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Abstract. Let H be a finite dimensional Hopf C∗-algebra, H1 a Hopf ∗-subalgebra of H. This paper focuses
on the observable algebraAH1 determined by H1 in nonequilibrium Hopf spin models, in which there is a
copy of H1 on each lattice site, and a copy of Ĥ on each link, where Ĥ denotes the dual of H. Furthermore,
using the iterated twisted tensor product of finite ∗-algebras, one can prove that the observable algebraAH1

is ∗-isomorphic to the C∗-inductive limit · · · oH1 o Ĥ oH1 o Ĥ oH1 o · · · .

1. Introduction

In the statistical mechanics systems, there are a large of composite subsystems, each of the subsystems
can be in a certain small number of states, and each state σ of the system possesses a certain energy E(σ),
which is the sum of all energies of interactions between subsystems in their given states. A mathematical
description of the system S and the energy function E(σ) is called a model [10].

Quantum chains considered as models of 1+1-dimensional quantum field theory exhibit many features,
including the integrability, braid group statistics and quantum symmetry, which is closely related to the
quantum double. In particular, in the research of the conformal field theory, quantum double symmetries
have been realized in orbifold models [6] and in integrable models [2]. The algebraic quantum field
theories also give a axiomatic approach of the quantum double symmetries [15]. Cosets, orbifolds and
simple current extensions are efficient ways of constructing conformal field theories, then based on the
algebraic quantum field theory framework using subfactor theory, Xu focused on the coset conformal field
theories to produce new two-dimensional conformal field theories [30, 31], and used the lattice models to
determine the obstructions to the flatness of the orbifold connections in some finite depth subfactors [29],
etc.. Besides, in quantum integral systems, there are some studies about the quantum groups, one can see
References [8, 11, 25, 26]. Furthermore, on the Banach algebras framework, Ng studied the cohomology
theory for Hopf C∗-algebras and Hopf von Neumann algebras [17], and the duality of Hopf C∗-algebras
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[18]. On the other hand, the quantum double such as the Drinfeld’s quantum double D(H) (where H is a
finite dimensional Hopf algebra with invertible antipode) can describe the quantum symmetry in quantum
chains.

Here we focus on the second approach to describe the quantum symmetry by the quantum double in
certain models. As it is well known, the basic but important of all models is the G-spin model, where G
is a finite group. Indeed, in classical statistical systems or the corresponding quantum field theory, G-spin
models [7, 10, 21] provide the simplest examples of lattice field theory, exhibiting quantum symmetry given
by the double D(G) of a finite group G. In [21] Szlachányi and Vecsernyés defined the field algebra and the
observable algebra related with G-spin models, then Nill and Szlachányi [19] investigated the following
generalization of G-spin models, looking at Hopf spin models as a general class of quantum chains, where
the quantum symmetry is revealed by Drinfeld’s double D(H) [11]. In the Hopf spin models, on each lattice
site there is a copy of finite dimensional Hopf C∗-algebra H and on link there is a copy of its dual Ĥ, which
correspond to the order factor and disorder factor, respectively. Non-trivial commutation relations are
postulated only between neighbor links and sites, where H and Ĥ act on each other in the natural way, then
the observable algebra A in Hopf spin models can be obtained by the C∗-inductive limit procedure. The
Hopf spin models will be reduced to the ordinary G-spin models if H = CG is a group algebra of a finite
group G.

In the usual spin models as above, there is a one-to-one correspondence between the order and disorder
operators in the lattice, this leads to the equilibrium spin models, which plays a very important role in
equilibrium statistical mechanics. However, for a macrophysical system possessed with a larger number
of particles, the number of disordered states is much greater than ordered states, implying that isolated
physical system always tends to be in disordered state. This disordered trend suggests the entropy increase
in thermodynamics. That’s the reason why the nonequilibrium statistical mechanics emerges in more
complicated situation. A nonequilibrium case determined by a normal subgroup N of a finite group G
is discussed by Xin and Jiang [27, 28], with the symmetry algebra D(N,G), where D(N,G) is the crossed
product of C(N) and CG. They proved that the observable algebra A(N,G) is exactly the iterated twisted
tensor productA(N,G) = · · · oN o Ĝ oN o Ĝ oN o · · · as a C∗-algebra.

Illuminated by [28], this paper considers a nonequilibrium situation in Hopf spin models. From now
on, by H we denote the Hopf C∗-algebra of finite dimension over the complex field C. Let H1 be a Hopf
∗-subalgebra of H, one can construct a C∗-algebra AH1 , by order generators H1 and disorder generators Ĥ
with respect to certain commutation relations; this is called the observable algebra in Hopf spin models
determined by H1. Section 3 characterizes the observable algebra AH1 in terms of the iterated twisted
tensor product. Since H1 and Ĥ are matched with respect to the induced natural action between H and its
dual Ĥ, one can construct corresponding twisting maps. Furthermore, using the iterated twisted tensor
product H1⊗R0,1 Ĥ⊗R1,2 H1 and Ĥ⊗R1,2 H1⊗R2,3 Ĥ, together with twisting maps R0,1,R1,2,R0,2 and R1,2,R2,3,R1,3,
respectively, one can get the iterated twisted tensor product of finite C∗-algebras by induction

An,m B An ⊗Rn,n+1 An+1 ⊗ · · · ⊗ Am−1 ⊗Rm−1,m Am,

where n,m ∈ Z and n < m,

Ai =

H1, i ∈ 2Z
Ĥ, i ∈ 2Z + 1.

There exist the inclusions i : An′,m′ → An,m which are ∗-homomorphisms and norm-preserving, thus one
can get the C∗-inductive limit of increasing C∗-algebras {An,m}n,m∈Z, where 1Ai is the unit in Ai. Accordingly,
AH1 = (C∗) limn<m An,m, it means that

AH1 B · · ·H1 ⊗R−2,−1 Ĥ ⊗R−1,0 H1 ⊗R0,1 Ĥ ⊗R1,2 H1 ⊗R2,3 Ĥ · · · .

