On strong convergence theorems for a viscosity-type extragradient method


L C Ceng, C S Fong




In this paper, we introduce a general viscosity-type extragradient method for solving the fixed point problem of an asymptotically nonexpansive mapping and the variational inclusion problem with two accretive operators. We obtain a strong convergence theorem in the setting of Banach spaces. In terms of this theorem, we establish the strong convergence result for solving the fixed point problem (FPP) of an asymptotically nonexpansive mapping and the variational inequality problem (VIP) for an inverse-strongly monotone mapping in the framework of Hilbert spaces. Finally, this result is applied to deal with the VIP and FPP in an illustrating example