Filomat 35:4 (2021), 1087–1093 https://doi.org/10.2298/FIL2104087Z

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Generalized Inverses and Solutions to Related Equations

Shiyin Zhao^{a,b}, Yue Sui^b, Junchao Wei^b

^a School of Mathematical Sciences, Suqian College, Suqian, Jiangsu 223800, P. R. China ^b School of Mathematics, Yangzhou University, Yangzhou, 225002, P. R. China

Abstract. In this paper, some new characterizations of partial isometries and strongly *EP* elements are investigated. Especially, we discuss the existence of the solutions of certain equations in a given set to characterize partial isometries, strongly *EP* elements and so on.

1. Introduction

Let *R* be an associative ring with 1. An element $a \in R$ is said to be group invertible if there exists $a^{\#} \in R$ such that

$$aa^{\#}a = a$$
, $a^{\#}aa^{\#} = a^{\#}$, $aa^{\#} = a^{\#}a$.

The element $a^{\#}$ is called the group inverse of *a*, which is uniquely determined by the above equations [1]. The set of all group invertible elements of *R* will be denoted by $R^{\#}$.

An involution $* : a \mapsto a^*$ in a ring *R* is an anti-isomorphism of degree 2, that is,

$$(a^*)^* = a, \quad (a+b)^* = a^* + b^*, \quad (ab)^* = b^*a^*.$$

An element a^+ in *R* is called the Moore-Penrose inverse (*MP*-inverse) of *a* [6] when satisfying the following conditions.

$$aa^{+}a = a$$
, $a^{+}aa^{+} = a^{+}$, $(aa^{+})^{*} = aa^{+}$, $(a^{+}a)^{*} = a^{+}a$.

If such a^+ exists, then it is unique [6]. We write R^+ for the set of all *MP*-invertible elements of *R*. *a* is said to be *EP* if $a \in R^{\#} \cap R^+$ and satisfies $a^{\#} = a^+$ [2, 9]. We then denote by R^{EP} the set of all *EP* elements of *R*. If $a \in R^+$ and $a^+ = a^*$, the element *a* is called partial isometry. Furthermore, *a* is called strongly *EP* element if $a \in R^{EP}$ is a partial isometry. Denote by R^{PI} and R^{SEP} the set of all partial isometry elements and strongly *EP* elements [7] of *R*.

In [3], D. Mosić and D. S. Djordjević presented some equivalent conditions for the element *a* in a ring with involution to be a partial isometry. In addition, some characterizations of *EP* elements in ring with involution were given. Recently, some studies on partial isometries and *EP* elements have come to some

Keywords. strongly *EP* element, partial isometry, solutions of equation.

Received: 22 March 2020; Revised: 18 November 2020; Accepted: 23 November 2020

²⁰¹⁰ Mathematics Subject Classification. 15A09; 16U99; 16W10

Communicated by Dijana Mosić

Corresponding author: Yue Sui

Research supported by the National Natural Science Foundation of China (11471282) and Innovation and Entrepreneurship Training Program for College Students in Jiangsu Province (202011117097Y)

Email addresses: 52660078@qq.com (Shiyin Zhao), 3193865317@qq.com (Yue Sui), jcweiyz@126.com (Junchao Wei)

meaningful conclusions in [5, 8, 10, 11]. Moreover, the description of *EP* elements by using solutions of equations has been explored in [8, 11, 12].

Inspired by the above articles, we consider the characterization of partial isometries and strongly *EP* elements from the perspective of the solutions of the certain equations in this paper. We give some new equivalent conditions for elements in a ring with involution to be partial isometries and strongly *EP* elements. Let $\chi_a = \{a, a^{\#}, a^+, a^*, (a^{\#})^*, (a^+)^*\}$. It will be proved that the equation $a^*x = a^+xa^{\#}a$ has at least one solution in χ_a if and only if $a \in \mathbb{R}^{PI}$. Also, we show that $a \in \mathbb{R}^{SEP}$ if and only if the equation $a^*x = xa^+a^{\#}a$ has at least one solution in χ_a . By constantly revising the above equation, we get similar results in the following equations $a^*xa = xa^+a$, $a^*xa = xa^+a$ and $a^*xy = xa^+y$.

2. Results

Lemma 2.1. Let $a \in R^{\#} \cap R^{+}$ and $x \in R$. If $a^{+}a^{*}x = 0$, then $a^{*}x = 0$.

