Filomat 35:3 (2021), 871–882 https://doi.org/10.2298/FIL2103871C

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On One-Weight and ACD Codes in $\mathbb{Z}_2^r \times \mathbb{Z}_4^s \times \mathbb{Z}_8^t$

Basri Çalışkan^a

^aOsmaniye Korkut Ata University, Faculty of Arts and Science, Department of Mathematics, 80000 TURKEY

Abstract. In this paper, one-weight and additive complementary dual (ACD) codes in $\mathbb{Z}_2^r \times \mathbb{Z}_4^s \times \mathbb{Z}_8^t$ are studied. Firstly, it is shown that the image of an equidistant $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive code is a binary equidistant code. Then, some properties of the structure and possible weights for one-weight $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive codes are described. Finally, it is given the sufficient conditions for a $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive code to be ACD.

1. Introduction

Let \mathbb{Z}_m be the ring of integers modulo m. Any nonempty subset \mathcal{C} of \mathbb{Z}_m^n is a code and a submodule of a \mathbb{Z}_m^n is called a linear code of length n over \mathbb{Z}_m . Specially, for m=2 and m=4 the codes are called binary (\mathbb{Z}_2) and quaternary codes (\mathbb{Z}_4), respectively.

Constant-weight codes represent an important class of codes within the family of error-correcting codes [12]. A code is called one-weight (one-Lee weight) code if all its nonzero codewords have the same Hamming weight (Lee weight). A code is said to be equidistant if the distance between any two codewords is a constant. A linear equidistant code is necessarily a one weight code.

It is known that, for every positive integer k, there exists a unique (up to equivalence) one-weight binary linear codes of dimension k such that any two columns in its generator matrix are linearly independent [4, 16]. Later, this result has been extended to the ring and to the ring \mathbb{Z}_{p^m} , respectively [6, 17]. In [18], Wood determined exactly which modules underlie linear codes of constant-weight.

Additive codes were first defined by Delsarte [8] in terms of association schemes. A $\mathbb{Z}_2\mathbb{Z}_4$ -additive code is an additive subgroup of $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$. The structure and properties of $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes have been intensely studied, for example in [5, 15] and [1]. Especially, in [9], Dougherty et al. described one-weight $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes.

A binary code is said to be linear complementary dual (LCD) if it is linear and $C \cap C^{\perp} = \{0\}$. Binary LCD codes were defined and characterized in [13]. In that paper, it is shown that these codes are an optimum linear coding solution for the two-user binary adder channel. Complementary dual codes have also been studied in [11] for linear codes over finite chain rings. More recently, in [3] the authors have generalized the notion of LCD codes to additive complementary dual (ACD) codes in $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$. They constructed infinite families of codes that are ACD and gave conditions for the case when the image of an ACD code is a binary LCD code.

²⁰¹⁰ Mathematics Subject Classification. Primary 94B60; Secondary 94B05

Keywords. One-weight additive codes; $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive codes; Complementary dual codes; Gray map

Received: 20 March 2020; Accepted: 23 October 2020

Communicated by Marko Petković

Email address: bcaliskan@osmaniye.edu.tr (Basri Çalışkan)

Recently, in [2] $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive codes, which are regarded as a generalization of $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes, have been introduced. The authors in [2] determined the structure of $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive codes and gave the standard forms of generator and parity-check matrices of these codes and $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -cyclic codes. Motivated from this work, in this paper, one-weight codes in $\mathbb{Z}_2^r \times \mathbb{Z}_4^s \times \mathbb{Z}_8^t$ are studied. Some properties of the structure and possible weights for one-weight $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive codes are described. Furthermore, it is shown that the image of an equidistant $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ code is a binary equidistant code. Also the notion of additive complementary dual (ACD) codes in $\mathbb{Z}_2^n \times \mathbb{Z}_4^\beta$ is generalized to the ACD codes in $\mathbb{Z}_2^r \times \mathbb{Z}_8^t \times \mathbb{Z}_8^t$.

2. Preliminaries

2.1. $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -Additive Codes

Definition 2.1. Let \mathbb{Z}_2 , \mathbb{Z}_4 and \mathbb{Z}_8 be the ring of integers modulo 2, 4 and modulo 8, respectively. Then, C is called a $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive code if it is a subgroup of $\mathbb{Z}_2^r \times \mathbb{Z}_4^s \times \mathbb{Z}_8^t$ which r, s and t are positive integers [2].

If any subgroup C of $\mathbb{Z}_2^r \times \mathbb{Z}_4^s \times \mathbb{Z}_8^t$ is group isomorphic to the abelian structure

 $\mathbb{Z}_2^{k_0} \times \mathbb{Z}_4^{k_1} \times \mathbb{Z}_2^{k_2} \times \mathbb{Z}_8^{k_3} \times \mathbb{Z}_4^{k_4} \times \mathbb{Z}_2^{k_5}$

then, C is a $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive code of type $(r, s, t; k_0, k_1, k_2, k_3, k_4, k_5)$ [2].

Definition 2.2. Let ϕ_1 and ϕ_2 are the following well-known Gray maps.

$\phi_1: \mathbb{Z}_4 \to \mathbb{Z}_2^2$	$\phi_2: \mathbb{Z}_8 \to \mathbb{Z}_2^4$
$0 \rightarrow 00^{-1}$	$0 \rightarrow 000\bar{0}$
$1 \rightarrow 01$	$1 \rightarrow 0001$
$2 \rightarrow 11$	$2 \rightarrow 0011$
$3 \rightarrow 10$	$3 \rightarrow 0111$
	$4 \rightarrow 1111$
	$5 \rightarrow 1110$
	$6 \rightarrow 1100$
	$7 \rightarrow 1000$

For all $\mathbf{u} = (u_0, \dots, u_{r-1}) \in \mathbb{Z}_2^r$, $\mathbf{v} = (v_0, \dots, v_{s-1}) \in \mathbb{Z}_4^s$ and $\mathbf{w} = (w_0, \dots, w_{t-1}) \in \mathbb{Z}_8^t$, a Gray map for codes over $\mathbb{Z}_2^r \times \mathbb{Z}_4^s \times \mathbb{Z}_8^t$ can be defined as follows.

$$\Phi: \mathbb{Z}_2^r \times \mathbb{Z}_4^s \times \mathbb{Z}_8^t \to \mathbb{Z}_2^n$$

$$\Phi(\mathbf{u}|\mathbf{v}|\mathbf{w}) = (u_0, \dots, u_{r-1}|\phi_1(v_0), \dots, \phi_1(v_{s-1})|\phi_2(w_0), \dots, \phi_2(w_{t-1}))$$

Hence, the Gray image $\Phi(\mathcal{C}) = C$ of a $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive code \mathcal{C} is a binary code of length n = r + 2s + 4t and called $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -linear code [2].

