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Abstract. In this paper, we study properties of extended commuting operators. In particular, we provide
the polar decomposition of the product of (λ, µ)-commuting operators where λ and µ are real numbers with
λµ > 0. Furthermore, we find the restriction of µ for the product of (λ, µ)-commuting quasihyponormal
operators to be quasihyponormal. We also give spectral and local spectral relations between λ-commuting
operators. Moreover, we show that the operators λ-commuting with a unilateral shift are representable as
weighted composition operators.

1. Introduction

LetH be a separable complex Hilbert space and letL(H) denote the algebra of all bounded linear oper-
ators onH . For T ∈ L(H), we write σ(T), σp(T), σap(T), σle(T), and r(T) for the spectrum, the point spectrum,
the approximate point spectrum, the left essential spectrum, and the spectral radius of T, respectively.

For operators S,T ∈ L(H) and a complex number λ, we say that S is λ-commuting with T if ST = λTS.
Different classes of operators can be specified depending on the restriction onλ (see [16]). Theλ-commuting
relation of operators on Hilbert spaces is often useful in quantum mechanics as a tool for the analysis of
their spectra. For example, there is an anti-commuting relation (i.e., λ = −1) between Pauli spin matrices
which are complex matrices arising in the study of spin in quantum mechanics ([3]). It has been studied
further on the λ-commuting property in the context of quantum groups (see [3] and [11]).

In [4], S. Brown showed that operators λ-commuting with nonzero compact operators have nontrivial
hyperinvariant subspaces, as one of the generalizations of the famous Lomonosov’s theorem about the
invariant subspace problem for operators commuting with compact operators (see [14]). Since then, many
mathematicians have been interested in λ-commuting operators.

For λ, µ ∈ C, two operators S,T ∈ L(H) are said to be (λ, µ)-commuting if S is λ-commuting and S∗ is
µ-commuting with T, namely ST = λTS and S∗T = µTS∗. If S,T ∈ L(H) are (λ, µ)-commuting, then S∗S is
λµ-commuting with T. In particular, if S is an isometry, then λµ = 1.
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By Fuglede-Putnam Theorem, if A,B ∈ L(H) are normal and AX = XB for some X ∈ L(H), then
A∗X = XB∗ (see [8]). Hence, if S is normal and λ-commuting with T, then S and T are (λ, λ)-commuting.
This observation gives several examples of (λ, µ)-commuting operators. For a simple example, given any
fixed complex constant λwith |λ| ≤ 1, suppose D is a diagonal operator given by Den = λnen for n ≥ 0, where
{en}

∞

n=0 is an orthonormal basis forH . Then, every weighted shift W onH determined by Wen = αnen+1 for
n ≥ 0 satisfies DW = λWD. Since D is normal, the operators D and W are (λ, λ)-commuting by Fuglede-
Putnam Theorem; we also observe that W and D are (λ−1, λ)-commuting. For another example, the 2×2

matrices S =

(
0 0
2 0

)
and T =

(
1 0
0 3

)
are ( 1

3 , 3)-commuting.

In this paper, we study properties of extended commuting operators. In particular, we provide the polar
decomposition of the product of (λ, µ)-commuting operators where λ and µ are real numbers with λµ > 0.
Furthermore, we find the restriction of µ for the product of (λ, µ)-commuting quasihyponormal operators
to be quasihyponormal. We also give spectral and local spectral relations between λ-commuting operators.
Moreover, we show that the operators λ-commuting with a unilateral shift are representable as weighted
composition operators.

2. Preliminaries

An operator T ∈ L(H) is said to have the single-valued extension property (or SVEP) if for every open set
G in C and every analytic function f : G → H with (T − z) f (z) ≡ 0 on G, we have f (z) ≡ 0 on G. For an
operator T ∈ L(H) and a vector x ∈ H , the set ρT(x), called the local resolvent of T at x, consists of elements
z0 in C such that there exists an H-valued analytic function f (z) defined in a neighborhood of z0 which
verifies (T − z) f (z) ≡ x. The local spectrum of T at x is given by σT(x) := C \ ρT(x). Moreover, we define the
local spectral subspace of T as HT(F) := {x ∈ H : σT(x) ⊂ F}, where F is a subset of C. An operator T ∈ L(H)
is said to have Dunford’s property (C) if HT(F) is closed for each closed subset F of C. We say that T ∈ L(H)
is said to have Bishop’s property (β) if for every open subset G of C and every sequence fn : G → H of
H-valued analytic functions such that (T − z) fn(z) converges uniformly to 0 in norm on compact subsets of
G, then fn(z) converges uniformly to 0 in norm on compact subsets of G. The following implications are
well known (see [2], [6], or [13] for more details):

Bishop’s property (β)⇒ Dunford’s property (C)⇒ SVEP.

3. Main results

In this section, we first consider (λ, µ)-commuting operators. As remarked at section one, Fugled-Putnam
theorem gives examples of (λ, λ)-commuting operators. We remark that if S,T ∈ L(H) are (λ, λ)-commuting
for some λ ∈ C and T , 0 does not have dense range, then ran(T) is a common nontrivial invariant subspace
for S and S∗, since S(Tx) = λTSx ∈ ran(T) and S∗(Tx) = λTS∗x ∈ ran(T) for all x ∈ H .

In order to provide the polar decomposition of the product of (λ, µ)-commuting operators, we show that
their partial isometric parts and positive parts satisfy the following extended commuting relationships.