Proof. Pre-multiply $a^+a^*x = 0$ by $a^*(a^{\#})^*a$, we arrive at the conclusion. \Box

The proof of [3, Theorem 2.3] shows that: Let $a \in R^{\#} \cap R^+$. Then $a \in R^{SEP}$ if and only if $a^*a^+ = a^+a^\#$. Noting that $a^{\#} = a^{\#}a^+a$. Hence $a \in R^{SEP}$ if and only if $a^*a^+ = a^+a^{\#}a^+a$. This elicits the following equation.

$$a^*x = a^+a^#xa.$$

Theorem 2.2. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{PI}$ if and only if the equation (1) has at least one solution in $\{a, a^{\#}, a^{+}, (a^{\#})^{*}\}$.

Proof. \Rightarrow Assume that $a \in \mathbb{R}^{PI}$, then $a^+ = a^*$, this infers x = a is a solution.

⇐ (1) If x = a is a solution, then $a^*a = a^+a^\#a^2 = a^+a$. Hence $a \in R^{PI}$ by [3, Theorem 2.1].

(2) If $x = a^{\#}$ is a solution, then $a^*a^{\#} = a^+a^{\#}a^{\#}a = a^+a^{\#}$. We can soon deduce that $a \in R^{PI}$ by post-multiplying it by a^2 .

(3) If $x = a^+$ is a solution, then $a^*a^+ = a^+a^\#a^+a = a^+a^\#$. By [3, Theorem 2.3], $a \in \mathbb{R}^{\mathbb{P}I}$.

(4) If $x = (a^{\#})^*$ is a solution, then $a^*(a^{\#})^* = a^+ a^{\#}(a^{\#})^* a$. Post-multiply the equality by aa^+ , we have

$$a^{+}a^{\#}(a^{\#})^{*}a = a^{+}a^{\#}(a^{\#})^{*}a^{2}a^{+}.$$

Pre-multiply the last equality by a^3 , we get

$$a(a^{\#})^*a = a(a^{\#})^*a^2a^+$$

Again, pre-multiply the above mentioned equality by $a^*a^*a^+$, one has $a^*a = a^*a^2a^+$, so

$$a = (a^{+})^{*}a^{*}a = (a^{+})^{*}a^{*}a^{2}a^{+} = a^{2}a^{+}$$

It follows that $a \in R^{EP}$ by [12, Corollary 2.14].

Now, we observe that

$$a^{+}a = (a^{+}a)^{*} = a^{*}(a^{+})^{*} = a^{*}(a^{\#})^{*} = a^{+}a^{\#}(a^{\#})^{*}a.$$

and then

$$a = aa^{+}a = aa^{+}a^{\#}(a^{\#})^{*}a = a^{\#}(a^{\#})^{*}a.$$

Thus $a^+a = aa^+ = a^{\#}(a^{\#})^*aa^+ = a^{\#}(a^{\#})^* = a^+(a^+)^*$. It is immediate that $a^* = a^+aa^* = a^+(a^+)^*a^* = a^+aa^+ = a^+$, which leads to $a \in \mathbb{R}^{PI}$. \Box

Question 2.3. If $x = a^*$ or $x = (a^+)^*$ is a solution of the equation (1), does $a \in \mathbb{R}^{\mathbb{P}I}$?

Modifying the equation (1), we have the equation as follows.

$$a^*x = a^+ x a^\# a. \tag{2}$$

Theorem 2.4. Let $a \in \mathbb{R}^{\#} \cap \mathbb{R}^{+}$. Then $a \in \mathbb{R}^{PI}$ if and only if the equation (2) has at least one solution in χ_{a} .

Proof. \Rightarrow Obviously, x = a is a solution of the above equation.

 \leftarrow (1) If x = a is a solution, then $a^*a = a^+aa^\#a = a^+a$. This means $a \in \mathbb{R}^{PI}$ by [3, Theorem 2.1].

(2) If $x = a^{\#}$ is a solution, then $a^*a^{\#} = a^+a^{\#}a^{\#}a = a^+a^{\#}$. It evident that $a \in R^{PI}$.