Let $(\mathbf{u}|\mathbf{v}|\mathbf{w}) \in \mathbb{Z}_2^r \times \mathbb{Z}_4^s \times \mathbb{Z}_8^t$. We denote by $w_H(\mathbf{u}|\mathbf{v}|\mathbf{w})$ the Hamming weight of $(\mathbf{u}|\mathbf{v}|\mathbf{w})$. For any two vectors $(\mathbf{u}|\mathbf{v}|\mathbf{w})$, $(\mathbf{u}'|\mathbf{v}'|\mathbf{w}') \in \mathbb{Z}_2^r \times \mathbb{Z}_4^s \times \mathbb{Z}_8^t$, the Hamming distance between $(\mathbf{u}|\mathbf{v}|\mathbf{w})$ and $(\mathbf{u}'|\mathbf{v}'|\mathbf{w}')$ is defined to be

 $d_H\left((\mathbf{u}|\mathbf{v}|\mathbf{w}), (\mathbf{u}'|\mathbf{v}'|\mathbf{w}')\right) = w_H\left((\mathbf{u}|\mathbf{v}|\mathbf{w}) - (\mathbf{u}'|\mathbf{v}'|\mathbf{w}')\right) = w_H\left(\mathbf{u} - \mathbf{u}'|\mathbf{v} - \mathbf{v}'|\mathbf{w} - \mathbf{w}'\right).$

We define the Lee weight of $(\mathbf{u}|\mathbf{v}|\mathbf{w})$ as:

$$wt_L(\mathbf{u}|\mathbf{v}|\mathbf{w}) = wt_H(\Phi(\mathbf{u}|\mathbf{v}|\mathbf{w})) = w_H(\mathbf{u}) + w_H(\phi_1(\mathbf{v})) + w_H(\phi_2(\mathbf{w})).$$

We define the Lee distance between (u|v|w) and (u'|v'|w') as

 $d\left(\mathbf{u}|\mathbf{v}|\mathbf{w}\right),\left(\mathbf{u}'|\mathbf{v}'|\mathbf{w}'\right)\right) = w_L\left(\mathbf{u}-\mathbf{u}'|\mathbf{v}-\mathbf{v}'|\mathbf{w}-\mathbf{w}'\right) = wt_H(\mathbf{u}-\mathbf{u}') + w_H\left(\phi_1(\mathbf{v}-\mathbf{v}')\right) + w_H\left(\phi_2(\mathbf{w}-\mathbf{w}')\right).$

Definition 2.3. Let $(\mathbf{u}_1|\mathbf{v}_1|\mathbf{w}_1)$, $(\mathbf{u}_2|\mathbf{v}_2|\mathbf{w}_2) \in \mathbb{Z}_2^r \times \mathbb{Z}_4^s \times \mathbb{Z}_8^t$, where \mathbf{u}_1 , $\mathbf{u}_2 \in \mathbb{Z}_2^r$, \mathbf{v}_1 , $\mathbf{v}_2 \in \mathbb{Z}_4^s$ and \mathbf{w}_1 , $\mathbf{w}_2 \in \mathbb{Z}_8^t$. The inner product between $(\mathbf{u}_1|\mathbf{v}_1|\mathbf{w}_1)$ and $(\mathbf{u}_2|\mathbf{v}_2|\mathbf{w}_2)$ is defined as follows:

$$\langle (\mathbf{u}_1 \mid \mathbf{v}_1 \mid \mathbf{w}_1), (\mathbf{u}_2 \mid \mathbf{v}_2 \mid \mathbf{w}_2) \rangle = 4(\sum_{i=1}^r u_{1i}u_{2i}) + 2(\sum_{j=r+1}^{r+s} v_{1i}v_{2i}) + (\sum_{l=r+s+1}^{r+s+t} w_{1i}w_{2i}) \in \mathbb{Z}_8.$$

The dual code C^{\perp} *can be defined in the usual way with respect to this inner product.*

 $\mathcal{C}^{\perp} = \left\{ \mathbf{v} \in \mathbb{Z}_{2}^{r} \times \mathbb{Z}_{4}^{s} \times \mathbb{Z}_{8}^{t} | \mathbf{u} \cdot \mathbf{v} = 0 \text{ for all } \mathbf{u} \in \mathcal{C} \right\}.$

It is very easy to show that C^{\perp} is also a $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive code.

2.2. Generator and Parity-check matrices of $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive codes

Let C be a $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive code of type $(r, s, t; k_0, k_1, k_2, k_3, k_4, k_5)$. Then, it is shown that C is permutation equivalent to a $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive code which has the following standard form generator matrix:

C -	(I_{k_0})	\overline{A}_{01}	0	0	$2T_1$	0	0	0	$4T_2$
	0	\overline{S}_1	I_{k_1}	B_{01}	B ₀₂	0	0	$2T_3$	$2T_4$
	0	0	0	$2I_{k_2}$	$2B_{12}$	0	0	0	$4T_5$
6 –	0	\overline{S}_2	0	S_{01}	S_{02}	I_{k_3}	A_{01}	A_{02}	A_{03}
	0	\overline{S}_3	0	0	$2S_{12}$	0	$2I_{k_4}$	$2A_{12}$	$2A_{13}$
	0	0	0	0	0	0	0	$4I_{k_{5}}$	$4A_{23}$

where \overline{A}_{01} , \overline{S}_1 , \overline{S}_2 , \overline{S}_3 are matrices with all entries from \mathbb{Z}_2 and B_{02} , B_{12} , S_{02} and S_{12} are matrices over \mathbb{Z}_4 . Also, T_4 , T_5 and A_{i3} are matrices over \mathbb{Z}_8 for $0 \le i \le 2$. Although B_{01} , S_{01} and T_1 are matrices over \mathbb{Z}_4 , all values of these matrices are from \mathbb{Z}_2 . Likewise, A_{01} and T_2 are matrices over \mathbb{Z}_4 whose all entries are from $\{0, 1\}$. T_3 , A_{12} and A_{02} are matrices over \mathbb{Z}_8 , but all values are the elements of the set $\{0, 1, 2, 3\}$. Also, C has $2^{k_0}2^{2k_1}2^{k_2}2^{3k_3}2^{2k_4}2^{k_5}$ codewords [2].

Let C be a $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive code with the generator matrix in (1), then we have the following paritycheck matrix:

$$H = \begin{pmatrix} -\overline{A}_{01}^{t} & I_{\alpha-k_{0}} & -2\overline{S}_{1}^{t} & 0 & 0 \\ -\overline{T}_{1}^{t} & 0 & B_{02}^{t} - B_{12}^{t} B_{01}^{t} & B_{12}^{t} & I_{\beta-k_{1}-k_{2}} \\ 0 & 0 & -2B_{01}^{t} & 2I_{k_{2}} & 0 & P \\ -\overline{T}_{1}^{t} & 0 & -T_{4}^{t} + T_{3}^{t} A_{23}^{t} + T_{5}^{t} B_{01}^{t} & -T_{5}^{t} & 0 \\ 0 & 0 & -2T_{3}^{t} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
(2)

where P is the matrix as in the (3).

$$P = \begin{pmatrix} 4\overline{S_{2}}^{t} - 2\overline{S_{3}}^{t}A_{01}^{t} & -2\overline{S_{3}}^{t} & 0 & 0\\ 2S_{01}^{t}B_{12}^{t} - 2S_{02}^{t} + 2S_{12}^{t}A_{01}^{t} & -2S_{12}^{t} & 0 & 0\\ -4S_{01}^{t} & 0 & 0 & 0\\ -4S_{01}^{t} & 0 & 0 & 0\\ -A_{03}^{t} + A_{13}^{t}A_{01}^{t} + A_{23}^{t}A_{02}^{t} - A_{23}^{t}A_{12}^{t}A_{01}^{t} + 2S_{01}^{t}T_{5}^{t} & -A_{13}^{t} + A_{23}^{t}A_{12}^{t} & -A_{23}^{t} & I_{\theta-k_{3}-k_{4}-k_{5}}\\ -2A_{02}^{t} + 2A_{12}^{t}A_{01}^{t} & -2A_{12}^{t} & 2I_{k_{5}} & 0\\ & -4A_{01}^{t} & 4I_{k_{4}} & 0 & 0 \end{pmatrix}$$
(3)

So, the dual code C^{\perp} is of type $(r, s, t; r - k_0, s - k_1 - k_2, k_2, t - k_3 - k_4 - k_5, k_5, k_4)$ [2].

