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Abstract. In this paper, we study properties of extended commuting operators. In particular, we provide
the polar decomposition of the product of (A, y)-commuting operators where A and u are real numbers with
Au > 0. Furthermore, we find the restriction of u for the product of (A, u)-commuting quasihyponormal
operators to be quasihyponormal. We also give spectral and local spectral relations between A-commuting
operators. Moreover, we show that the operators A-commuting with a unilateral shift are representable as
weighted composition operators.

1. Introduction

Let H be a separable complex Hilbert space and let £(7H) denote the algebra of all bounded linear oper-
ators on H. For T € L(H), we write o(T), 0p(T), 04p(T), 01e(T), and r(T) for the spectrum, the point spectrum,
the approximate point spectrum, the left essential spectrum, and the spectral radius of T, respectively.

For operators S, T € L(H) and a complex number A, we say that S is A-commuting with T if ST = ATS.
Different classes of operators can be specified depending on the restriction on A (see [16]). The A-commuting
relation of operators on Hilbert spaces is often useful in quantum mechanics as a tool for the analysis of
their spectra. For example, there is an anti-commuting relation (i.e., A = —1) between Pauli spin matrices
which are complex matrices arising in the study of spin in quantum mechanics ([3]). It has been studied
further on the A-commuting property in the context of quantum groups (see [3] and [11]).

In [4], S. Brown showed that operators A-commuting with nonzero compact operators have nontrivial
hyperinvariant subspaces, as one of the generalizations of the famous Lomonosov’s theorem about the
invariant subspace problem for operators commuting with compact operators (see [14]). Since then, many
mathematicians have been interested in A-commuting operators.

For A, u € C, two operators S,T € L(H) are said to be (A, yu)-commuting if S is A-commuting and S* is
p-commuting with T, namely ST = ATS and S'T = uTS*. If S, T € L(H) are (A, y)-commuting, then S*S is
Au-commuting with T. In particular, if S is an isometry, then Ay = 1.
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By Fuglede-Putnam Theorem, if A,B € L(H) are normal and AX = XB for some X € L(H), then
A*X = XB" (see [8]). Hence, if S is normal and A-commuting with T, then S and T are (A, X)—commuting.
This observation gives several examples of (A, u)-commuting operators. For a simple example, given any
fixed complex constant A with |A| < 1, suppose D is a diagonal operator given by De,, = A"e, for n > 0, where

{en};, is an orthonormal basis for H. Then, every weighted shift W on H determined by We, = a,e,41 for

n > 0 satisfies DW = AWD. Since D is normal, the operators D and W are (A, A)-commuting by Fuglede-
Putnam Theorem; we also observe that W and D are (17!, 1)-commuting. For another example, the 2x2
matrices S = (g 8) and T = ((1) g) are (%,3)—Commuting.

In this paper, we study properties of extended commuting operators. In particular, we provide the polar
decomposition of the product of (A, u)-commuting operators where A and u are real numbers with Ay > 0.
Furthermore, we find the restriction of p for the product of (A, u)-commuting quasihyponormal operators
to be quasihyponormal. We also give spectral and local spectral relations between A-commuting operators.
Moreover, we show that the operators A-commuting with a unilateral shift are representable as weighted
composition operators.

2. Preliminaries

An operator T € L(H) is said to have the single-valued extension property (or SVEP) if for every open set
G in C and every analytic function f : G — H with (T —z)f(z) = 0 on G, we have f(z) = 0 on G. For an
operator T € L(H) and a vector x € H, the set pr(x), called the local resolvent of T at x, consists of elements
zp in C such that there exists an H-valued analytic function f(z) defined in a neighborhood of zy which
verifies (T — z) f(z) = x. The local spectrum of T at x is given by or(x) := C \ pr(x). Moreover, we define the
local spectral subspace of T as Hr(F) := {x € H : or(x) C F}, where F is a subset of C. An operator T € L(H)
is said to have Dunford’s property (C) if Hr(F) is closed for each closed subset F of C. We say that T € L(H)
is said to have Bishop’s property (B) if for every open subset G of C and every sequence f, : G — H of
‘H-valued analytic functions such that (T — z) f,,(z) converges uniformly to 0 in norm on compact subsets of
G, then f,(z) converges uniformly to 0 in norm on compact subsets of G. The following implications are
well known (see [2], [6], or [13] for more details):

Bishop’s property () = Dunford’s property (C) = SVEP.

