
Filomat 35:2 (2021), 633–644
https://doi.org/10.2298/FIL2102633L

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Complete Convergence and Complete Moment Convergence for Arrays
of Rowwise Asymptotically Almost Negatively Associated Random

Variables Under the Sub-Linear Expectations

Dawei Lua, Jingyao Conga, Yanchun Yanga

aSchool of Mathematical Sciences, Dalian University of Technology, Dalian 116023,China.

Abstract. In this article, we investigate the complete convergence and complete moment convergence
for maximal partial sums of asymptotically almost negatively associated random variables under the sub-
linear expectations. The results obtained in the article are the extensions of the complete convergence and
complete moment convergence under classical linear expectation space.

1. Introduction

In recent decades, non-additive probabilities and non-additive expectations play crucial roles in the
study of statistical uncertainties, risk measuring, and nonlinear stochastic calculus. Peng (2008a, 2008b,
2010) extended the classical linear expectations and introduced the general sub-linear expectations by
replacing the linear property with the sub-additivity and positive homogeneity. The theorems of sub-
linear expectations are widely used to assess financial riskiness under uncertainty. Peng also proved the
weak convergence such as central limit theorems and weak laws of large numbers under the non-linear
expectations and he is the first one to give a reasonable definition of the independence through the non-
linear expectations. Zhang (2015, 2016a, 2016b) proved strong limit theorems, Chung’s law of the iterated
logarithm and the Kolomogov strong law of large numbers under the non-linear expectations.

Joag-Dev and Proschan (1983) and Block et al. (1982) brought up the concept of negative association
(NA for short) and it led to numerous applications in reliability theory, percolation theory and multivariate
statistical analysis. Chandra and Ghosal (1996) extended this concept and introduced asymptotically almost
negative association (AANA, for short) by noticing the fact that maximal inequality for the NA random
variables in Matula (1992) can also hold when small negative correlations are considered. The concepts of
NA and AANA can be well defined in the setting of nonlinear expectations by replacing linear expectations
with nonlinear ones. Zhang and Lan (2019) generalized the concept of asymptotically almost negatively
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associated random variables from the classic probability space to the sub-linear expectation space and they
also proved some different types of Rosenthal’s inequalities for sub-linear expectations.

Complete convergence and complete moment convergence are two of the most significant issue in the
limit theory. The concept of complete convergence was first introduced by Hsu and Robbins (1947). There
are a number of related results that have been obtained in the probabilistic space, for example, Cai and Guo
(2008), Wang et al. (2013), Qiu and Chen (2014), and so on. For complete convergence, there is few report
under sub-linear expectations. In this paper, we will study complete convergence for arrays of row-wise
AANA random variables under sub-linear expectations. In addition, one of the theorems of this paper is
the extension of results obtained by Xi et al. (2017) under sub-linear expectation space.

In the next section, we generally introduce some basic notations and concepts, related properties under
sub-linear expectations and preliminary lemmas that are useful to prove the main theorems. In Section
3, the complete convergence and complete moment convergence under sub-linear expectation space are
established. The proofs of these theorems are stated in the last section.

Throughout this article, C will represent constant whose value may change from one place to another.

2. Preliminaries

We use the framework and notation of Peng (2008a). Let (Ω,F ) be a given measurable space and let H be
a linear space of real functions defined on (Ω,F ) such that if X1,X2, . . . ,Xn ∈H then ϕ(X1,X2, . . . ,Xn) ∈H
for each ϕ ∈ Cl,Lip(R(n)), where Cl,Lip(R(n)) denotes the linear space of (local Lipschitz) functions ϕ satisfying

|ϕ(x) − ϕ(y)| ≤ C(1 + |x|m + |y|m)|x − y|, ∀x, y ∈ R(n)

for some C > 0, m ∈N depending on ϕ. H is considered as a space of “random variables”. In this case, we
denote X ∈H .

Definition 2.1. A sub-linear expectation E on H is a function E : H → R := [−∞,+∞] satisfying the following
properties: For all X, Y ∈H , we have

(a) Monotonicity: If X ≥ Y, then E[X] ≥ E[Y];
(b) Constant preserving: E[c] = c;
(c) Sub-additivity: E[X + Y] ≤ E[X] + E[Y] whenever E[X] + E[Y] is not of the form +∞−∞ or −∞ +∞;
(d) Positive homogeneity: E[λX] = λE[X], λ ≥ 0.

