Generalized Inverses and Solutions to Related Equations

Shiyin Zhao ${ }^{\text {a,b }}$, Yue Sui ${ }^{\text {b }}$, Junchao Wei ${ }^{\text {b }}$
${ }^{a}$ School of Mathematical Sciences, Suqian College, Suqian, Jiangsu 223800, P. R. China
${ }^{b}$ School of Mathematics, Yangzhou University, Yangzhou, 225002, P. R. China

Abstract

In this paper, some new characterizations of partial isometries and strongly $E P$ elements are investigated. Especially, we discuss the existence of the solutions of certain equations in a given set to characterize partial isometries, strongly $E P$ elements and so on.

1. Introduction

Let R be an associative ring with 1 . An element $a \in R$ is said to be group invertible if there exists $a^{\#} \in R$ such that

$$
a a^{\#} a=a, \quad a^{\#} a a^{\#}=a^{\#}, \quad a a^{\#}=a^{\#} a .
$$

The element $a^{\#}$ is called the group inverse of a, which is uniquely determined by the above equations [1]. The set of all group invertible elements of R will be denoted by $R^{\#}$.
An involution $*: a \longmapsto a^{*}$ in a ring R is an anti-isomorphism of degree 2 , that is,

$$
\left(a^{*}\right)^{*}=a, \quad(a+b)^{*}=a^{*}+b^{*}, \quad(a b)^{*}=b^{*} a^{*}
$$

An element a^{+}in R is called the Moore-Penrose inverse (MP-inverse) of a [6] when satisfying the following conditions.

$$
a a^{+} a=a, \quad a^{+} a a^{+}=a^{+}, \quad\left(a a^{+}\right)^{*}=a a^{+}, \quad\left(a^{+} a\right)^{*}=a^{+} a .
$$

If such a^{+}exists, then it is unique [6]. We write R^{+}for the set of all MP-invertible elements of $R . a$ is said to be $E P$ if $a \in R^{\#} \cap R^{+}$and satisfies $a^{\#}=a^{+}[2,9]$. We then denote by $R^{E P}$ the set of all $E P$ elements of R. If $a \in R^{+}$and $a^{+}=a^{*}$, the element a is called partial isometry. Furthermore, a is called strongly EP element if $a \in R^{E P}$ is a partial isometry. Denote by $R^{P I}$ and $R^{S E P}$ the set of all partial isometry elements and strongly $E P$ elements [7] of R.

In [3], D. Mosić and D. S. Djordjević presented some equivalent conditions for the element a in a ring with involution to be a partial isometry. In addition, some characterizations of $E P$ elements in ring with involution were given. Recently, some studies on partial isometries and $E P$ elements have come to some

[^0]meaningful conclusions in $[5,8,10,11]$. Moreover, the description of $E P$ elements by using solutions of equations has been explored in $[8,11,12]$.

Inspired by the above articles, we consider the characterization of partial isometries and strongly $E P$ elements from the perspective of the solutions of the certain equations in this paper. We give some new equivalent conditions for elements in a ring with involution to be partial isometries and strongly $E P$ elements. Let $\chi_{a}=\left\{a, a^{\#}, a^{+}, a^{*},\left(a^{\#}\right)^{*},\left(a^{+}\right)^{*}\right\}$. It will be proved that the equation $a^{*} x=a^{+} x a^{\#} a$ has at least one solution in χ_{a} if and only if $a \in R^{P I}$. Also, we show that $a \in R^{S E P}$ if and only if the equation $a^{*} x=x a^{+} a^{\#} a$ has at least one solution in χ_{a}. By constantly revising the above equation, we get similar results in the following equations $a^{*} x a=x a^{+} a, a^{*} x a=x a^{+} a$ and $a^{*} x y=x a^{+} y$.

2. Results

Lemma 2.1. Let $a \in R^{\#} \cap R^{+}$and $x \in R$. If $a^{+} a^{*} x=0$, then $a^{*} x=0$.
Proof. Pre-multiply $a^{+} a^{*} x=0$ by $a^{*}\left(a^{\#}\right)^{*} a$, we arrive at the conclusion.
The proof of [3, Thoerem 2.3] shows that: Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{S E P}$ if and only if $a^{*} a^{+}=a^{+} a^{\#}$. Noting that $a^{\#}=a^{\#} a^{+} a$. Hence $a \in R^{S E P}$ if and only if $a^{*} a^{+}=a^{+} a^{\#} a^{+} a$. This elicits the following equation.