3. Main results

In this section, we first consider (A, u)-commuting operators. Asremarked at section one, Fugled-Putnam
theorem gives examples of (4, X)—commuting operators. We remark thatif S, T € L(H) are (A, X)—commuting
forsome A € Cand T # 0 does not have dense range, then ran(T) is a common nontrivial invariant subspace
for S and §*, since S(Tx) = ATSx € ran(T) and S*(Tx) = ATS*x € ran(T) for all x € H.

In order to provide the polar decomposition of the product of (A, )-commuting operators, we show that
their partial isometric parts and positive parts satisfy the following extended commuting relationships.

Lemma 3.1. Let S, T € L(H) be (A, p)-commuting where A and p are real numbers with Ay > 0. If S = Us|S| and
T = Ur|T| denote the polar decompositions, then the following statements hold:

(i) ITIS = (A~ )3 SIT| and |SIT = (Ap)*TIS|;

(ii) |S|UT = (Ap)? UrlS| and |T|Us = (A~ 1) Us|T|;

(iid) |S||IT| = [T1IS|, IS*IT| = |T|IS*|, and |S||T"| = |T"|S;

(iv) UsUt = UpUs and UgUr = UrU; if A and p are positive, and UgUr = —UrUs and UgUr = —UrU; if A and
u are negative.
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Proof. (i) Setd = A=ty > 0. Itis easy to see that p(|T|*)S = Sp(5|T|?) for any polynomial p. Since there exists
a sequence {p,} of polynomials convergent uniformly to f(s) = s2 on the compact interval [0, (1 + 6)||T|*]
from Stone-Weierstrass theorem, it follows that |T|S = 52 S|T| = (A’ly)% S|T].

Similarly, we infer that |S|T = (/\[J)%T|S|, since T and S are (A7}, y)-commuting.

(ii) Since ST = ATS and |T|S = (A~' )2 S|T| by (i), we obtain that

SU|T| = AULITIS = A(A™' ) UrSIT| = (Ap)? UrS|T]|

-1if A,y < 0. If x € ker(|T|), then |T|Sx = (A‘ly)%SlTlx = 0. Since
0 = SUtx. Hence, it holds that

where 7 = 1if A,p > 0, and 7
ker(|T|) = ker(Ur), we have UrSx

SUr = t(Au)?UrS on H = ran(|T|)@ ker(|T)). (1)
In a similar manner, use the identities ST = uTS* and S*|T| = (A’llu)% IT|S* obtained from (i) to verify that
S'Ur|T| = pUrlTIS" = p(Ap™")? UrS'|T| = T(Ap)* UrS'|T|
and UrS*x = S*Urx = 0 for all x € ker(|T]), which yields that
S*Ur = t(Au)? UrS". (2)

Combining (2) with (1), one can deduce that (S*S)Ur = ApUr(SS*). As in the proof of (i), we can show that
|S|Ur = (Au)2Ur|S|. Since T and S are (A1, u)-commuting, we see that [T|Us = (A~ )2 Us|T].

(iii) Since |T||SP* = (|T|S")S = (A‘ly)‘%s*(lTIS) = |SP|T| from (i), the positive parts |S| and |T| commute.
Moreover, observe that S* and T are (i, A)-commuting, while S and T* are (y’l, A’l)-commuting. Hence, we
also see that |S*||T| = |T||S*| and |S||T*| = |T*||S].

(iv) Applying (ii) and (iii), we obtain that

ST = Us(IS|Ur)|T| = (Aw)2 UsUr|S|IT] 3)
and

ATS = AUr(TIUs)S| = AUr((A™ ) USITIIS| = w(Ap)* UrUs|S|T]

wheret =1if A,y > 0,and 7 = -1 if A,y < 0. Since ST = ATS, we have UsUr = tUrUs on ran(|S||T]).
In addition, if x € ker(|S||T|) = ker(|T||S]), then Us|T|x = Ur|S|x = 0, and so |T|Usx = |S|Urx = 0 from
(ii). Therefore, both UsUr and UrlUs are identically zero on ker(|S||T]), concluding that UsUr = tUrUs

on H = ran(|S||T|) ® ran(|S||T])*. Since S* and T are (u, A)-commuting and the adjoint S* has the polar
decomposition S* = Ug|S*|, we derive the equality for U and Ur, as well. O

Theorem 3.2. Assume that S,T € L(H) are (A, u)-commuting where A and p are real numbers with Ay > 0. If
ST = Ugr|ST| is the polar decomposition, then

Usr = UsUr and |ST| = (A)|SIIT].
In addition, if TS = Urs|TS| is the polar decomposition, then
Urs = UrUs and TS| = (A~} )2 |SIIT].