Lemma 3.1. Let S,T ∈ L(H) be (λ, µ)-commuting where λ and µ are real numbers with λµ > 0. If S = US|S| and
T = UT |T| denote the polar decompositions, then the following statements hold:
(i) |T|S = (λ−1µ)

1
2 S|T| and |S|T = (λµ)

1
2 T|S|;

(ii) |S|UT = (λµ)
1
2 UT |S| and |T|US = (λ−1µ)

1
2 US|T|;

(iii) |S||T| = |T||S|, |S∗||T| = |T||S∗|, and |S||T∗| = |T∗|S|;
(iv) USUT = UTUS and U∗SUT = UTU∗S if λ and µ are positive, and USUT = −UTUS and U∗SUT = −UTU∗S if λ and
µ are negative.
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Proof. (i) Set δ = λ−1µ > 0. It is easy to see that p(|T|2)S = Sp(δ|T|2) for any polynomial p. Since there exists
a sequence {pn} of polynomials convergent uniformly to f (s) = s

1
2 on the compact interval [0, (1 + δ)‖T‖2]

from Stone-Weierstrass theorem, it follows that |T|S = δ
1
2 S|T| = (λ−1µ)

1
2 S|T|.

Similarly, we infer that |S|T = (λµ)
1
2 T|S|, since T and S are (λ−1, µ)-commuting.

(ii) Since ST = λTS and |T|S = (λ−1µ)
1
2 S|T| by (i), we obtain that

SUT |T| = λUT |T|S = λ(λ−1µ)
1
2 UTS|T| = τ(λµ)

1
2 UTS|T|

where τ = 1 if λ, µ > 0, and τ = −1 if λ, µ < 0. If x ∈ ker(|T|), then |T|Sx = (λ−1µ)
1
2 S|T|x = 0. Since

ker(|T|) = ker(UT), we have UTSx = 0 = SUTx. Hence, it holds that

SUT = τ(λµ)
1
2 UTS onH = ran(|T|)⊕ker(|T|). (1)

In a similar manner, use the identities S∗T = µTS∗ and S∗|T| = (λ−1µ)
1
2 |T|S∗ obtained from (i) to verify that

S∗UT |T| = µUT |T|S∗ = µ(λµ−1)
1
2 UTS∗|T| = τ(λµ)

1
2 UTS∗|T|

and UTS∗x = S∗UTx = 0 for all x ∈ ker(|T|), which yields that

S∗UT = τ(λµ)
1
2 UTS∗. (2)

Combining (2) with (1), one can deduce that (S∗S)UT = λµUT(SS∗). As in the proof of (i), we can show that
|S|UT = (λµ)

1
2 UT |S|. Since T and S are (λ−1, µ)-commuting, we see that |T|US = (λ−1µ)

1
2 US|T|.

(iii) Since |T||S|2 = (|T|S∗)S = (λ−1µ)−
1
2 S∗(|T|S) = |S|2|T| from (i), the positive parts |S| and |T| commute.

Moreover, observe that S∗ and T are (µ, λ)-commuting, while S and T∗ are (µ−1, λ−1)-commuting. Hence, we
also see that |S∗||T| = |T||S∗| and |S||T∗| = |T∗||S|.

(iv) Applying (ii) and (iii), we obtain that

ST = US(|S|UT)|T| = (λµ)
1
2 USUT |S||T| (3)

and

λTS = λUT(|T|US)|S| = λUT

(
(λ−1µ)

1
2 US|T|

)
|S| = τ(λµ)

1
2 UTUS|S||T|

where τ = 1 if λ, µ > 0, and τ = −1 if λ, µ < 0. Since ST = λTS, we have USUT = τUTUS on ran(|S||T|).
In addition, if x ∈ ker(|S||T|) = ker(|T||S|), then US|T|x = UT |S|x = 0, and so |T|USx = |S|UTx = 0 from
(ii). Therefore, both USUT and UTUS are identically zero on ker(|S||T|), concluding that USUT = τUTUS

on H = ran(|S||T|) ⊕ ran(|S||T|)⊥. Since S∗ and T are (µ, λ)-commuting and the adjoint S∗ has the polar
decomposition S∗ = U∗S|S

∗
|, we derive the equality for U∗S and UT, as well. �

Theorem 3.2. Assume that S,T ∈ L(H) are (λ, µ)-commuting where λ and µ are real numbers with λµ > 0. If
ST = UST |ST| is the polar decomposition, then

UST = USUT and |ST| = (λµ)
1
2 |S||T|.

In addition, if TS = UTS|TS| is the polar decomposition, then

UTS = UTUS and |TS| = (λ−1µ)
1
2 |S||T|.

Proof. Since T and S are (λ−1, µ)-commuting and |S||T| = |T||S| by Lemma 3.1, it suffices to consider the
product ST. We note from (3) that the product ST is factorized as follows:

ST = (USUT)
(
(λµ)

1
2 |S||T|

)
.
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Since |S||T| = |T||S|, we obtain that

(|S||T|)2 = S∗(ST∗)T = µ−1(S∗T∗)ST = (λµ)−1T∗S∗ST = (λµ)−1
|ST|2.