Let *X* (respectively *Y*, *Z*) be the set of \mathbb{Z}_2 (respectively \mathbb{Z}_4 , \mathbb{Z}_8) coordinate positions, so |X| = r, |Y| = s and |Z| = t. Call \mathcal{C}_X (respectively \mathcal{C}_Y , \mathcal{C}_Z) the punctured code of \mathcal{C} by deleting the coordinates outside *X*

873

(respectively Y, Z). Generator matrix G in (1) is of size $(\sum_{i=0}^{5} k_i) \times (r + s + t)$ for the code C. This generator matrix G can be written as

$$G = \left(\begin{array}{c} G_X \mid G_Y \mid G_Z \end{array} \right)$$

where G_X is matrix over \mathbb{Z}_2 of size $(\sum_{i=0}^5 k_i) \times r$, G_Y is matrix over \mathbb{Z}_4 of size $(\sum_{i=0}^5 k_i) \times s$ and G_Z is matrix over \mathbb{Z}_8 of size $(\sum_{i=0}^5 k_i) \times t$. Note that G_X is the generator matrix of C_X , G_Y is the generator matrix of C_Y and G_Z is the generator matrix of Z_X . We define the product

$$G \cdot G^{T} = \left(\begin{array}{c} G_{X} \mid G_{Y} \mid G_{Z} \end{array} \right) \cdot \left(\begin{array}{c} G_{X}^{T} \\ \hline G_{Y}^{T} \\ \hline G_{Z}^{T} \end{array} \right)$$

with entries from \mathbb{Z}_8 , where all entries in G_X are considered as elements in $\{0, 1\} \subseteq \mathbb{Z}_8$ and G_Y are considered as elements in $\{0, 1, 2, 3\} \subseteq \mathbb{Z}_8$ the product of a row by a column is computed as the inner product of vectors in $\mathbb{Z}_2^r \times \mathbb{Z}_4^s \times \mathbb{Z}_8^t$. Note that in $G_X G_X^T$, $G_Y G_Y^T$ and $G_Z G_Z^T$ the usual matrix multiplication is used, but not in $G \cdot G^T$.

Proposition 2.4. [13] Let C a binary (n, k) linear code with generator matrix G and parity-check matrix H. The following statements are equivalent:

- 1. C is an LCD code,
- 2. the $k \times k$ matrix GG^{\perp} is non-singular,
- 3. the $(n k) \times (n k)$ matrix HH^{\perp} is non-singular.

Example 2.5. Let C be a $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive one-weight code generated by the matrix

(110101	0022	0440	۱
	000000	2222	0044	l
ľ	001111	0202	2266	J

C is of type (6, 4, 4; 1; 0, 1; 0, 1, 0) and C has $2^1 \cdot 2^1 \cdot 4^1 = 16$ codewords. The codewords of C are:

{(000000|0000|0000), (110101|0022|0440), (000000|2222|0044), (001111|0202|2266),

(110101|2200|0404), (111010|0220|2626), (001111|2020|2222), (000000|0000|4444),

(110101|0022|4004), (000000|2222|4400), (111010|2002|2662), (001111|0202|6622),

 $(111010|0220|6262), (001111|2020|6666), (110101|2200|4040), (111100|2002|6226)\}\,.$

3. One-Weight $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -Additive codes

In this section, some properties of one-weight $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive code of type ($r, s, t; k_0, k_1, k_2, k_3, k_4, k_5$) are investigated.

Definition 3.1. Let C be a nonzero code in $\mathbb{Z}_2^r \times \mathbb{Z}_4^s \times \mathbb{Z}_8^t$. C is called a one-weight (Lee-weight) code if all of its nonzero codewords have the same weight. Moreover, if the weight is m, then the code is called a one-weight code with weight m.

Definition 3.2. Let *C* be a nonzero code in $\mathbb{Z}_2^r \times \mathbb{Z}_4^s \times \mathbb{Z}_8^t$ and u, v, u', v' be any four distinct codewords of *C*. If the distance between u and u' is equal to the distance between v and v' that is, d(u, u') = d(v, v'). then *C* is called an equidistant code.

From above definition, we have the following theorem.

Theorem 3.3. Let C be a an equidistant code in $\mathbb{Z}_2^r \times \mathbb{Z}_4^s \times \mathbb{Z}_8^t$ with distance m. Then $\Phi(C)$ is a binary equidistant code with the same distance m. Moreover, the binary image $\Phi(C)$ of C is also a one-weight code with weight m.

Proof. Let $\Phi(\mathbf{u})$, $\Phi(\mathbf{v}) \in \Phi(C)$ with $\Phi(\mathbf{u}) \neq \Phi(\mathbf{v})$, where $\mathbf{u}, \mathbf{v} \in C$. Then, since the extended Gray map, defined Definition 2.2, is an isometry, we have

$$d_H(\Phi(\mathbf{u}), \Phi(\mathbf{v})) = d(\mathbf{u}, \mathbf{v}) = m.$$

This gives that $\Phi(C)$ is an equidistant code with the same distance *m* that is the distance of *C*.

If $\mathbf{0} \in C$, then for any nonzero codeword $\mathbf{u} \in C$, we have $wt(\mathbf{u}) = d(\mathbf{u}, \mathbf{0}) = m$. Note that $\Phi(\mathbf{0}) = \mathbf{0}$, then the equality above gives that

$$w_H(\Phi(\mathbf{u})) = d_H(\Phi(\mathbf{u})), \Phi(\mathbf{0})) = d(\mathbf{u}, \mathbf{0}) = wt(\mathbf{u}) = m.$$

This finishes the proof. \Box

It is easy to see that if C is an additive code, then C is a one-weight code if and only if C is an equidistant code.

Example 3.4. The code $C = \langle (1|1|246) \rangle$ is an additive code in $\mathbb{Z}_2^r \times \mathbb{Z}_4^s \times \mathbb{Z}_8^t$, which is a one-weight code with weight 10. It can be verified that the image $\Phi(C)$ of the code C is a binary simplex code of length 15. C is of type (1, 1, 3; 0; 1, 0; 0, 0, 0) and C has $2^2 = 4$ codewords. The codewords of C are:

$$\{(0|0|000), (1|1|246), (0|2|404), (1|3|642)\}.$$

The codewords of $\Phi(C)$ *are:*

```
\{(0|00|00000000000), (1|10|00111111100), (0|11|111100001111), (1|01|110011110011)\}.
```

It is worth to note that the dual of a one-weight code is not necessarily a one-weight code. The dual code of C given in above example is generated by the following matrix

(1	2	000
	0	3	100
	0	2	010
l	0	1	001)

and is of type (1, 1, 3; 1; 0, 0; 3, 0, 0). But it is not a one-weight code.

The following result gives a construction of one-weight additive codes in $\mathbb{Z}_2^r \times \mathbb{Z}_4^s \times \mathbb{Z}_8^t$.