(3) If $x = a^+$ is a solution, then $a^*a^+ = a^+a^+a^\#a$. Multiply the equality on the right by a, we have $a^*a^+a = a^+a^+a$. Taking involution of the above equality, we deduce that $a^+a^2 = a^+a(a^+)^*$. Pre-multiply the last equality by a, we get $a^2 = a(a^+)^*$. Multiply the equation from the right by a^* , we get $a^2a^* = a^2a^+$. Per-multiply the equation by $a^+a^\#$, one has $a^* = a^+$. Hence $a \in R^{PI}$.

(4) If $x = a^*$ is a solution, then $a^*a^* = a^+a^*a^\#a$, this gives $a^*a^*(1 - a^+a) = 0$. Notice that

$$a^*(1 - a^+a) = (a^{\#})^*a^*a^*(1 - a^+a) = 0,$$

which means $a^* = a^*a^+a = (a^+a^2)^*$. Apply involution to the equation, one has $a = a^+a^2$. It follows from [8, Corollary 2.12] that $a \in R^{EP}$. We further obtain that

$$a^*a^* = a^+a^*a^\#a = a^+a^*a^a \# = a^+a^*aa^+ = a^+a^*,$$

it follows that $a^2 = a(a^+)^*$. Hence $a \in \mathbb{R}^{PI}$.

(5) If
$$x = (a^{\#})^*$$
 is a solution, then $a^*(a^{\#})^* = a^+(a^{\#})^*a^{\#}a$. We soon get that $a^*(a^{\#})^*(1 - a^+a) = 0$. This gives

$$a^*(1 - a^+a) = a^*a^*(a^{\#})^*(1 - a^+a) = 0.$$

It is easy to see $a \in R^{EP}$. On the other hand,

$$a^{+}a = a^{*}(a^{+})^{*} = a^{*}(a^{\#})^{*} = a^{+}(a^{\#})^{*}a^{\#}a = a^{+}(a^{+})^{*}a^{+}a = a^{+}(a^{+})^{*}.$$

Consequently, $a \in R^{PI}$.

(6) If $x = (a^+)^*$ is a solution, then $a^*(a^+)^* = a^+(a^+)^*a^{\#}a$, which means that $a^+a = a^+(a^+)^*a^{\#}a$. It is straightforward that

$$a = aa^{+}a = aa^{+}(a^{+})^{*}a^{\#}a = (a^{+})^{*}a^{\#}a.$$

Post-multiply the last equation by *a*, we have $a^2 = (a^+)^* a$. Hence $a \in \mathbb{R}^{PI}$. \Box

Observing the proof of Theorem 2.4, we have the following corollary.

Corollary 2.5. Let $a \in R^{\#} \cap R^+$. Then $a \in R^{PI}$ if and only if $a^*a^+a = a^+a^+a$.

Next, we revise the equation (2) as follows.

$$a^*x = xa^+a^{\#}a.$$

Theorem 2.6. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{SEP}$ if and only if the equation (3) has at least one solution in χ_a .

Proof. \Rightarrow Since $a \in R^{SEP}$, x = a is a solution by [4, Theorem 2.2(iv)].

 \Leftarrow (1) If x = a is a solution, then $a^*a = aa^+a^\#a = aa^\#$. By [3, Theorem 2.3(v)], we know $a \in \mathbb{R}^{SEP}$.

(2) If $x = a^{\#}$ is a solution, then $a^*a^{\#} = a^{\#}a^+a^{\#}a = a^{\#}a^{\#}$. It is immediate that $a \in R^{SEP}$ by [3, Theorem 2.3(xiv)]. (3) If $x = a^+$ is a solution, then $a^*a^+ = a^+a^+a^{\#}a$. Post-multiply it by a, we have

$$a^*a^+a = a^+a^+a.$$

Hence $a \in R^{PI}$ by Corollary 2.5. In addition, we know

$$a^*a^* = a^*a^+ = a^+a^+a^\#a = a^*a^*a^\#a.$$

Pre-multiply it by $(a^{\#})^*$, one has $a^* = a^*a^{\#}a$, which implies $a \in R^{EP}$. Consequently, $a \in R^{SEP}$.