This ensures that

|ST| = (λµ)
1
2 |S||T|. (4)

If x ∈ ker(ST) = ker(|ST|), then |S||T|x = 0 from (4). Since |T|USx = (λ−1µ)
1
2 US|T|x = 0 by Lemma 3.1, we

have USx ∈ ker(|T|) = ker(UT), namely x ∈ ker(UTUS). Conversely, if x ∈ ker(UTUS), then |T|USx = 0 and so
US|T|x = 0, which implies with (4) that x ∈ ker(|S||T|) = ker(ST). Since ker(USUT) = ker(UTUS) by Lemma
3.1, it holds that

ker(USUT) = ker(UTUS) = ker(ST) = ker(|ST|).

Now, it remains to show USUT is partial isometric on ker(USUT)⊥ = ran(|ST|). Equations (1), (2), and (4)
give that

(USUT)∗(USUT)|ST| = (UTUS)∗(UTUS)|ST| = U∗SU∗TUTUS

(
(λµ)

1
2 |S||T|

)
= U∗SU∗T

(
(λµ)

1
2 UTS

)
|T| = U∗S(τU∗TS)UT |T|

= U∗S
(
(λµ)

1
2 SU∗T

)
UT |T| = (λµ)

1
2 (U∗SUS|S|)(U∗TUT |T|)

= (λµ)
1
2 |S||T| = |ST|,

completing the proof. �

For an operator T ∈ L(H) with polar decomposition T = U|T|, we define the Aluthge transform of T,
denoted by T̃, as

T̃ = |T|
1
2 U|T|

1
2 .

Recall that an operator T ∈ L(H) is called p-hyponormal if (T∗T)p
≥ (TT∗)p, where 0 < p < ∞. It is well

known that if 0 < q < p < ∞, then p-hyponormal operators are q-hyponormal. In addition, T ∈ L(H) is

p-hyponormal for some 0 < p < 1, then T̃ is (p + 1
2 )-hyponormal (see [7]). Hence, ˜̃T is always hyponormal.

In [10], the authors gave several connections between operators and their Aluthge transforms.

Corollary 3.3. If S,T ∈ L(H) are (λ, µ)-commuting operators where λ and µ are real numbers with λµ > 0, then
the following statements hold:
(i) S̃ and T̃ are (λ, µ)-commuting and S̃T = |µ|

1
2 S̃T̃ = λ|µ|

1
2 T̃S̃.

(ii) S̃ and T are (λ, µ)-commuting.
(iii) S and T̃ are (λ, µ)-commuting.

Proof. Let S = US|S| and T = UT |T| be the polar decompositions of S and T.
(i) Lemma 3.1 implies that |S|

1
2 UT = (λµ)

1
4 UT |S|

1
2 , |T|

1
2 US = (λ−1µ)

1
4 US|T|

1
2 , and (|S||T|)

1
2 = |S|

1
2 |T|

1
2 =

|T|
1
2 |S|

1
2 . Thus, we obtain from Theorem 3.2 that

S̃T = (λµ)
1
2 |S|

1
2 (|T|

1
2 US)(UT |S|

1
2 )|T|

1
2 = |µ|

1
2 |S|

1
2 US|T|

1
2 |S|

1
2 UT |T|

1
2

= |µ|
1
2 (|S|

1
2 US|S|

1
2 )(|T|

1
2 UT |T|

1
2 ) = |µ|

1
2 S̃T̃.

Since USUT = τUTUS where τ = 1 if λ, µ > 0, and τ = −1 if λ, µ < 0, we get that

S̃T = τ(λµ)
1
2 |T|

1
2 (|S|

1
2 UT)(US|T|

1
2 )|S|

1
2 = λ|µ|

1
2 |T|

1
2 UT |S|

1
2 |T|

1
2 US|S|

1
2

= λ|µ|
1
2 (|T|

1
2 UT |T|

1
2 )(|S|

1
2 US|S|

1
2 ) = λ|µ|

1
2 T̃S̃.
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Hence, we see that S̃T̃ = λT̃S̃. Furthermore, since U∗SUT = τUTU∗S by Lemma 3.1, it holds that

(S̃)∗T̃ = (|S|
1
2 U∗S|S|

1
2 )(|T|

1
2 UT |T|

1
2 ) = |S|

1
2 (U∗S|T|

1
2 )(|S|

1
2 UT)|T|

1
2

= |µ|
1
2 |S|

1
2 |T|

1
2 U∗SUT |S|

1
2 |T|

1
2 = τ|µ|

1
2 |T|

1
2 (|S|

1
2 UT)(U∗S|T|

1
2 )|S|

1
2

= µ|T|
1
2 UT |S|

1
2 |T|

1
2 U∗S|S|

1
2 = µT̃(S̃)∗.

(ii) Using Lemma 3.1, we see that

S̃T = |S|
1
2 US(|S|

1
2 T) = (λµ)

1
4 |S|

1
2 UST|S|

1
2

= (λµ)
1
4 |S|

1
2 (USUT)|T||S|

1
2 = τ(λµ)

1
4 (|S|

1
2 UT)(US|T|)|S|

1
2

= τ(λµ)
1
2 (λ−1µ)−

1
2 UT(|S|

1
2 |T|)US|S|

1
2 = λTS̃

where τ = 1 if λ, µ > 0, and τ = −1 if λ, µ < 0. This means that S̃ and T are λ-commuting. Similarly, one can
derive that (S̃)∗ and T are µ-commuting.

