An Observation About Pseudospectra

Boting Jia ${ }^{\text {a }}$, Youling Feng ${ }^{\text {b }}$
${ }^{a}$ School of Statistics, Jilin University of Finance and Economics, Changchun 130117, P.R. China
${ }^{b}$ School of Management Science and Information Engineering, Jilin University of Finance and Economics, Changchun 130117, P.R. China

Abstract

For $\varepsilon>0$ and a bounded linear operator T acting on some Hilbert space, the ε-pseudospectrum of T is $\sigma_{\varepsilon}(T)=\left\{z \in \mathbb{C}:\left\|(z I-T)^{-1}\right\|>\varepsilon^{-1}\right\}$. This note provides a characterization of those operators T satisfying $\sigma_{\varepsilon}(T)=\sigma(T)+B(0, \varepsilon)$ for all $\varepsilon>0$. Here $B(0, \varepsilon)=\{z \in \mathbb{C}:|z|<\varepsilon\}$. In particular, such operators on finite dimensional spaces must be normal.

1. Introduction

As usual, we let \mathbb{N}, \mathbb{C} denote respectively the set of positive integers and the set of complex numbers. \mathcal{H} will always denote a complex separable infinitely dimensional Hilbert space. Denote by $\mathcal{B}(\mathcal{H})$ the Banach algebra of all bounded linear operators on \mathcal{H}.

This paper is a continuation of a previous paper of the authors [8], where pseudospectral radii of Hilbert space operators are studied. The spectrum of an operator $T \in \mathcal{B}(\mathcal{H})$ is

$$
\sigma(T)=\{z \in \mathbb{C}: z I-T \text { is not invertible in } \mathcal{B}(\mathcal{H})\}
$$

Given $\varepsilon>0$, the ε-pseudospectrum of T is defined as

$$
\sigma_{\varepsilon}(T)=\left\{z \in \mathbb{C}:\left\|(z I-T)^{-1}\right\|>\varepsilon^{-1}\right\}
$$

Conventionally, it is assumed that $\left\|(z I-T)^{-1}\right\|=\infty$ if $z \in \sigma(T)$. The reader is referred to [10] for other equivalent definitions of the ε-pseudospectrum.

The behaviors of pseudospectra of operators are quite different from that of their spectra. It is obvious that the ε-pseudospectrum of T is always open. However, pseudospectra can be used to give effective estimations of spectra. In fact, one can check that

$$
\bigcap_{\varepsilon>0} \sigma_{\varepsilon}(T)=\sigma(T) .
$$

Moreover, it is known that the $\operatorname{map}(\varepsilon, T) \mapsto \sigma_{\varepsilon}(T)$ is continuous (see [4, Prop. 2.7]).

[^0]The aim of this note is to discuss the relation between spectra and pseudospectra. For $T \in \mathcal{B}(\mathcal{H})$ and $\varepsilon>0$, it is known that $\sigma(T)+B(0, \varepsilon) \subset \sigma_{\varepsilon}(T)$, and the converse inclusion in general does not hold. Here $B(0, \varepsilon)$ denotes the set $\{z \in \mathbb{C}:|z|<\varepsilon\}$. For example, if an operator $A \in \mathcal{B}(\mathcal{H})$ is nilpotent of order 2 , then $\sigma_{\varepsilon}(A)=B\left(0, \sqrt{\varepsilon^{2}+\|A\| \varepsilon}\right)$ (see [4, Proposition 2.4]), and

$$
\sigma(A)+B(0, \varepsilon)=B(0, \varepsilon) \subsetneq \sigma_{\varepsilon}(A)
$$

Thus a natural question arises.
Question 1.1. When does an operator T satisfy

$$
\begin{equation*}
\sigma_{\varepsilon}(T)=\sigma(T)+B(0, \varepsilon) \text { for all } \varepsilon>0 ? \tag{1}
\end{equation*}
$$

For any $\varepsilon>0$, note that

$$
\sigma(T)+B(0, \varepsilon)=\{z \in \mathbb{C}: \operatorname{dist}(z, \sigma(T))<\varepsilon\}=\left\{z \in \mathbb{C}: 1 / \operatorname{dist}(z, \sigma(T))>\varepsilon^{-1}\right\}
$$