(3)

(4) If $x = a^*$ is a solution, then $a^*a^* = a^*a^+a^\#a$. Pre-multiply it by $a^+(a^+)^*$, we get

$$a^{+}a^{*} = a^{+}a^{+}a^{\#}a = a^{+}a^{*}(a^{+})^{*}a^{\#}.$$

By Lemma 2.1, we have $a^* = a^*(a^+)^* a^\# = a^+ a a^\#$. Then we multiply the equality on the right by *a* and obtain that $a^*a = a^+a$, which shows $a \in \mathbb{R}^{PI}$. Now, we have $a^*a^* = a^*a^+a^\#a = a^*a^*a^\#a$, it follows from the proof of (3) that $a \in \mathbb{R}^{SEP}$

(5) If $x = (a^{\#})^*$ is a solution, then $a^*(a^{\#})^* = (a^{\#})^* a^+ a^{\#} a$. Pre-multiply it by a^*a^* , one has

$$a^*a^* = a^*a^+a^\#a.$$

It follows from (4) that $a \in R^{SEP}$.

(6) If $x = (a^+)^*$ is a solution, then $a^*(a^+)^* = (a^+)^*a^+a^\#a$, that is $a^+a = (a^+)^*a^+a^\#a$. Multiply it from the right by a, one has $a^+a^2 = (a^+)^*$. Hence $a \in R^{SEP}$ by [3, Theorem 2.3(xviii)].

Lemma 2.7. Let $a \in R^{\#} \cap R^{+}$ and $x \in R$. If $a^{+}a^{+}x = 0$, then $a^{+}x = 0$.

Proof. Since $a^+a^+x = 0$, $a^*a^+x = a^*aa^+a^+x = 0$. Pre-multiply the equality by $(a^{\#})^*$, one has $(a^{\#})^*a^*a^+x = 0$. Noting that $(a^{\#})^*a^*a^+ = (a^{\#})^*a^*a^+a^+a^+ = (a^+a^2a^{\#})^*a^+ = a^+$. Then $a^+x = 0$. \Box

Further, we get the following equation by post-multiplying the equation (3) by *a*.

 $a^*xa = xa^+a.$

(4)

Theorem 2.8. Let $a \in \mathbb{R}^{\#} \cap \mathbb{R}^{+}$. Then $a \in \mathbb{R}^{PI}$ if and only if the equation (4) has at least one solution in χ_{a} .

Proof. \Rightarrow *x* = *a*⁺ is a solution because *a*^{*} = *a*⁺.

 \Leftarrow (1) If x = a is a solution, then $a^*a^2 = aa^+a = a$. Thus, we deduce that $a \in R^{PI}$ by [3, Theorem 2.3(xix)].

(2) If $x = a^{\#}$ is a solution, then $a^*a^{\#}a = a^{\#}a^+a = a^{\#}$. Hence $a \in R^{PI}$ from [3, Theorem 2.3].

(3) If $x = a^+$ is a solution, then $a^*a^+a = a^+a^+a$. It follows from Corollary 2.5 that $a \in \mathbb{R}^{PI}$.

(4) If $x = a^*$ is a solution, then $a^*a^*a = a^*a^+a$. Pre-multiply the equation by $a^+(a^+)^*$, one has $a^+a^*a = a^+a^+a$, it follows

$$a^{+}a^{*} = a^{+}a^{*}aa^{+} = a^{+}a^{+}aa^{+} = a^{+}a^{+}a^{+}aa^{+}$$

Post-multiply the last equality by $(a^+)^*$, one has $a^+a^+a = a^+a^+(a^+)^*$. By Lemma 2.7, we have $a^+a = a^+(a^+)^*$, it follows that $a^* = a^+aa^* = a^+(a^+)^*a^* = a^+$. Thus $a \in \mathbb{R}^{PI}$.

(5) If $x = (a^{\#})^*$ is a solution, then $a^*(a^{\#})^*a = (a^{\#})^*a^+a$. Multiply it by a^*a^* from the left, we obtain

$$a^*a^*a = a^*a^+a.$$

From the proof of (4), $a \in R^{PI}$.

(6) If $x = (a^+)^*$ is a solution, then $a^*(a^+)^*a = (a^+)^*a^+a$. That is $a^+a^2 = (a^+)^*$, this gives $a^2 = aa^+a^2 = a(a^+)^*$, which implies $a \in R^{PI}$. \Box

From the proof of (4) in Theorem 2.8, we have the following corollary.

Corollary 2.9. Let $a \in \mathbb{R}^{\#} \cap \mathbb{R}^{+}$. Then the following conditions are equivalent:

1) $a \in R^{PI}$; 2) $a^+a^* = a^+a^+$; 3) $a^*a^+ = a^+a^+$.

