Filomat 35:3 (2021), 995–1000 https://doi.org/10.2298/FIL2103995J

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

An Observation About Pseudospectra

Boting Jia^a, Youling Feng^b

^a School of Statistics, Jilin University of Finance and Economics, Changchun 130117, P.R. China ^bSchool of Management Science and Information Engineering, Jilin University of Finance and Economics, Changchun 130117, P.R. China

Abstract. For $\varepsilon > 0$ and a bounded linear operator *T* acting on some Hilbert space, the ε -pseudospectrum of *T* is $\sigma_{\varepsilon}(T) = \{z \in \mathbb{C} : ||(zI - T)^{-1}|| > \varepsilon^{-1}\}$. This note provides a characterization of those operators *T* satisfying $\sigma_{\varepsilon}(T) = \sigma(T) + B(0, \varepsilon)$ for all $\varepsilon > 0$. Here $B(0, \varepsilon) = \{z \in \mathbb{C} : |z| < \varepsilon\}$. In particular, such operators on finite dimensional spaces must be normal.

1. Introduction

As usual, we let \mathbb{N} , \mathbb{C} denote respectively the set of positive integers and the set of complex numbers. \mathcal{H} will always denote a complex separable infinitely dimensional Hilbert space. Denote by $\mathcal{B}(\mathcal{H})$ the Banach algebra of all bounded linear operators on \mathcal{H} .

This paper is a continuation of a previous paper of the authors [8], where pseudospectral radii of Hilbert space operators are studied. The *spectrum* of an operator $T \in \mathcal{B}(\mathcal{H})$ is

$$\sigma(T) = \{z \in \mathbb{C} : zI - T \text{ is not invertible in } \mathcal{B}(\mathcal{H})\}.$$

Given $\varepsilon > 0$, the ε -pseudospectrum of T is defined as

$$\sigma_{\varepsilon}(T) = \{ z \in \mathbb{C} : \| (zI - T)^{-1} \| > \varepsilon^{-1} \}.$$

Conventionally, it is assumed that $||(zI - T)^{-1}|| = \infty$ if $z \in \sigma(T)$. The reader is referred to [10] for other equivalent definitions of the ε -pseudospectrum.

The behaviors of pseudospectra of operators are quite different from that of their spectra. It is obvious that the ε -pseudospectrum of *T* is always open. However, pseudospectra can be used to give effective estimations of spectra. In fact, one can check that

$$\bigcap_{\varepsilon>0}\sigma_{\varepsilon}(T)=\sigma(T).$$

Moreover, it is known that the map $(\varepsilon, T) \mapsto \sigma_{\varepsilon}(T)$ is continuous (see [4, Prop. 2.7]).

²⁰¹⁰ Mathematics Subject Classification. Primary 47A10; Secondary 47B20

Keywords. Pseudospectrum, spectrum, normal approximate eigenvalues, von Neumann operators

Received: 17 March 2020; Accepted: 09 June 2020

Communicated by Snežana Č. Živković-Zlatanović

Research supported by Natural Science Foundation of Jilin University of Finance and Economics (grant number 2021Z05). *Email addresses:* botingjia@163.com (Boting Jia), fengyouling79@163.com (Youling Feng)

The aim of this note is to discuss the relation between spectra and pseudospectra. For $T \in \mathcal{B}(\mathcal{H})$ and $\varepsilon > 0$, it is known that $\sigma(T) + B(0, \varepsilon) \subset \sigma_{\varepsilon}(T)$, and the converse inclusion in general does not hold. Here $B(0, \varepsilon)$ denotes the set $\{z \in \mathbb{C} : |z| < \varepsilon\}$. For example, if an operator $A \in \mathcal{B}(\mathcal{H})$ is nilpotent of order 2, then $\sigma_{\varepsilon}(A) = B(0, \sqrt{\varepsilon^2 + ||A||\varepsilon})$ (see [4, Proposition 2.4]), and

$$\sigma(A) + B(0,\varepsilon) = B(0,\varepsilon) \subsetneq \sigma_{\varepsilon}(A).$$

Thus a natural question arises.