Thus an operator T satisfies (1) if and only if $\left\|(z I-T)^{-1}\right\|=1 / \operatorname{dist}(z, \sigma(T))$ for $z \in \mathbb{C} \backslash \sigma(T)$.
We remark that a von Neumann operator T always satisfies (1). Recall that T is called a von Neumann operator if $\|f(T)\|=\sup \{|f(z)|: z \in \sigma(T)\}$ for rational functions f with poles off $\sigma(T)$. Note that if T is a von Neumann operator, then $\|T\|=r(T)$, where $r(T)$ denotes the spectral radius of T. The class of von Neumann operators includes some special classes of operators, such as normal operators and subnormal operators. Thus if T is von Neumann, then, for any $z \in \mathbb{C} \backslash \sigma(T)$, we have

$$
\left\|(z I-T)^{-1}\right\|=\sup \left\{\left|(z-\lambda)^{-1}\right|: \lambda \in \sigma(T)\right\}=1 / \operatorname{dist}(z, \sigma(T))
$$

It follows that $\sigma_{\varepsilon}(T)=\sigma(T)+B(0, \varepsilon)$ for all $\varepsilon>0$. So it is natural to ask whether the converse holds. Here we give a counterexample.

Example 1.2. Let S be the unilateral shift on $l^{2}(\mathbb{N})$ defined by

$$
\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \cdots\right) \longmapsto\left(0, \alpha_{1}, \alpha_{2}, \alpha_{3}, \cdots\right)
$$

Since S is subnormal (and hence a von Neumann operator, see [3, Proposition 9.2]), we have

$$
\sigma_{\varepsilon}(S)=\sigma(S)+B(0, \varepsilon)=B(0,1+\varepsilon)
$$

Let $R \in \mathcal{B}\left(\mathbb{C}^{2}\right)$ be the operator on \mathbb{C}^{2} determined by the following matrix

$$
\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right)
$$

Then, by [4, Proposition 2.4], $\sigma_{\varepsilon}(R)=B\left(0, \sqrt{\varepsilon^{2}+2 \varepsilon}\right)$. So $\sigma_{\varepsilon}(R) \subset \sigma_{\varepsilon}(S)$.
Set $T=S \oplus R$. Then $\sigma(T)=\sigma(S) \cup \sigma(R)=B(0,1)^{-}$and

$$
\sigma_{\varepsilon}(T)=\sigma_{\varepsilon}(S) \cup \sigma_{\varepsilon}(R)=\sigma_{\varepsilon}(S)=\sigma(S)+B(0, \varepsilon)=\sigma(T)+B(0, \varepsilon)
$$

However, noting that $\|T\|=2>1=r(T)$, T is not a von Neumann operator.
In this note, we give a characterization of those operators T satisfying (1). To state our main result, we need an extra definition. Two operators A and B are called approximately unitarily equivalent, denoted as $A \simeq_{a} B$, if there exist a sequence of unitary operators U_{n} such that $\lim _{n} U_{n}^{*} A U_{n}=B$ (see [2, Definition 39.9]). If $A \simeq_{a} B$, then it is easy to check that $\sigma(A)=\sigma(B)$ and $\sigma_{\varepsilon}(A)=\sigma_{\varepsilon}(B)$ for all $\varepsilon>0$.

The main result of this paper is the following theorem, which gives an answer to Question 1.1.
Theorem 1.3. For $T \in \mathcal{B}(\mathcal{H})$, the following are equivalent:
(i) $\sigma_{\varepsilon}(T)=\sigma(T)+B(0, \varepsilon)$ for all $\varepsilon>0$.
(ii) T is approximately unitarily equivalent to an operator of form $N \oplus A$, where N is normal with $\sigma(N)=\partial \sigma(T)$ and

$$
\left\|(z I-A)^{-1}\right\| \leq\left\|(z I-N)^{-1}\right\|, \quad \forall z \in \mathbb{C} \backslash \sigma(T)
$$

Remark 1.4. Let $T \in \mathcal{B}(\mathcal{H})$ and suppose $\sigma_{\varepsilon}(T)=\sigma(T)+B(0, \varepsilon)$ for all $\varepsilon>0$. By definition, the norm of the resolvent function $(z I-T)^{-1}$ of T coincides with that of a normal operator. By Theorem 1.3 (ii), this means that T "has" (up to approximate unitary equivalence) a normal part N with $\sigma(N)=\partial \sigma(T)$. Thus each point in $\partial \sigma(T)$ is a normal approximate eigenvalue of T. Recall that a complex number λ is called a normal approximate eigenvalue [5] of $A \in \mathcal{B}(\mathcal{H})$ if there exists a sequence $\left\{x_{n}\right\}_{n \geq 1}$ of unit vectors such that

$$
\left\|(A-\lambda) x_{n}\right\|+\left\|(A-\lambda)^{*} x_{n}\right\| \rightarrow 0
$$

Remark 1.5. We remark that the result of Theorem 1.3 is sharp. That is, approximate unitary equivalence can not be replaced by unitary equivalence, since the operator T in Example 1.2 is abnormal, that is, T admits no nonzero reducing subspace M such that $\left.T\right|_{M}$ is normal.