Naturally, by observing the equation (1), equation (2) and equation (3), we come up with the following equation.

$$a^*x = a^+a^\#ax.$$

Considering whether a is a partial isometry in relation to the solution of the equation (5) leads to the following problem.

1090

Question 2.10. *Let* $a \in R^{\#} \cap R^{+}$. *If* $a^{*}a^{+}a = a^{+}a^{\#}a$, *does* $a \in R^{PI}$?

Lemma 2.11. Let $a \in R^{\#} \cap R^+$. If $a^*a^+a^+ = a^+a^+a^+$, then $a \in R^{PI}$.

Proof. Since $a^*a^+a^+ = a^+a^+a^+$, we get $a^*a^+a^+a = a^+a^+a^+a$. Applying the involution on the equality, we have

 $a^{+}a(a^{+})^{*}a = a^{+}a(a^{+})^{*}(a^{+})^{*}.$

Pre-multiply the last equality by *a*, we have

$$a(a^{+})^{*}(a - (a^{+})^{*}) = 0.$$

Noting that $(a^{+})^{*} = aa^{+}(a^{+})^{*}$, then $a^{2}a^{+}(a^{+})^{*}(a - (a^{+})^{*}) = 0$. Multiply it by $a^{\#}$ on the left, one has

 $(a^+)^*(a - (a^+)^*) = 0.$

Hence $a^*a^+ = a^+a^+$. By Corollary 2.9, $a \in \mathbb{R}^{PI}$. \Box

The proof of Lemma 2.11 infers the following corollary.

Corollary 2.12. Let $a \in R^{\#} \cap R^+$. If $a(a^+)^*x = 0$, then $(a^+)^*x = 0$.

Lemma 2.13. Let
$$a \in R^{\#} \cap R^{+}$$
. If $a^{*}a^{*}a^{+} = a^{*}a^{+}a^{+}$, then $a \in R^{PI}$.

Proof. Pre-multiply the equality $a^*a^*a^+ = a^*a^+a^+$ by $(a^+)^*$, we have

$$aa^{+}a^{*}a^{+} = aa^{+}a^{+}a^{+}$$

it follows that $a^+a^*a^+ = a^+a^+a^+$. So $a^+a^*a^+a = a^+a^+a^+a$. Applying the involution on the last equality, one has

$$a^{+}a^{2}(a^{+})^{*} = a^{+}a(a^{+})^{*}(a^{+})^{*} = a^{+}a(a^{+})^{*}a^{+}a(a^{+})^{*}.$$

Multiply it on the right by $a^*a^{\#}a$, we have $a^+a^2 = a^+a(a^+)^*$. Therefore $a^2 = a(a^+)^*$, which implies $a \in \mathbb{R}^{PI}$.

The proof of Lemma 2.13 implies the following corollary.

Corollary 2.14. Let $a \in R^{\#} \cap R^+$. If $xa(a^+)^* = 0$, then xa = 0.

Lemma 2.15. Let $a \in R^{\#} \cap R^+$. If $a^3 = a(a^+)^*a$, then $a \in R^{PI}$.

Proof. Since

$$a^{3} = a(a^{+})^{*}a = a(aa^{+}(a^{+})^{*}a^{+}a)a = a^{2}a^{+}(a^{+})^{*}a^{+}a^{2},$$

we know that

$$a = a^{\#}a^{3}a^{\#} = a^{\#}a^{2}a^{+}(a^{+})^{*}a^{+}a^{2}a^{\#} = aa^{+}(a^{+})^{*}a^{+}a = (a^{+})^{*}.$$

Then it is obvious that $a \in R^{PI}$. \Box

Theorem 2.16. Let $a \in R^{\#} \cap R^+$. Then $a \in R^{PI}$ if and only if the equation $a^*xy = xa^+y$ has at least one solution in $\chi_a^2 = \{(x, y) | x, y \in \chi_a\}.$

Proof. \Rightarrow If $a \in \mathbb{R}^{PI}$, then $a^* = a^+$, this implies $\begin{cases} x = a^* \\ y = a \end{cases}$ is a solution.

⇐ (1) If y = a, then $a^*xa = xa^+a$. We know from Theorem 2.8 that $a \in R^{PI}$.