Question 1.1. When does an operator T satisfy

$$\sigma_{\varepsilon}(T) = \sigma(T) + B(0, \varepsilon)$$
 for all $\varepsilon > 0$?

For any $\varepsilon > 0$, note that

$$\sigma(T) + B(0,\varepsilon) = \{z \in \mathbb{C} : \operatorname{dist}(z,\sigma(T)) < \varepsilon\} = \{z \in \mathbb{C} : 1/\operatorname{dist}(z,\sigma(T)) > \varepsilon^{-1}\}.$$

Thus an operator *T* satisfies (1) if and only if $||(zI - T)^{-1}|| = 1/\text{dist}(z, \sigma(T))$ for $z \in \mathbb{C} \setminus \sigma(T)$.

We remark that a von Neumann operator *T* always satisfies (1). Recall that *T* is called a *von Neumann operator* if $||f(T)|| = \sup\{|f(z)| : z \in \sigma(T)\}$ for rational functions *f* with poles off $\sigma(T)$. Note that if *T* is a von Neumann operator, then ||T|| = r(T), where r(T) denotes the *spectral radius* of *T*. The class of von Neumann operators includes some special classes of operators, such as normal operators and subnormal operators. Thus if *T* is von Neumann, then, for any $z \in \mathbb{C} \setminus \sigma(T)$, we have

$$||(zI - T)^{-1}|| = \sup\{|(z - \lambda)^{-1}| : \lambda \in \sigma(T)\} = 1/\operatorname{dist}(z, \sigma(T)).$$

It follows that $\sigma_{\varepsilon}(T) = \sigma(T) + B(0, \varepsilon)$ for all $\varepsilon > 0$. So it is natural to ask whether the converse holds. Here we give a counterexample.

Example 1.2. Let *S* be the unilateral shift on $l^2(\mathbb{N})$ defined by

$$(\alpha_1, \alpha_2, \alpha_3, \cdots) \mapsto (0, \alpha_1, \alpha_2, \alpha_3, \cdots).$$

Since S is subnormal (and hence a von Neumann operator, see [3, Proposition 9.2]), we have

$$\sigma_{\varepsilon}(S) = \sigma(S) + B(0, \varepsilon) = B(0, 1 + \varepsilon).$$

Let $R \in \mathcal{B}(\mathbb{C}^2)$ be the operator on \mathbb{C}^2 determined by the following matrix

$$\begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$$

Then, by [4, Proposition 2.4], $\sigma_{\varepsilon}(R) = B(0, \sqrt{\varepsilon^2 + 2\varepsilon})$. So $\sigma_{\varepsilon}(R) \subset \sigma_{\varepsilon}(S)$. Set $T = S \oplus R$. Then $\sigma(T) = \sigma(S) \cup \sigma(R) = B(0, 1)^-$ and

$$\sigma_{\varepsilon}(T) = \sigma_{\varepsilon}(S) \cup \sigma_{\varepsilon}(R) = \sigma_{\varepsilon}(S) = \sigma(S) + B(0, \varepsilon) = \sigma(T) + B(0, \varepsilon).$$

However, noting that ||T|| = 2 > 1 = r(T), *T* is not a von Neumann operator.

In this note, we give a characterization of those operators *T* satisfying (1). To state our main result, we need an extra definition. Two operators *A* and *B* are called *approximately unitarily equivalent*, denoted as $A \simeq_a B$, if there exist a sequence of unitary operators U_n such that $\lim_n U_n^* A U_n = B$ (see [2, Definition 39.9]). If $A \simeq_a B$, then it is easy to check that $\sigma(A) = \sigma(B)$ and $\sigma_{\varepsilon}(A) = \sigma_{\varepsilon}(B)$ for all $\varepsilon > 0$.

The main result of this paper is the following theorem, which gives an answer to Question 1.1.

Theorem 1.3. For $T \in \mathcal{B}(\mathcal{H})$, the following are equivalent:

(1)

(i) $\sigma_{\varepsilon}(T) = \sigma(T) + B(0, \varepsilon)$ for all $\varepsilon > 0$.