$$
\begin{equation*}
a^{*} x=a^{+} a^{\#} x a . \tag{1}
\end{equation*}
$$

Theorem 2.2. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{P I}$ if and only if the equation (1) has at least one solution in $\left\{a, a^{\#}, a^{+},\left(a^{\#}\right)^{*}\right\}$.
Proof. \Rightarrow Assume that $a \in R^{P I}$, then $a^{+}=a^{*}$, this infers $x=a$ is a solution.
$\Leftarrow(1)$ If $x=a$ is a solution, then $a^{*} a=a^{+} a^{\#} a^{2}=a^{+} a$. Hence $a \in R^{P I}$ by [3, Theorem 2.1].
(2) If $x=a^{\#}$ is a solution, then $a^{*} a^{\#}=a^{+} a^{\#} a^{\#} a=a^{+} a^{\#}$. We can soon deduce that $a \in R^{P I}$ by post-multiplying it by a^{2}.
(3) If $x=a^{+}$is a solution, then $a^{*} a^{+}=a^{+} a^{\#} a^{+} a=a^{+} a^{\#}$. By [3, Theorem 2.3], $a \in R^{P I}$.
(4) If $x=\left(a^{\#}\right)^{*}$ is a solution, then $a^{*}\left(a^{\#}\right)^{*}=a^{+} a^{\#}\left(a^{\#}\right)^{*} a$. Post-multiply the equality by $a a^{+}$, we have

$$
a^{+} a^{\#}\left(a^{\#}\right)^{*} a=a^{+} a^{\#}\left(a^{\#}\right)^{*} a^{2} a^{+} .
$$

Pre-multiply the last equality by a^{3}, we get

$$
a\left(a^{\#}\right)^{*} a=a\left(a^{\#}\right)^{*} a^{2} a^{+} .
$$

Again, pre-multiply the above mentioned equality by $a^{*} a^{*} a^{+}$, one has $a^{*} a=a^{*} a^{2} a^{+}$, so

$$
a=\left(a^{+}\right)^{*} a^{*} a=\left(a^{+}\right)^{*} a^{*} a^{2} a^{+}=a^{2} a^{+} .
$$

It follows that $a \in R^{E P}$ by [12, Corollary 2.14].
Now, we observe that

$$
a^{+} a=\left(a^{+} a\right)^{*}=a^{*}\left(a^{+}\right)^{*}=a^{*}\left(a^{\#}\right)^{*}=a^{+} a^{\#}\left(a^{\#}\right)^{*} a \text {. }
$$

and then

$$
a=a a^{+} a=a a^{+} a^{\#}\left(a^{\#}\right)^{*} a=a^{\#}\left(a^{\#}\right)^{*} a .
$$

Thus $a^{+} a=a a^{+}=a^{\#}\left(a^{\#}\right)^{*} a a^{+}=a^{\#}\left(a^{\#}\right)^{*}=a^{+}\left(a^{+}\right)^{*}$. It is immediate that $a^{*}=a^{+} a a^{*}=a^{+}\left(a^{+}\right)^{*} a^{*}=a^{+} a a^{+}=a^{+}$, which leads to $a \in R^{P I}$.

Question 2.3. If $x=a^{*}$ or $x=\left(a^{+}\right)^{*}$ is a solution of the equation (1), does $a \in R^{P I}$?
Modifying the equation (1), we have the equation as follows.

$$
\begin{equation*}
a^{*} x=a^{+} x a^{\#} a \tag{2}
\end{equation*}
$$

Theorem 2.4. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{P I}$ if and only if the equation (2) has at least one solution in χ_{a}.
Proof. \Rightarrow Obviously, $x=a$ is a solution of the above equation.
$\Leftarrow(1)$ If $x=a$ is a solution, then $a^{*} a=a^{+} a a^{\#} a=a^{+} a$. This means $a \in R^{P I}$ by [3, Theorem 2.1].
(2) If $x=a^{\#}$ is a solution, then $a^{*} a^{\#}=a^{+} a^{\#} a^{\#} a=a^{+} a^{\#}$. It evident that $a \in R^{P I}$.
(3) If $x=a^{+}$is a solution, then $a^{*} a^{+}=a^{+} a^{+} a^{\#} a$. Multiply the equality on the right by a, we have $a^{*} a^{+} a=a^{+} a^{+} a$. Taking involution of the above equality, we deduce that $a^{+} a^{2}=a^{+} a\left(a^{+}\right)^{*}$. Pre-multiply the last equality by a, we get $a^{2}=a\left(a^{+}\right)^{*}$. Multiply the equation from the right by a^{*}, we get $a^{2} a^{*}=a^{2} a^{+}$. Per-multiply the equation by $a^{+} a^{\#}$, one has $a^{*}=a^{+}$. Hence $a \in R^{P I}$.
(4) If $x=a^{*}$ is a solution, then $a^{*} a^{*}=a^{+} a^{*} a^{\#} a$, this gives $a^{*} a^{*}\left(1-a^{+} a\right)=0$. Notice that