Example 1.2 shows that the equality (1) in general does not imply the normality of T. However, if T acts on some finite dimensional Hilbert space, then we shall prove in Section 2 the following result.

Theorem 1.6. Let A be a bounded linear operator acting on a finite dimensional Hilbert space \mathcal{K}. Then $\sigma_{\varepsilon}(A)=$ $\sigma(A)+B(0, \varepsilon)$ for all $\varepsilon>0$ if and only if A is normal.

The proof of main result will be provided in Section 2. In the rest of this section, we fix some notations and terminology.

Let $T \in \mathcal{B}(\mathcal{H})$. We denote by $\operatorname{ker} T$ and ran T the kernel of T and the range of T respectively. If ran T is closed and either $\operatorname{ker} T$ or $\operatorname{ker} T^{*}$ is of finite dimension, then T is called a semi-Fredholm operator. The following set

$$
\sigma_{\text {lre }}(T)=\{\lambda \in \mathbb{C}: T-\lambda \text { is not semi-Fredholm }\}
$$

is called the Wolf spectrum of T.
Let $T \in \mathcal{B}(\mathcal{H})$. If Δ is a nonempty clopen subset of $\sigma(T)$, then there exists an analytic Cauchy domain Ω such that $\Delta \subset \Omega$ and $[\sigma(T) \backslash \Delta] \cap \bar{\Omega}=\emptyset$. We let $E(\Delta ; T)$ denote the Riesz idempotent of T corresponding to Δ, that is,

$$
E(\Delta ; T)=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma}(\lambda-T)^{-1} \mathrm{~d} \lambda
$$

where $\Gamma=\partial \Omega$ is positively oriented with respect to Ω in the sense of complex variable theory. By the Riesz Decomposition Theorem ([9, Theorem 2.10]), $\mathcal{H}(\Delta ; T):=\operatorname{ran}(E(\Delta ; T))$ is an invariant subspace of T and $\sigma\left(\left.T\right|_{\mathcal{H}(\Delta ; T)}\right)=\Delta$. If λ is an isolated point of $\sigma(T)$, then $\{\lambda\}$ is a clopen subset of $\sigma(T)$; if, in addition, $\operatorname{dim} \mathcal{H}(\{\lambda\} ; T)<\infty$, then λ is called a normal eigenvalue of T. We denote by $\sigma_{0}(T)$ the set of all normal eigenvalues of T. The reader is referred to [1, page 210] or [7, Chapter 1] for more details.

2. Proof of Theorem 1.3

We first introduce some useful lemmas.
Lemma 2.1 ([1], page 366). Let $T \in \mathcal{B}(\mathcal{H})$. Then $\partial \sigma(T) \subseteq\left[\sigma_{0}(T) \cup \sigma_{l r e}(T)\right]$.
Recall that an operator T is said to be normaloid if $\|T\|=r(T)$ (see [6, page 117]).
Lemma 2.2 ([11], Theorem 3.1). Let $T \in \mathcal{B}(\mathcal{H})$ be normaloid. If N is a normal operator on some Hilbert space with $\sigma(N) \subseteq\left\{z \in \sigma_{\text {lre }}(T):|z|=\|T\|\right\}$, then $T \simeq_{a} T \oplus N$.

Lemma 2.3 ([11], Corollary 3.2). Let $T \in \mathcal{B}(\mathcal{H})$ and Γ be a compact subset of \mathbb{C}. If $T \simeq_{a} T \oplus \lambda I$ for any $\lambda \in \Gamma$ and N is a normal operator on some Hilbert space with $\sigma(N)=\Gamma$, where I is the identity operator on \mathcal{H}, then $T \simeq_{a} T \oplus N$.