The triple (Ω,H ,E) is called a sub-linear expectation space. Give a sub-linear expectation E, let us
denote the conjugate expectation Ê of E by

Ê[X] := −E[−X], ∀X ∈H .

From the definition, it is easily shown that E[X + c] = E[X] + c and E[X − Y] ≥ E[X] − E[Y] for all
X,Y ∈H with E[Y] being finite.

Next, we introduce the capacities corresponding to the sub-linear expectations. Let G ⊂ F . A function
V : G → [0, 1] is called a capacity if

V(∅) = 0,V(Ω) = 1 and V(A) ≤ V(B) for ∀A ⊂ B, A,B ∈ G.

It is called to be sub-additive if V(A
⋃

B) ≤ V(A) + V(B) for all A, B ∈ Gwith A
⋃

B ∈ G. In the sub-linear
space (Ω,H ,E), we denote a pair (V,V) of capacities by

V(A) := inf{E[ξ] : IA ≤ ξ, ξ ∈H }, V(A) := 1 −V(Ac), ∀A ∈ F

where Ac is the complement set of A. It is obvious thatV is sub-additive and

V(A) := E[IA], V := E[IA], if IA ∈H ,

E[ f ] ≤ V(A) ≤ E[1], E[ f ] ≤ V(A) ≤ E[1], if f ≤ IA ≤ 1, f , 1 ∈H . (1)
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This implies Markov’s inequality: ∀X ∈H ,

V(|X| ≥ x) ≤ E(|X|p)/xp, ∀x > 0, p > 0

from I(|X| ≥ x) ≤ |X|p/xp
∈ H . By Proposition 2.1 in Chen, Wu and Li (2013), we have Jensen inequality:

Let f (x) be a convex function on R. Suppose that E[X] and E[ f (X)] exist, then E[ f (X)] ≤ f (E[X]).
Also, we define the Choquet integrals/expectations (CV,CV) by

CV[X] :=
∫
∞

0
V(X > x)dx +

∫ 0

−∞

(V(X > x) − 1)dx

with V being replaced byV andV respectively.
We denote the norm of random variable X on the sub-linear expectation space (Ω,H ,E) by

‖X‖p = (E[|X|p])
1
p .

Zhang and Lan (2019) firstly gave the following definition and related propositions of asymptotically
almost negatively associated on the sub-linear expectation space.

Definition 2.2. A sequence {Xn}
∞

n=1 of random variables is called asymptotically almost negatively associated
(AANA) under E if there exists a nonnegative sequence {η(n)}∞n=1 such that lim

n→∞
η(n) = 0 and

E[ f (Xn)1(Xn+1,Xn+2, · · · ,Xn+k)] − E[ f (Xn)]E[1(Xn+1,Xn+2, · · · ,Xn+k)]

≤ η(n){E[( f (Xn) − E[ f (Xn)])2]}
1
2

·{E[(1(Xn+1,Xn+2, · · · ,Xn+k) − E[1(Xn+1,Xn+2, · · · ,Xn+k)])2]}
1
2

for all n, k ≥ 1 and for all coordinatewise nondecreasing or nonincreasing continuous functions f and 1 whenever the
expectations exist. And {η(n)}∞n=1 are called mixing coefficients.

An array of random variables {Xnk, k ≥ 1,n ≥ 1} is called rowwise AANA random variables if for every
n ≥ 1, {Xnk, k ≥ 1} are AANA random variables.

To obtain the main results in this paper, we need the following series of lemmas which are from Lemma
3.1 and Corollary 3.1 of Zhang and Lan (2019).

Lemma 2.1. Let {Xn}
∞

n=1 be an AANA random variables with mixing coefficients {η(n)}∞n=1. Then { fn(Xn)}∞n=1 is also
an AANA random variables with the same mixing coefficients {η(n)}∞n=1, where { fn(·)}∞n=1 are all nondecreasing or
nonincreasing functions.