(iii) Since T and S are (λ−1, µ)-commuting, we obtain from (ii) that T̃ and S are (λ−1, µ)-commuting, or
equivalently, S and T̃ are (λ, µ)-commuting. �

Remark 3.4. Let S,T ∈ L(H) be λ-commuting for some nonzero real number λ. If S̃ is hyponormal and T is normal,
then S̃ and T̃ = T are (λ, λ−1)-commuting by Theorem 3.3 and Fuglede-Putnam Theorem. Since σ(S̃T) = σ(ST) due
to [10], we obtain from [18] that S̃T is hyponormal if and only if σ(ST) , {0}, which holds exactly when λ = ±1.

Recall that an operator T ∈ L(H) is said to be quasinormal if T∗T commutes with T.

Corollary 3.5. Let S,T ∈ L(H) be (λ, µ)-commuting quasinormal operators such that ST , 0, where λ and µ are
real numbers with λµ > 0. Then ST is quasinormal if and only if µ = ±1. In particular, if one of S and T is normal
and the product ST is quasinormal, then λ = µ = ±1.

Proof. Assume S = US|S|, T = UT |T|, and ST = UST |ST| are the polar decompositions. We will use the
equalities UST = USUT = ±UTUS, |ST| = (λµ)

1
2 |S||T|, |S|UT = (λµ)

1
2 UT |S|, and |T|US = (λ−1µ)

1
2 US|T| obtained

from Lemma 3.1 and Theorem 3.2. Since US|S| = |S|US and UT |T| = |T|UT due to the quasinormality of S
and T, it follows that

UST |ST| = ST = US|S|UT |T| = |S|(US|T|)UT

= (λ−1µ)−
1
2 |S||T|USUT = (λ−1µ)−

1
2 (λµ)−

1
2 |ST|UST = |µ|−1

|ST|UST.

Hence, ST is quasinormal if and only if µ = ±1.
If S or T is normal and ST is quasinormal, then S∗T = µTS∗ = ±TS∗. Fuglede-Putnam theorem implies

that ST = ±TS, and thus λ = µ = ±1. �

An operator T ∈ L(H) is called quasihyponormal if T∗(T∗T−TT∗)T ≥ 0, or ‖T2x‖ ≥ ‖T∗Tx‖ for all x ∈ H . In
the following theorem, we show that if |µ| ≤ 1, then the product of two (λ, µ)-commuting quasihyponormal
operators is again quasihyponormal.

Theorem 3.6. Let S and T be quasihyponormal operators in L(H) that are (λ, µ)-commuting. If |µ| ≥ 1, then ST is
quasihyponormal. Furthermore, if λ , 0 and |µ| ≥ 1, then TS is quasihyponormal.

Proof. Suppose that ST = λTS and S∗T = µTS∗. Since S and T are quasihyponormal, we obtain that

‖(ST)2x‖ = ‖λ2T(ST)Sx‖ = |λ|3‖T2S2x‖
≥ |λ|3‖T∗TS2x‖ = |λ|2‖T∗(λTS)Sx‖
= |λ|2‖(T∗S)TSx‖ = |λ| ‖µST∗(λTS)x‖
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= |λ||µ| ‖S(T∗S)Tx‖ = |λ||µ|2‖S2T∗Tx‖
≥ |λ||µ| ‖S∗(µST∗)Tx‖ = |µ| ‖(λS∗T∗)STx‖
= |µ| ‖T∗S∗STx‖ = |µ| ‖(ST)∗(ST)x‖

for all x ∈ H . Thus, if |µ| ≥ 1, then ST is quasihyponormal.
If λ , 0, then T and S are (λ−1, µ)-commuting. As in the above argument, one can deduce that if |µ| ≥ 1,

then TS is quasihyponormal. �

An operator T in L(H) is said to be nilpotent if Tn = 0 for some positive integer n; in this case, the
smallest positive integer n with Tn = 0 is referred to as the order of T. We say that T ∈ L(H) is quasinilpotent
if σ(T) = {0}.

Corollary 3.7. Let S and T be quasihyponormal operators inL(H) that are (λ, µ)-commuting and ST , 0. If |λ| , 1
and |µ| ≥ 1, then ST is nilpotent of order 2 and one of S and T has a nontrivial invariant subspace.

Proof. Let |λ| , 1 and |µ| ≥ 1. The product ST is quasihyponormal by Theorem 3.6. Applying [12], we

write ST =

(
A B
0 0

)
onH =M⊕M⊥, where A is hyponormal andM = ran(ST). It is easy to see that if α , 0

and ST − α is invertible, then so is A − α. Indeed, if X =

(
X1 X2
X3 X4

)
is the inverse of ST − α, then we have

X1(A−α) = IM, (A−α)X1 + BX3 = IM, and αX3 = 0 where IM denotes the identity operator onM. Since α is
nonzero, X3 = 0 so that A−α is invertible. Hence σ(A) \ {0} ⊂ σ(ST) \ {0}. Since ST is quasinilpotent from the
proof of Theorem 3.9, it follows that σ(A) \ {0} = ∅, i.e., σ(A) = {0}. Since A is hyponormal, it should be the

zero operator. Thus ST =

(
0 B
0 0

)
is nilpotent of order 2. Applying [5, Theorem 5], we get that ran(S) , H

or ker(T) , {0}. Accordingly, S or T has a nontrivial invariant subspace. �

Corollary 3.8. Let S ∈ L(H) be normal and T ∈ L(H) be quasihyponormal with ST , 0. If ST = λTS for some
|λ| ≥ 1, then both ST and TS are quasihyponormal; in particular, if |λ| > 1, then ST and TS are nilpotent of order 2.