Lemma 2.4 ([11], Corollary 3.5). Let $T \in \mathcal{B}(\mathcal{H})$. If $\lambda \in \sigma_{0}(T)$ and there exists $z_{0} \in \mathbb{C} \backslash \sigma(T)$ such that

$$
\left|\left(z_{0}-\lambda\right)^{-1}\right|=\left\|\left(z_{0}-T\right)^{-1}\right\|
$$

then $\operatorname{ker}(\lambda-T)$ reduces T.
Proof. [Proof of Theorem 1.6] We need only prove the necessity. Assume that $\sigma(A)=\left\{\lambda_{i}: i=1,2, \cdots, k\right\}$ and choose a positive number $\delta>\|A\|$. Thus $\delta \notin \sigma(A)$. Put $T=\delta I \oplus A$, where I is the identity operator on \mathcal{H} with $\operatorname{dim} \mathcal{H}=\infty$. Thus $\sigma_{0}(T)=\left\{\lambda_{i}: i=1,2, \cdots, k\right\}$.

On the other hand, it is easy to see $\sigma_{\varepsilon}(T)=\sigma(T)+B(0, \varepsilon)$ for all $\varepsilon>0$. Then

$$
\left\|(z-T)^{-1}\right\|=1 / \operatorname{dist}(z, \sigma(T)), \quad \forall z \in \mathbb{C} \backslash \sigma(T)
$$

So, for each λ_{i}, there exists z_{i} such that $\left|\left(z_{i}-\lambda_{i}\right)^{-1}\right|=\left\|\left(z_{i}-T\right)^{-1}\right\|$. By Lemma 2.4, $\operatorname{ker}\left(A-\lambda_{i}\right)=\operatorname{ker}\left(T-\lambda_{i}\right)$ reduces T. Set $M=\vee_{i=1}^{k} \operatorname{ker}\left(A-\lambda_{i}\right)$. Then $M \subset \mathcal{K}$ and reduces A. So

$$
A=\left[\begin{array}{cccc}
\lambda_{1} I_{1} & & & \\
& \ddots & & \\
& & \lambda_{k} I_{k} & \\
& & & A_{0}
\end{array}{\begin{array}{c}
\operatorname{ker}\left(A-\lambda_{1}\right) \\
\vdots \\
\operatorname{ker}\left(A-\lambda_{k}\right)^{\prime} \\
\mathcal{K} \ominus M
\end{array}, ~ .}^{\prime}\right.
$$

where the entries not shown are zero. Since $\sigma\left(A_{0}\right) \subset \sigma(A)=\left\{\lambda_{i}: i=1,2, \cdots, k\right\}$, it follows that $M=\mathcal{K}$. So A is normal.

The following result is a mild improvement of Theorem 4.4 in [11].
Proposition 2.5. Let $T \in \mathcal{B}(\mathcal{H})$ and suppose $\left\|(z I-T)^{-1}\right\|=1 / \operatorname{dist}(z, \sigma(T))$ for all $z \in \mathbb{C} \backslash \sigma(T)$. If N is a normal operator with $\sigma(N)=\sigma_{\text {lre }}(T) \cap \partial \sigma(T)$, then $T \simeq_{a} T \oplus N$.

Proof. According to Lemma 2.3, we only need to prove that $T \simeq_{a} T \oplus \lambda I$ for any $\lambda \in \sigma_{l r e}(T) \cap \partial \sigma(T)$.
Let $\lambda_{0} \in \sigma_{\text {lre }}(T) \cap \partial \sigma(T)$. We can find $\left\{z_{n}\right\}_{n=1}^{\infty} \subseteq \mathbb{C} \backslash \sigma(T)$ such that $z_{n} \rightarrow \lambda_{0}$. For $n \geq \mathbb{N}$, there exist $\lambda_{n} \in \sigma(T)$ such that $\operatorname{dist}\left(z_{n}, \sigma(T)\right)=\left|z_{n}-\lambda_{n}\right|$. So $\lambda_{n} \in \partial \sigma(T)$ and $\lambda_{n} \rightarrow \lambda_{0}$.

By the hypothesis, we have

$$
\left\|\left(z_{n}-T\right)^{-1}\right\|=1 / \operatorname{dist}\left(z_{n}, \sigma(T)\right)=1 /\left|z_{n}-\lambda_{n}\right|
$$