Proof. Since T and S are (A1, w)-commuting and |S||T| = |T]|S| by Lemma 3.1, it suffices to consider the
product ST. We note from (3) that the product ST is factorized as follows:

ST = UsUn)((Aw*ISIITI).
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Since |S||T| = |T||S|, we obtain that
(ISIITN? = S*(ST)T = w(S'T")ST = (Ap) "' T*S*ST = (Ap)ISTI>.
This ensures that
ST = (A2 ISIITI. (4)

If x € ker(ST) = ker(|ST]), then |S||T|x = 0 from (4). Since |T|Usx = ()\‘1/,1)% Us|T|x = 0 by Lemma 3.1, we
have Usx € ker(|T]) = ker(Ur), namely x € ker(UrUs). Conversely, if x € ker(UrUs), then |T|Usx = 0 and so
Us|T|x = 0, which implies with (4) that x € ker(|S||T|) = ker(ST). Since ker(UsUr) = ker(UrUs) by Lemma
3.1, it holds that

ker(UsUr) = ker(UrUs) = ker(ST) = ker(ST)).

Now, it remains to show UglUr is partial isometric on ker(UsUr)* = ran(|ST|). Equations (1), (2), and (4)
give that

(UsUr)"(UsUr)IST| (UrUs) (UrUs)IST| = UUsUrUs((Aw)*ISIT))
= UzUp((Aw) 2 UrS)IT| = Uy(U;S)UrT|

1 1
= U((Aw)?SU)UIT] = (Aw)} (U5 UsISI)(U Ul T))

= (Aw3sIT =157,
completing the proof. O

For an operator T € L(H) with polar decomposition T = U|T|, we define the Aluthge transform of T,
denoted by T, as
T = |TI*UIT|:.
Recall that an operator T € L(H) is called p-hyponormal if (T*T)? > (TT*)?, where 0 < p < oco. It is well
known that if 0 < g < p < oo, then p-hyponormal operators are g-hyponormal. In addition, T € L(H) is

p-hyponormal for some 0 < p < 1, then Tis (p+ %)—hyponormal (see [7]). Hence, T is always hyponormal.
In [10], the authors gave several connections between operators and their Aluthge transforms.

Corollary 3.3. If S, T € L(H) are (A, u)-commuting operators where A and u are real numbers with Ay > 0, then
the following statements hold:

(i) S and T are (A, w)-commuting and ST = Iyl%ﬁ = Alyl%:fg.
(ii) S and T are (A, y)-commuting.
(iii) S and T are (A, u)-commuting.

Proof. Let S = Us|S| and T = Ur|T| be the polar decompositions of S and T.
(i) Lemma 3.1 implies that IS|zUr = (Aw)ilrlS|z, |T|2Us = (A~ u)iUs|T]|z, and (|S||T])
|T|2|S|z. Thus, we obtain from Theorem 3.2 that

Nl

= |S|2|T|z =

ST = (Aw?ISIZ(TI*Us)(UrlSI?)IT|? =

1)¥[SJ3 (T Us)(UrlSI*)ITIE = |uf?]S|3 Us|TI* S| Ur T2
= |pl2(SI2 UslSI?)(TI? Ur|TI?) = |u

|
|2ST.
Since UsUr = tUrUs wheret =1if A, u > 0,and 7 = -1 if A, u < 0, we get that
ST = w(AW?ATIE(ISIFUn)(UsITI)ISI: = Alul2ITI2UrlS|? TI> UslS|
= Alul*(IT1* Ur[TI)(SI* UslSI?) = Alul: Ts.
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Hence, we see that ST = ATS. Furthermore, since UzUr = tUrU; by Lemma 3.1, it holds that

ST

(IS LISI2)(IT)Z Ur|TIZ) = |S|2 (UITI?)(ISI> Ur)|T|?
|l 182 T|2 UL UrlS|Z T = tlul? TIZ (1S Ur)(UITI)IS|2
uITI2 UrlSIZ|TIZ US| = uT(S)".

(ii) Using Lemma 3.1, we see that

ST

|S|%us(|5|%T> (Au)l|5|%usT|S|l
(Ap) |5| (usuT>|T||S|z = T(Ap)* (SI* Ur)(Us|TI)IS|*
T(Ap)? (A ) 2 U (IS [TYUs|S|? = ATS

wheret =1if A, 4 > 0,and 7 = -1if A, u < 0. This means that Sand T are A-commuting. Similarly, one can
derive that (g)* and T are y-commuting.

(iii) Since T and S are (A™!, y)-commuting, we obtain from (ii) that T and S are (A71, p)-commuting, or
equivalently, S and Tare (A, y)-commuting. O

Remark 3.4. Let S, T € L(H) be A-commuting for some nonzero real number A. If Sis hyponormal and T is normal,
then S and T = T are (A, A7H- commutzng by Theorem 3.3 and Fuglede-Putnam Theorem. Since a(ST) = 0(ST) due
to [10], we obtain from [18] that ST is hyponormal if and only if 6(ST) # {0}, which holds exactly when A = +1.