Proof. Since S∗T = λTS∗ by Fuglede-Putnam Theorem, the operators S and T are (λ, λ)-commuting.
Moreover, T and S are (λ−1, λ)-commuting. Therefore, the products ST and TS are quasihyponormal due
to Theorem 3.6. If |λ| > 1, then we obtain from Corollary 3.7 that ST and TS are nilpotent of order 2. �

We next give several properties ofλ-commuting operators. We first consider the product ofλ-commuting
operators.

Theorem 3.9. Let S and T be operators inL(H) such that ST = λTS for some λ ∈ C. Then the following statements
hold:
(i) r(ST) ≤ r(S)r(T) and r(TS) ≤ r(S)r(T).
(ii) Suppose that λ , 0 and dist( z

λ , σ(T)) > 0 for z ∈ ρ(T). If f is analytic in a neighborhood of σ(T), then
S f (T) = f (λT)S.

Proof. (i) Assume that ST = λTS for some λ ∈ C. If λ = 0, then ST = 0 and hence σ(ST) = {0}. Since
σ(ST) \ {0} = σ(TS) \ {0}, both ST and TS are quasinilpotent. Thus r(ST) = r(TS) = 0 ≤ r(S)r(T).

If λ , 0 and |λ| , 1, then λσ(TS)∪ {0} = σ(ST)∪ {0} = σ(TS)∪ {0}where λσ(TS) := {λα : α ∈ σ(TS)}. Since
|λ| , 1, we have σ(TS) = {0}. Then ST and TS are quasinilpotent, and so we obtain the given inequalities,
obviously.

Assume that |λ| = 1. We will show that

(ST)n = λ
n(n+1)

2 TnSn (5)
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for any positive integer n, using induction on n. Since ST = λTS, equation (5) is true for n = 1. If (5) holds
for n = k, then

(ST)k+1 = (ST)(ST)k = λ
k(k+1)

2 (STk+1)Sk

= λ
k(k+1)

2 (λk+1Tk+1S)Sk = λ
(k+1)(k+2)

2 Tk+1Sk+1.

Hence (5) holds for all positive integers n. Since |λ| = 1, it follows from (5) that

r(ST) = lim
n→∞
‖(ST)n

‖
1
n ≤ lim

n→∞
‖Sn
‖

1
n lim

n→∞
‖Tn
‖

1
n = r(S)r(T).

Since TS = 1
λST = λST, we also obtain r(TS) ≤ r(S)r(T).

(ii) Since ST = λTS, we get that S(z−T) = zS−ST = zS−λTS = (z−λT)S for z ∈ C. Since dist( z
λ , σ(T)) > 0

for any z ∈ ρ(T), the inclusion λσ(T) ⊂ σ(T) holds, and so (z − λT)−1S = S(z − T)−1 for any z ∈ ρ(T). Let Γ be
a closed curve surrounding σ(T). Then

S f (T) = S
[ 1
2πi

∫
Γ

f (z)(z − T)−1dz
]

=
1

2πi

∫
Γ

f (z)(z − λT)−1Sdz

=
[ 1
2πi

∫
Γ

f (z)(z − λT)−1dz
]
S = f (λT)S,

which completes the proof. �

Recall that an operator T in L(H) is called normaloid if ‖T‖ = r(T). An operator T ∈ L(H) is said to
belong to class A if |T2

| ≥ |T|2. Every operator which belongs to class A is normaloid, and hyponormal
operators belong to class A (see [7]).

Corollary 3.10. Let S and T be operators in L(H) such that ST = λTS for some λ ∈ C and ST belongs to class A.
If S or T is quasinilpotent, then ST = TS = 0.

Proof. The products ST and TS are quasinilpotent by Theorem 3.9 (i). Since TS = 1
λST as well as ST

belong to class A and every class A operator is normaloid, we get that ST = TS = 0. �

We next provide spectral properties of λ-commuting operators.

Theorem 3.11. Suppose that S,T ∈ L(H) satisfy ST = λTS for some λ ∈ C. For σ∆ ∈ {σp, σap, σle}, the following
assertions hold:
(i) either 0 ∈ σ∆(T) or else λσ∆(S) ⊂ σ∆(S);
(ii) either 0 ∈ σ∆(S) or else σ∆(T) ⊂ λσ∆(T).

Proof. We only consider the left essential spectrum; the proofs for the others are similar.
(i) Suppose that 0 < σle(T). If α ∈ λσle(S) = σle(λS), choose a sequence {xn} of unit vectors in H such

that xn → 0 weakly and limn→∞ ‖(λS − α)xn‖ = 0. Then limn→∞ ‖(S − α)Txn‖ = limn→∞ ‖T(λS − α)xn‖ = 0.
Note that limn→∞ ‖Txn‖ , 0 since 0 < σle(T). This implies that α ∈ σle(S). Thus λσle(S) ⊂ σle(S). Hence, we
conclude that λσle(S) ⊂ σle(S) or 0 ∈ σle(T).