By the spectral mapping theorem, $\left(z_{n}-\lambda_{n}\right)^{-1} \in \sigma\left(\left(z_{n}-T\right)^{-1}\right)$ for $n \geq 1$.
Case 1. There exist $n_{1}<n_{2}<n_{3}<\cdots$ such that $\lambda_{n_{k}} \in \sigma_{\text {lre }}(T)$.
If so, then $\left(z_{n_{k}}-\lambda_{n_{k}}\right)^{-1} \in \sigma_{l r e}\left(\left(z_{n_{k}}-T\right)^{-1}\right)$. By Lemma 2.2, we obtain

$$
\left(z_{n_{k}}-T\right)^{-1} \simeq_{a}\left(z_{n_{k}}-T\right)^{-1} \oplus\left(z_{n_{k}}-\lambda_{n_{k}}\right)^{-1} I, \quad \forall k \geq 1
$$

yielding $T \simeq_{a} T \oplus \lambda_{n_{k}} I$ for all $k \geq 1$. Since $\lambda_{n_{k}} \rightarrow \lambda_{0}$, one can see $T \simeq_{a} T \oplus \lambda_{0} I$.
Case 2. There exists $m>0$ such that $\lambda_{n} \notin \sigma_{l r e}(T)$ for $n \geq m$.
Since $\lambda_{n} \in \partial \sigma(T)$, it follows from Lemma 2.1 that $\lambda_{n} \in \sigma_{0}(T)$ for $n \geq m$. Noting that $\left\|\left(z_{n}-T\right)^{-1}\right\|=1 /\left|z_{n}-\lambda_{n}\right|$, it follows from Lemma 2.4 that $\operatorname{ker}\left(T-\lambda_{n}\right)$ reduces T for $n \geq m$. Noting that $\lambda_{n} \rightarrow \lambda_{0} \in \sigma_{\text {lre }}(T)$, it can be assumed that $\left\{\lambda_{n}: n \geq m\right\}$ are pairwise distinct. So T can be written as

$$
T=A \oplus \operatorname{diag}\left\{\lambda_{m}, \lambda_{m+1}, \lambda_{m+2}, \cdots\right\}
$$

Since $\lambda_{n} \rightarrow \lambda_{0}$, one can see

$$
\lambda_{0} \in \sigma_{l r e}\left(\operatorname{diag}\left\{\lambda_{m}, \lambda_{m+1}, \lambda_{m+2}, \cdots\right\}\right)
$$

Then, by a corollary of the Weyl-von Neumann-Berg Theorem (see [2, Proposition 39.10]), we have

$$
\operatorname{diag}\left\{\lambda_{m}, \lambda_{m+1}, \lambda_{m+2}, \cdots\right\} \simeq_{a} \operatorname{diag}\left\{\lambda_{m}, \lambda_{m+1}, \lambda_{m+2}, \cdots\right\} \oplus \lambda_{0} I .
$$

So

$$
\begin{aligned}
T & =A \oplus \operatorname{diag}\left\{\lambda_{m}, \lambda_{m+1}, \lambda_{m+2}, \cdots\right\} \\
& \simeq_{a} A \oplus\left(\operatorname{diag}\left\{\lambda_{m}, \lambda_{m+1}, \lambda_{m+2}, \cdots\right\} \oplus \lambda_{0} I\right) \\
& \simeq_{a}\left(A \oplus \operatorname{diag}\left\{\lambda_{m}, \lambda_{m+1}, \lambda_{m+2}, \cdots\right\}\right) \oplus \lambda_{0} I \\
& =T \oplus \lambda_{0} I .
\end{aligned}
$$

Hence the proof is complete.

Remark 2.6. We remark that the proof of the preceding theorem is inspired by that of Theorem 4.3 in [11].
Now we are going to prove Theorem 1.3.

Proof. [Proof of Theorem 1.3] " $\Longleftarrow "$. Since $T \simeq_{a} N \oplus A$, it follows that $(z-T)^{-1} \simeq_{a}(z-N)^{-1} \oplus(z-A)^{-1}$ for $z \in \mathbb{C} \backslash \sigma(T)$. Then

$$
\begin{aligned}
\left\|(z I-T)^{-1}\right\| & =\max \left\{\left\|(z I-N)^{-1}\right\|,\left\|(z I-A)^{-1}\right\|\right\}=\left\|(z I-N)^{-1}\right\| \\
& =1 / \operatorname{dist}(z, \sigma(N))=1 / \operatorname{dist}(z, \partial \sigma(T))=1 / \operatorname{dist}(z, \sigma(T)),
\end{aligned}
$$

proving the sufficiency.
" \Longrightarrow ". Set $\Gamma_{0}=\partial \sigma(T) \cap \sigma_{0}(T)$ and $\Gamma_{1}=\partial \sigma(T) \cap \sigma_{l r e}(T)$. By Lemma 2.1, we have $\partial \sigma(T)=\Gamma_{0} \cup \Gamma_{1}$. Since $\sigma_{0}(T)$ is at most denumerable, without loss of generality, it can be assumed that $\Gamma_{0}=\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, \cdots\right\}$.