Notice that if H1 = H, then AH1 describes the observable algebra A in Hopf spin models given by [19].
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Thus the observable algebraA can be defined as

A B · · ·H ⊗R−2,−1 Ĥ ⊗R−1,0 H ⊗R0,1 Ĥ ⊗R1,2 H ⊗R2,3 Ĥ · · · .

2. Preliminaries

In this paper, all algebras are unital associative algebras over the complex field C. For more detail about
Hopf algebras one can refer to Refs. [1, 5, 14, 20]. We shall denote the comultiplication, the counit, and
the antipode by ∆, ε and S respectively. The Sweedler’s sigma notation is used throughout this paper as
follows: ∆(c) =

∑
(c) c(1)⊗c(2).Moreover, since the coassociative law holds, then ∆n(c) = (id⊗(n−1)

⊗∆)◦∆n−1(c) =∑
(c) c(1) ⊗ c(2) ⊗ · · · ⊗ c(n+1) (n > 1).

In what follows we collect some conceptions.

Definition 2.1. [5] Let (H,m, ι,∆, ε,S) be a Hopf algebra. A subalgebra A of H is called a Hopf subalgebra if A
is a subcoalgebra, with S(A) ⊆ A. We note that if A is a Hopf subalgebra of H, then A is itself a Hopf algebra with
induced structures of H.

Definition 2.2. [11] Let (H,m, ι,∆, ε,S) be a Hopf algebra. We say that H is a Hopf ∗-algebra if there exists an
antilinear involution ∗ on H such that H is a ∗-algebra together with following conditions hold:

(1) the map ∗ is a morphism of real coalgebras. In other words, for every h ∈ H,

∆(h∗) = ∆(h)∗, ε(h∗) = ε(h);

(2) the map ∗ is compatible with the antipode S of H, namely

(∗ ◦ S)2 = id.

Definition 2.3. [3] Suppose that (H,∆) is a pair of finite dimensional C∗-algebra with a unital ∗-homomorphism
∆ : H→ H ⊗H. We call this pair a Hopf C∗-algebra of finite dimension if the following conditions hold:

(1) (∆ ⊗ id) ◦ ∆ = (id ⊗ ∆) ◦ ∆;
(2) the linear spaces span{∆(H)(H ⊗ 1)} and span{∆(H)(1 ⊗H)} are both equal to H ⊗H.

Such a ∆ is called the comultiplication of H. (H,∆) is said to be cocommutative if τ◦∆ = ∆, where τ : H⊗H→ H⊗H
is the flip, τ(a ⊗ b) = b ⊗ a, a, b ∈ H.

Note that for a finite dimensional Hopf C∗-algebra, there exists a counit ε and an antipode S ([25, 26]) which are
linear maps

ε : H→ C, S : H→ H

satisfying the following properties:

(1) ε is a unital ∗-homomorphism, and S is a unital ∗-preserving anti-multiplicative involution;
(2) (ε ⊗ id) ◦ ∆ = (id ⊗ ε) ◦ ∆ = id;
(3) m ◦ (S ⊗ id) ◦ ∆ = m ◦ (id ⊗ S) ◦ ∆ = ι ◦ ε, where m and ι are the multiplication and unit, respectively.

Example 2.4. If H is a finite dimensional Hopf ∗- algebra, the dual Ĥ of H is a finite dimensional Hopf ∗-algebra as
well, where the ∗-structure of Ĥ is given by

〈ϕ∗, a〉 B 〈ϕ, (Sa)∗〉.

Furthermore, if H is a Hopf C∗-algebra of finite dimension, so is the dual Ĥ of H.
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Definition 2.5. Let H be a Hopf ∗-algebra, and A be a ∗-algebra. A bilinear map γ : H ⊗A→ A is an action of H on
A if the following hold for any x, y ∈ H, a, b ∈ A:

γxy(a) = γx ◦ γy(a),

γx(ab) =
∑
(x)

γx(1) (a)γx(2) (b),

γx(a)∗ = γS(x∗)(a∗).

In this case, A is called a left H-module algebra.

Here we give some examples of Hopf C∗-algebra and their actions.

Example 2.6. Let G be a finite group. One can check that the group algebra CG of G is a Hopf C∗-algebra with

∆(1) = 1 ⊗ 1, ε(1) = 1, S(1) = 1−1, 1∗ = 1−1, 1 ∈ G.

Let N be a normal subgroup of G. Then the group algebraCN is a Hopf ∗-subalgebra ofCG with induced structures
of CG. Moreover, for 1 ∈ G, the left adjoint action Ad1 : CN → CN, Ad1(h) = 1h1−1 makes CN a left CG-module
algebra.

Example 2.7. Let H be a finite dimensional Hopf C∗-algebra, Ĥ be the dual of H. Then Ĥ is a H-module algebra
under the natural left action of H, denoted by Sweedler’s arrow:

a→ ϕ =
∑
(ϕ)

ϕ(1)〈ϕ(2), a〉, a ∈ H, ϕ ∈ Ĥ.

3. The structure of the observable algebra determined by a Hopf ∗-subalgebra

Let H = (H,∆, ε,S, ∗) be a finite dimensional Hopf C∗-algebra, and let H1 be a Hopf ∗-subalgebra of H.
Then H1 is a Hopf C∗-algebra of finite dimension. Furthermore, H and H1 are semisimple and involutive,
namely, S2 = id ([23]). We still denote the structure maps of H1 by ∆, ε,S, and denote the dual of H1 by Ĥ1,
which is a Hopf C∗-algebra. Elements of H will be denoted by a, b, . . . , those of Ĥ by ϕ,ψ, . . . , for H1 and
its dual Ĥ1 by x, y, . . . , and f , 1, . . . , respectively. In this section, we first construct a C∗-subalgebra AH1 of
the observable algebra A [19] in Hopf spin models, then describe it as the infinite iterated twisted tensor
product by the C∗-inductive limit.

Consider Z as the set of the 1-dimensional lattice, and set

Ai =

H1, i ∈ 2Z
Ĥ, i ∈ 2Z + 1.