(ii) Let 0 < σle(S). If α ∈ σle(T), then there exists a sequence {xn} of unit vectors in H such that xn → 0
weakly and limn→∞ ‖(T−α)xn‖ = 0. Since ST = λTS, we have limn→∞ ‖(λT−α)Sxn‖ = limn→∞ ‖S(T−α)xn‖ = 0.
Since 0 < σle(S), the sequence {Sxn} does not converge to 0 in norm, and so α ∈ σle(λT) = λσle(T). Therefore
σle(T) ⊂ λσle(T). �

Applying the proof of Theorem 3.11, we infer that T ker(S−µ) ⊂ ker(S−λµ) and S ker(T−µ) ⊂ ker(λT−µ)
for each µ ∈ C. Hence, ker(S) and ker(T) are common invariant subspaces for S and T.
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Corollary 3.12. For σ∆ ∈ {σp, σap, σle}, the following assertions hold:
(i) If S and T are (λ, µ)-commuting operators in L(H) such that 0 < σ∆(S) ∪ σ∆(S∗) and µ , 0, then

µ−1σ∆(T) ⊂ σ∆(T) ⊂ λσ∆(T).

(ii) If S ∈ L(H) is normal and T is any operator inL(H) such that ST = λTS for some λ with |λ| = 1 and 0 < σ∆(S),
then

σ∆(T) = λσ∆(T).

Proof. (i) Since ST = λTS and S∗T = µTS∗, we know from Theorem 3.11 that σ∆(T) ⊂ λσ∆(T) and
σ∆(T) ⊂ µσ∆(T), which completes the proof.

(ii) Since S is normal, the operators S and T are (λ, λ)-commuting. In addition, since ‖Sx‖ = ‖S∗x‖, we
infer that 0 < σ∆(S∗) as well as 0 < σ∆(S). According to (i), we get that (λ)−1σ∆(T) ⊂ σ∆(T) ⊂ λσ∆(T). Since

|λ| = 1, we have λ
−1

= λ, and so it follows that σ∆(T) = λσ∆(T). �

If λ is a root of unity, then the inclusions in Theorem 3.11 become equalities, as follows:

Corollary 3.13. Let S,T ∈ L(H) satisfy that ST = λTS where λ is a root of unity. Then the following statements
hold for σ∆ ∈ {σp, σap, σle}:
(i) If 0 < σ∆(T), then σ∆(S) = λσ∆(S);
(ii) If 0 < σ∆(S), then σ∆(T) = λσ∆(T).

Proof. Assume that 0 < σ∆(T). If λk = 1, then it follows from Proposition 3.11 that σ∆(S) ⊃ λσ∆(S) ⊃
λkσ∆(S) = σ∆(S). Thus σ∆(S) = λσ∆(S). Similarly, one can obtain the result (ii). �

Recall that T ∈ L(H) is said to be an m-isometry if
∑m

j=0(−1) j(m
j
)
T∗ jT j = 0, where m is a positive integer.

In [1], it turned out that every m-isometry has approximate point spectrum contained in the unit circle.

Corollary 3.14. Suppose that S and T are operators in L(H) such that ST = λTS for some λ ∈ C. Then the
following assertions hold:
(i) If 0 < σap(T), then σap(S) = {0} or |λ| ≤ 1.
(ii) If 0 < σap(S), then σap(T) = {0} or |λ| ≥ 1. Hence, if 0 < σap(S) ∪ σap(T), then |λ| = 1.
(iii) If |λ| , 1 and S is an m-isometry for some positive integer m, then 0 ∈ σp(T).

Proof. (i) Let 0 < σap(T). If σap(S) , {0}, select α ∈ σap(S) \ {0}. Since λσap(S) ⊂ σap(S) by Theorem 3.11, we
get that λkα ∈ σap(S) for each nonnegative integer k. Since σap(T) is compact, we have |λ| ≤ 1.

(ii) Assume that 0 < σap(S) and there is α ∈ σap(T) \ {0}. Then Theorem 3.11 implies that α ∈ λkσap(T) for
each nonnegative integer k. Write α = λkβk with {βk} ⊂ σap(T). Since {βk} is bounded and α , 0, we see that
|λ| ≥ 1.

(iii) Since σap(S) ⊂ {z ∈ C : |z| = 1} and |λ| , 1, we have λσp(S) 1 σp(S). Accordingly, 0 ∈ σp(T) from
Theorem 3.11. �

We now consider local spectral properties ofλ-commuting operators. Let H0(T) = {x ∈ H : limn→∞ ‖Tnx‖
1
n =

0} be the quasinilpotent part of T ∈ L(H).

Proposition 3.15. Let S,T ∈ L(H). If ST = λTS for some λ ∈ C, then the following statements hold:
(i) σS(Tx) ⊂ λσS(x) and λσT(Sx) ⊂ σT(x) for all x ∈ H .
(ii) THS(F) ⊂ HS(λF) for any subset F of C.
(iii) If λ , 0, then SHT(λF) ⊂ HT(F) for any subset F of C.
(iv) If λ , 0, then H0(S) is invariant for T.
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Proof. (i) Let x ∈ H be given. If z0 ∈ ρλS(x), select a neighborhood D of z0 and an analytic function
f : D → H such that (λS − z) f (z) ≡ x on D. Using the identity ST = λTS, we get that (S − z)T f (z) =
T(λS − z) f (z) = Tx for all z ∈ D, and so z0 ∈ ρS(Tx). Thus ρλS(x) ⊂ ρS(Tx), or σS(Tx) ⊂ σλS(x).