Lemma 2.2. Let 1
p + 1

q = 1, 1 < p ≤ 2 and {Xn}
∞

n=1 be an AANA sequence of random variables under E with
E[Xn] = 0. And {η(n)}∞n=1 are the corresponding mixing coefficients. Then there exists a positive constant Cp
depending only on p such that for any n ≥ 1, we have

E
[
max
1≤i≤n

|Si|
p
]
≤ Cp

 n∑
i=1

E|Xi|
p +

n−1∑
i=1

η
2
q (i)‖Xi‖p


p . (2)

In particular, if
∑
∞

n=1 η
2(n) < ∞, then for any n ≥ 1, we have

E
[
max
1≤i≤n

|Si|
p
]
≤ Cp

n∑
i=1

E|Xi|
p. (3)

Li and Wu (2019) said that E is defined through continuous functions in Cl,Lip, however, indicator
function I(|X| ≤ a) is not necessarily continuous. Therefore, the expression EI(|X| ≤ a) does not necessarily
exist in the sub-linear expectation space. So we need to modify the indicator function by functions in Cl,Lip.
To the end, we define the function 1(x) ∈ Cl,Lip(R) as follows.

For 0 < µ < 1, let 1(x) ∈ Cl,Lip(R) such that 0 ≤ 1(x) ≤ 1 for all x and 1(x) = 1 if |x| ≤ µ, 1(x) = 0 if |x| ≥ 1.
And 1(x) is a decreasing function for x > 0, then

I(|x| ≤ µ) ≤ 1(|x|) ≤ I(|x| ≤ 1), I(|x| > 1) ≤ 1 − 1(|x|) ≤ I(|x| > µ). (4)
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3. Main results

In this section, we introduce our results. Due to the uncertainty of expectation and capacity in the
sub-linear expectation space, the study of complete convergence and complete moment convergence is
more complex and difficult. In this paper, inspired by the results of Xi et al. (2017), we are interested
in the complete moment convergence for arrays of rowwise AANA random variables in the sub-linear
expectation space. The main theorems as follows.

Theorem 3.1. Let {Xnj, j ≥ 1,n ≥ 1} be an array of rowwise AANA random variables with dominating coefficients
{η(n),n ≥ 1} in each row, and

∑
∞

n=1 η
2(n) < ∞. Let {anj, j ≥ 1,n ≥ 1} be an array of positive numbers and {bn,n ≥ 1}

be a non-decreasing sequence of positive integers and {cn,n ≥ 1} be a non-decreasing sequence of positive numbers.
Assume that for any ε > 0:

∞∑
n=1

cn

bn∑
j=1

V(|anjXnj| > εb1/t
n ) < ∞, (5)

∞∑
n=1

cnb−2/t
n

bn∑
j=1

a2
njE

[
X2

nj1

(
anj|Xnj|

εb1/t
n

)]
< ∞, (6)

then,

∞∑
n=1

cnV

 max
1≤k≤bn

∣∣∣∣∣∣∣∣
k∑

j=1

anj

(
Xnj − E

[
Xnj1

(
anj|Xnj|

εb1/t
n

)])∣∣∣∣∣∣∣∣ ≥ εb1/t
n

 < ∞. (7)

The Corollary below is obtained by using Theorem 3.1.

Corollary 3.2. Let {Xnj, j ≥ 1,n ≥ 1} be an array of rowwise AANA random variables with dominating coefficients
{η(n),n ≥ 1} in each row, and

∑
∞

n=1 η
2(n) < ∞. Let {anj, j ≥ 1,n ≥ 1} be an array of positive numbers, α > 0, γ > 0,

and αγ > 2. Let h(x) > 0 be a slowly varying function as x→∞. If following conditions hold for any ε > 0

∞∑
n=1

nαγ−2h(n)
n∑

j=1

V(|anjXnj| > εn1/t) < ∞ (8)

and

∞∑
n=1

nαγ−2−2/th(n)
n∑

j=1

a2
njE

[
X2

nj1

(
anj|Xnj|

εn1/t

)]
< ∞, (9)

then,

∞∑
n=1

nαγ−2h(n)V

max
1≤k≤n

∣∣∣∣∣∣∣∣
k∑

j=1

anj

(
Xnj − E

[
Xnj1

(
anj|Xnj|

εn1/t

)])∣∣∣∣∣∣∣∣ ≥ εn1/t

 < ∞. (10)

Theorem 3.3. Let {Xnj, j ≥ 1,n ≥ 1} be an array of rowwise AANA random variables with dominating coefficients
{η(n),n ≥ 1} in each row, and

∑
∞

n=1 η
2(n) < ∞. Let {an,n ≥ 1} be a sequence of positive real numbers such that

an ↑ ∞. Moreover, additionally assume that E[Xnj] = 0. Assume that for 1 ≤ q < p ≤ 2, any ε > 0:

∞∑
n=1

n∑
j=1

E|Xnj|
p
(
1 − 1

(
|Xnj |

εan

))
ap

n
< ∞, (11)
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∞∑
n=1

n∑
j=1

E|Xnj|
21

(
|Xnj |

εan

)
a2

n
< ∞, (12)

then,

∞∑
n=1

an
−qCV


max

1≤k≤n

∣∣∣∣∣∣∣∣
k∑

j=1

Xnj

∣∣∣∣∣∣∣∣ − εan


q

+

 < ∞. (13)

4. Proof of main results

4.1. Proof of Theorem 3.1
For asymptotically almost negatively associated random variables {Xnj, j ≥ 1,n ≥ 1}, in order to ensure

that the truncated random variables are also asymptotically almost negatively associated, we need that
truncated function is non-decreasing or non-increasing functions. Let fc(x) = −cI(x < −c)+xI(|x| ≤ c)+cI(x >
c), for any c > 0, for any j ≥ 1,n ≥ 1,

Ynj = f εb1/t
n

anj

(Xnj) =
εb1/t

n

anj
I
(
Xnj >

εb1/t
n

anj

)
+ XnjI

(
|Xnj| ≤

εb1/t
n

anj

)
−
εb1/t

n

anj
I
(
Xnj < −

εb1/t
n

anj

)
,

Znj =
εb1/t

n

anj
I
(
Xnj < −

εb1/t
n

anj

)
+ XnjI

(
εb1/t

n

anj
< |Xnj| ≤

b1/t
n

anj

)
−
εb1/t

n

anj
I
(
Xnj >

εb1/t
n

anj

)
.

Then {Ynj, j ≥ 1,n ≥ 1} is also a sequence of asymptotically almost negatively associated random variables
by fc(x) being non-decreasing.

Note that

max
1≤k≤bn

∣∣∣∣∣∣∣∣
k∑

j=1

anj

(
Xnj − E

[
Xnj1

(
anj|Xnj|

εb1/t
n

)])∣∣∣∣∣∣∣∣
= max

1≤k≤bn

∣∣∣∣∣∣∣∣
k∑

j=1

anj

(
Ynj − EYnj + Znj + EYnj − EXnj1

(
anj|Xnj|

εb1/t
n

)
+ XnjI

(
|Xnj| >

b1/t
n

anj

))∣∣∣∣∣∣∣∣
≤ max

1≤k≤bn

∣∣∣∣∣∣∣∣
k∑

j=1

anj(Ynj − EYnj)

∣∣∣∣∣∣∣∣ + max
1≤k≤bn

∣∣∣∣∣∣∣∣
k∑

j=1

anj

(
Znj + EYnj − EXnj1

(
anj|Xnj|

εb1/t
n

))∣∣∣∣∣∣∣∣
+ max

1≤k≤bn

∣∣∣∣∣∣∣∣
k∑

j=1

anjXnjI
(
|Xnj| >

b1/t
n

anj

)∣∣∣∣∣∣∣∣
, Hn,1 + Hn,2 + Hn,3.

Thus, to prove Equation (7), it suffices to verify that
∞∑

n=1

cnV(Hn,i ≥ εb1/t
n /3) < ∞ f or any ε > 0, i = 1, 2, 3. (14)

We first prove that
∑
∞

n=1V(Hn,1 ≥ εb1/t
n /3) < ∞. For any r > 0, by the Cr inequality and Equation (4), we

have

|Ynj|
r
≤ C|Xnj|

rI
(
|Xnj| ≤

εb1/t
n

anj

)
+ C

(
εb1/t

n

anj

)r

I
(
|Xnj| >

εb1/t
n

anj

)
≤ C|Xnj|

r1

(
µanj|Xnj|

εb1/t
n

)
+ C

(
εb1/t

n

anj

)r (
1 − 1

(
anj|Xnj|

εb1/t
n

))
,
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thus

E[|Ynj|
r] ≤ CE

[
|Xnj|

r1

(
µanj|Xnj|

εb1/t
n

)]
+ C

(
εb1/t

n

anj

)r

E

[(
1 − 1

(
anj|Xnj|

εb1/t
n

))]
≤ CE

[
|Xnj|

r1

(
µanj|Xnj|

εb1/t
n

)]
+ C

(
εb1/t

n

anj

)r

V(|anjXnj| > µεb1/t
n ). (15)

Since {Ynj−EYnj, j ≥ 1,n ≥ 1} is also asymptotically almost negatively associated withE(Ynj−EYnj) = 0.
It follows from Markov’s inequality, Lemma 2.2, Cr inequality and Equation (15), that