We denote the elements of A2i by A2i(x), x ∈ H1, and the elements of A2i+1 by A2i+1(ϕ), ϕ ∈ Ĥ. One can
define the local observable algebra as follows:

Definition 3.1. The algebra AH1,loc is defined as the unital ∗-algebra with generators A2i(x) and A2i+1(ϕ), x ∈
H1, ϕ ∈ Ĥ, i ∈ Z subject to

AB = BA, A ∈ Ai,B ∈ A j,
∣∣∣i − j

∣∣∣ ≥ 2,

A2i+1(ϕ)A2i(x) =
∑

(x)(ϕ)

A2i(x(1))〈x(2), ϕ(1)〉A2i+1(ϕ(2)),

A2i(x)A2i−1(ϕ) =
∑

(ϕ)(x)

A2i−1(ϕ(1))〈ϕ(2), x(1)〉A2i(x(2)),

where 〈·, ·〉 means the canonical pairing between H1 and Ĥ, i.e. 〈ϕ, x〉 = ϕ(x).
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Remark 3.2. Using the antipode together with the relation S2 = id, the commutation relations above are equivalent
to the following relations

A2i(x)A2i+1(ϕ) =
∑

(x)(ϕ)

〈S(x(2)), ϕ(1)〉A2i+1(ϕ(2))A2i(x(1)),

A2i−1(ϕ)A2i(x) =
∑

(ϕ)(x)

〈ϕ(2),S(x(1))〉A2i(x(2))A2i−1(ϕ(1)).

We denote asAH1
n,m ⊂ AH1,loc the unital ∗-subalgebra generated byAi,n ≤ i ≤ m. For m < n, setAH1

n,m = C1.
In Hopf spin models [19], for n ≤ m, n,m ∈ Z, the local observable algebra of finite intervalAn,m is a finite
dimensional C∗-algebra by providing a ∗-representation ofAn,m on finite dimensional Hilbert spaces. Notice
that the ∗-algebra AH1

n,m is a finite dimensional ∗-subalgebra of An,m by Definition 3.1, thus AH1
n,m is a finite

dimensional C∗-subalgebra ofAn,m. Moreover,AH1
n′,m′ ⊆ A

H1
n,m is an unital inclusion that preserving C∗-norm,

where n < n′,m′ < m. Therefore, the increasing finite dimensional C∗-algebras net {AH1
n,m,n,m ∈ Z}, together

with the unital inclusions i : AH1
n′,m′ → A

H1
n,m constitute a directed system of C∗-algebras. This leads to the

following definition:

Definition 3.3. The C∗-inductive limit of the increasing finite dimensional C∗-algebras net {AH1
n,m,n ≤ m, n,m ∈ Z}

is called the observable algebra in Hopf spin models determined by a Hopf ∗-subalgebra H1, denoted it byAH1 .

Remark 3.4. TheAH1 is a C∗-subalgebra of the observable algebraA in Hopf spin models in terms of the continuity
and uniqueness of C∗-inductive limit.

In order to give the concrete structure of the observable algebraAH1 in the way of the iterated twisted
tensor product, we firstly introduce the definition of the twisted tensor product and compatibility of twisting
maps.

Definition 3.5. [4] Suppose that (A,mA) and (B,mB) are unital associative algebras, where mA and mB represent the
multiplications of A and B respectively. If the linear map R : B ⊗ A→ A ⊗ B satisfies

R ◦ (idB ⊗mA) = (mA ⊗ idB) ◦ (idA ⊗ R) ◦ (R ⊗ idA),
R ◦ (mB ⊗ idA) = (idA ⊗mB) ◦ (R ⊗ idB) ◦ (idB ⊗ R),

then R is called a twisting map for A and B. In this case mR B (mA ⊗mB) ◦ (idA ⊗ R ⊗ idB) defines an associative
multiplication on A⊗B, the algebra (A⊗B,mR) is called the twisted tensor product of A and B, denoted it by A⊗R B.

Furthermore, if A and B are ∗-algebras with involutions jA and jB, respectively, and R : B⊗A→ A⊗ B is
a twisting map such that

(R ◦ ( jB ⊗ jA) ◦ τ) ◦ (R ◦ ( jB ⊗ jA) ◦ τ) = idA ⊗ idB,

then A ⊗R B is a ∗-algebra with involution (R ◦ ( jB ⊗ jA) ◦ τ), where τ : B ⊗ A → A ⊗ B is a flip given by
τ(b ⊗ a) = a ⊗ b.

Using the Sweedler’s sigma notation, the twisting map can be expressed by R(b ⊗ a) = aR ⊗ bR for
a ∈ A, b ∈ B, and the multiplication mR of the twisted tensor product A ⊗R B can be given by

(a ⊗ b)(a′ ⊗ b′) = aa′R ⊗ bRb′.

Example 3.6. (1) Consider the flip τ : B⊗A→ A⊗B, then τ is a twisting map, A⊗τ B is the twisted tensor product
of A and B, which is exactly the usual tensor product A ⊗ B.
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(2) Suppose that H is a Hopf ∗-algebra, M is a ∗-algebra. Let M be a left H-module algebra, then the action of H on
M gives rise to the crossed product M oH. Define the map R : H ⊗M→M ⊗H as follows:

R(a ⊗m) =
∑
(a)

(a(1).m) ⊗ a(2).

Then R is a twisting map, M ⊗R H is the twisted tensor product of M and H. The multiplication and involution
on M ⊗R H, which are given by (m ⊗ a)(m′ ⊗ a′) =

∑
(a)

m(a(1).m′) ⊗ a(2)a′, (m ⊗ a)∗ =
∑
(a)

a∗(1).m
∗
⊗ a∗(2), coincide

exactly with the crossed product M oH’s. In this case, we identify the ∗-algebra M ⊗R H with M oH.

In particular, we point out a further result in the following lemma.

Lemma 3.7. [24] Let H be a finite dimensional Hopf C∗-algebra, M be a finite dimensional C∗-algebra. Suppose that
M is a left H-module algebra, then the crossed product M oH is a C∗-algebra of finite dimension.

Proof. The strategy is to construct a faithful ∗-representation of the ∗-algebra M o H. Recall that there
exists a faithful positive linear functional φ on M, and a faithful positive Haar measure ϕ on H, with
(id⊗ϕ)∆(a) = (ϕ⊗ id)∆(a) = ϕ(a)1, a ∈ H([23]). For m ∈M, a ∈ H, define a linear map θ on MoH as follows:

θ(m ⊗ a) = φ(m)ϕ(a).