For each $n \geq 1$, since $\lambda_{n} \in \sigma_{0}(T)$ is an isolated point of $\sigma(T)$, we can find $z_{n} \in \mathbb{C} \backslash \sigma(T)$ such that $\left|z_{n}-\lambda_{n}\right|<\operatorname{dist}\left(z_{n}, \sigma(T) \backslash\left\{\lambda_{n}\right\}\right)$. Then

$$
\left\|\left(z_{n}-T\right)^{-1}\right\|=1 / \operatorname{dist}\left(z_{n}, \sigma(T)\right)=1 /\left|\lambda_{n}-z_{n}\right| .
$$

Since $\lambda_{n} \in \sigma_{0}(T)$, it follows from Lemma 2.4 that $\operatorname{ker}\left(T-\lambda_{n}\right)$ reduces T. Note that $\left\{\lambda_{n}: n \geq 1\right\}$ are pairwise distinct. Thus T can be written as

$$
\begin{equation*}
T=A \oplus \operatorname{diag}\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, \cdots\right\} \tag{2}
\end{equation*}
$$

Choose a normal operator N_{1} on \mathcal{H} with $\sigma\left(N_{1}\right)=\Gamma_{1}$. Then, by Proposition 2.5, we have $T \simeq_{a} T \oplus N_{1}$. It follows that

$$
T \simeq_{a} T \oplus N_{1}=A \oplus \operatorname{diag}\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, \cdots\right\} \oplus N_{1} .
$$

Set $N=\operatorname{diag}\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, \cdots\right\} \oplus N_{1}$. Then N is normal, $T \simeq \simeq_{a} A \oplus N$ and

$$
\sigma(N)=\sigma\left(N_{1}\right) \cup\left\{\lambda_{n}: n \geq 1\right\}=\partial \sigma(T) .
$$

Thus, for each $z \in \mathbb{C} \backslash \sigma(T)$, we have

$$
\left\|(z I-A)^{-1}\right\| \leq\left\|(z I-T)^{-1}\right\|=1 / \operatorname{dist}(z, \sigma(T))=1 / \operatorname{dist}(z, \partial \sigma(T))=1 / \operatorname{dist}(z, \sigma(N))=\left\|(z I-N)^{-1}\right\| .
$$

The proof is complete.

References

[1] J. B. Conway, A Course in Functional Analysis, (2nd edition), Grad. Texts in Math. 96, Springer, New York, 1990.
[2] J. B. Conway, A Course in Operator Theory, Grad. Stud. Math. 21, American Mathematical Society, Providence, RI, 2000.
[3] J. B. Conway, The Theory of Subnormal Operators, Math. Surveys Monogr. 36, American Mathematical Society, Providence, RI, 1991.
[4] J. Cui, C.-K. Li, Y.-T. Poon, Pseudospectra of special operators and pseudospectrum preservers, J. Math. Anal. Appl. 419 (2014) $1261-1273$.
[5] M. Fujii, T. Furuta, Y. Seo, An inequality for some nonnormal operators-extension to normal approximate eigenvalues, Proc. Amer. Math. Soc. 118 (1993) 899-902.
[6] P. R. Halmos, A Hilbert Space Problem Book, (2nd edition), Springer, New York, 1982.
[7] D. A. Herrero, Approximation of Hilbert Space Operators, I, (2nd edition), Pitman Res. Notes Math. Ser. 224, Longman Scientic \& Technical, Harlow, 1989.
[8] B. Jia, Y. Feng, On pseudospectral radii of operators on Hilbert spaces, Ann. Funct. Anal. 9 (2018) 474-484.
[9] H. Radjavi, P. Rosenthal, Invariant subspaces, (2nd edition), Dover Publications Inc., Mineola, NY, 2003.
[10] L. N. Trefethen, M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators, Princeton University Press, Princeton, NJ, 2005.
[11] S. Zhu, Approximate unitary equivalence of normaloid type operators, Banach J. Math. Anal. 9 (2015) 173-193.

[^0]: 2010 Mathematics Subject Classification. Primary 47A10; Secondary 47B20
 Keywords. Pseudospectrum, spectrum, normal approximate eigenvalues, von Neumann operators
 Received: 17 March 2020; Accepted: 09 June 2020
 Communicated by Snežana Č. Živković-Zlatanović
 Research supported by Natural Science Foundation of Jilin University of Finance and Economics (grant number 2021Z05).
 Email addresses: botingjia@163.com (Boting Jia), fengyouling79@163.com (Youling Feng)