Recall that an operator T € L(H) is said to be quasinormal if T*T commutes with T.

Corollary 3.5. Let S, T € L(H) be (A, u)-commuting quasinormal operators such that ST # 0, where A and y are
real numbers with Ay > 0. Then ST is quasinormal if and only if u = £1. In particular, if one of S and T is normal
and the product ST is quasinormal, then A = u = 1.

Proof. Assume S = Us|S|, T = Ur|T|, and ST = Usgr|ST| are the polar decompositions. We will use the
equalities Usy = UsUy = =UrUs, [ST| = (Au)2[S||T], |S|Ur = (Aw)2Ur|S|, and |T|Us = (A~ )2 Us|T| obtained
from Lemma 3.1 and Theorem 3.2. Since Us|S| = |S|Us and Ur|T| = |T|Ur due to the quasinormality of S
and T, it follows that

Usr|ST| = ST = Us|S|UrIT| = [S|(Us| T Ur
= W) ISITIUSUr = (A7) () HISTIUsy = |l ISTIUSs
Hence, ST is quasinormal if and only if u = +1.

If S or T is normal and ST is quasinormal, then S*T = uTS* = £TS". Fuglede-Putnam theorem implies
that ST = +TS,and thusA =y =+1. O

An operator T € L(H) is called quasihyponormal if T*(T*T — TT*)T > 0, or ||T?x|| > ||T*Tx|| for all x € H. In
the following theorem, we show that if |u| < 1, then the product of two (A, y)-commuting quasihyponormal
operators is again quasihyponormal.

Theorem 3.6. Let S and T be quasihyponormal operators in L(H) that are (A, u)-commuting. If |u| > 1, then ST is
quasihyponormal. Furthermore, if A # 0 and |u| > 1, then TS is quasihyponormal.

Proof. Suppose that ST = ATS and S*T = uTS". Since S and T are quasihyponormal, we obtain that

I(ST)?xll IA*T(ST)Sx|| = |APIIT?S x|
APIT TS?x|| = IAPIT" (ATS)Sxl|

IAPI(TS)TSxl| = A [EST (ATS)xll

v
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Al IS(TS) Tl = [AllpPlIS* T Tl
Il 1S (ST Tx| = |ul I(AS™T")STx||
|l IT"S*STx|| = |ul I(ST)"(ST)x|l

v

for all x € H. Thus, if |u| > 1, then ST is quasihyponormal.
If A #0, then T and S are (17!, f)-commuting. As in the above argument, one can deduce that if [u| > 1,
then TS is quasihyponormal. O

An operator T in L(H) is said to be nilpotent if T" = 0 for some positive integer #; in this case, the
smallest positive integer n with T" = 0 is referred to as the order of T. We say that T € L(H) is quasinilpotent
if o(T) = {0}.

Corollary 3.7. Let S and T be quasihyponormal operators in L(H) that are (A, u)-commuting and ST # 0. If|A| # 1
and |u| > 1, then ST is nilpotent of order 2 and one of S and T has a nontrivial invariant subspace.

Proof. Let |A| # 1 and |u| > 1. The product ST is quasihyponormal by Theorem 3.6. Applying [12], we

write ST = (g g) on H = Me&M*, where A is hyponormal and M = ran(ST). It is easy to see thatif & # 0

X1 X
X3 X4
X1(A—a) = Ip, (A—a)Xy + BX3 = Iy, and aX3 = 0 where I denotes the identity operator on M. Since « is
nonzero, X3 = 0 so that A —a is invertible. Hence 6(A) \ {0} € ¢(ST) \ {0}. Since ST is quasinilpotent from the
proof of Theorem 3.9, it follows that o(A) \ {0} = 0, i.e., 0(A) = {0}. Since A is hyponormal, it should be the

and ST — «a is invertible, then so is A — a. Indeed, if X = ( ) is the inverse of ST — a, then we have

0 B
0 0
or ker(T) # {0}. Accordingly, S or T has a nontrivial invariant subspace. O

zero operator. Thus ST = ) is nilpotent of order 2. Applying [5, Theorem 5], we get that ran(S) # H

Corollary 3.8. Let S € L(H) be normal and T € L(H) be quasihyponormal with ST # 0. If ST = ATS for some
|Al = 1, then both ST and TS are quasihyponormal; in particular, if |A| > 1, then ST and TS are nilpotent of order 2.