∞∑
n=1

cnV(Hn,1 ≥ εb1/t
n /3)

=

∞∑
n=1

cnV

 max
1≤k≤bn

∣∣∣∣∣∣∣∣
k∑

j=1

anj(Ynj − EYnj)

∣∣∣∣∣∣∣∣ ≥ εb1/t
n /3


≤ C

∞∑
n=1

cnε
−2b−2/t

n E

 max
1≤k≤bn

∣∣∣∣∣∣∣∣
k∑

j=1

anj(Ynj − EYnj)

∣∣∣∣∣∣∣∣


2

≤ C
∞∑

n=1

cnε
−2b−2/t

n

bn∑
j=1

Ea2
nj(Ynj − EYnj)2

≤ C
∞∑

n=1

cnε
−2b−2/t

n

bn∑
j=1

a2
njEY2

nj

≤ C
∞∑

n=1

cnb−2/t
n

bn∑
j=1

a2
njEX2

nj1

(
µanj|Xnj|

εb1/t
n

)
+ C

∞∑
n=1

cn

bn∑
j=1

V(|anjXnj| > µεb1/t
n )

< ∞. (16)

Next, we estimate
∑
∞

n=1 cnV(Hn,2 ≥ εb1/t
n /3) < ∞.

∞∑
n=1

cnV(Hn,2 ≥ εb1/t
n /3)

=

∞∑
n=1

cnV

 max
1≤k≤bn

∣∣∣∣∣∣∣∣
k∑

j=1

anj

(
Znj + EYnj − EXnj1

(
anj|Xnj|

εb1/t
n

))∣∣∣∣∣∣∣∣ ≥ εb1/t
n /3


≤ C

∞∑
n=1

cnε
−1b−1/t

n E

bn∑
j=1

∣∣∣∣∣∣anj

(
Znj + EYnj − EXnj1

(
anj|Xnj|

εb1/t
n

))∣∣∣∣∣∣
≤ C

∞∑
n=1

cnε
−1b−1/t

n E

bn∑
j=1

|anjZnj| + C
∞∑

n=1

cnε
−1b−1/t

n

bn∑
j=1

anj

∣∣∣∣∣∣EYnj − EXnj1

(
anj|Xnj|

εb1/t
n

)∣∣∣∣∣∣
, Hn,21 + Hn,22. (17)
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For Hn,21, according to the definitions of Znj and 1(x), we have

bn∑
j=1

|anjZnj|

=

bn∑
j=1

anj

∣∣∣∣∣∣εb1/t
n

anj
I(Xnj < −

εb1/t
n

anj
) + XnjI(

εb1/t
n

anj
< |Xnj| ≤

b1/t
n

anj
) −

εb1/t
n

anj
I(Xnj >

εb1/t
n

anj
)

∣∣∣∣∣∣
≤

bn∑
j=1

εb1/t
n I(|Xnj| >

εb1/t
n

anj
) +

bn∑
j=1

|anjXnj|I(
εb1/t

n

anj
< |Xnj| ≤

b1/t
n

anj
)

≤ (1 +
1
ε

)
bn∑
j=1

εb1/t
n

(
1 − 1

(
anj|Xnj|

εb1/t
n

))
.

Thus, by Equation (5), we can get

Hn,21 ≤ C
∞∑

n=1

cn

bn∑
j=1

E

(
1 − 1

(
anj|Xnj|

εb1/t
n

))
≤ C

∞∑
n=1

cn

bn∑
j=1

V(|anjXnj| > µεb1/t
n ) < ∞. (18)

Next we prove that Hn,22 < ∞. According to the definitions of Ynj and 1(x), we have

∣∣∣∣∣∣Ynj − Xnj1

(
anj|Xnj|

εb1/t
n

)∣∣∣∣∣∣
=

∣∣∣∣∣∣εb1/t
n

anj
I(Xnj >

εb1/t
n

anj
) + XnjI(|Xnj| ≤

εb1/t
n

anj
) −

εb1/t
n

anj
I(Xnj < −

εb1/t
n

anj
) − Xnj1

(
anj|Xnj|

εb1/t
n

)∣∣∣∣∣∣
≤

εb1/t
n

anj
I(|Xnj| >

εb1/t
n

anj
) + |Xnj|

∣∣∣∣∣∣I(|Xnj| ≤
εb1/t

n

anj
) − 1

(
anj|Xnj|

εb1/t
n

)∣∣∣∣∣∣
≤ 2

εb1/t
n

anj

(
1 − 1

(
anj|Xnj|

εb1/t
n

))
.