Theorem 3.5. Let C be a one-weight additive code with weight m in $\mathbb{Z}_2^r \times \mathbb{Z}_4^s \times \mathbb{Z}_8^t$. Then for any positive integer δ , there exists a one-weight additive code of weight δm in $\mathbb{Z}_2^{\delta r} \times \mathbb{Z}_4^{\delta s} \times \mathbb{Z}_8^{\delta t}$.

Proof. Let *G* be a generator matrix of the one-weight code *C* with weight *m*. We can write *G* as $G = (G_1|G_2|G_3)$, where G_1, G_2 and G_3 are the binary, quaternary and \mathbb{Z}_8 parts of the generator matrix *G* respectively. Let *C*' be an additive code generated by the following matrix

$$G' = \left(\overbrace{G_1, \ldots, G_1}^{\delta} | \overbrace{G_2, \ldots, G_2}^{\delta} | \overbrace{G_3, \ldots, G_3}^{\delta} \right).$$

Then for any nonzero codeword $\mathbf{c}' \in C'$, there exists a nonzero vector \mathbf{u} such that $\mathbf{c}' = \mathbf{u}G'$. Note here that the vector \mathbf{u} is an integer vector and multiplication of a row by an integer is simply the row added to itself that many times. Hence

$$wt(\mathbf{c}') = wt(\mathbf{u}G') = wt\left(\overbrace{\mathbf{u}G_1, \ldots, \mathbf{u}G_1}^{\delta} | \overbrace{\mathbf{u}G_2, \ldots, \mathbf{u}G_2}^{\delta} | \overbrace{\mathbf{u}G_3, \ldots, \mathbf{u}G_3}^{\delta}\right)$$

$$= \delta \cdot wt_H (\mathbf{u}G_1) + \delta \cdot wt_H (\mathbf{u}G_2) + \delta \cdot wt_H (\mathbf{u}G_3)$$
$$= \delta \cdot (wt_H (\mathbf{u}G_1) + wt_H (\mathbf{u}G_2) + wt_H (\mathbf{u}G_3))$$
$$= \delta \cdot wt_H (\mathbf{u}G)$$

B Caliskan / Filomat 35:3 (2021) 871-882

Note that C is a one-weight code with weight m, which implies that $wt_H(\mathbf{u}G) = m$ for all nonzero \mathbf{u} . Then we get that $wt(\mathbf{c'}) = \delta m$. \Box

Definition 3.6. Let $C \ a \mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive code. Let C_r (respectively C_s , C_t) be the punctured code of C by deleting the coordinates outside r (respectively s, t). If $C = C_r \times C_s \times C_t$ then C is called separable. Otherwise it is called non-separable.

Proposition 3.7. There do not exist separable one-weight additive codes in $\mathbb{Z}_2^r \times \mathbb{Z}_4^s \times \mathbb{Z}_8^t$ with $C_r \neq 0$, $C_s \neq 0$ and $C_t \neq 0$.

Proof. Suppose $C_r \times C_s \times C_t$ is a separable one-weight additive code with $C_r \neq \mathbf{0}$, $C_s \neq \mathbf{0}$ and $C_t \neq \mathbf{0}$. Consider the codeword $\mathbf{0} \neq (\mathbf{u} | \mathbf{v} | \mathbf{w}) \in C_r \times C_s \times C_t$ with weight *m*. Note that $C_r \times C_s \times C_t$ is an additive code, we get that $\mathbf{0} \in C_r$, $\mathbf{0} \in C_s$ and $\mathbf{0} \in C_s$. Therefore, $(\mathbf{u} | \mathbf{0} | \mathbf{0})$, $(\mathbf{0} | \mathbf{v} | \mathbf{0})$ and $(\mathbf{0} | \mathbf{0} | \mathbf{w})$ are elements of $C_r \times C_s \times C_t$. If $\mathbf{u} \neq \mathbf{0}$, $\mathbf{v} \neq \mathbf{0}$ and $\mathbf{w} \neq \mathbf{0}$, then $wt(\mathbf{u} | \mathbf{v} | \mathbf{w}) \neq wt(\mathbf{u})$, $wt(\mathbf{u} | \mathbf{v} | \mathbf{w}) \neq wt(\mathbf{v})$ and $wt(\mathbf{u} | \mathbf{v} | \mathbf{w}) \neq wt(\mathbf{w})$. Hence, we have a contradiction. So, there is no separable one-weight $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive code. \Box

Lemma 3.8. Let C be $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive code of type $(r, s, t; k_0, k_1, k_2, k_3, k_4, k_5)$ with no all zero columns in the generator matrix of C. Then the sum of the weights of all the codewords of C is equal to $\frac{|C|}{2}(r+2s+4t)$.

Proof. Let *G* be a matrix whose rows are all codewords of *C*. Since *C* is an additive code, in the first *r* columns of *G*, the number of coordinates containing 0 is equal to the number of coordinates containing 1.

Now consider the second *s* columns of *G*. Any column in this part either contains an equal number of 0, 1, 2 and 3 or it contains an equal number of 0 and 2 and does not contain any coordinates with a 1 or 3 in it. Assume there are ρ of these columns containing only 0 and 2 in the last *s* columns. Then there are $s - \rho$ columns containing an equal number of 0, 1, 2 and 3.

Finally, consider the last *t* columns of *G*, namely those containing the \mathbb{Z}_8 part of the codewords. Any column in this part contains an equal number of 0, 1, 2, 3, 4, 5, 6 and 7 or it contains an equal number of 0, 2, 4 and 6 and does not contain any coordinates with a 1, 3, 5 or 7 in it or it contains an equal number of 0 and 4 and does not contain any coordinates with a 1, 2, 3, 5, 6 or 7 in it. Suppose there are σ of these columns containing only 0, 2, 4 and 6 and γ of these columns containing only 0 and 4 in the last *t* columns. Then there are $t - \sigma - \gamma$ columns containing an equal number of 0, 1, 2, 3, 4, 5, 6 and 7.

Therefore, the sum of the weights in C is

$$\sum_{c \in \mathcal{C}} wt(c) = r \cdot \left(\frac{|\mathcal{C}|}{2}\right) + \left(\frac{|\mathcal{C}|}{2} \cdot 2\right) \cdot \rho + \left(\frac{|\mathcal{C}|}{4} + \frac{|\mathcal{C}|}{4} \cdot 2 + \frac{|\mathcal{C}|}{4}\right) \cdot (s - \rho)$$
$$+ \left(\frac{|\mathcal{C}|}{4} + \frac{|\mathcal{C}|}{4} \cdot 2 + \frac{|\mathcal{C}|}{4} \cdot 3 + \frac{|\mathcal{C}|}{4} \cdot 4\right) \cdot (t - \sigma - \gamma)$$
$$+ \left(\frac{|\mathcal{C}|}{2} \cdot 2 + \frac{|\mathcal{C}|}{4} \cdot 4\right) \cdot \sigma + \left(\frac{|\mathcal{C}|}{2} \cdot 4\right) \cdot \gamma$$

Then we have

$$\sum_{c \in \mathcal{C}} wt(c) = r \cdot \left(\frac{|\mathcal{C}|}{2}\right) + s \cdot |\mathcal{C}| + 2|\mathcal{C}| \cdot t = \frac{|\mathcal{C}|}{2} (r + 2s + 4t)$$