Our task is therefore to show that the map θ is positive and faithful, then using the GNS representation
associated to θ, one can obtain that ∗-algebra M o H is a C∗-algebra. For more detail one can refer to the
proof of Theorem 1 in [24].

In order to build the twisted tensor product for finite C∗-algebras of finite dimension by induction, we
proceed by considering the associative law of the twisted tensor product of three ∗-algebras. Consider the
twisted tensor products A ⊗R1 B,B ⊗R2 C and A ⊗R3 C, and maps

T1 : C ⊗ (A ⊗R1 B)→ (A ⊗R1 B) ⊗ C, T2 : (B ⊗R2 C) ⊗ A→ A ⊗ (B ⊗R2 C),

where T1 = (idA ⊗ R2) ◦ (R3 ⊗ idB), T2 = (R1 ⊗ idC) ◦ (idB ⊗ R3). If either T1 or T2 is a twisting map, we have

(A ⊗R1 B) ⊗T1 C = A ⊗T2 (B ⊗R2 C).

Indeed, it is given by the following lemma

Lemma 3.8. [9, Theorem 2.1] The following conditions are equivalent

(1) T1 is a twisting map;
(2) T2 is a twisting map;
(3) R1,R2 and R3 are compatible maps, in other words, they satisfy the hexagon equation:

(idA ⊗ R2) ◦ (R3 ⊗ idB) ◦ (idC ⊗ R1) = (R1 ⊗ idC) ◦ (idB ⊗ R3) ◦ (R2 ⊗ idA).

If one of the equivalent conditions holds, (A⊗R1 B)⊗T1 C = A⊗T2 (B⊗R2 C). In this case, we denote it by A⊗R1 B⊗R2 C,
called the iterated twisted tensor product of A,B and C.

Moreover, if the twisting maps R1,R2,R3 such that the twisted tensor products A⊗R1 B,B⊗R2 C and A⊗R3 C are
all ∗-algebras, then the iterated tensor product A ⊗R1 B ⊗R2 C is a ∗-algebra.

Consider the canonical pairing between H and its dual Ĥ:

〈·, ·〉 : H ⊗ Ĥ→ C, a ⊗ ϕ 7→ 〈a, ϕ〉 B 〈ϕ, a〉,

〈·, ·〉 : Ĥ ⊗H→ C, ϕ ⊗ a 7→ 〈ϕ, a〉,
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where 〈ϕ, a〉 = ϕ(a).

Then the left actions of H1 on Ĥ and Ĥ on H1 are denoted by Sweedler’s arrows as follows:

x→ ϕ =
∑
(ϕ)

ϕ(1)〈ϕ(2), x〉,

ϕ→ x =
∑
(x)

x(1)〈x(2), ϕ〉, x ∈ H1, ϕ ∈ Ĥ.

Let n ∈ Z. If n is even, An = H1; otherwise An = Ĥ. Then Ai is a left A j-module algebra where the action
is given by the above for j = i + 1 case otherwise it is a identity. Define the maps

R2n,2n+1 : A2n+1 ⊗ A2n → A2n ⊗ A2n+1
ϕ ⊗ x 7→

∑
(ϕ)

(ϕ(1) → x) ⊗ ϕ(2) =
∑

(ϕ)(x)
x(1)〈x(2), ϕ(1)〉 ⊗ ϕ(2),

R2n−1,2n : A2n ⊗ A2n−1 → A2n−1 ⊗ A2n,
x ⊗ ϕ 7→

∑
(x)

(x(1) → ϕ) ⊗ x(2) =
∑

(x)(ϕ)
ϕ(1)〈ϕ(2), x(1)〉 ⊗ x(2),

Ri, j : A j ⊗ Ai → Ai ⊗ A j
x j ⊗ xi 7→ xi ⊗ x j, j − i ≥ 2,

where 〈·, ·〉 denotes the paring between H1 and Ĥ. One can verify that the maps above are twisting maps.
As an immediate consequence from Example 3.6 (2) and Lemma 3.7, one has that the twisted tensor product
Ai ⊗Ri, j A j is a C∗-algebra whenever i < j.

Proposition 3.9. R0,1,R1,2,R0,2 and R1,2,R2,3,R1,3 are compatible twisting maps, respectively.

Proof. It is equal to prove the following equalities:

(idH1 ⊗ R1,2) ◦ (R0,2 ⊗ idĤ) ◦ (idH1 ⊗ R0,1) =(R0,1 ⊗ idH1 ) ◦ (idĤ ⊗ R0,2) ◦ (R1,2 ⊗ idH1 ),

(idĤ ⊗ R2,3) ◦ (R1,3 ⊗ idH1 ) ◦ (idĤ ⊗ R1,2) =(R1,2 ⊗ idĤ) ◦ (idH1 ⊗ R1,3) ◦ (R2,3 ⊗ idĤ).

Applying the left-hand side of the hexagon equation to a generator x⊗ϕ⊗ y of A2 ⊗A1 ⊗A0 = H1 ⊗ Ĥ ⊗H1,
we have

(idH1 ⊗ R1,2) ◦ (R0,2 ⊗ idĤ) ◦ (idH1 ⊗ R0,1)(x ⊗ ϕ ⊗ y)

=(idH1 ⊗ R1,2) ◦ (R0,2 ⊗ idĤ)(
∑
(ϕ)

x ⊗ (ϕ(1) → y) ⊗ ϕ(2))

=(idH1 ⊗ R1,2)(
∑
(ϕ)

(ϕ(1) → y) ⊗ x ⊗ ϕ(2))

=
∑

(ϕ)(x)

(ϕ(1) → y) ⊗ (x(1) → ϕ(2)) ⊗ x(2)

=
∑

(ϕ)(y)(x)

y(1)〈y(2), ϕ(1)〉 ⊗ ϕ(2)〈ϕ(3), x(1)〉 ⊗ x(2).
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On the other hand, for the right-hand side we get

(R0,1 ⊗ idH1 ) ◦ (idĤ ⊗ R0,2) ◦ (R1,2 ⊗ idH1 )(x ⊗ ϕ ⊗ y)

=(R0,1 ⊗ idH1 ) ◦ (idĤ ⊗ R0,2)(
∑
(x)

(x(1) → ϕ) ⊗ x(2) ⊗ y)

=(R0,1 ⊗ idH1 )(
∑

(x)(ϕ)

ϕ(1)〈ϕ(2), x(1)〉 ⊗ y ⊗ x(2))

=
∑

(x)(ϕ)

(ϕ(1) → y)〈ϕ(3), x(1)〉 ⊗ ϕ(2) ⊗ x(2)

=
∑

(x)(ϕ)(y)

y(1)〈y(2), ϕ(1)〉 ⊗ ϕ(2)〈ϕ(3), x(1)〉 ⊗ x(2).