Thus

Hn,22 ≤ C
∞∑

n=1

cnε
−1b−1/t

n

bn∑
j=1

anjE

∣∣∣∣∣∣Ynj − Xnj1

(
anj|Xnj|

εb1/t
n

)∣∣∣∣∣∣
≤ C

∞∑
n=1

cn

bn∑
j=1

E

(
1 − 1

(
anj|Xnj|

εb1/t
n

))

≤ C
∞∑

n=1

cn

bn∑
j=1

V(|anjXnj| > µεb1/t
n )

< ∞. (19)
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Finally, we prove that
∑
∞

n=1V(Hn,3 ≥ εb1/t
n /3) < ∞.

∞∑
n=1

cnV(Hn,3 ≥ εb1/t
n /3)

=

∞∑
n=1

cnV

 max
1≤k≤bn

∣∣∣∣∣∣∣∣
k∑

j=1

anjXnjI
(
|Xnj| >

b1/t
n

anj

)∣∣∣∣∣∣∣∣ ≥ εb1/t
n /3


≤

∞∑
n=1

cnV

 bn∑
j=1

∣∣∣∣∣∣anjXnjI
(
|Xnj| >

b1/t
n

anj

)∣∣∣∣∣∣ ≥ εb1/t
n /3


≤

∞∑
n=1

cnV

 bn⋃
j=1

{|anjXnj| > b1/t
n }


≤

∞∑
n=1

cn

bn∑
j=1

V(|anjXnj| > b1/t
n )

< ∞. (20)

Together with Equations from (14) to (20), Equation (7) holds.

4.2. Proof of Corollary 3.2

Let cn = nαγ−2h(n) and bn = n. According to αγ − 2 > 0, h(x) is a slowly varying function, it can be seen
that nαγ−2h(n) is a non-decreasing and satisfies the condition of Theorem 3.1. Then, by the proof of Theorem
3.1, Corollary 3.2 follows.

4.3. The proof of Theorem 3.3

For n ≥ 1, denote Mn(x) = max
1≤k≤n

|
∑k

j=1 Xnj|. It is easy to check that

∞∑
n=1

a−q
n CV[(Mn(x) − εan)q

+]

=

∞∑
n=1

a−q
n

∫
∞

0
V(Mn(x) − εan > t

1
q ) dt

=

∞∑
n=1

a−q
n

∫ aq
n

0
V(Mn(x) > εan + t

1
q ) dt +

∫
∞

aq
n

V(Mn(x) > εan + t
1
q ) dt


≤

∞∑
n=1

V(Mn(x) > εan) +

∞∑
n=1

a−q
n

∫
∞

aq
n

V(Mn(x) > t
1
q ) dt

, I1 + I2.

To prove Equation (13), it suffices to prove that I1 < ∞ and I2 < ∞. Firstly, we prove that I1 < ∞. For all
n ≥ 1, define

X(n)
j = εanI(Xnj > εan) + XnjI(|Xnj| ≤ εan) − εanI(Xnj < −εan),

T(n)
k =

1
an

k∑
j=1

(
X(n)

j − EX(n)
j

)
,
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then for all ε > 0, it is easy to have

I1 =

∞∑
n=1

V(Mn(x) > εan)

≤

∞∑
n=1

V

(
max
1≤ j≤n

|Xnj| > εan

)
+

∞∑
n=1

V

max
1≤k≤n

∣∣∣∣∣∣∣∣
k∑

j=1

X(n)
j

∣∣∣∣∣∣∣∣ > εan


, I11 + I12.

To prove I1 < ∞, we only need to prove I11 < ∞ and I12 < ∞. For I11, since q ≥ 1, we have by Equation (11)
that

I11 ≤

∞∑
n=1

n∑
j=1

V(|Xnj| > εan) ≤ C
∞∑

n=1

n∑
j=1

E|Xnj|
p
(
1 − 1

(
|Xnj |

εan

))
ap

n
< ∞. (21)

For I12, note that

I12 =

∞∑
n=1

V

max
1≤k≤n

1
an

∣∣∣∣∣∣∣∣
k∑

j=1

(X(n)
j − EX(n)

j + EX(n)
j )