Proof. Since S'T = ATS' by Fuglede-Putnam Theorem, the operators S and T are (A, A)-commuting.
Moreover, T and S are (A~!, A)-commuting. Therefore, the products ST and TS are quasihyponormal due
to Theorem 3.6. If |A| > 1, then we obtain from Corollary 3.7 that ST and TS are nilpotent of order 2. O

We next give several properties of A-commuting operators. We first consider the product of A-commuting
operators.

Theorem 3.9. Let S and T be operators in L(H) such that ST = ATS for some A € C. Then the following statements
hold:

(i) r(ST) < r(S)r(T) and r(TS) < r(S)r(T).

(i1) Suppose that A # 0 and dist(%,0(T)) > O for z € p(T). If f is analytic in a neighborhood of o(T), then
SA(T) = fAT)S.

Proof. (i) Assume that ST = ATS for some A € C. If A = 0, then ST = 0 and hence ¢(ST) = {0}. Since
a(ST) \ {0} = o(TS) \ {0}, both ST and TS are quasinilpotent. Thus r(ST) = r(TS) = 0 < r(S)r(T).

If A #0and |A] # 1, then Ac(TS) U {0} = o(ST) U {0} = o(TS) U {0} where Ac(TS) := {Aa : a € o(TS)}. Since
|Al # 1, we have o(TS) = {0}. Then ST and TS are quasinilpotent, and so we obtain the given inequalities,
obviously.

Assume that || = 1. We will show that

n(n+1)

(ST)* = A" T"s" ()
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for any positive integer 1, using induction on n. Since ST = ATS, equation (5) is true for n = 1. If (5) holds
for n =k, then

S

(STY! = (ST)(ST)F = A7= (STF1)sk
k(k+1)

= AT ARG Gk = 2 phel gkl
Hence (5) holds for all positive integers n. Since |A| = 1, it follows from (5) that
r(ST) = Jim [[(ST)"ll" < lim [IS"[|* Lim IT"[|* = r(S)r(D).
Since TS = %ST = AST, we also obtain #(TS) < r(S)r(T).
(ii) Since ST = ATS, we get that S(z—T) = z§ — ST = z§ - ATS = (z— AT)S for z € C. Since dist(, o(T)) > 0

for any z € p(T), the inclusion Ao(T) € o(T) holds, and so (z — AT)"!S = S(z —= T)"! for any z € p(T). Let I be
a closed curve surrounding o(T). Then

Sf(T)

s[ﬁ fr f@)(z-T)"dz] = ﬁ fr f@)z - AT)™'Sdz
_ [zim, fr )z = ATYdz]S = FAT)S,

which completes the proof. O

Recall that an operator T in L(H) is called normaloid if ||T|| = #(T). An operator T € L(H) is said to
belong to class A if |T?| > |T|*. Every operator which belongs to class A is normaloid, and hyponormal
operators belong to class A (see [7]).

Corollary 3.10. Let S and T be operators in L(H) such that ST = ATS for some A € C and ST belongs to class A.
If S or T is quasinilpotent, then ST = TS = 0.

Proof. The products ST and TS are quasinilpotent by Theorem 3.9 (i). Since TS = 1ST as well as ST
belong to class A and every class A operator is normaloid, we get that ST=T5S=0. O

We next provide spectral properties of A-commuting operators.

Theorem 3.11. Suppose that S, T € L(H) satisfy ST = ATS for some A € C. For oa € {0p, 0ap, 01}, the following
assertions hold:

(i) either 0 € aa(T) or else Aaa(S) C aa(S);

(i1) either 0 € aa(S) or else aA(T) C Aaa(T).

Proof. We only consider the left essential spectrum; the proofs for the others are similar.

(i) Suppose that 0 ¢ 05 (T). If @ € Ac(S) = 01(AS), choose a sequence {x,} of unit vectors in H such
that x, — 0 weakly and lim,, [[(AS — @)x,|| = 0. Then lim, . [|(S — a)Tx,|| = im0 [[T(AS — @)x,|| = 0.
Note that lim;,_, [|Tx,|| # 0 since 0 ¢ o4(T). This implies that a € 01,(S). Thus Ac,(S) C 0,(S). Hence, we
conclude that Ag(S) C 05.(S) or 0 € g (T).