It proves that R0,1,R1,2,R0,2 are compatible twisting maps. Similarly, one has the compatibility of the maps
R1,2,R2,3 and R1,3.

Based on the compatibility of the twisting maps above, one can define the multiplications and involution
maps on twisted tensor products A0⊗R0,1 A1⊗R1,2 A2 and A1⊗R1,2 A2⊗R2,3 A3, such that they become C∗-algebras
of finite dimension. We divide the progress into three steps which are of interest by their own means.

For xi ⊗ ϕi ⊗ yi ∈ A0 ⊗R0,1 A1 ⊗R1,2 A2, ϕi ⊗ xi ⊗ ψi ∈ A1 ⊗R1,2 A2 ⊗R2,3 A3, i = 1, 2, set

(x1 ⊗ ϕ1 ⊗ y1)(x2 ⊗ ϕ2 ⊗ y2)

=
∑

(ϕ1)(y1)

x1(ϕ1(1) → x2) ⊗ ϕ1(2) (y1(1) → ϕ2) ⊗ y1(2) y2

=
∑

(ϕ1)(y1)(x2)(ϕ2)

x1x2(1)〈x2(2) , ϕ1(1)〉 ⊗ ϕ1(2)ϕ2(1)〈ϕ2(2) , y1(1)〉 ⊗ y1(2) y2,

(ϕ1 ⊗ x1 ⊗ ψ1)(ϕ2 ⊗ x2 ⊗ ψ2)

=
∑

(x1)(ψ1)

ϕ1(x1(1) → ϕ2) ⊗ x1(2) (ψ1(1) → x2) ⊗ ψ1(2)ψ2

=
∑

(x1)(ψ1)(ϕ2)(x2)

ϕ1ϕ2(1)〈ϕ2(2) , x1(1)〉 ⊗ x1(2) x2(1)〈x2(2) , ψ1(1)〉 ⊗ ψ1(2)ψ2.

Lemma 3.10. A0 ⊗R0,1 A1 ⊗R1,2 A2 and A1 ⊗R1,2 A2 ⊗R2,3 A3 are algebras with the multiplication in the above.

Proof. It suffices to prove that the associative law holds for A0 ⊗R0,1 A1 ⊗R1,2 A2 and A1 ⊗R1,2 A2 ⊗R2,3 A3. Since
their proofs are similar, we check only the first one. Indeed, for xi ⊗ ϕi ⊗ yi ∈ A0 ⊗R0,1 A1 ⊗R1,2 A2, i = 1, 2, 3,
we have

(x1 ⊗ ϕ1 ⊗ y1)
((

x2 ⊗ ϕ2 ⊗ y2
) (

x3 ⊗ ϕ3 ⊗ y3
))

=
∑

(ϕ2)(y2)(x3)(ϕ3)

(x1 ⊗ ϕ1 ⊗ y1)(x2x3(1)〈x3(2) , ϕ2(1)〉 ⊗ ϕ2(2)ϕ3(1)〈ϕ3(2) , y2(1)〉 ⊗ y2(2) y3)

=
∑

(ϕ1)(y1)(x2)(ϕ2)(y2)(x3)(ϕ3)

x1x2(1) x3(1)〈x2(2) x3(2) , ϕ1(1)〉〈x3(3) , ϕ2(1)〉

⊗ ϕ1(2)ϕ2(2)ϕ3(1)〈ϕ2(3)ϕ3(2) , y1(1)〉〈ϕ3(3) , y2(1)〉 ⊗ y1(2) y2(2) y3

=
∑

(ϕ1)(y1)(x2)(ϕ2)(y2)(x3)(ϕ3)

x1x2(1) x3(1)〈x2(2) , ϕ1(1)〉〈x3(2) , ϕ1(2)ϕ2(1)〉

⊗ ϕ1(3)ϕ2(2)ϕ3(1)〈ϕ2(3) , y1(1)〉〈ϕ3(2) , y1(2) y2(1)〉 ⊗ y1(3) y2(2) y3

=
((

x1 ⊗ ϕ1 ⊗ y1
) (

x2 ⊗ ϕ2 ⊗ y2
))

(x3 ⊗ ϕ3 ⊗ y3).
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Furthermore, consider the conjugate linear map

θ : A0 ⊗R0,1 A1 ⊗R1,2 A2 → A0 ⊗R0,1 A1 ⊗R1,2 A2,

and

η : A1 ⊗R1,2 A2 ⊗R2,3 A3 → A1 ⊗R1,2 A2 ⊗R2,3 A3

given by

θ(x ⊗ ϕ ⊗ y) =
∑

(x)(ϕ)(y)

x∗(1) ⊗ 〈ϕ(1),S(x(2))〉ϕ∗(2)〈ϕ(3),S(y(1))〉 ⊗ y∗(2),

and

η(ϕ ⊗ x ⊗ ψ) =
∑

(ϕ)(x)(ψ)

ϕ∗(1) ⊗ 〈ϕ(2),S(x(1))〉x∗(2) ⊗ 〈S(x(3)), ψ(1)〉ψ
∗

(2),

respectively.

Lemma 3.11. A0 ⊗R0,1 A1 ⊗R1,2 A2 is a ∗-algebra together with (x ⊗ ϕ ⊗ y)∗ = θ(x ⊗ ϕ ⊗ y), where x ⊗ ϕ ⊗ y is a
generator of A0 ⊗R0,1 A1 ⊗R1,2 A2. Similarly, A1 ⊗R1,2 A2 ⊗R2,3 A3 is a ∗-algebra with the involution map η.