If z0 ∈ ρT(x), choose an analytic function f : D→H on a neighborhood D of z0 such that (T − z) f (z) ≡ x
on D, implying that (λT− z)S f (z) = S(T− z) f (z) = Sx for all z ∈ D. Then z0 ∈ ρλT(Sx). Hence σλT(Sx) ⊂ σT(x).

Applying [13, Theorem 3.3.8], we see that σS(Tx) ⊂ λσS(x) and λσT(Sx) ⊂ σT(x).
(ii) Let F be any subset ofC. If x ∈ HS(F), then σS(Tx) ⊂ λσS(x) ⊂ λF by (i), which means that Tx ∈ HS(λF).

Accordingly, we have THS(F) ⊂ HS(λF).
(iii) If x ∈ HT(λF), then λσT(Sx) ⊂ σT(x) ⊂ λF from (i), and so either λ = 0 or else SHT(λF) ⊂ HT(F).
(iv) Since ‖SnTx‖

1
n = ‖λnTSnx‖

1
n ≤ |λ|‖T‖

1
n ‖Snx‖

1
n for x ∈ H and λ , 0, we observe that x ∈ H0(S) implies

Tx ∈ H0(S). Thus H0(S) is invariant for T. �

Corollary 3.16. Suppose that S,T ∈ L(H) are λ-commuting where λ is a root of unity with order k. If λ is a root of
unity with order k and S has Dunford’s property (C), then HS(F) is a common invariant subspace of S and Tk, where
F is any closed subset of C.

Proof. If S has Dunford’s property (C), then HS(F) is a hyperinvariant subspace for S (see [2], [6], or [13]).
Since

TkHS(F) ⊂ Tk−1HS(λF) ⊂ · · · ⊂ THS(λk−1F) ⊂ HS(λkF) = HS(F)

by Proposition 3.15. Hence HS(F) is invariant under Tk. �

Remark. Assume S ∈ L(H) is hyponormal. It turned out in [17, Theorem 2.4] that if S is λ-commuting
with T ∈ L(H) and σ(ST) consists of k distinct nonzero elements, then λk = 1. Since S has Bishop’s property
(β) (see [15]), it has Dunford’s property (C), and so HS(F) is a common invariant subspace of S and Tk by
Corollary 3.16.

Let H2 = H2(D) be the canonical Hardy space of the open unit disk D, and let H∞ be the space of
bounded functions in H2. For an analytic map ϕ from D into itself and u ∈ D, the weighted composition
operator W f ,ϕ : H2

→ H2 is defined by Wu,ϕh = u · (h ◦ ϕ). In particular, we say that Cϕ := W1,ϕ is a
composition operator. We next prove that the operators λ-commuting with the unilateral shift U on H2 given
by (U f )(z) = z f (z) are weighted composition operators.

Theorem 3.17. Let U be the unilateral shift on H2 given by (U f )(z) = z f (z), and λ ∈ ∂D. Assume that S ∈ L(H2).
Then SU = λUS if and only if S = Wu,λz for some u ∈ H∞.

Proof. We first note that (Wu,λzUh)(z) = λzu(z)h(λz) = λ(UWu,λzh)(z) for all h ∈ H2 and z ∈ D, namely
Wu,λz is λ-commuting with U.

If S ∈ L(H2) satisfies SU = λUS, then Sz j = SU j(1) = λ jU jS(1) = λ jz jS(1) for j = 0, 1, 2, · · · . Hence, it is
easy to see that if p is a polynomial, then Sp = uCλzp where u = S(1) ∈ H2. Let f ∈ H2. Choosing a sequence
{pn} of polynomials such that pn → f in H2 as n→∞, we observe that pn → f uniformly on compact sets in
D; indeed,

|pn(α) − f (α)| = |〈pn − f ,Kα〉| ≤ ‖pn − f ‖‖Kα‖ =
‖pn − f ‖√

1 − |α|2

for α ∈ D, where Kα(z) = 1
1−αz is the reproducing kernel of H2 at the point α. So, (Spn)(z) = u(z)pn(λz) →

u(z) f (λz) = u(z)(Cλz f )(z) pointwise onD. Since Spn → S f in H2, we obtain that S f = uCλz f .
Finally, we want to show that u ∈ H∞. For a positive integer n, consider the set En = {ζ ∈ ∂D : |u(ζ)| > n},

and define a function ωn on ∂D by ω(ζ) = χn(λζ) where χn is the characteristic function on En. Then

‖Sωn‖
2 =

1
2π

∫
∂D
|u(ζ)|2|χn(ζ)|2dm(ζ) ≥

n2

2π

∫
En

dm(ζ) = n2m(En)
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for all positive integers n. Since Cλz is unitary with C∗λz = Cλz, we obtain that ‖ωn‖ = ‖Cλzωn‖ = ‖χn‖ = m(En)
for all positive integers n. Thus ‖Sωn‖ ≥ n‖ωn‖ for all positive integers n. If m(En) , 0 for infinitely many n,
then ‖S‖ ≥ n for infinitely many n, which is a contradiction. Therefore, m(En) = 0 for all but finitely many
n, i.e., u ∈ H∞. Hence S = Wu,λz. �

For a bounded sequence {αn}
∞

n=0 in C, a weighted shift onH with weights {αn} is an operator T such that
Ten = αnen+1 for n ≥ 0, where {en}

∞

n=0 denotes an orthonormal basis forH . We next give some examples for
λ-commuting operators.