∣∣∣∣∣∣∣∣ > ε


≤

∞∑
n=1

V

max
1≤k≤n

∣∣∣T(n)
k

∣∣∣ + max
1≤k≤n

1
an

∣∣∣∣∣∣∣∣
k∑

j=1

EX(n)
j )

∣∣∣∣∣∣∣∣ > ε
 . (22)

In view of E[Xnj] = 0, by Equation (11), we have

max
1≤k≤n

1
an

∣∣∣∣∣∣∣∣
k∑

j=1

EX(n)
j

∣∣∣∣∣∣∣∣ ≤ 1
an

n∑
j=1

|EX(n)
j |

=
1
an

n∑
j=1

|EXnj − EX(n)
j |

≤
1
an

n∑
j=1

E|Xnj − X(n)
j |

≤ C
n∑

j=1

E|Xnj|
2
(
1 − 1

(
|Xnj |

εan

))
a2

n
→ 0, as n→∞. (23)

From Equation (23), we have that for arbitrary ε > 0, there exists a sufficiently large N, such that for every
n > N,

max
1≤k≤n

1
an

∣∣∣∣∣∣∣∣
k∑

j=1

EX(n)
j

∣∣∣∣∣∣∣∣ < ε
2
. (24)
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Combining with Equation (22), we have

I12 ≤

N∑
n=1

V

max
1≤k≤n

∣∣∣T(n)
k

∣∣∣ + max
1≤k≤n

1
an

∣∣∣∣∣∣∣∣
k∑

j=1

EX(n)
j )

∣∣∣∣∣∣∣∣ > ε
 +

∞∑
n=N+1

V

max
1≤k≤n

∣∣∣T(n)
k

∣∣∣ + max
1≤k≤n

1
an

∣∣∣∣∣∣∣∣
k∑

j=1

EX(n)
j )

∣∣∣∣∣∣∣∣ > ε


≤

N∑
n=1

V

max
1≤k≤n

∣∣∣T(n)
k

∣∣∣ + max
1≤k≤n

1
an

∣∣∣∣∣∣∣∣
k∑

j=1

EX(n)
j )

∣∣∣∣∣∣∣∣ > ε
 +

∞∑
n=N+1

V
(
max
1≤k≤n

∣∣∣T(n)
k

∣∣∣ > ε
2

)
≤ N +

∞∑
n=1

V
(
max
1≤k≤n

∣∣∣T(n)
k

∣∣∣ > ε
2

)
.

Therefore, in order to prove I12 < ∞, we only need to prove that

∞∑
n=1

V
(
max
1≤k≤n

∣∣∣T(n)
k

∣∣∣ > ε
2

)
< ∞.

Similar to the proof of (15), we also can get that

E[|X(n)
j |

r] ≤ CE
[
|Xnj|

r1

(
µ|Xnj|

εan

)]
+ C(εan)rV(|Xnj| > µεan). (25)

Since p ≤ 2,
∑
∞

n=1 η
2(n) < ∞, we have by Markov’s inequality, Lemma 2.2, Cr inequality and Equation (25)

that
∞∑

n=1

V
(
max
1≤k≤n

∣∣∣T(n)
k

∣∣∣ > ε
2

)
≤ C

∞∑
n=1

E
(
max
1≤k≤n

∣∣∣T(n)
k

∣∣∣)2

= C
∞∑

n=1

E

max
1≤k≤n

∣∣∣∣∣∣∣∣ 1
an

k∑
j=1

(
X(n)

j − EX(n)
j

)∣∣∣∣∣∣∣∣


2

≤ C
∞∑

n=1

n∑
j=1

1
a2

n
E

(
X(n)

j − EX(n)
j

)2

≤ C
∞∑

n=1

n∑
j=1

1
a2

n
E

∣∣∣∣X(n)
j

∣∣∣∣2
≤ C

∞∑
n=1

n∑
j=1

1
a2

n
E|Xnj|

21

(
µ|Xnj|

εan

)
+ C

∞∑
n=1

n∑
j=1

V(|Xnj| > µεan) < ∞.

Next we prove that I2 < ∞. Denote

Wnj = εt
1
q I(Xnj > εt

1
q ) + XnjI(|Xnj| ≤ εt

1
q ) − εt

1
q I(Xnj < −εt

1
q ),

Mn(W) = max
1≤k≤n

∣∣∣∣∣∣∣∣
k∑

j=1

Wnj

∣∣∣∣∣∣∣∣ .
Obviously,

V(Mn(x) > t
1
q ) ≤

n∑
j=1

V(|Xnj| > εt
1
q ) +V(Mn(W) > t

1
q ).
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Hence, we have

I2 ≤

∞∑
n=1

a−q
n

∫
∞

aq
n

n∑
j=1

V(|Xnj| > εt
1
q ) dt +

∞∑
n=1

a−q
n

∫
∞

aq
n

V(Mn(W) > t
1
q ) dt , I21 + I22.