Proof. Now we check that the map θ makes the algebra A0 ⊗R0,1 A1 ⊗R1,2 A2 a ∗-algebra. For x ⊗ ϕ ⊗ y ∈
A0 ⊗R0,1 A1 ⊗R1,2 A2, one has

((x ⊗ ϕ ⊗ y)∗)∗

=(
∑

(x)(ϕ)(y)

x∗(1) ⊗ 〈ϕ(1),S(x(2))〉ϕ∗(2)〈ϕ(3),S(y(1))〉 ⊗ y∗(2))
∗

=
∑

(x)(ϕ)(y)

x(1) ⊗ 〈ϕ(1),S(x(3))〉〈ϕ∗(2),S(x∗(2))〉ϕ(3)〈ϕ∗(4),S(y∗(2))〉〈ϕ(5),S(y(1))〉 ⊗ y(3)

=
∑

(x)(ϕ)(y)

x(1) ⊗ 〈ϕ(1),S(x(3))〉〈ϕ(2), (S(S(x∗(2))))
∗
〉ϕ(3)〈ϕ(4), (S(S(y∗(2))))

∗
〉〈ϕ(5),S(y(1))〉 ⊗ y(3)

S2=id
=

∑
(x)(ϕ)(y)

x(1) ⊗ 〈ϕ(1),S(x(3))〉〈ϕ(2), x(2)〉ϕ(3)〈ϕ(4), y(2)〉〈ϕ(5),S(y(1))〉 ⊗ y(3)

=x ⊗ ϕ ⊗ y.

Furthermore, for x ⊗ ϕ ⊗ y, z ⊗ ψ ⊗ w ∈ A0 ⊗R0,1 A1 ⊗R1,2 A2,

(z ⊗ ψ ⊗ w)∗(x ⊗ ϕ ⊗ y)∗

=
∑

(z)(ψ)(w)(x)(ϕ)(w)

(z∗(1) ⊗ 〈ψ(1),S(z(2))〉ψ∗(2)〈ψ(3),S(w(1))〉 ⊗ w∗(2))

× (x∗(1) ⊗ 〈ϕ(1),S(x(2))〉ϕ∗(2)〈ϕ(3),S(y(1))〉 ⊗ y∗(2))

=
∑

(z)(ψ)(w)(x)(ϕ)(w)

z∗(1)〈ψ(1),S(z(2))〉〈ψ(3),S(w(1))〉((ψ∗(2))(1) → x∗(1))

⊗ (ψ∗(2))(2)((w∗(2))(1) → ϕ∗(2))〈ϕ(1),S(x(2))〉〈ϕ(3),S(y(1))〉 ⊗ (w∗(2))(2)y∗(2)

=
∑

(z)(ψ)(w)(x)(ϕ)(w)

z∗(1)x
∗

(1)〈ψ(1),S(z(2))〉〈ψ(2),S(x(2))〉〈ψ(4),S(w(1))〉

⊗ ψ∗(3)ϕ
∗

(2)〈ϕ(1),S(x(3))〉〈ϕ(3),S(w(2))〉〈ϕ(4),S(y(1))〉 ⊗ w∗(3)y
∗

(2),
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on the other hand,((
x ⊗ ϕ ⊗ y

) (
z ⊗ ψ ⊗ w

))∗
=

∑
(ϕ)(y)(z)(ψ)

(xz(1)〈z(2), ϕ(1)〉 ⊗ ϕ(2)ψ(1)〈ψ(2), y(1)〉 ⊗ y(2)w)∗

=
∑

(ϕ)(y)(z)(ψ)

z∗(1)x
∗

(1)〈z(3), ϕ(1)〉

⊗ 〈ϕ(2)ψ(1),S(x(2)z(2))〉ψ∗(2)ϕ
∗

(3)〈ϕ(4)ψ(3),S(y(2)w(1))〉〈ψ(4), y(1)〉 ⊗ w∗(2)y
∗

(3)

=
∑

(ϕ)(y)(z)(ψ)

z∗(1)x
∗

(1)〈z(4), ϕ(1)〉

⊗ 〈ϕ(2),S(z(3))〉〈ϕ(3),S(x(3))〉〈ψ(1),S(z(2))〉〈ψ(2),S(x(2))〉ψ∗(3)ϕ
∗

(4)

× 〈ϕ(5),S(w(2))〉〈ϕ(6),S(y(3))〉〈ψ(4),S(w(1))〉〈ψ(5),S(y(2))〉〈ψ(6), y(1)〉 ⊗ w∗(3)y
∗

(4)

=
∑

(ϕ)(y)(z)(ψ)

z∗(1)x
∗

(1)〈ϕ(1), ε(z(3))〉 ⊗ 〈ϕ(2),S(x(3))〉〈ψ(1),S(z(2))〉〈ψ(2),S(x(2))〉

× ψ∗(3)ϕ
∗

(3)〈ϕ(4),S(w(2))〉〈ϕ(5),S(y(2))〉〈ψ(4),S(w(1))〉〈ψ(5), ε(y(1))〉 ⊗ w∗(3)y
∗

(3)

=
∑

(ϕ)(y)(z)(ψ)

z∗(1)x
∗

(1) ⊗ 〈ϕ(1),S(x(3))〉〈ψ(1),S(z(2))〉〈ψ(2),S(x(2))〉ψ∗(3)ϕ
∗

(2)

× 〈ϕ(3),S(w(2))〉〈ϕ(4),S(y(1))〉〈ψ(4),S(w(1))〉 ⊗ w∗(3)y
∗

(2),

where the penultimate equality follows from the S2 = id.
Thus one can get

((x ⊗ ϕ ⊗ y)(z ⊗ ψ ⊗ w))∗ = (z ⊗ ψ ⊗ w)∗(x ⊗ ϕ ⊗ y)∗.

The proof is completed.