Example 3.18. Consider the weighted shift S, so-called the Bergman shift, determined by the weights {
√

n+1
n+2 }

∞

n=0.

Then S is hyponormal. Let T be any weighted shift with positive weights {βn}, and let λ ∈ C \ {0}. Then ST = λTS if

and only if βn+1 = n+2
λ
√

(n+1)(n+3)
βn for n ≥ 0, that is, βn = 1

λn

√
2(n+1)

n+2 β0 for n ≥ 0.

For a positive integer n > 1, define Jr and Jl on
⊕n

1H by

Jr =


0 0 · · · 0 0
I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0


and Jl =


0 I 0 · · · 0
0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I
0 0 0 · · · 0


.

Theorem 3.19. Let T ∈ L(
⊕n

1H) and λ ∈ C \ {0}. Then the following statements hold:
(i) If TJr = λJrT, then T has Bishop’s property (β) if and only if P1TP1 has Bishop’s property (β) where P1 denotes the
orthogonal projection of

⊕n
1H ontoH⊕{0}⊕ · · · ⊕{0}.

(ii) If TJl = λJlT, then T has Bishop’s property (β) if and only if PnTPn has Bishop’s property (β) where Pn denotes
the orthogonal projection of

⊕n
1H onto {0}⊕ · · · ⊕{0}⊕H .

Proof. (i) Suppose that TJr = λJrT. Then we can express T as

T =



T1 0 · · · · · · 0 0

T2 λT1
. . .

. . . 0 0

T3 λT2 λ2T1
. . .

...
...

...
...

. . .
. . .

. . .
...

Tn−1 λTn−2
. . .

. . . λn−2T1 0
Tn λTn−1 · · · · · · λn−2T2 λn−1T1


where {T j}

n
j=1 ⊂ L(H). Hence, it suffices to show that T has Bishop’s property (β) if and only if T1 does. If

T1 has Bishop’s property (β), take any sequence { fk} of
⊕n

1H-valued functions analytic on an open set G in
C such that ‖(T − z) fk(z)‖ → 0 uniformly on compact sets in G as k→∞. Set fk(z) =

⊕n
j=1 fk, j(z) where each

fk, j : G→H is an analytic function. Thenlimk→∞ ‖(T1 − z) fk,1(z)‖ = 0
limk→∞ ‖

∑`−1
j=1 λ

j−1T`− j+1 fk, j(z) + (λ`−1T1 − z) fk,`(z)‖ = 0, 1 < ` ≤ n,
(6)

uniformly on compact sets in G. Since T1 has Bishop’s property (β), we get that limk→∞ ‖ fk,1(z)‖ = 0 uniformly
on compact sets in G. If limk→∞ ‖ fk, j(z)‖ = 0 uniformly on compact sets in G for all j = 1, 2, · · · , `− 1, then (6)
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implies that limk→∞ ‖(λ`−1T1 − z) fk,`(z)‖ = 0 uniformly on compact sets in G. Since T1 has Bishop’s property
(β), we obtain that limk→∞ ‖ fk,`(z)‖ = 0 uniformly on compact sets in G. By induction, { fk, j} converges to 0
uniformly on compact sets in G for each j = 1, 2, · · · ,n. Therefore, T has Bishop’s property (β).

Conversely, assume T has Bishop’s property (β) and { fk,1} is a sequence of analytic functions on an
open set G for which limk→∞ ‖(T1 − z) fk,1(z)‖ = 0 uniformly on compact sets in G. Setting the function
1k(ζ) := 0⊕ · · · ⊕0⊕ fk,1(λ1−nζ) analytic for ζ ∈ λn−1G, we have limk→∞ ‖(T − ζ)1k(ζ)‖ = 0 uniformly on
compact sets in λn−1G. Hence limk→∞ ‖1k(ζ)‖ = 0 uniformly on compact sets in λn−1G, meaning that
limk→∞ ‖ fk,1(z)‖ = 0 uniformly on compact sets in G. Thus T1 has Bishop’s property (β).

(ii) Since TJl = λJlT if and only if

T =



λn−1Tn λn−2Tn−1 · · · · · · λT2 T1
0 λn−2Tn · · · · · · λT3 T2
...

...
. . .

. . .
...

...

0 0
. . .

. . . λTn−1 Tn−2
0 0 · · · · · · λTn Tn−1
0 0 · · · · · · 0 Tn


where {T j}

n
j=1 ⊂ L(H), we derive (ii) in a similar fashion to the proof of (i). �

For an operator T ∈ L(H), a T-invariant subspace M is said to be a spectral maximal space of T if M
contains any T-invariant subspaceN with σ(T|N ) ⊂ σ(T|M).

Corollary 3.20. For T ∈ L(
⊕n

1H), suppose that one of the following conditions holds:
(i) TJr = λJrT for some λ ∈ C \ {0} and P1TP1 has Bishop’s property (β);
(ii) TJl = λJlT for some λ ∈ C \ {0} and PnTPn has Bishop’s property (β)
where P1 and Pn are the orthogonal projections given in Theorem 3.19. Then T has Dunford’s property (C) and the
single-valued extension property. Moreover, HT(F) is a spectral maximal space of T for any closed subset F of C.

Proof. Since T has Bishop’s property (β) due to Theorem 3.19, it has Dunford’s property (C) and the
single-valued extension property. Then HT(F) is spectral maximal from [13, Proposition 1.2.20]. �
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