$$
a^{*}\left(1-a^{+} a\right)=\left(a^{\#}\right)^{*} a^{*} a^{*}\left(1-a^{+} a\right)=0
$$

which means $a^{*}=a^{*} a^{+} a=\left(a^{+} a^{2}\right)^{*}$. Apply involution to the equation, one has $a=a^{+} a^{2}$. It follows from [8, Corollary 2.12] that $a \in R^{E P}$. We further obtain that

$$
a^{*} a^{*}=a^{+} a^{*} a^{\#} a=a^{+} a^{*} a^{a} \#=a^{+} a^{*} a a^{+}=a^{+} a^{*},
$$

it follows that $a^{2}=a\left(a^{+}\right)^{*}$. Hence $a \in R^{P I}$.
(5) If $x=\left(a^{\#}\right)^{*}$ is a solution, then $a^{*}\left(a^{\#}\right)^{*}=a^{+}\left(a^{\#}\right)^{*} a^{\#} a$. We soon get that $a^{*}\left(a^{\#}\right)^{*}\left(1-a^{+} a\right)=0$. This gives

$$
a^{*}\left(1-a^{+} a\right)=a^{*} a^{*}\left(a^{\#}\right)^{*}\left(1-a^{+} a\right)=0
$$

It is easy to see $a \in R^{E P}$. On the other hand,

$$
a^{+} a=a^{*}\left(a^{+}\right)^{*}=a^{*}\left(a^{\#}\right)^{*}=a^{+}\left(a^{\#}\right)^{*} a^{\#} a=a^{+}\left(a^{+}\right)^{*} a^{+} a=a^{+}\left(a^{+}\right)^{*} .
$$

Consequently, $a \in R^{P I}$.
(6) If $x=\left(a^{+}\right)^{*}$ is a solution, then $a^{*}\left(a^{+}\right)^{*}=a^{+}\left(a^{+}\right)^{*} a^{\#} a$, which means that $a^{+} a=a^{+}\left(a^{+}\right)^{*} a^{\#} a$. It is straightforward that

$$
a=a a^{+} a=a a^{+}\left(a^{+}\right)^{*} a^{\#} a=\left(a^{+}\right)^{*} a^{\#} a .
$$

Post-multiply the last equation by a, we have $a^{2}=\left(a^{+}\right)^{*} a$. Hence $a \in R^{P I}$.
Observing the proof of Theorem 2.4, we have the following corollary.
Corollary 2.5. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{P I}$ if and only if $a^{*} a^{+} a=a^{+} a^{+} a$.
Next, we revise the equation (2) as follows.

$$
\begin{equation*}
a^{*} x=x a^{+} a^{\#} a \tag{3}
\end{equation*}
$$

Theorem 2.6. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{S E P}$ if and only if the equation (3) has at least one solution in χ_{a}.
Proof. \Rightarrow Since $a \in R^{S E P}, x=a$ is a solution by [4, Theorem 2.2(iv)].
$\Leftarrow(1)$ If $x=a$ is a solution, then $a^{*} a=a a^{+} a^{\#} a=a a^{\#}$. By [3, Theorem 2.3(v)], we know $a \in R^{S E P}$.
(2) If $x=a^{\#}$ is a solution, then $a^{*} a^{\#}=a^{\#} a^{+} a^{\#} a=a^{\#} a^{\#}$. It is immediate that $a \in R^{S E P}$ by [3, Theorem 2.3(xiv)].
(3) If $x=a^{+}$is a solution, then $a^{*} a^{+}=a^{+} a^{+} a^{\#} a$. Post-multiply it by a, we have

$$
a^{*} a^{+} a=a^{+} a^{+} a .
$$

Hence $a \in R^{P I}$ by Corollary 2.5. In addition, we know

$$
a^{*} a^{*}=a^{*} a^{+}=a^{+} a^{+} a^{\#} a=a^{*} a^{*} a^{\#} a .
$$

Pre-multiply it by $\left(a^{\#}\right)^{*}$, one has $a^{*}=a^{*} a^{\#} a$, which implies $a \in R^{E P}$. Consequently, $a \in R^{S E P}$.
(4) If $x=a^{*}$ is a solution, then $a^{*} a^{*}=a^{*} a^{+} a^{\#} a$. Pre-multiply it by $a^{+}\left(a^{+}\right)^{*}$, we get

$$
a^{+} a^{*}=a^{+} a^{+} a^{\#} a=a^{+} a^{*}\left(a^{+}\right)^{*} a^{\#} .
$$