876

Theorem 3.9. Let C be a one-weight $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive code of type $(r, s, t; k_0, k_1, k_2, k_3, k_4, k_5)$ with weight m in $\mathbb{Z}_2^r \times \mathbb{Z}_4^s \times \mathbb{Z}_4^t$ such that there exists no zero columns in the generator matrix of C, and suppose $C \cong \mathbb{Z}_2^{k_0} \times \mathbb{Z}_2^{k_1} \times \mathbb{Z}_2^{k_2} \times \mathbb{Z}_2^{k_3} \times \mathbb{Z}_2^{k_4} \times \mathbb{Z}_2^{k_5}$ as an additive group. Then there exists a unique positive integer μ such that $m = \mu \cdot 2^{k_0+k_2+k_5+2(k_1+k_4)+3k_3-1}$, where r, s and t satisfy $r + 2s + 4t = \mu \cdot 2^{k_0+k_2+k_5+2(k_1+k_4)+3k_3-1}$. Furthermore, if m is an odd integer, then r is odd and $C = \{(\mathbf{0}_r | \mathbf{0}_s | \mathbf{0}_t), (\mathbf{1}_r | \mathbf{2}_s | \mathbf{4}_t)\}$, where $\mathbf{1}_r = (1, \ldots, 1) \in \mathbb{Z}_2^r, \mathbf{2}_s = (2, \ldots, 2) \in \mathbb{Z}_4^s$ and $\mathbf{4}_t = (4, \ldots, 4) \in \mathbb{Z}_8^t$.

Proof. Since C is a one-weight code of weight m, the sum of the weights of all codewords in C is (|C| - 1)m. And also we know from Lemma 3.8, we have that

$$\sum_{c\in\mathcal{C}}wt(c)=\frac{|\mathcal{C}|}{2}\left(r+2s+4t\right).$$

So we have

$$(|\mathcal{C}| - 1) m = \frac{|\mathcal{C}|}{2} (r + 2s + 4t).$$

Note that the cardinality of C is $|C| = 2^{k_0+k_2+k_5+2(k_1+k_4)+3k_3}$, and

$$gcd\left((|\mathcal{C}|-1), \frac{|\mathcal{C}|}{2}\right) = gcd\left(2^{k_0+k_2+k_5+2(k_1+k_4)+3k_3}-1, 2^{k_0+k_2+k_5+2(k_1+k_4)+3k_3-1}\right) = 1$$

Hence there exists a positive integer μ such that

$$m = \mu \cdot \frac{|\mathcal{C}|}{2} = \mu \cdot 2^{k_0 + k_2 + k_5 + 2(k_1 + k_4) + 3k_3 - 1}$$

and

$$r + 2s + 4t = \mu \cdot (|\mathcal{C}| - 1) = \mu \cdot 2^{k_0 + k_2 + k_5 + 2(k_1 + k_4) + 3k_3} - 1$$

Furthermore, if *m* is odd, then $\mu \cdot 2^{k_0+k_2+k_5+2(k_1+k_4)+3k_3-1}$ is odd. This implies that μ is odd and $2^{k_0+k_2+k_5+2(k_1+k_4)+3k_3-1} = 1$, which gives that any of k_0, k_2, k_5 is 1, others are 0 and $k_1 = k_3 = k_4 = 0$, so $m = \mu$ is obtained. In this case $r + 2s + 4t = \mu = m$ is odd, hence *r* is odd. Recall that *C* is a one-weight additive code with weight m = r + 2s + 4t. Since $(\mathbf{1}_r|\mathbf{2}_s|\mathbf{4}_t)$ is the only word with weight r + 2s + 4t, we get

$$C = \{(\mathbf{0}_r | \mathbf{0}_s | \mathbf{0}_t), (\mathbf{1}_r | \mathbf{2}_s | \mathbf{4}_t)\}.$$

Theorem 3.10. Let C be an additive code in $\mathbb{Z}_2^r \times \mathbb{Z}_4^s \times \mathbb{Z}_8^t$. Then the weights of all codewords of C are even if and only if $(\mathbf{1}_r | \mathbf{2}_s | \mathbf{4}_t) \in C^{\perp}$.

Proof. Let $(\mathbf{u}|\mathbf{v}|\mathbf{w}) = (u_1, \ldots, u_r|v_1, \ldots, v_s|w_1, \ldots, w_t) \in C$, where $(u_1, \ldots, u_r) \in \mathbb{Z}_2^r$, $(v_1, \ldots, v_s) \in \mathbb{Z}_4^s$ and $(w_1, \ldots, w_t) \in \mathbb{Z}_8^t$. We consider the following equality

$$\langle (\mathbf{u}|\mathbf{v}|\mathbf{w}), (\mathbf{1}_r|\mathbf{2}_s|\mathbf{4}_t) \rangle = 4\left(\sum_{i=1}^r u_i\right) + 2\left(\sum_{j=r+1}^{r+s} 2v_j\right) + \sum_{t=r+s+1}^{r+s+t} 4w_t$$

It is easy to see that $\langle (\mathbf{u} | \mathbf{v} | \mathbf{w}), (\mathbf{1}_r | \mathbf{2}_s | \mathbf{4}_t) \rangle = 0$ if and only if $wt(\mathbf{u} | \mathbf{v} | \mathbf{w})$ is even, which gives the result. \Box

Corollary 3.11. Let C be an one-weight additive code in $\mathbb{Z}_2^r \times \mathbb{Z}_4^s \times \mathbb{Z}_8^t$. Then the weight of C is even if and only if $(\mathbf{1}_r | \mathbf{2}_s | \mathbf{4}_t) \in C^{\perp}$.

4. The Structure of One-Weight $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -Additive codes

In this section, we give some properties to construct one-weight $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive codes of type $(r, s, t; k_0, k_1, k_2, k_3, k_4, k_5)$.

We begin by noting that if C is a nontrivial one-weight code with weight m, with a generator matrix that has no zero columns, then $m = \mu \cdot 2^{k_0+k_2+k_5+2(k_1+k_4)+3k_3-1}$ is even, where μ is a positive integer, and $C \cong \mathbb{Z}_2^{k_0} \times \mathbb{Z}_2^{2k_1} \times \mathbb{Z}_2^{k_2} \times \mathbb{Z}_2^{2k_3} \times \mathbb{Z}_2^{2k_4} \times \mathbb{Z}_2^{k_5}$ as a group. Also, we assume that the quaternary part of $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8^{-1}$ additive code satisfies the conditions Lemma 5.1, Lemma 5.2 and Lemma 5.5 in [9].

Proposition 4.1. Let *C* be a one-weight code in $\mathbb{Z}_2^r \times \mathbb{Z}_4^s \times \mathbb{Z}_8^t$ with weight *m*, then for any $\mathbf{c} = (\mathbf{u}|\mathbf{v}|\mathbf{w})$, order 8 codeword of *C*, the number of units {1 or 7} in *w* is equal to the number of units {3 or 5} in *w*.