(*ii*) *T* is approximately unitarily equivalent to an operator of form $N \oplus A$, where N is normal with $\sigma(N) = \partial \sigma(T)$ and

$$||(zI - A)^{-1}|| \le ||(zI - N)^{-1}||, \quad \forall z \in \mathbb{C} \setminus \sigma(T).$$

Remark 1.4. Let $T \in \mathcal{B}(\mathcal{H})$ and suppose $\sigma_{\varepsilon}(T) = \sigma(T) + B(0, \varepsilon)$ for all $\varepsilon > 0$. By definition, the norm of the resolvent function $(zI - T)^{-1}$ of T coincides with that of a normal operator. By Theorem 1.3 (ii), this means that T "has" (up to approximate unitary equivalence) a normal part N with $\sigma(N) = \partial\sigma(T)$. Thus each point in $\partial\sigma(T)$ is a normal approximate eigenvalue of T. Recall that a complex number λ is called a normal approximate eigenvalue [5] of $A \in \mathcal{B}(\mathcal{H})$ if there exists a sequence $\{x_n\}_{n\geq 1}$ of unit vectors such that

$$||(A - \lambda)x_n|| + ||(A - \lambda)^*x_n|| \to 0.$$

Remark 1.5. We remark that the result of Theorem 1.3 is sharp. That is, approximate unitary equivalence can not be replaced by unitary equivalence, since the operator T in Example 1.2 is abnormal, that is, T admits no nonzero reducing subspace M such that $T|_M$ is normal.

Example 1.2 shows that the equality (1) in general does not imply the normality of *T*. However, if *T* acts on some finite dimensional Hilbert space, then we shall prove in Section 2 the following result.

Theorem 1.6. Let A be a bounded linear operator acting on a finite dimensional Hilbert space \mathcal{K} . Then $\sigma_{\varepsilon}(A) = \sigma(A) + B(0, \varepsilon)$ for all $\varepsilon > 0$ if and only if A is normal.

The proof of main result will be provided in Section 2. In the rest of this section, we fix some notations and terminology.

Let $T \in \mathcal{B}(\mathcal{H})$. We denote by ker *T* and ran *T* the kernel of *T* and the range of *T* respectively. If ran *T* is closed and either ker *T* or ker *T*^{*} is of finite dimension, then *T* is called a *semi-Fredholm operator*. The following set

$$\sigma_{lre}(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not semi-Fredholm}\}\$$

is called the *Wolf spectrum* of *T*.

Let $T \in \mathcal{B}(\mathcal{H})$. If Δ is a nonempty clopen subset of $\sigma(T)$, then there exists an analytic Cauchy domain Ω such that $\Delta \subset \Omega$ and $[\sigma(T) \setminus \Delta] \cap \overline{\Omega} = \emptyset$. We let $E(\Delta; T)$ denote the *Riesz idempotent* of *T* corresponding to Δ , that is,

$$E(\Delta;T) = \frac{1}{2\pi i} \int_{\Gamma} (\lambda - T)^{-1} d\lambda,$$

where $\Gamma = \partial \Omega$ is positively oriented with respect to Ω in the sense of complex variable theory. By the Riesz Decomposition Theorem ([9, Theorem 2.10]), $\mathcal{H}(\Delta; T) := \operatorname{ran}(E(\Delta; T))$ is an invariant subspace of T and $\sigma(T|_{\mathcal{H}(\Delta;T)}) = \Delta$. If λ is an isolated point of $\sigma(T)$, then $\{\lambda\}$ is a clopen subset of $\sigma(T)$; if, in addition, $\dim \mathcal{H}(\{\lambda\}; T) < \infty$, then λ is called a *normal eigenvalue* of T. We denote by $\sigma_0(T)$ the set of all normal eigenvalues of T. The reader is referred to [1, page 210] or [7, Chapter 1] for more details.

2. Proof of Theorem 1.3

We first introduce some useful lemmas.

Lemma 2.1 ([1], page 366). Let $T \in \mathcal{B}(\mathcal{H})$. Then $\partial \sigma(T) \subseteq [\sigma_0(T) \cup \sigma_{lre}(T)]$.

Recall that an operator *T* is said to be *normaloid* if ||T|| = r(T) (see [6, page 117]).