Since 1 ≤ q < p ≤ 2, for I21, we have by Equation (11) that

I21 =

∞∑
n=1

a−q
n

∫
∞

aq
n

n∑
j=1

V(|Xnj| > εt
1
q ) dt

≤ C
∞∑

n=1

a−q
n

n∑
j=1

E|Xnj|
p
(
1 − 1

(
|Xnj|

εan

)) ∫
∞

aq
n

t−
p
q dt

≤ C
∞∑

n=1

n∑
j=1

E|Xnj|
p
(
1 − 1

(
|Xnj |

εan

))
ap

n
< ∞.

Now let us prove that I22 < ∞. Firstly, it follows from Equation (11) that

sup
t≥aq

n

max
1≤k≤n

t−
1
q

∣∣∣∣∣∣∣∣
k∑

j=1

EWnj

∣∣∣∣∣∣∣∣ ≤ sup
t≥aq

n

t−
1
q

n∑
j=1

|EWnj|

= sup
t≥aq

n

t−
1
q

n∑
j=1

|EXnj − EWnj|

≤ sup
t≥aq

n

t−
1
q C

n∑
j=1

E|Xnj|
2
(
1 − 1

(
|Xnj |

εan

))
an

→ 0, as n→∞.

Therefore, for n sufficiently large,

max
1≤k≤n

∣∣∣∣∣∣∣∣
k∑

j=1

EWnj

∣∣∣∣∣∣∣∣ ≤ t
1
q

2
, t ≥ aq

n. (26)

Then, by a similar argument as in the proof of I12, to prove I22 < ∞, it suffices to prove that

∞∑
n=1

a−q
n

∫
∞

aq
n

V

max
1≤k≤n

∣∣∣∣∣∣∣∣
k∑

j=1

(Wnj − EWnj)

∣∣∣∣∣∣∣∣ > t
1
q

2

 dt < ∞. (27)

So, similar to the proof of (15), by Markov’s inequality, Lemma 2.2 and Cr inequality, we have

∞∑
n=1

a−q
n

∫
∞

aq
n

V

max
1≤k≤n

∣∣∣∣∣∣∣∣
k∑

j=1

(Wnj − EWnj)

∣∣∣∣∣∣∣∣ > t
1
q

2

 dt

≤ C
∞∑

n=1

a−q
n

∫
∞

aq
n

t−
2
qE

max
1≤k≤n

∣∣∣∣∣∣∣∣
k∑

j=1

(Wnj − EWnj)

∣∣∣∣∣∣∣∣


2

dt

≤ C
∞∑

n=1

a−q
n

∫
∞

aq
n

t−
2
q

n∑
j=1

EW2
nj dt

≤ C
∞∑

n=1

n∑
j=1

a−q
n

∫
∞

aq
n

t−
2
qE|Xnj|

21

(
µ|Xnj|

εt
1
q

)
dt + C

∞∑
n=1

n∑
j=1

a−q
n

∫
∞

aq
n

V(|Xnj| > µεt
1
q ) dt

, I221 + I222.
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For I221, we have that for q < 2,

I221 ≤ C
∞∑

n=1

n∑
j=1

a−q
n

∫
∞

aq
n

t−
2
qE|Xnj|

2

(
1

(
µ|Xnj|

εt
1
q

)
− 1

(
µ|Xnj|

εan

))
dt + C

∞∑
n=1

n∑
j=1

a−q
n

∫
∞

aq
n

t−
2
qE|Xnj|

21

(
µ|Xnj|

εan

)
dt

≤ C
∞∑

n=1

n∑
j=1

a−q
n E|Xnj|

2

(
1 − 1

(
µ|Xnj|

εan

)) ∫
∞

aq
n

t−
2
q dt + C

∞∑
n=1

n∑
j=1

a−q
n E|Xnj|

21

(
µ|Xnj|

εan

) ∫
∞

aq
n

t−
2
q dt

< ∞.

Finally, by a similar argument as in the proof of I21, we can easily prove that I222 < ∞.

Thus, we get the desired result immediately. The proof is completed.
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