By Lemma 2.1, we have $a^{*}=a^{*}\left(a^{+}\right)^{*} a^{\#}=a^{+} a a^{\#}$. Then we multiply the equality on the right by a and obtain that $a^{*} a=a^{+} a$, which shows $a \in R^{P I}$. Now, we have $a^{*} a^{*}=a^{*} a^{+} a^{\#} a=a^{*} a^{*} a^{\#} a$, it follows from the proof of (3) that $a \in R^{S E P}$
(5) If $x=\left(a^{\#}\right)^{*}$ is a solution, then $a^{*}\left(a^{\#}\right)^{*}=\left(a^{\#}\right)^{*} a^{+} a^{\#} a$. Pre-multiply it by $a^{*} a^{*}$, one has

$$
a^{*} a^{*}=a^{*} a^{+} a^{\#} a .
$$

It follows from (4) that $a \in R^{S E P}$.
(6) If $x=\left(a^{+}\right)^{*}$ is a solution, then $a^{*}\left(a^{+}\right)^{*}=\left(a^{+}\right)^{*} a^{+} a^{\#} a$, that is $a^{+} a=\left(a^{+}\right)^{*} a^{+} a^{\#} a$. Multiply it from the right by a, one has $a^{+} a^{2}=\left(a^{+}\right)^{*}$. Hence $a \in R^{S E P}$ by [3, Theorem 2.3(xviii)].
Lemma 2.7. Let $a \in R^{\#} \cap R^{+}$and $x \in R$. If $a^{+} a^{+} x=0$, then $a^{+} x=0$.
Proof. Since $a^{+} a^{+} x=0, a^{*} a^{+} x=a^{*} a a^{+} a^{+} x=0$. Pre-multiply the equality by $\left(a^{\#}\right)^{*}$, one has $\left(a^{\#}\right)^{*} a^{*} a^{+} x=0$. Noting that $\left(a^{\#}\right)^{*} a^{*} a^{+}=\left(a^{\#}\right)^{*} a^{*} a^{+} a a^{+}=\left(a^{+} a^{2} a^{\#}\right)^{*} a^{+}=a^{+}$. Then $a^{+} x=0$.

Further, we get the following equation by post-multiplying the equation (3) by a.

$$
\begin{equation*}
a^{*} x a=x a^{+} a . \tag{4}
\end{equation*}
$$

Theorem 2.8. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{P I}$ if and only if the equation (4) has at least one solution in χ_{a}.
Proof. $\Rightarrow x=a^{+}$is a solution because $a^{*}=a^{+}$.
$\Leftarrow(1)$ If $x=a$ is a solution, then $a^{*} a^{2}=a a^{+} a=a$. Thus, we deduce that $a \in R^{P I}$ by [3, Theorem 2.3(xix)].
(2) If $x=a^{\#}$ is a solution, then $a^{*} a^{\#} a=a^{\#} a^{+} a=a^{\#}$. Hence $a \in R^{P I}$ from [3, Theorem 2.3].
(3) If $x=a^{+}$is a solution, then $a^{*} a^{+} a=a^{+} a^{+} a$. It follows from Corollary 2.5 that $a \in R^{P I}$.
(4) If $x=a^{*}$ is a solution, then $a^{*} a^{*} a=a^{*} a^{+} a$. Pre-multiply the equation by $a^{+}\left(a^{+}\right)^{*}$, one has $a^{+} a^{*} a=a^{+} a^{+} a$, it follows