Lemma 2.2 ([11], Theorem 3.1). Let $T \in \mathcal{B}(\mathcal{H})$ be normaloid. If N is a normal operator on some Hilbert space with $\sigma(N) \subseteq \{z \in \sigma_{lre}(T) : |z| = ||T||\}$, then $T \simeq_a T \oplus N$.

997

Lemma 2.3 ([11], Corollary 3.2). Let $T \in \mathcal{B}(\mathcal{H})$ and Γ be a compact subset of \mathbb{C} . If $T \simeq_a T \oplus \lambda I$ for any $\lambda \in \Gamma$ and N is a normal operator on some Hilbert space with $\sigma(N) = \Gamma$, where I is the identity operator on \mathcal{H} , then $T \simeq_a T \oplus N$.

Lemma 2.4 ([11], Corollary 3.5). Let $T \in \mathcal{B}(\mathcal{H})$. If $\lambda \in \sigma_0(T)$ and there exists $z_0 \in \mathbb{C} \setminus \sigma(T)$ such that

$$|(z_0 - \lambda)^{-1}| = ||(z_0 - T)^{-1}||,$$

then ker($\lambda - T$) reduces T.

Proof. [Proof of Theorem 1.6] We need only prove the necessity. Assume that $\sigma(A) = \{\lambda_i : i = 1, 2, \dots, k\}$ and choose a positive number $\delta > ||A||$. Thus $\delta \notin \sigma(A)$. Put $T = \delta I \oplus A$, where *I* is the identity operator on \mathcal{H} with dim $\mathcal{H} = \infty$. Thus $\sigma_0(T) = \{\lambda_i : i = 1, 2, \dots, k\}$.

On the other hand, it is easy to see $\sigma_{\varepsilon}(T) = \sigma(T) + B(0, \varepsilon)$ for all $\varepsilon > 0$. Then

$$||(z-T)^{-1}|| = 1/\operatorname{dist}(z, \sigma(T)), \quad \forall z \in \mathbb{C} \setminus \sigma(T).$$

So, for each λ_i , there exists z_i such that $|(z_i - \lambda_i)^{-1}| = ||(z_i - T)^{-1}||$. By Lemma 2.4, $\ker(A - \lambda_i) = \ker(T - \lambda_i)$ reduces *T*. Set $M = \bigvee_{i=1}^k \ker(A - \lambda_i)$. Then $M \subset \mathcal{K}$ and reduces *A*. So

	$\lambda_1 I_1$			-	$\ker(A-\lambda_1)$
<i>A</i> =		·			:
			$\lambda_k I_k$		$\ker(A-\lambda_k)'$
	L			A_0	$\mathcal{K} \ominus M$

where the entries not shown are zero. Since $\sigma(A_0) \subset \sigma(A) = \{\lambda_i : i = 1, 2, \dots, k\}$, it follows that $M = \mathcal{K}$. So A is normal. \Box

The following result is a mild improvement of Theorem 4.4 in [11].

Proposition 2.5. Let $T \in \mathcal{B}(\mathcal{H})$ and suppose $||(zI - T)^{-1}|| = 1/\text{dist}(z, \sigma(T))$ for all $z \in \mathbb{C} \setminus \sigma(T)$. If N is a normal operator with $\sigma(N) = \sigma_{lre}(T) \cap \partial \sigma(T)$, then $T \simeq_a T \oplus N$.

Proof. According to Lemma 2.3, we only need to prove that $T \simeq_a T \oplus \lambda I$ for any $\lambda \in \sigma_{lre}(T) \cap \partial \sigma(T)$.

Let $\lambda_0 \in \sigma_{lre}(T) \cap \partial \sigma(T)$. We can find $\{z_n\}_{n=1}^{\infty} \subseteq \mathbb{C} \setminus \sigma(T)$ such that $z_n \to \lambda_0$. For $n \ge \mathbb{N}$, there exist $\lambda_n \in \sigma(T)$ such that dist $(z_n, \sigma(T)) = |z_n - \lambda_n|$. So $\lambda_n \in \partial \sigma(T)$ and $\lambda_n \to \lambda_0$.