Proof. Let C be a one-weight code in $\mathbb{Z}_2^r \times \mathbb{Z}_4^s \times \mathbb{Z}_8^t$ with weight m and $\mathbf{c} = (\mathbf{u}|\mathbf{v}|\mathbf{w}) \in C$ be a codeword of order 8. Then we have

$$wt(\mathbf{c}) = wt_H(\mathbf{u}) + wt_L(\mathbf{v}) + wt_L(\mathbf{w}) = m.$$

Assume that the number of units {1 or 7} in **w** is k_1 and the number of units {3 or 5} in w is k_2 . Also suppose that $k_1 \neq k_2$, so we can take $k_1 > k_2$. Since C is an additive code, 5**c** must be in C. Since 5**c** = (5**u**|5**v**|5**w**) = (**u**|**v**|5**w**), then we have $wt(5\mathbf{c}) = wt_H(\mathbf{u}) + wt_L(\mathbf{v}) + wt_L(5\mathbf{w}) = m$. If **c** has {0, 2, 4, 6}, then we know that **c** and 5**c** have same number of {0, 2, 4, 6}. So, we have $wt_L(\mathbf{w}) < wt_L(5\mathbf{w})$. Therefore $wt(5\mathbf{c}) \neq m$. It is a contradiction. \Box

Proposition 4.2. Let G be the generator matrix of a one-weight code in $\mathbb{Z}_2^r \times \mathbb{Z}_4^s \times \mathbb{Z}_8^t$ with weight m. Then if c = (u|v|w) is a row of G, then the number of units $\{1, 3, 5, 7\}$ in w is either 0 or $\frac{m}{4}$.

Proof. Let $\mathbf{c} = (\mathbf{u}|\mathbf{v}|\mathbf{w})$ be a row of *G*. Then, the weight of \mathbf{c} is $wt(\mathbf{c}) = wt_H(\mathbf{u}) + wt_L(\mathbf{v}) + wt_L(\mathbf{w}) = m$. Since *C* is an additive code $4\mathbf{c} = (0|0|4\mathbf{w})$ is also in *C*. Then, if $4\mathbf{c} = (0|0|4\mathbf{w}) = \mathbf{0}$ then \mathbf{w} does not contain units.

If $4\mathbf{c} \neq \mathbf{0}$, then $4\mathbf{u} = 4\mathbf{v} = \mathbf{0}$ and $4\mathbf{c} = (0|0|4\mathbf{w})$. This means that $wt_L(4\mathbf{w}) = m$. Let the number of units in **w** be 2k and assume that the coordinate positions where **w** has units {1 or 7} and {3 or 5} are *k*. So, $wt_L(4\mathbf{w}) = 8k = m$. Hence, the number of units in **w** is $\frac{m}{4}$. \Box

Corollary 4.3. Let C be a one-weight code in $\mathbb{Z}_2^r \times \mathbb{Z}_4^s \times \mathbb{Z}_8^t$ with weight m. For any $c = (\mathbf{u}|\mathbf{v}|\mathbf{w})$, order 8 codeword of C, both the number of units {1 or 7} and the number of units {3 or 5} in w are $\frac{m}{8}$.

Example 4.4. Consider the vector (11|132|75132). This generates the code

 $\{(00|000|00000), (11|132|75132), (00|220|62264), (11|312|57316),$

$(00|000|44440), (11|132|31572), (00|220|26624), (11|312|13756)\}.$

This code is a $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive code type (2, 3, 5; 0, 0, 0, 1, 0, 0) and its weight *m* is 16.

Example 4.5.

$$G_{k_0=k_3=1} = \left(\begin{array}{c|c|c} 111100 & 1331 & 1133\\ \hline 110011 & 1133 & 1537 \end{array}\right)$$

C is of type (6, 4, 4; 1; 0, 0; 1, 0, 0) and C has $2^1 \cdot 8^1 = 16$ codewords. The codewords of C are:

 $\{(111100|1331|1133), (110011|1133|1537), (000000|2222|2266), (111100|3113|3311) ,$

(000000|000000|4444), (111100|1331|5577), (00000|2222|6622), (111100|3113|7755),

(110011|3311|3715), (110011|1133|5173), (110011|3311|7351), (001111|0202|4040),

(001111|2020|6226), (001111|0202|0404), (001111|2020|2662), (000000|0000|0000)}.

So, we have

$$\left(2^{1+3}-1\right) \cdot m = 2^{1+3-1} \left(6+2 \cdot 4+4 \cdot 4\right) \Longrightarrow 15m = 240 \Longrightarrow m = 16.$$

Standard matrix,

That's,

$$G_{S} = \begin{pmatrix} I_{k_{0}} & \overline{A}_{01} & 2T_{1} & 0 & 4T_{2} \\ \hline 0 & \overline{S}_{2} & S_{02} & I_{k_{3}} & A_{03} \end{pmatrix}$$
$$G_{S} = \begin{pmatrix} 100111 & 0202 & 0404 \\ \hline 011011 & 1133 & 1537 \end{pmatrix}$$

Proposition 4.6. Let C be a one-weight code in $\mathbb{Z}_2^r \times \mathbb{Z}_4^s \times \mathbb{Z}_8^t$ with weight m. If $c_1 = (u_1|v_1|w_1)$ and $c_2 = (u_2|v_2|w_2)$ are two distinct order 8 codewords of C, then $\{i|(w_1)_i = \pm 1, \pm 3\} = \{i|(w_2)_i = \pm 1, \pm 3\}$

Proof. Assume $\mathbf{c}_1 = (\mathbf{u}_1 | \mathbf{v}_1 | \mathbf{w}_1)$ and $\mathbf{c}_2 = (\mathbf{u}_2 | \mathbf{v}_2 | \mathbf{w}_2)$ are two distinct order 8 vectors in a one-weight code C with weight m. From Proposition 4.2, we have that the number of units in \mathbf{w}_1 and \mathbf{w}_2 is $\frac{m}{4}$. Consider the vector $\mathbf{c} = 4\mathbf{c}_1 + 4\mathbf{c}_2$. Binary and quaternary part of this vector are 0 and the \mathbb{Z}_8 part consists of elements that are either 0 or 4. If $(\mathbf{w}_1)_i = \pm 1, \pm 3$ whenever $(\mathbf{w}_2)_i = \pm 1, \pm 3$, then the number of coordinates in \mathbf{c} that are 2,4,6 is 0. That is $\mathbf{c} = 0$. So, assume that they have some units in different coordinates. Since C is a one-weight code with weight m, if $\mathbf{c} \neq 0$, then the number of coordinates where \mathbf{w}_1 and \mathbf{w}_2 have units in different places must be $\frac{m}{4}$. To obtain this we need

$$\{i|(\mathbf{w}_1)_i = \pm 1, \pm 3 = -(\mathbf{w}_2)_i = \pm 1, \pm 3\} = \frac{m}{8}$$

and in all other coordinates where $(\mathbf{w}_1)_i = \pm 1, \pm 3$ we need that $(\mathbf{w}_2)_i = 0, 2, 4$ or 6, and in all other coordinates where $(\mathbf{w}_2)_i = \pm 1, \pm 3$ we need that $(\mathbf{w}_1)_i = 0, 2, 4$ or 6. Then consider $\mathbf{d} = \mathbf{c}_1 + 5\mathbf{c}_2$. This vector has the same binary part as $\mathbf{c}_1 + 5\mathbf{c}_2$ but it has a 2, 4 or 6 in the coordinates where $(\mathbf{w}_1)_i = \pm 1, \pm 3 = -(\mathbf{w}_2)_i$ and has coordinates of equal Lee weight in all other coordinates. Therefore \mathbf{d} has weight greater than m. This gives our result. \Box

We can give an example related to the above theorem, consider the two \mathbb{Z}_8 vectors $\mathbf{x} = (135700)$ and $\mathbf{y} = (003175)$. They both have weight 8 with 4 units, and their sum has 8 weight 4 units. But $\mathbf{x} + 5\mathbf{y} = (134431)$ has weight 16.

5. $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -Additive complementary dual codes

In this section, we generalize the concept of additive complementary duality to $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive codes

Definition 5.1. A code $C \subseteq \mathbb{Z}_2^r \times \mathbb{Z}_4^s \times \mathbb{Z}_8^t$ is additive complementary dual (briefly ACD) if it is a $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive code such that $C \cap C^\perp = 0$.