(ii) Let 0 ¢ 04,(S). If a € 0,(T), then there exists a sequence {x,} of unit vectors in H such that x, — 0
weakly and limy,_,o [[(T—a)x,|| = 0. Since ST = ATS, we have lim,, e [[(AT—a)Sx,|| = limy,—,c0 [|S(T—a)x,|| = 0.
Since 0 ¢ 0,(S), the sequence {Sx,,} does not converge to 0 in norm, and so a € 05, (AT) = Aoy (T). Therefore
ole(T) C Aole(T)' o

Applying the proof of Theorem 3.11, we infer that T ker(S—pu) C ker(S—Ap) and S ker(T—p) C ker(AT—pu)
for each u € C. Hence, ker(S) and ker(T) are common invariant subspaces for S and T.
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Corollary 3.12. For oa € {0y, Oap, 01}, the following assertions hold:
(i) If S and T are (A, u)-commuting operators in L(H) such that 0 ¢ ca(S) U oa(S*) and p # 0, then

y‘laA(T) C oa(T) C Aaa(T).

(i) If S € L(H) is normal and T is any operator in L(H) such that ST = ATS for some A with |A| = 1and 0 ¢ oa(S),
then
oa(T) = Aaa(T).

Proof. (i) Since ST = ATS and S'T = uTS*, we know from Theorem 3.11 that oA(T) € Aoa(T) and
oa(T) € uoa(T), which completes the proof.

(ii) Since S is normal, the operators S and T are (A, X)-commuting. In addition, since [|Sx|| = ||S*x||, we
infer that 0 ¢ 0A(S*) as well as 0 ¢ 04(S). According to (i), we get that (X)‘laA(T) C 0A(T) € Aoa(T). Since

Al =1, we have X_l = A, and so it follows that oo(T) = Aca(T). O

If A is a root of unity, then the inclusions in Theorem 3.11 become equalities, as follows:

Corollary 3.13. Let S, T € L(H) satisfy that ST = ATS where A is a root of unity. Then the following statements
hold for op € {0p, Oap, 01}

(1) If 0 & oa(T), then oa(S) = Aoa(S);

(i) If 0 & 0A(S), then oA(T) = Aoa(T).

Proof. Assume that 0 ¢ (). If A = 1, then it follows from Proposition 3.11 that 5A(S) D Aca(S) D
Ak A(S) = 0a(S). Thus 6a(S) = Aoa(S). Similarly, one can obtain the result (ii). O

Recall that T € L(H) is said to be an m-isometry if ¥.72o(-1)/(})T"/T/ = 0, where m is a positive integer.
In [1], it turned out that every m-isometry has approximate point spectrum contained in the unit circle.

Corollary 3.14. Suppose that S and T are operators in L(H) such that ST = ATS for some A € C. Then the
following assertions hold:

() If O ¢ 04y(T), then 04y(S) = {0} or [A] < 1.

(i1) If 0 & 0,4p(S), then o,4,(T) = {0} or |A| = 1. Hence, if 0 & 04p(S) U 04p(T), then [A| = 1.

(iii) If |\l # 1 and S is an m-isometry for some positive integer m, then 0 € o,(T).

Proof. (i) Let 0 & 0,4p(T). If 045(S) # {0}, select a € 04,(S) \ {0}. Since Ad4,(S) C 04y(S) by Theorem 3.11, we
get that Afa € 0,,(S) for each nonnegative integer k. Since o,,(T) is compact, we have || < 1.

(i) Assume that 0 ¢ 0,,(S) and there is a € g4,(T) \ {0}. Then Theorem 3.11 implies that a € /\kaup(T) for
each nonnegative integer k. Write a = A*fj with {8} C 0,,(T). Since {B} is bounded and a # 0, we see that
Al > 1.

(iii) Since 04,(S) C {z € C : |z| = 1} and |A| # 1, we have Ao,(S) ¢ 0,(S). Accordingly, 0 € 0,(T) from
Theorem 3.11. O

We now consider local spectral properties of A-commuting operators. Let Hy(T) = {x € H : lim, o T ]|+
0} be the quasinilpotent part of T € L(H).

Proposition 3.15. Let S, T € L(H). If ST = ATS for some A € C, then the following statements hold:
(i) 05(Tx) C Aos(x) and Aop(Sx) C or(x) for all x € H.

(ii) THs(F) € Hs(AF) for any subset F of C.

(iii) If A # 0, then SHT(AF) C Hr(F) for any subset F of C.

(iv) If A # 0, then Hy(S) is invariant for T.
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Proof. (i) Let x € H be given. If zy € pys(x), select a neighborhood D of zy and an analytic function
f : D — H such that (AS — z)f(z) = x on D. Using the identity ST = ATS, we get that (S — 2)Tf(z) =
T(AS —z)f(z) = Tx forall z € D, and so0 zg € ps(Tx). Thus pas(x) C ps(Tx), or o5(Tx) C ops(x).