$$
a^{+} a^{*}=a^{+} a^{*} a a^{+}=a^{+} a^{+} a a^{+}=a^{+} a^{+} .
$$

Post-multiply the last equality by $\left(a^{+}\right)^{*}$, one has $a^{+} a^{+} a=a^{+} a^{+}\left(a^{+}\right)^{*}$. By Lemma 2.7, we have $a^{+} a=a^{+}\left(a^{+}\right)^{*}$, it follows that $a^{*}=a^{+} a a^{*}=a^{+}\left(a^{+}\right)^{*} a^{*}=a^{+}$. Thus $a \in R^{P I}$.
(5) If $x=\left(a^{\#}\right)^{*}$ is a solution, then $a^{*}\left(a^{\#}\right)^{*} a=\left(a^{\#}\right)^{*} a^{+} a$. Multiply it by $a^{*} a^{*}$ from the left, we obtain

$$
a^{*} a^{*} a=a^{*} a^{+} a .
$$

From the proof of (4), $a \in R^{P I}$.
(6) If $x=\left(a^{+}\right)^{*}$ is a solution, then $a^{*}\left(a^{+}\right)^{*} a=\left(a^{+}\right)^{*} a^{+} a$. That is $a^{+} a^{2}=\left(a^{+}\right)^{*}$, this gives $a^{2}=a a^{+} a^{2}=a\left(a^{+}\right)^{*}$, which implies $a \in R^{P I}$.

From the proof of (4) in Theorem 2.8, we have the following corollary.
Corollary 2.9. Let $a \in R^{\#} \cap R^{+}$. Then the following conditions are equivalent:

1) $a \in R^{P I}$;
2) $a^{+} a^{*}=a^{+} a^{+}$;
3) $a^{*} a^{+}=a^{+} a^{+}$.

Naturally, by observing the equation (1), equation (2) and equation (3), we come up with the following equation.

$$
\begin{equation*}
a^{*} x=a^{+} a^{\#} a x . \tag{5}
\end{equation*}
$$

Considering whether a is a partial isometry in relation to the solution of the equation (5) leads to the following problem.

Question 2.10. Let $a \in R^{\#} \cap R^{+}$. If $a^{*} a^{+} a=a^{+} a^{\#} a$, does $a \in R^{P I}$?
Lemma 2.11. Let $a \in R^{\#} \cap R^{+}$. If $a^{*} a^{+} a^{+}=a^{+} a^{+} a^{+}$, then $a \in R^{P I}$.
Proof. Since $a^{*} a^{+} a^{+}=a^{+} a^{+} a^{+}$, we get $a^{*} a^{+} a^{+} a=a^{+} a^{+} a^{+} a$. Applying the involution on the equality, we have

$$
a^{+} a\left(a^{+}\right)^{*} a=a^{+} a\left(a^{+}\right)^{*}\left(a^{+}\right)^{*}
$$

Pre-multiply the last equality by a, we have

$$
a\left(a^{+}\right)^{*}\left(a-\left(a^{+}\right)^{*}\right)=0
$$

Noting that $\left(a^{+}\right)^{*}=a a^{+}\left(a^{+}\right)^{*}$, then $a^{2} a^{+}\left(a^{+}\right)^{*}\left(a-\left(a^{+}\right)^{*}\right)=0$. Multiply it by $a^{\#}$ on the left, one has

$$
\left(a^{+}\right)^{*}\left(a-\left(a^{+}\right)^{*}\right)=0
$$

Hence $a^{*} a^{+}=a^{+} a^{+}$. By Corollary 2.9, $a \in R^{P I}$.
The proof of Lemma 2.11 infers the following corollary.
Corollary 2.12. Let $a \in R^{\#} \cap R^{+}$. If $a\left(a^{+}\right)^{*} x=0$, then $\left(a^{+}\right)^{*} x=0$.
Lemma 2.13. Let $a \in R^{\#} \cap R^{+}$. If $a^{*} a^{*} a^{+}=a^{*} a^{+} a^{+}$, then $a \in R^{P I}$.
Proof. Pre-multiply the equality $a^{*} a^{*} a^{+}=a^{*} a^{+} a^{+}$by $\left(a^{+}\right)^{*}$, we have

$$
a a^{+} a^{*} a^{+}=a a^{+} a^{+} a^{+}
$$

it follows that $a^{+} a^{*} a^{+}=a^{+} a^{+} a^{+}$. So $a^{+} a^{*} a^{+} a=a^{+} a^{+} a^{+} a$. Applying the involution on the last equality, one has

$$
a^{+} a^{2}\left(a^{+}\right)^{*}=a^{+} a\left(a^{+}\right)^{*}\left(a^{+}\right)^{*}=a^{+} a\left(a^{+}\right)^{*} a^{+} a\left(a^{+}\right)^{*}
$$