Moreover, A0 ⊗R0,1 A1 ⊗R1,2 A2 and A1 ⊗R1,2 A2 ⊗R2,3 A3 are both finite dimensional C∗-algebras. In fact,
A0⊗R0,1 A1 is a finite dimensional C∗-algebra, the action of finite dimensional Hopf C∗-algebra A2 on A0⊗R0,1 A1
is given by

A2(x).(A0(y) ⊗ A1(ϕ)) = A0(y) ⊗ A1(x→ ϕ),

such that A0 ⊗R0,1 A1 is a left A2-module algebra. Thus the ∗-algebra (A0 ⊗R0,1 A1)oA2 is a finite dimensional
C∗-algebra. On the other hand, A0 ⊗T0

1,2
(A1 ⊗R1,2 A2) = (A0 ⊗R0,1 A1) ⊗T2

0,1
A2 follows from Proposition 3.9,

where T0
1,2 : (A1 ⊗R1,2 A2) ⊗ A0 → A0 ⊗ (A1 ⊗R1,2 A2) defined by T0

1,2 = (R0,1 ⊗ idA2 ) ◦ (idA1 ⊗ R0,2), and
T2

0,1 : A2 ⊗ (A0 ⊗R0,1 A1)→ (A0 ⊗R0,1 A1) ⊗ A2 defined by T2
0,1 = (idA0 ⊗ R1,2) ◦ (R0,2 ⊗ idA1 ) are twisting maps.

Specifically, one has

T2
0,1(A2(x) ⊗ A0(y) ⊗ A1(ϕ)) =

∑
(x)

A2(x(1)).(A0(y) ⊗ A1(ϕ)) ⊗ A2(x(2)).

Therefore, the ∗-algebra (A0 ⊗R0,1 A1) ⊗T2
0,1

A2 = (A0 ⊗R0,1 A1) o A2 is a finite dimensional C∗-algebra, i.e.,
A0 ⊗R0,1 A1 ⊗R1,2 A2 is a finite dimensional C∗-algebra. Another one is established in a similar fashion.

Before moving forward we want to give a notion that for any i < j < k (i, j, k ∈ Z), the twisting maps
Ri, j,R j,k and Ri,k are compatible such that the corresponding twisted tensor product is a C∗-algebra, which
makes it possible for us to build an iterated twisted tensor product of any finite C∗-algebras (≥ 4) by
induction.
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Now consider the Hopf C∗-algebras A1,A2, . . . ,An, and twisting maps Ri, j : A j ⊗ Ai → Ai ⊗ A j for every
i < j as in the above. For every i < n − 1 define the maps

Ti
n−1,n : (An−1 ⊗Rn−1,n An) ⊗ Ai → Ai ⊗ (An−1 ⊗Rn−1,n An)

by Ti
n−1,n = (Ri,n−1 ⊗ idAn ) ◦ (idAn−1 ⊗Ri,n). One can get that Ti

n−1,n are twisting maps because Ri,n−1,Rn−1,n and
Ri,n are compatible. Generally, let

Ti
j−1, j : (A j−1 ⊗R j−1, j A j) ⊗ Ai → Ai ⊗ (A j−1 ⊗R j−1, j A j)

be given by Ti
j−1, j = (Ri, j−1 ⊗ idA j ) ◦ (idA j−1 ⊗ Ri, j) for every i < j − 1, and let

Ti
j−1, j : Ai ⊗ (A j−1 ⊗R j−1, j A j)→ (A j−1 ⊗R j−1, j A j) ⊗ Ai

be given by Ti
j−1, j = (idA j−1 ⊗ R j,i) ◦ (R j−1,i ⊗ idA j ) for every i > j. The above all are twisting maps. Moreover

we have the results as follows:

Proposition 3.12. Let A1, . . . ,An−1,An be the finite dimensional Hopf C∗-algebras as in the above, Ri, j : A j ⊗ Ai →

Ai ⊗ A j be the twisting maps for every i < j as in the above. Then for any i < j < k, the maps Ri, j,R j,k and Ri,k are
compatible. Moreover, for every i, k < { j − 1, j}, the maps Ri,k,Ti

j−1, j and Tk
j−1, j are compatible. And for any i, the

∗-algebras

A1 ⊗R1,2 · · · ⊗Ri−3,i−2 Ai−2 ⊗Ti−2
i−1,i

(Ai−1 ⊗Ri−1,i Ai) ⊗Ti+1
i−1,i

Ai+1 ⊗Ri+1,i+2 · · · ⊗Rn−1,n An

are all equal. Thus we can build the iterated twisted tensor product

A1 ⊗R1,2 A2 ⊗R2,3 · · · ⊗Rn−2,n−1 An−1 ⊗Rn−1,n An,

which is a finite dimensional C∗-algebra.

Proof. We proceed by induction over n ≥ 4.

(1) When n = 4, consider A1, · · · ,A4, and the twisting maps Ri, j : A j ⊗ Ai → Ai ⊗ A j, 1 ≤ i ≤ j ≤ 4.
We firstly check the compatibility of R1,2, T1

3,4 and T2
3,4, which is equal to verify the hexagon equation:

(R1,2 ⊗ idA3⊗R3,4 A4 ) ◦ (idA2 ⊗ T1
3,4) ◦ (T2

3,4 ⊗ idA1 )

=(idA1 ⊗ T2
3,4) ◦ (T1

3,4 ⊗ idA2 ) ◦ (idA3⊗R3,4 A4 ⊗ R1,2),

where T1
3,4 = (R1,3 ⊗ idA4 ) ◦ (idA3 ⊗ R1,4), T2

3,4 = (R2,3 ⊗ idA4 ) ◦ (idA3 ⊗ R2,4).
For (ψ ⊗ y) ⊗ x ⊗ ϕ ∈ (A3 ⊗R3,4 A4) ⊗ A2 ⊗ A1, we have

(R1,2 ⊗ idA3⊗R3,4 A4 ) ◦ (idA2 ⊗ T1
3,4) ◦ (T2

3,4 ⊗ idA1 )((ψ ⊗ y) ⊗ x ⊗ ϕ)

=(R1,2 ⊗ idA3⊗R3,4 A4 ) ◦ (idA2 ⊗ T1
3,4)(((R2,3 ⊗ idA4 ) ◦ (idA3 ⊗ R2,4)) ⊗ idA1 )((ψ ⊗ y) ⊗ x ⊗ ϕ)