By the hypothesis, we have

$$||(z_n - T)^{-1}|| = 1/\text{dist}(z_n, \sigma(T)) = 1/|z_n - \lambda_n|.$$

By the spectral mapping theorem, $(z_n - \lambda_n)^{-1} \in \sigma((z_n - T)^{-1})$ for $n \ge 1$.

Case 1. There exist $n_1 < n_2 < n_3 < \cdots$ such that $\lambda_{n_k} \in \sigma_{lre}(T)$.

If so, then $(z_{n_k} - \lambda_{n_k})^{-1} \in \sigma_{lre}((z_{n_k} - T)^{-1})$. By Lemma 2.2, we obtain

$$(z_{n_k} - T)^{-1} \simeq_a (z_{n_k} - T)^{-1} \oplus (z_{n_k} - \lambda_{n_k})^{-1} I, \quad \forall k \ge 1,$$

yielding $T \simeq_a T \oplus \lambda_{n_k} I$ for all $k \ge 1$. Since $\lambda_{n_k} \to \lambda_0$, one can see $T \simeq_a T \oplus \lambda_0 I$.

Case 2. There exists m > 0 such that $\lambda_n \notin \sigma_{lre}(T)$ for $n \ge m$.

Since $\lambda_n \in \partial \sigma(T)$, it follows from Lemma 2.1 that $\lambda_n \in \sigma_0(T)$ for $n \ge m$. Noting that $||(z_n - T)^{-1}|| = 1/|z_n - \lambda_n|$, it follows from Lemma 2.4 that ker $(T - \lambda_n)$ reduces T for $n \ge m$. Noting that $\lambda_n \to \lambda_0 \in \sigma_{lre}(T)$, it can be assumed that $\{\lambda_n : n \ge m\}$ are pairwise distinct. So T can be written as

$$T = A \oplus \operatorname{diag}\{\lambda_m, \lambda_{m+1}, \lambda_{m+2}, \cdots\}.$$

Since $\lambda_n \to \lambda_0$, one can see

 $\lambda_0 \in \sigma_{lre}(\operatorname{diag}\{\lambda_m, \lambda_{m+1}, \lambda_{m+2}, \cdots\}).$

Then, by a corollary of the Weyl-von Neumann-Berg Theorem (see [2, Proposition 39.10]), we have

diag{
$$\lambda_m, \lambda_{m+1}, \lambda_{m+2}, \cdots$$
} \simeq_a diag{ $\lambda_m, \lambda_{m+1}, \lambda_{m+2}, \cdots$ } $\oplus \lambda_0 I$.

So

$$T = A \oplus \operatorname{diag}\{\lambda_m, \lambda_{m+1}, \lambda_{m+2}, \cdots\}$$

$$\simeq_a A \oplus \left(\operatorname{diag}\{\lambda_m, \lambda_{m+1}, \lambda_{m+2}, \cdots\} \oplus \lambda_0 I\right)$$

$$\simeq_a \left(A \oplus \operatorname{diag}\{\lambda_m, \lambda_{m+1}, \lambda_{m+2}, \cdots\}\right) \oplus \lambda_0 I$$

$$= T \oplus \lambda_0 I.$$

Hence the proof is complete. \Box

Remark 2.6. We remark that the proof of the preceding theorem is inspired by that of Theorem 4.3 in [11].

Now we are going to prove Theorem 1.3.

Proof. [Proof of Theorem 1.3] " \Leftarrow ". Since $T \simeq_a N \oplus A$, it follows that $(z - T)^{-1} \simeq_a (z - N)^{-1} \oplus (z - A)^{-1}$ for $z \in \mathbb{C} \setminus \sigma(T)$. Then

$$\begin{aligned} \|(zI - T)^{-1}\| &= \max\{\|(zI - N)^{-1}\|, \|(zI - A)^{-1}\|\} = \|(zI - N)^{-1}\|\\ &= 1/\operatorname{dist}(z, \sigma(N)) = 1/\operatorname{dist}(z, \partial\sigma(T)) = 1/\operatorname{dist}(z, \sigma(T)), \end{aligned}$$

proving the sufficiency.