Multiply it on the right by $a^{*} a^{\#} a$, we have $a^{+} a^{2}=a^{+} a\left(a^{+}\right)^{*}$. Therefore $a^{2}=a\left(a^{+}\right)^{*}$, which implies $a \in R^{P I}$.
The proof of Lemma 2.13 implies the following corollary.
Corollary 2.14. Let $a \in R^{\#} \cap R^{+}$. If $x a\left(a^{+}\right)^{*}=0$, then $x a=0$.
Lemma 2.15. Let $a \in R^{\#} \cap R^{+}$. If $a^{3}=a\left(a^{+}\right)^{*} a$, then $a \in R^{P I}$.
Proof. Since

$$
a^{3}=a\left(a^{+}\right)^{*} a=a\left(a a^{+}\left(a^{+}\right)^{*} a^{+} a\right) a=a^{2} a^{+}\left(a^{+}\right)^{*} a^{+} a^{2}
$$

we know that

$$
a=a^{\#} a^{3} a^{\#}=a^{\#} a^{2} a^{+}\left(a^{+}\right)^{*} a^{+} a^{2} a^{\#}=a a^{+}\left(a^{+}\right)^{*} a^{+} a=\left(a^{+}\right)^{*} .
$$

Then it is obvious that $a \in R^{P I}$.
Theorem 2.16. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{P I}$ if and only if the equation $a^{*} x y=x a^{+} y$ has at least one solution in $\chi_{a}^{2}=\left\{(x, y) \mid x, y \in \chi_{a}\right\}$.

Proof. \Rightarrow If $a \in R^{P I}$, then $a^{*}=a^{+}$, this implies $\left\{\begin{array}{l}x=a^{*} \\ y=a\end{array}\right.$ is a solution.
$\Leftarrow(1)$ If $y=a$, then $a^{*} x a=x a^{+} a$. We know from Theorem 2.8 that $a \in R^{P I}$.
(2) If $y=a^{\#}$, then $a^{*} x a^{\#}=x a^{+} a^{\#}$. Post-multiply the equation by a^{2}, one gets $a^{*} x a=x a^{+} a$. It is immediate from Theorem 2.8 that $a \in R^{P I}$.
(3) If $y=a^{+}$, then we have the following equation

$$
\begin{equation*}
a^{*} x a^{+}=x a^{+} a^{+} \tag{6}
\end{equation*}
$$

(i) If $x=a$, then $a^{*} a a^{+}=a a^{+} a^{+}$, that is $a^{*}=a a^{+} a^{+}$. This clearly forces

$$
\left(1-a a^{+}\right) a^{*}=\left(1-a a^{+}\right) a a^{+} a^{+}=0,
$$

it follows $a=a^{2} a^{+}$which yields $a \in R^{E P}$. Thus $a^{*}=a a^{+} a^{+}=a^{+}$. Consequently, $a \in R^{P I}$.
(ii) If $x=a^{\#}$, then $a^{*} a^{\#} a^{+}=a^{\#} a^{+} a^{+}$. It is clear that

$$
\left(1-a a^{+}\right) a^{*} a^{\#} a^{+}=\left(1-a a^{+}\right) a^{\#} a^{+} a^{+}=0
$$

Multiply the equality on the right by $a^{3} a^{+}$, we get $\left(1-a a^{+}\right) a^{*}=0$. This gives $a \in R^{E P}$. Hence, we obtain that

$$
a^{*}=a^{*} a a^{+}=a^{*} a^{+} a=a^{*} a^{\#} a^{+} a^{2}=a^{\#} a^{+} a^{+} a^{2}=a^{\#} a^{+} a=a^{\#}=a^{+},
$$

which proves $a \in R^{P I}$.
(iii) If $x=a^{+}$, then $a^{*} a^{+} a^{+}=a^{+} a^{+} a^{+}$. By Lemma 2.11, $a \in R^{P I}$.
(iv) If $x=a^{*}$, then $a^{*} a^{*} a^{+}=a^{*} a^{+} a^{+}$. By Lemma 2.13, we know that $a \in R^{P I}$.
(v) If $x=\left(a^{\#}\right)^{*}$, then $a^{*}\left(a^{\#}\right)^{*} a^{+}=\left(a^{\#}\right)^{*} a^{+} a^{+}$. Post-multiply the equality by a and applying the involution, one has

$$
a^{+} a a^{\#} a=a^{+} a\left(a^{+}\right)^{*} a^{\#}
$$

that is, $a^{+} a=a^{+} a\left(a^{+}\right)^{*} a^{\#}$. We find out that

$$
a=a a^{+} a=a a^{+} a\left(a^{+}\right)^{*} a^{\#}=a\left(a^{+}\right)^{*} a^{\#} .
$$