(2) If $y = a^{\#}$, then $a^{*}xa^{\#} = xa^{+}a^{\#}$. Post-multiply the equation by a^{2} , one gets $a^{*}xa = xa^{+}a$. It is immediate from Theorem 2.8 that $a \in \mathbb{R}^{Pl}$.

(3) If $y = a^+$, then we have the following equation

$$a^*xa^+ = xa^+a^+. ag{6}$$

(i) If x = a, then $a^*aa^+ = aa^+a^+$, that is $a^* = aa^+a^+$. This clearly forces

$$(1 - aa^+)a^* = (1 - aa^+)aa^+a^+ = 0$$

it follows $a = a^2 a^+$ which yields $a \in R^{EP}$. Thus $a^* = aa^+a^+ = a^+$. Consequently, $a \in R^{PI}$.

(ii) If $x = a^{\#}$, then $a^*a^{\#}a^+ = a^{\#}a^+a^+$. It is clear that

$$(1 - aa^{+})a^{*}a^{\#}a^{+} = (1 - aa^{+})a^{\#}a^{+}a^{+} = 0$$

Multiply the equality on the right by a^3a^+ , we get $(1 - aa^+)a^* = 0$. This gives $a \in R^{EP}$. Hence, we obtain that

$$a^* = a^*aa^+ = a^*a^+a = a^*a^\#a^+a^2 = a^\#a^+a^+a^2 = a^\#a^+a = a^\# = a^+,$$

which proves $a \in R^{PI}$.

(iii) If $x = a^+$, then $a^*a^+a^+ = a^+a^+a^+$. By Lemma 2.11, $a \in R^{PI}$.

(iv) If $x = a^*$, then $a^*a^*a^+ = a^*a^+a^+$. By Lemma 2.13, we know that $a \in \mathbb{R}^{\mathbb{P}I}$.

(v) If $x = (a^{\#})^*$, then $a^*(a^{\#})^*a^+ = (a^{\#})^*a^+a^+$. Post-multiply the equality by *a* and applying the involution, one has

$$a^+aa^{\#}a = a^+a(a^+)^*a^{\#},$$

that is, $a^+a = a^+a(a^+)^*a^{\#}$. We find out that

$$a = aa^{+}a = aa^{+}a(a^{+})^{*}a^{\#} = a(a^{+})^{*}a^{\#}$$

Then we know $a(a^+)^* = a(a^+)^* a^{\#}(a^+)^*$. It is immediate from Corollary 2.12 that

$$(a^+)^* = (a^+)^* a^\# (a^+)^*.$$

Taking the involution of the equality, we get $a^+ = a^+(a^{\#})^*a^+$. Hence $a = aa^+a = aa^+(a^{\#})^*a^+a$. Applying the involution of the equality, one has

$$a^* = a^+ a a^\# a a^+ = a^+ a a^+ = a^+.$$

Consequently, $a \in R^{PI}$.

(vi) If $x = (a^+)^*$, then $a^*(a^+)^*a^+ = (a^+)^*a^+a^+$, that is $a^+ = (a^+)^*a^+a^+$. This forces that $a^+a = (a^+)^*a^+a^+a$. Applying the involution of the equality, we obtain that

$$a^+a = a^+a(a^+)^*a^+.$$

Pre-multiply it by *a* and then we know $a = a(a^+)^*a^+$. As a result, $a^2 = a(a^+)^*a^+a = a(a^+)^*$, which indicates $a \in R^{PI}$.

(4) If $y = a^*$, then we have the following equation.

$$a^*xa^* = xa^+a^*$$
.

(i) If x = a, then $a^*aa^* = aa^+a^*$. Applying the involution on the equality, we have $aa^*a = a^2a^+$. Observe that $aa^*a(1 - aa^+) = a^2a^+(1 - aa^+) = 0$. Then accordingly we know $a^*a(1 - aa^+) = 0$, which gives $a \in R^{EP}$. Moreover, $aa^*a = a^2a^+ = a$. This means $a \in R^{PI}$.