For $\mathbb{Z}_2\mathbb{Z}_4$ -additive complementary dual codes we have the following property.

Lemma 5.2. ([3]) Let $C \subseteq \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$ an ACD code. Then any vector $w \in \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$ can be written uniquely as $w_1 + w_2$, for $w_1 \in C$ and $w_2 \in C^{\perp}$.

Lemma 5.3. Let $C \subseteq \mathbb{Z}_2^r \times \mathbb{Z}_4^s \times \mathbb{Z}_8^t$ an ACD code. Then any vector $\mathbf{c} \in \mathbb{Z}_2^r \times \mathbb{Z}_4^s \times \mathbb{Z}_8^t$ can be written uniquely as $\mathbf{c}_1 + \mathbf{c}_2$, for $\mathbf{c}_1 \in C$ and $\mathbf{c}_2 \in C^{\perp}$.

Now, we state sufficient conditions for a $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive code to be ACD.

Theorem 5.4. Let C be a $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive code and G be a generator matrix for C, which has the rows g_1, \ldots, g_r . If $\langle g_i, g_j \rangle \in \{0, 2, 4, 6\}$ and $\langle g_j, g_j \rangle \notin \{0, 2, 4, 6\}$ for all $i, j = 1, \ldots, r$ such that $i \neq j$, then C is an ACD code and C_Z is an octal LCD code.

879

Proof. Let $\mathbf{c} \in \mathcal{C} \setminus \{0\}$ be any nonzero codeword. We want to show that $\mathbf{c} \notin \mathcal{C}^{\perp}$. Since $\mathbf{c} \in \mathcal{C}$, \mathbf{c} can be written as $\mathbf{c} = \sum_{i \in J} \epsilon_i \mathbf{g}_i$, where $J = \{1, ..., r\}$ and $\epsilon_i \in \mathbb{Z}_8$.

First, assume there exists $j \in J$ such that $\epsilon_j \in \{1, 3, 5, 7\}$. Thus,

$$\langle \mathbf{c}, \mathbf{g}_i \rangle = \sum_{i \in J} \epsilon_i \langle \mathbf{g}_i, \mathbf{g}_j \rangle = \sum_{i \in J \setminus \{j\}} \epsilon_i \langle \mathbf{g}_i, \mathbf{g}_j \rangle + \epsilon_j \langle \mathbf{g}_j, \mathbf{g}_j \rangle.$$

Since $\epsilon_i \langle \mathbf{g}_i, \mathbf{g}_j \rangle \in \{0, 2, 4, 6\}$ for $i \neq j$, we have that $\langle \mathbf{c}, \mathbf{g}_i \rangle \neq 0$ and $\mathbf{c} \notin C^{\perp}$.

Finally, if $\epsilon_i \in \{0, 2, 4, 6\}$ for all $i \in J$, let $j \in J$ such that $\epsilon_j \in \{2, 4, 6\}$. Note that $\sum_{i \in J} \epsilon_i \langle \mathbf{g}_i, \mathbf{g}_j \rangle \in \{0, 4\}$ and $\epsilon_j \langle \mathbf{g}_i, \mathbf{g}_j \rangle \in \{2, 6\}$. Hence

$$\langle \mathbf{c}, \mathbf{g}_i \rangle = \sum_{i \in J} \epsilon_i \langle \mathbf{g}_i, \mathbf{g}_j \rangle = \sum_{i \in J \setminus \{j\}} \epsilon_i \langle \mathbf{g}_i, \mathbf{g}_j \rangle + \epsilon_j \langle \mathbf{g}_j, \mathbf{g}_j \rangle \in \{2, 6\}.$$

So, $\mathbf{c} \notin \mathcal{C}^{\perp}$. \Box

Corollary 5.5. Let G be generator matrix for a $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive code C and consider the matrix $G \cdot G^T = (a_{ij})_{1 \le i,j \le r}$ with entries from \mathbb{Z}_8 . If $a_{ij} \in \{0, 2, 4, 6\}$ and $a_{ii} \notin \{0, 2, 4, 6\}$ for all i, j = 1, ..., k such that $i \neq j$, then C is an ACD code and C_Z is an octal LCD code.

Proof. It is clear from the Theorem 5.4. \Box

Remark 5.6. The reverse statements of Theorem 5.4 and Corollary 5.5 are not true in general. Let C be the $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive code generated by

$$\left(\begin{array}{ccc|c}
1 & 2 & 0 & 4\\
0 & 3 & 4 & 2
\end{array}\right)$$

We have that C is ACD, but in this case

$$G \cdot G^T = \left(\begin{array}{cc} 4 & 0\\ 0 & 6 \end{array}\right)$$

Corollary 5.7. If $G \cdot G^T$ is invertible (over \mathbb{Z}_8), then C is an ACD code.

Remark 5.8. Again, the reverse statements of Corollary 5.7 is not true in general. Let C be the $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive code generated by

$$\left(\begin{array}{ccc|c}1 & 2 & 0 & 4\\0 & 3 & 4 & 2\end{array}\right)$$

We have that C is ACD, but in this case

$$G \cdot G^T = \left(\begin{array}{cc} 4 & 0\\ 0 & 6 \end{array}\right)$$

that is not invertible (over \mathbb{Z}_8).

Theorem 5.9. Let C_1 be a binary (r, k) code and let $\{u_1, \ldots, u_k\}$ be a basis for C_1 . Let C_2 be a quaternary (s, l) code and let $\{v_1, \ldots, v_l\}$ be a minimum generating set for C_2 . Let $\eta \ge k + l$ and let G_X and G_Y be the $\eta \times r$ and $\eta \times s$ matrices whose non-zero row vectors are $\{u_1, \ldots, u_k\}$ and $\{v_1, \ldots, v_l\}$, respectively. Then, the $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive code C of type $(r, s, \eta; 0, 0, 0, \eta, 0, 0)$ generated by

$$G = \left(\begin{array}{c} G_X \mid G_Y \mid I_\eta \end{array} \right)$$

is an ACD code.

Proof. Let C be the $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive code with generator matrix

$$G = \left(\begin{array}{c} G_X \mid G_Y \mid I_\eta \end{array} \right).$$

Note that $G \cdot G^T = 4G_X G_X^T + 2G_Y G_Y^T + I_\eta = (w_{ij})_{1 \le i,j \le \eta}$ where all entries in G_X and G_Y are considered as elements in $\{0,1\} \subseteq \mathbb{Z}_8$ and $\{0,1,2,3\} \subseteq \mathbb{Z}_8$, respectively. Hence $4G_X G_X^T$ has all entries in $\{0,4\}$ and $2G_Y G_Y^T$ has all entries in $\{0,2,4,6\}$. Therefore, $a_{ij} \in \{0,2,4,6\}$ and $a_{ii} \notin \{0,2,4,6\}$ for all $i, j = 1, ..., \eta$ such that $i \ne j$, and C is ACD by Corollary 5.5. The generator matrix G is in standard form and it is easy to see that C is of type $(r, s, \eta; 0, 0, 0, \eta, 0, 0)$. \Box

5.1. Complementary duality of C, C_X , C_Y , C_Z

In this section, the complementary duality of a $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive code in terms of the complementary duality of \mathcal{C}_X , \mathcal{C}_Y and \mathcal{C}_Z is studied.