If zp € pr(x), choose an analytic function f : D — H on a neighborhood D of zj such that (T — z) f(z) = x
on D, implying that (AT —z)Sf(z) = S(T —z) f(z) = Sx for all z € D. Then zy € p 7(Sx). Hence o,7(Sx) C or(x).

Applying [13, Theorem 3.3.8], we see that o5(Tx) C Aos(x) and Aor(Sx) C or(x).

(ii) Let F be any subset of C. If x € Hg(F), then 05(Tx) C Aos(x) C AF by (i), which means that Tx € Hs(AF).
Accordingly, we have THs(F) C Hs(AF).

(iii) If x € HT(AF), then Aor(Sx) C o7(x) C AF from (i), and so either A = 0 or else SHr(AF) C Hr(F).

(iv) Since [|S"Tx||+ = [[A"TS"x||s < |AIT|I*[|S™x]|" for x € H and A # 0, we observe that x € Hy(S) implies
Tx € Hy(S). Thus Hy(S) is invariant for T. O

Corollary 3.16. Suppose that S, T € L(H) are A\-commuting where A is a root of unity with order k. If A is a root of
unity with order k and S has Dunford’s property (C), then Hs(F) is a common invariant subspace of S and T, where
F is any closed subset of C.

Proof. 1f S has Dunford’s property (C), then Hg(F) is a hyperinvariant subspace for S (see [2], [6], or [13]).
Since
T*Hs(F) ¢ T*"'Hs(AF) € --- ¢ TH5(A*"'F) ¢ Hs(AKF) = Hs(F)

by Proposition 3.15. Hence Hs(F) is invariant under T¥. O

Remark. Assume S € L(H) is hyponormal. It turned out in [17, Theorem 2.4] that if S is A-commuting
with T € £(H) and o(ST) consists of k distinct nonzero elements, then A* = 1. Since S has Bishop’s property
(B) (see [15]), it has Dunford’s property (C), and so Hs(F) is a common invariant subspace of S and T* by
Corollary 3.16.

Let H? = H?*(D) be the canonical Hardy space of the open unit disk D, and let H® be the space of
bounded functions in H2. For an analytic map ¢ from D into itself and u € D, the weighted composition
operator Wy, : H> — H? is defined by Wy ,h = u - (h o ). In particular, we say that C, := Wy, is a
composition operator. We next prove that the operators A-commuting with the unilateral shift U on H? given
by (Uf)(z) = zf(z) are weighted composition operators.

Theorem 3.17. Let U be the unilateral shift on H? given by (Uf)(z) = zf(z), and A € dD. Assume that S € L(H?).
Then SU = AUS if and only if S = W, 5 for some u € H®.

Proof. We first note that (W, 1,Uh)(z) = Azu(z)h(Az) = A(UW,,.h)(z) for all h € H? and z € D, namely
Wy, )z is A-commuting with U.

If S € L(H?) satisfies SU = AUS, then Sz/ = SUI(1) = AUIS(1) = MzIS(1) for j = 0,1,2,---. Hence, it is
easy to see that if p is a polynomial, then Sp = uC,,p where u = S(1) € H2. Let f € H>. Choosing a sequence
{pn} of polynomials such that p, — f in H* as n — oo, we observe that p, — f uniformly on compact sets in
D; indeed,

llpn = fll

Ipn(@) = f(@) = Kpn — f, Kad)l < llpn = fIlIKall = ——=
for @ € D, where K,(z) = 1_1% is the reproducing kernel of H? at the point a. So, (Spx)(z) = u(z)pn(Az) =
u(z) f(Az) = u(z)(Ca-f)(z) pointwise on D. Since Sp, — Sf in H2, we obtain that Sf = uCj.f.
Finally, we want to show that u € H*. For a positive integer 1, consider the set E, = {C € D : [u(C)| > n},
and define a function w, on dD by w(C) = x, (AC) where y,, is the characteristic function on E,. Then

2
ISwnll* = %f ()P 1xx (Q)Pdm(C) > ;—f dm(C) = n*m(E,)
oD T JE,
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for all positive integers n. Since Cj; is unitary with C;, = C5_, we obtain that [|w,|| = |Ciz@ll = [Ixull = m(E;)
for all positive integers n. Thus ||Sw,|| > n|lw,|| for all positive integers n. If m(E,) # 0 for infinitely many #,
then [|S|| > n for infinitely many n, which is a contradiction. Therefore, m(E,) = 0 for all but finitely many

n,ie,ue€ H®. Hence S =W, ,. O

For a bounded sequence {a,};’ ; in C, a weighted shift on H with weights {a,} is an operator T such that
Te, = aneps1 for n > 0, where {e,} , denotes an orthonormal basis for H. We next give some examples for
A-commuting operators.