(ii) If $x = a^{\#}$, then $a^*a^{\#}a^* = a^{\#}a^+a^*$. It is evident that $(1 - aa^+)a^*a^{\#}a^* = (1 - aa^+)a^{\#}a^+a^* = 0$. Then we obtain that

$$(1 - aa^{+})a^{*}a^{\#} = (1 - aa^{+})^{*}a^{*}a^{\#}a^{*}(a^{+})^{*} = 0$$

Accordingly, we get

$$(1 - aa^{+})a^{*} = (1 - aa^{+})a^{*}aa^{+} = (1 - aa^{+})a^{*}a^{\#}a^{2}a^{+} = 0.$$

This gives $a \in R^{EP}$. On the other hand,

$$a^*a^\# = a^*a^\#a^*(a^+)^* = a^\#a^+a^*(a^+)^* = a^\#a^+a^+a = a^\#a^+ = a^+a^\#.$$

1092

(7)

By [3, Theorem 2.3], we know $a \in \mathbb{R}^{PI}$.

(iii) If $x = a^+$, then $a^*a^+a^* = a^+a^+a^*$. Post-multiply it by $(a^+)^*$, one has

 $a^*a^+a^+a = a^+a^+a^+a$.

This gives $a^*a^+a^+ = a^+a^+a^+$. It follows from Lemma 2.11 that $a \in R^{PI}$.

(iv) If $x = a^*$, then $a^*a^*a^* = a^*a^+a^*$. Applying the involution on the equation, we have $a^3 = a(a^+)^*a$. Hence $a \in R^{PI}$ by Lemma 2.15.

(v) If $x = (a^{\#})^*$, then $a^*(a^{\#})^*a^* = (a^{\#})^*a^+a^*$. Taking involution of the equality, we get

$$a = a(a^+)^*a^{\#}.$$

Post-multiply it by a^2 and we thus obtain $a^3 = a(a^+)^*a$. It is immediate from Lemma 2.15 that $a \in R^{PI}$. (vi) If $x = (a^+)^*$, then $a^*(a^+)^*a^* = (a^+)^*a^+a^*$. That is $a^* = (a^+)^*a^+a^*$. Applying the involution of it, we get

 $a = a(a^+)^*a^+$. Thus $a^2 = a(a^+)^*$ which gives $a \in \mathbb{R}^{PI}$.

(5) If $y = (a^{\#})^*$, then we obtain the following equation.

 $a^*x(a^{\#})^* = xa^+(a^{\#})^*.$

Post-multiply the equation (8) by a^*a^* , we have

 $a^*xa^* = xa^+a^*.$

By (4), we know $a \in R^{PI}$.

(6) If $y = (a^+)^*$, then we get the following equation.

 $a^*x(a^+)^* = xa^+(a^+)^*.$

Post-multiply the equation (9) by a^*a , one obtains the equation (2.4) as follows

$$a^*xa = xa^+a$$

By Theorem 2.8, $a \in R^{PI}$.

References

- [1] A. Ben-Israel, T. N. E Greville, Generalized Inverses: Theory and Applications, 2nd. ed., Springer (New York, 2003).
- [2] R. E. Hartwig, Block generalized inverses, Arch. Rational Mech. Anal. 61(1976) 197-251.
- [3] D. Mosić, D. S. Djordjević, Partial isometries and EP elements in rings with involution. Electron. J. Linear Algebra 18(2009) 761-772.
- [4] D. Mosić, Dragan S. Djordjević, Further results on partial isometries and EP elements in rings with involution, Math. Comput. Modelling 54(1)(2011) 460-465.
- [5] D. Mosić, D. S. Djordjević, J. J. Koliha, EP elements in rings, Linear Algebra Appl. 431(2009) 527-535.
- [6] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51(1955) 406-413.
- [7] Y. C. Qu, J. C. Wei, H. Yao, Characterizations of normal elements in ring with involution, Acta. Math. Hungar. 156(2)(2018) 459-464.
- [8] Y. C. Qu, H. Yao, J. C. Wei, Some characterizations of partial isometry elements in rings with involutions, Filomat 33(19)(2019) 6395-6399.
- [9] G. Szép, Simultaneous triangularization of projector matrices, Acta. Math. Hungar. 48(3-4)(1986) 285-288.
- [10] S. Z. Xu, J. L. Chen, J. Benítez, EP elements in rings with involution, arXiv:1602.08184v2 [math.RA] 24 Aug 2017.
- [11] R. J. Zhao, H. Yao, J. C. Wei, Characterizations of partial isometries and two special kinds of EP elements, CMJ. 2019 0389-18.
- [12] R. J. Zhao, H. Yao, J. C. Wei, EP elements and the solutions of equation in rings with involution, Filomat 32(13)(2018) 4537-4542.

1093

(9)

(8)