" \Longrightarrow ". Set $\Gamma_0 = \partial \sigma(T) \cap \sigma_0(T)$ and $\Gamma_1 = \partial \sigma(T) \cap \sigma_{lre}(T)$. By Lemma 2.1, we have $\partial \sigma(T) = \Gamma_0 \cup \Gamma_1$. Since $\sigma_0(T)$ is at most denumerable, without loss of generality, it can be assumed that $\Gamma_0 = \{\lambda_1, \lambda_2, \lambda_3, \cdots\}$.

For each $n \ge 1$, since $\lambda_n \in \sigma_0(T)$ is an isolated point of $\sigma(T)$, we can find $z_n \in \mathbb{C} \setminus \sigma(T)$ such that $|z_n - \lambda_n| < \operatorname{dist}(z_n, \sigma(T) \setminus \{\lambda_n\})$. Then

$$||(z_n - T)^{-1}|| = 1/\text{dist}(z_n, \sigma(T)) = 1/|\lambda_n - z_n|.$$

Since $\lambda_n \in \sigma_0(T)$, it follows from Lemma 2.4 that ker $(T - \lambda_n)$ reduces *T*. Note that $\{\lambda_n : n \ge 1\}$ are pairwise distinct. Thus *T* can be written as

$$T = A \oplus \operatorname{diag}\{\lambda_1, \lambda_2, \lambda_3, \cdots\}.$$
(2)

Choose a normal operator N_1 on \mathcal{H} with $\sigma(N_1) = \Gamma_1$. Then, by Proposition 2.5, we have $T \simeq_a T \oplus N_1$. It follows that

$$T \simeq_a T \oplus N_1 = A \oplus \operatorname{diag}\{\lambda_1, \lambda_2, \lambda_3, \cdots\} \oplus N_1.$$

Set $N = \text{diag}\{\lambda_1, \lambda_2, \lambda_3, \dots\} \oplus N_1$. Then N is normal, $T \simeq_a A \oplus N$ and

$$\sigma(N) = \sigma(N_1) \cup \{\lambda_n : n \ge 1\} = \partial \sigma(T).$$

Thus, for each $z \in \mathbb{C} \setminus \sigma(T)$, we have

$$||(zI - A)^{-1}|| \le ||(zI - T)^{-1}|| = 1/\operatorname{dist}(z, \sigma(T)) = 1/\operatorname{dist}(z, \partial\sigma(T)) = 1/\operatorname{dist}(z, \sigma(N)) = ||(zI - N)^{-1}||.$$

The proof is complete. \Box

References

- [1] J. B. Conway, A Course in Functional Analysis, (2nd edition), Grad. Texts in Math. 96, Springer, New York, 1990.
- [2] J. B. Conway, A Course in Operator Theory, Grad. Stud. Math. 21, American Mathematical Society, Providence, RI, 2000.
- [3] J. B. Conway, The Theory of Subnormal Operators, Math. Surveys Monogr. 36, American Mathematical Society, Providence, RI, 1991.
- [4] J. Cui, C.-K. Li, Y.-T. Poon, Pseudospectra of special operators and pseudospectrum preservers, J. Math. Anal. Appl. 419 (2014) 1261–1273.
- [5] M. Fujii, T. Furuta, Y. Seo, An inequality for some nonnormal operators–extension to normal approximate eigenvalues, Proc. Amer. Math. Soc. 118 (1993) 899–902.
- [6] P. R. Halmos, A Hilbert Space Problem Book, (2nd edition), Springer, New York, 1982.
- [7] D. A. Herrero, Approximation of Hilbert Space Operators, I, (2nd edition), Pitman Res. Notes Math. Ser. 224, Longman Scientic & Technical, Harlow, 1989.
- [8] B. Jia, Y. Feng, On pseudospectral radii of operators on Hilbert spaces, Ann. Funct. Anal. 9 (2018) 474-484.
- [9] H. Radjavi, P. Rosenthal, Invariant subspaces, (2nd edition), Dover Publications Inc., Mineola, NY, 2003.
- [10] L. N. Trefethen, M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators, Princeton University Press, Princeton, NJ, 2005.
- [11] S. Zhu, Approximate unitary equivalence of normaloid type operators, Banach J. Math. Anal. 9 (2015) 173–193.