Then we know $a\left(a^{+}\right)^{*}=a\left(a^{+}\right)^{*} a^{\#}\left(a^{+}\right)^{*}$. It is immediate from Corollary 2.12 that

$$
\left(a^{+}\right)^{*}=\left(a^{+}\right)^{*} a^{\#}\left(a^{+}\right)^{*} .
$$

Taking the involution of the equality, we get $a^{+}=a^{+}\left(a^{\#}\right)^{*} a^{+}$. Hence $a=a a^{+} a=a a^{+}\left(a^{\#}\right)^{*} a^{+} a$. Applying the involution of the equality, one has

$$
a^{*}=a^{+} a a^{\#} a a^{+}=a^{+} a a^{+}=a^{+} .
$$

Consequently, $a \in R^{P I}$.
(vi) If $x=\left(a^{+}\right)^{*}$, then $a^{*}\left(a^{+}\right)^{*} a^{+}=\left(a^{+}\right)^{*} a^{+} a^{+}$, that is $a^{+}=\left(a^{+}\right)^{*} a^{+} a^{+}$. This forces that $a^{+} a=\left(a^{+}\right)^{*} a^{+} a^{+} a$. Applying the involution of the equality, we obtain that

$$
a^{+} a=a^{+} a\left(a^{+}\right)^{*} a^{+}
$$

Pre-multiply it by a and then we know $a=a\left(a^{+}\right)^{*} a^{+}$. As a result, $a^{2}=a\left(a^{+}\right)^{*} a^{+} a=a\left(a^{+}\right)^{*}$, which indicates $a \in R^{P I}$.
(4) If $y=a^{*}$, then we have the following equation.

$$
\begin{equation*}
a^{*} x a^{*}=x a^{+} a^{*} \tag{7}
\end{equation*}
$$

(i) If $x=a$, then $a^{*} a a^{*}=a a^{+} a^{*}$. Applying the involution on the equality, we have $a a^{*} a=a^{2} a^{+}$. Observe that $a a^{*} a\left(1-a a^{+}\right)=a^{2} a^{+}\left(1-a a^{+}\right)=0$. Then accordingly we know $a^{*} a\left(1-a a^{+}\right)=0$, which gives $a \in R^{E P}$. Moreover, $a a^{*} a=a^{2} a^{+}=a$. This means $a \in R^{P I}$.
(ii) If $x=a^{\#}$, then $a^{*} a^{\#} a^{*}=a^{\#} a^{+} a^{*}$. It is evident that $\left(1-a a^{+}\right) a^{*} a^{\#} a^{*}=\left(1-a a^{+}\right) a^{\#} a^{+} a^{*}=0$. Then we obtain that

$$
\left(1-a a^{+}\right) a^{*} a^{\#}=\left(1-a a^{+}\right)^{*} a^{*} a^{\#} a^{*}\left(a^{+}\right)^{*}=0
$$

Accordingly, we get

$$
\left(1-a a^{+}\right) a^{*}=\left(1-a a^{+}\right) a^{*} a a^{+}=\left(1-a a^{+}\right) a^{*} a^{\#} a^{2} a^{+}=0 .
$$

This gives $a \in R^{E P}$. On the other hand,

$$
a^{*} a^{\#}=a^{*} a^{\#} a^{*}\left(a^{+}\right)^{*}=a^{\#} a^{+} a^{*}\left(a^{+}\right)^{*}=a^{\#} a^{+} a^{+} a=a^{\#} a^{+}=a^{+} a^{\#} .
$$

By [3, Theorem 2.3], we know $a \in R^{P I}$.
(iii) If $x=a^{+}$, then $a^{*} a^{+} a^{*}=a^{+} a^{+} a^{*}$. Post-multiply it by $\left(a^{+}\right)^{*}$, one has

$$
a^{*} a^{+} a^{+} a=a^{+} a^{+} a^{+} a .
$$

This gives $a^{*} a^{+} a^{+}=a^{+} a^{+} a^{+}$. It follows from Lemma 2.11 that $a \in R^{P I}$.
(iv) If $x=a^{*}$, then $a^{*} a^{*} a^{*}=a^{*} a^{+} a^{*}$. Applying the involution on the equation, we have $a^{3}=a\left(a^{+}\right)^{*} a$. Hence $a \in R^{P I}$ by Lemma 2.15.
(v) If $x=\left(a^{\#}\right)^{*}$, then $a^{*}\left(a^{\#}\right)^{*} a^{*}=\left(a^{\#}\right)^{*} a^{+} a^{*}$. Taking involution of the equality, we get

