is, a+a = a+a(a+)∗a#. We find out that

a = aa+a = aa+a(a+)∗a# = a(a+)∗a#.

Then we know a(a+)∗ = a(a+)∗a#(a+)∗. It is immediate from Corollary 2.12 that

(a+)∗ = (a+)∗a#(a+)∗.

Taking the involution of the equality, we get a+ = a+(a#)∗a+. Hence a = aa+a = aa+(a#)∗a+a. Applying the
involution of the equality, one has

a∗ = a+aa#aa+ = a+aa+ = a+.

Consequently, a ∈ RPI.
(vi) If x = (a+)∗, then a∗(a+)∗a+ = (a+)∗a+a+, that is a+ = (a+)∗a+a+. This forces that a+a = (a+)∗a+a+a.

Applying the involution of the equality, we obtain that

a+a = a+a(a+)∗a+.

Pre-multiply it by a and then we know a = a(a+)∗a+. As a result, a2 = a(a+)∗a+a = a(a+)∗, which indicates
a ∈ RPI.

(4) If y = a∗, then we have the following equation.

a∗xa∗ = xa+a∗. (7)

(i) If x = a, then a∗aa∗ = aa+a∗. Applying the involution on the equality, we have aa∗a = a2a+. Observe
that aa∗a(1 − aa+) = a2a+(1 − aa+) = 0. Then accordingly we know a∗a(1 − aa+) = 0, which gives a ∈ REP.
Moreover, aa∗a = a2a+ = a. This means a ∈ RPI.

(ii) If x = a#, then a∗a#a∗ = a#a+a∗. It is evident that (1 − aa+)a∗a#a∗ = (1 − aa+)a#a+a∗ = 0. Then we obtain
that

(1 − aa+)a∗a# = (1 − aa+)∗a∗a#a∗(a+)∗ = 0.

Accordingly, we get
(1 − aa+)a∗ = (1 − aa+)a∗aa+ = (1 − aa+)a∗a#a2a+ = 0.

This gives a ∈ REP. On the other hand,

a∗a# = a∗a#a∗(a+)∗ = a#a+a∗(a+)∗ = a#a+a+a = a#a+ = a+a#.
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By [3, Theorem 2.3], we know a ∈ RPI.
(iii) If x = a+, then a∗a+a∗ = a+a+a∗. Post-multiply it by (a+)∗, one has

a∗a+a+a = a+a+a+a.

This gives a∗a+a+ = a+a+a+. It follows from Lemma 2.11 that a ∈ RPI.
(iv) If x = a∗, then a∗a∗a∗ = a∗a+a∗. Applying the involution on the equation, we have a3 = a(a+)∗a. Hence

a ∈ RPI by Lemma 2.15.
(v) If x = (a#)∗, then a∗(a#)∗a∗ = (a#)∗a+a∗. Taking involution of the equality, we get

a = a(a+)∗a#.

Post-multiply it by a2 and we thus obtain a3 = a(a+)∗a. It is immediate from Lemma 2.15 that a ∈ RPI.
(vi) If x = (a+)∗, then a∗(a+)∗a∗ = (a+)∗a+a∗. That is a∗ = (a+)∗a+a∗. Applying the involution of it, we get

a = a(a+)∗a+. Thus a2 = a(a+)∗ which gives a ∈ RPI.
(5) If y = (a#)∗, then we obtain the following equation.

a∗x(a#)∗ = xa+(a#)∗. (8)

Post-multiply the equation (8) by a∗a∗, we have

a∗xa∗ = xa+a∗.

By (4), we know a ∈ RPI.
(6) If y = (a+)∗, then we get the following equation.

a∗x(a+)∗ = xa+(a+)∗. (9)

Post-multiply the equation (9) by a∗a, one obtains the equation (2.4) as follows

a∗xa = xa+a.

By Theorem 2.8, a ∈ RPI.
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