Example 5.10. Let *C* be a $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive code of type $(r, s, t; k_0, k_1, k_2, k_3, k_4, k_5)$ such that $r = t = k_0 = r$ and $k_1 = k_2 = k_3 = k_4 = 0$ and $k_5 = 1$ and generated by

$$\left(\begin{array}{c|c}I_r & I_r & I_r\\ \mathbf{1} & \mathbf{2} & \mathbf{4}\end{array}\right).$$

So, we have $C_X = \mathbb{Z}_2^r$ is an LCD, $C_Y = \mathbb{Z}_4^r$ is an LCD and $C_Z = \mathbb{Z}_8^r$ is also an LCD. But, the last row of the generator matrix $g_{r+1} = (\mathbf{1}|\mathbf{2}|\mathbf{4})$ is orthogonal to any row in the generator matrix. Therefore, $g_{r+1} \in C \cap C^{\perp}$ and C is not complementary dual.

Example 5.11. Let C be a $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive code generated by

$$G = \left(\begin{array}{ccc|c} 1 & 1 & 1 & 2 & 0 & 4 \\ 0 & 1 & 0 & 2 & 5 & 2 \end{array} \right).$$

So, we have the parity-check matrix of C is

Note that $(1|1) \in C_X \cap C_X^{\perp}$, $(2|0) \in C_Y \cap C_Y^{\perp}$ and $(4|0) \in C_Z \cap C_Z^{\perp}$. Hence, C_X , C_Y and C_Z are not a binary LCD, a quaternary LCD and an octal LCD, respectively. But, we have that C is an ACD code since $C \cap C^{\perp} = \{0\}$

Proposition 5.12. Let C be a $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive code. If C is separable, then C is an ACD code if and only if C_X is a binary LCD code, C_Y is a quaternary LCD code and C_Z is an octal LCD code.

Proof. Since C is a separable $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive code. So, we have $C = C_X \times C_Y \times C_Z$. Assume that C is an ACD code. Any codeword $\mathbf{c} = (\mathbf{u}|\mathbf{v}|\mathbf{w}) \in C \cap C^{\perp}$ is the zero codeword. Let $\mathbf{u} \in C_X \cap C_X^{\perp}$. The codeword $(\mathbf{u}|\mathbf{0}|\mathbf{0}) \in C \cap C^{\perp}$ and this implies that $\mathbf{u} = \mathbf{0}$. Therefore, C_X is a binary LCD code. Similarly, it easily shown that C_Y and C_Z are quaternary LCD code and octal LCD code, respectively. Suppose that C_X , C_Y and C_Z are binary, quaternary and octal LCD code, respectively. Let $\mathbf{c} = (\mathbf{u}|\mathbf{v}|\mathbf{w}) \in C \cap C^{\perp}$. This implies that $\mathbf{u} \in C_X \cap C_X^{\perp} = \{\mathbf{0}\}$, $\mathbf{v} \in C_Y \cap C_Y^{\perp} = \{\mathbf{0}\}$ and $\mathbf{w} \in C_Z \cap C_Z^{\perp} = \{\mathbf{0}\}$. Then, $\mathbf{c} = (\mathbf{u}|\mathbf{v}|\mathbf{w})$ is the zero codeword and C is an ACD code.

Example 5.13. Let C be a $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive code generated by

$$G = \left(\begin{array}{ccc|c} 1 & 0 & 2 & 1 & 7 & 0 \\ 0 & 1 & 1 & 2 & 0 & 5 \end{array} \right).$$

Let g_1 and g_2 be the row vectors of G. Clearly, $\langle g_1, g_2 \rangle = 0$, $\langle g_1, g_1 \rangle \notin \{0, 2, 4, 6\}$ and $\langle g_2, g_2 \rangle \notin \{0, 2, 4, 6\}$. *Hence, from Theorem 5.4 C is an ACD code. Furthermore,* C_X , C_Y and C_Z are LCD codes.

6. Conclusion

In this paper, it is studied that some properties of one-weight $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive codes and the concept of $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive complementary dual codes (or ACD). When C is an ACD code, it is considered complementary duality of C_X , C_Y and C_Z . Also, it is presented some illustrative examples for one-weight and ACD $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive codes.

7. Acknowledgements

The author would like to thank the anonymous referees for their careful checking and many helpful comments.

References

- [1] T. Abualrub, I. Siap, N. Aydin, Z₂Z₄-additive cyclic codes, IEEE Trans. Info. Theory 60(3)(2014) 1508–1514.
- [2] I. Aydogdu, F. Gursoy, Z₂Z₄Z₈-Cyclic Codes, J. Appl. Math. Comput. 60(1-2)(2019) 327-341.
- [3] N. Benbelkacema, J. Borges, S.T. Dougherty, C. Fernández-Ccórdoba, On Z₂Z₄-additive complementary dual codes and related LCD codes, Finite Fields and Their Applications 62(2020) 101–622.
- [4] A. Bonisoli, Every equidistant linear code is a sequence of dual Hamming codes, Ars Combin. 18(1984) 181–186.
- [5] J. Borges, C. Fernández-Ccórdoba, J. Pujol, J. Rifá, M. Villanueva, Z₂Z₄-linear codes: generator matrices and duality, Des. Codes Cryptogr. 54(2)(2010) 167–179.
- [6] C. Carlet, One-weight Z₄-linear codes, In J. Buchmann, T. Hoholdt, H. Stichtenoth and H. Tapia-Recillas, editors, Coding, Cryptography and Related Areas, 57–72, Springer, 2000.
- [7] B. Çalışkan, K. Balıkçı, Counting $\mathbb{Z}_2\mathbb{Z}_4\mathbb{Z}_8$ -additive codes, European Journal of Pure and Applied Mathematics, 12(2)(2019) 668–679.
- [8] P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. 10(1973).
- [9] S.T. Dougherty, H. Liu, L. Yu, One-weight $\mathbb{Z}_2\mathbb{Z}_4$ additive codes, AAECC 27(2016) 123–138.
- [10] P.J. Kuekes, W. Robinett, R.M. Roth, G. Seroussi, G.S. Snider, R.S. Williams, Resistor-logic demultiplexers for nano electronics based on constant-weight codes, Nanotechnol 17(4)(2006) 1052–1061.
- [11] X. Liu, H. Liu, LCD codes over finite chain rings, Finite Fields Appl. 34(2015) 1–19.
- [12] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, The Netherlands, 1977.
- [13] J.L. Massey, Linear codes with complementary duals, Discrete Math. 106-107(1992) 337-342.
- [14] J.N.J. Moon, L.A. Hughes, D.H. Smith, Assignment of frequency lists in frequency hopping networks, IEEE Trans. Veh. Technol. 54(3)(2005) 1147–1159.
- [15] I. Siap, I. Aydogdu, The Structure of Z₂Z₂s-Additive Codes: Bounds on the Minimum Distance. Appl. Math. Inf. Sci. 7(6)(2013) 2271–2278.
- [16] J. van Lint, L. Tolhuizen, On perfect ternary constant-weight codes, Des. Codes Cryptogr. 18(1-3)(1999) 231–234.
- [17] M. Shi, Optimal p-ary codes from one-weight linear codes over \mathbb{Z}_{p^m} , Chin. J. Electron. 22(4)(2013) 799–802.
- [18] J.A. Wood, The structure of linear codes of constant-weight, Trans. Amer. Math. Soc. 354(3)(2002) 1007–1026.