$$
a=a\left(a^{+}\right)^{*} a^{\#} .
$$

Post-multiply it by a^{2} and we thus obtain $a^{3}=a\left(a^{+}\right)^{*} a$. It is immediate from Lemma 2.15 that $a \in R^{P I}$.
(vi) If $x=\left(a^{+}\right)^{*}$, then $a^{*}\left(a^{+}\right)^{*} a^{*}=\left(a^{+}\right)^{*} a^{+} a^{*}$. That is $a^{*}=\left(a^{+}\right)^{*} a^{+} a^{*}$. Applying the involution of it, we get $a=a\left(a^{+}\right)^{*} a^{+}$. Thus $a^{2}=a\left(a^{+}\right)^{*}$ which gives $a \in R^{P I}$.
(5) If $y=\left(a^{\#}\right)^{*}$, then we obtain the following equation.

$$
\begin{equation*}
a^{*} x\left(a^{\#}\right)^{*}=x a^{+}\left(a^{\#}\right)^{*} . \tag{8}
\end{equation*}
$$

Post-multiply the equation (8) by $a^{*} a^{*}$, we have

$$
a^{*} x a^{*}=x a^{+} a^{*} .
$$

By (4), we know $a \in R^{P I}$.
(6) If $y=\left(a^{+}\right)^{*}$, then we get the following equation.

$$
\begin{equation*}
a^{*} x\left(a^{+}\right)^{*}=x a^{+}\left(a^{+}\right)^{*} \tag{9}
\end{equation*}
$$

Post-multiply the equation (9) by $a^{*} a$, one obtains the equation (2.4) as follows

$$
a^{*} x a=x a^{+} a .
$$

By Theorem 2.8, $a \in R^{P I}$.

References

[1] A. Ben-Israel, T. N. E Greville, Generalized Inverses: Theory and Applications, 2nd. ed., Springer (New York, 2003).
[2] R. E. Hartwig, Block generalized inverses, Arch. Rational Mech. Anal. 61(1976) 197-251.
[3] D. Mosić, D. S. Djordjević, Partial isometries and EP elements in rings with involution. Electron. J. Linear Algebra 18(2009) 761-772.
[4] D. Mosić, Dragan S. Djordjević, Further results on partial isometries and EP elements in rings with involution, Math. Comput. Modelling 54(1)(2011) 460-465.
[5] D. Mosić, D. S. Djordjević, J. J. Koliha, EP elements in rings, Linear Algebra Appl. 431(2009) 527-535.
[6] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51(1955) 406-413.
[7] Y. C. Qu, J. C. Wei, H. Yao, Characterizations of normal elements in ring with involution, Acta. Math. Hungar. 156(2)(2018) 459-464.
[8] Y. C. Qu, H. Yao, J. C. Wei, Some characterizations of partial isometry elements in rings with involutions, Filomat 33(19)(2019) 6395-6399.
[9] G. Szép, Simultaneous triangularization of projector matrices, Acta. Math. Hungar. 48(3-4)(1986) 285-288.
[10] S. Z. Xu, J. L. Chen, J. Benítez, EP elements in rings with involution, arXiv:1602.08184v2 [math.RA] 24 Aug 2017.
[11] R. J. Zhao, H. Yao, J. C. Wei, Characterizations of partial isometries and two special kinds of EP elements, CMJ. 2019 0389-18.
[12] R. J. Zhao, H. Yao, J. C. Wei, EP elements and the solutions of equation in rings with involution, Filomat 32(13)(2018) 4537-4542.

[^0]: 2010 Mathematics Subject Classification. 15A09; 16U99; 16W10
 Keywords. strongly $E P$ element, partial isometry, solutions of equation.
 Received: 22 March 2020; Revised: 18 November 2020; Accepted: 23 November 2020
 Communicated by Dijana Mosić
 Corresponding author: Yue Sui
 Research supported by the National Natural Science Foundation of China (11471282) and Innovation and Entrepreneurship Training Program for College Students in Jiangsu Province (202011117097Y)

 Email addresses: 52660078@qq.com (Shiyin Zhao), 3193865317@qq.com (Yue Sui), jcweiyz@126.com (Junchao Wei)