Example 3.18. Consider the weighted shift S, so-called the Bergman shift, determined by the weights { \/ %L}

n+2’'n=0"

Then S is hyponormal. Let T be any weighted shift with positive weights {B,}, and let A € C\ {0}. Then ST = ATS if

forn >0, that is, B, = & 22226, for n > 0.

H — n+2
and only if frar = 7 (n+1)(n+3)ﬁn

For a positive integer n > 1, define ], and J; on EBT H by

00 --- 00 01 0 --- 0
I 0 --- 00 0011 --- 0
]7201.”00&111(?1]1: EE
R Do 000 -+ I
00 I 0 000 --- 0

Theorem 3.19. Let T € L(@T H) and A € C\ {0}. Then the following statements hold:

(i) If T], = AJ, T, then T has Bishop’s property (B) if and only if P1 TPy has Bishop’s property (8) where Py denotes the
orthogonal projection of @D H onto He{0}e - - - &{0).

(ii) If T]; = AJiT, then T has Bishop’s property () if and only if P, TP, has Bishop’s property (B) where P, denotes
the orthogonal projection of @;’ H onto {0}® - - - S{O}OH.

Proof. (i) Suppose that TJ, = AJ,T. Then we can express T as

T, AT 0 0
2 .
T = ’Ij?’ /\T2 /\ Tl
Tuer ATu—2 - ATy 0
Tn /\Tn—l e .. /\n—ZTZ A”_l Tl

where { Tf}7:1 C L(H). Hence, it suffices to show that T has Bishop’s property () if and only if T; does. If
T1 has Bishop’s property (), take any sequence {f;} of @111 ‘H-valued functions analytic on an open set G in
C such that [|(T - z) fx(2)|l = 0 uniformly on compact sets in G as k — 0. Set fi(z) = @?:1 fx,j(z) where each
frj : G — H is an analytic function. Then

{limk_,oo I(T1 = 2) fra(2)ll = 0 (6)

My oo | 232t VT fioj(@) + (AT = 2) fir@N = 0, 1< £ <,

uniformly on compact sets in G. Since T; has Bishop’s property (8), we get that limy_,« || fx 1(z)|l = 0 uniformly
on compact sets in G. If limy_, [|f¢,j(z)l| = 0 uniformly on compact setsin G forall j = 1,2,--- ,£ 1, then (6)
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implies that limy_,« [[(A‘"1T; = 2) fi ¢(z)|| = 0 uniformly on compact sets in G. Since T; has Bishop’s property
(B), we obtain that limi_, [|fx¢(2)Il = 0 uniformly on compact sets in G. By induction, {f; ;} converges to 0
uniformly on compact sets in G for each j = 1,2,--- ,n. Therefore, T has Bishop’s property (f).

Conversely, assume T has Bishop’s property (8) and {fi1} is a sequence of analytic functions on an
open set G for which limy_, [[(T1 = 2)f¢1(2)ll = 0 uniformly on compact sets in G. Setting the function
gk(Q) = 0@+ @0 f; 1(A17"C) analytic for C € A" G, we have limi_ (T — O)gx(C)ll = 0 uniformly on
compact sets in A""!G. Hence limj_ ||gx(Q)ll = 0 uniformly on compact sets in A""'G, meaning that
lim— |l fi.1(2)Il = 0 uniformly on compact sets in G. Thus T; has Bishop’s property (f).

(ii) Since TJ; = AJ;T if and only if

AT, A" 2T,y oo oo AT, T
0 )\"‘ZTn ee ATs T,
T =
0 0 - N ATn_l T,
0 0 e e AT, T,
0 0 e e 0 T,

where {T]-}’]?:1 c L(H), we derive (ii) in a similar fashion to the proof of (i). O

For an operator T € L(H), a T-invariant subspace M is said to be a spectral maximal space of T if M
contains any T-invariant subspace N with o(T|y) C o(T|m).

Corollary 3.20. For T € L(@Y‘H), suppose that one of the following conditions holds:

(i) T], = A, T for some A € C\ {0} and P1TP; has Bishop’s property (8);

(ii) TJ; = AJiT for some A € C\ {0} and P, TP, has Bishop’s property (B)

where Py and P, are the orthogonal projections given in Theorem 3.19. Then T has Dunford’s property (C) and the
single-valued extension property. Moreover, Hr(F) is a spectral maximal space of T for any closed subset F of C.

Proof. Since T has Bishop’s property (8) due to Theorem 3.19, it has Dunford’s property (C) and the
single-valued extension property. Then Hr(F) is spectral maximal from [13, Proposition 1.2.20]. O
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