=(R1,2 ⊗ idA3⊗R3,4 A4 )(idA2 ⊗ ((R1,3 ⊗ idA4 ) ◦ (idA3 ⊗ R1,4)))(
∑

(x)(ψ)

x(1)〈x(2), ψ(1)〉 ⊗ ψ(2) ⊗ y ⊗ ϕ)

=(R1,2 ⊗ idA3⊗R3,4 A4 )(
∑

(x)(ψ)

x(1)〈x(2), ψ(1)〉 ⊗ ϕ ⊗ ψ(2) ⊗ y)

=
∑

(ϕ)(x)(ψ)

ϕ(1)〈ϕ(2), x(1)〉〈x(3), ψ(1)〉 ⊗ x(2) ⊗ ψ(2) ⊗ y,
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on the other hand,

(idA1 ⊗ T2
3,4) ◦ (T1

3,4 ⊗ idA2 ) ◦ (idA3⊗R3,4 A4 ⊗ R1,2)((ψ ⊗ y) ⊗ x ⊗ ϕ)

=
∑

(ϕ)(x)(ψ)

ϕ(1)〈ϕ(2), x(1)〉 ⊗ x(2)〈x(3), ψ(1)〉 ⊗ ψ(2) ⊗ y.

Thus

(A1 ⊗R1,2 A2) ⊗ (A3 ⊗R3,4 A4) =A1 ⊗ (A2 ⊗T2
3,4

(A3 ⊗R3,4 A4))

=A1 ⊗ ((A2 ⊗R2,3 A3) ⊗T4
2,3

A4).

Similarly,

(T1
2,3 ⊗ idA4 ) ◦ (idA2⊗R2,3 A3 ⊗ R1,4) ◦ (T4

2,3 ⊗ idA1 )

=(idA1 ⊗ T4
2,3) ◦ (R1,4 ⊗ idA2⊗R2,3 A3 ) ◦ (idA4 ⊗ T1

2,3),

where T1
2,3 = (R1,2 ⊗ idA3 ) ◦ (idA2 ⊗ R1,3), T4

2,3 = (idA2 ⊗ R3,4) ◦ (R2,4 ⊗ idA3 ).
For y ⊗ (x ⊗ ψ) ⊗ ϕ ∈ A4 ⊗ (A2 ⊗R2,3 A3) ⊗ A1,

(T1
2,3 ⊗ idA4 ) ◦ (idA2⊗R2,3 A3 ⊗ R1,4) ◦ (T4

2,3 ⊗ idA1 )(y ⊗ (x ⊗ ψ) ⊗ ϕ)

=(T1
2,3 ⊗ idA4 ) ◦ (idA2⊗R2,3 A3 ⊗ R1,4) ◦

(((
idA2 ⊗ R3,4

)
◦
(
R2,4 ⊗ idA3

))
⊗ idA1

)
(y ⊗ x ⊗ ψ ⊗ ϕ)

=(T1
2,3 ⊗ idA4 ) ◦ (idA2⊗R2,3 A3 ⊗ R1,4)(

∑
(ψ)(y)

x ⊗ ψ(1)〈ψ(2), y(1)〉 ⊗ y(2) ⊗ ϕ)

=(((R1,2 ⊗ idA3 ) ◦ (idA2 ⊗ R1,3)) ⊗ idA4 )(
∑

(ψ)(y)

x ⊗ ψ(1)〈ψ(2), y(1)〉 ⊗ ϕ ⊗ y(2))

=
∑

(ψ)(y)(ϕ)(x)

ϕ(1)〈ϕ(2), x(1)〉 ⊗ x(2) ⊗ ψ(1)〈ψ(2), y(1)〉 ⊗ y(2),

(idA1 ⊗ T4
2,3) ◦ (R1,4 ⊗ idA2⊗R2,3 A3 ) ◦ (idA4 ⊗ T1

2,3)(y ⊗ (x ⊗ ψ) ⊗ ϕ)

=(idA1 ⊗ T4
2,3) ◦ (R1,4 ⊗ idA2⊗R2,3 A3 ) ◦ (idA4 ⊗ ((R1,2 ⊗ idA3 ) ◦ (idA2 ⊗ R1,3)))(y ⊗ (x ⊗ ψ) ⊗ ϕ)

=(idA1 ⊗ T4
2,3) ◦ (R1,4 ⊗ idA2⊗R2,3 A3 )(

∑
(ϕ)(x)

y ⊗ ϕ(1)〈ϕ(2), x(1)〉 ⊗ x(2) ⊗ ψ)

=(idA1 ⊗ ((idA2 ⊗ R3,4) ◦ (R2,4 ⊗ idA3 )))(
∑

(ϕ)(x)

ϕ(1)〈ϕ(2), x(1)〉 ⊗ y ⊗ x(2) ⊗ ψ)

=
∑

(ϕ)(x)(ψ)(y)

ϕ(1)〈ϕ(2), x(1)〉 ⊗ x(2) ⊗ ψ(1)〈ψ(2), y(1)〉 ⊗ y(2).

Therefore

A1 ⊗ ((A2 ⊗R2,3 A3) ⊗T4
2,3

A4) =(A1 ⊗T1
2,3

(A2 ⊗R2,3 A3)) ⊗ A4

=((A1 ⊗R1,2 A2) ⊗T3
1,2

A3) ⊗ A4.

Finally, the twisting maps R1,2,T2
3,4 and T1

3,4 are compatible, Lemma 3.8 shows that

(A3 ⊗R3,4 A4) ⊗ (A1 ⊗R1,2 A2)→ (A1 ⊗R1,2 A2) ⊗ (A3 ⊗R3,4 A4)

is a twisting map, which is equivalent to that T3
1,2, R3,4 and T4

1,2 are compatible:

(T3
1,2 ⊗ idA4 ) ◦ (idA3 ⊗ T4

1,2) ◦ (R3,4 ⊗ idA1⊗R1,2 A2 )

=(idA1⊗R1,2 A2 ⊗ R3,4) ◦ (T4
1,2 ⊗ idA3 ) ◦ (idA4 ⊗ T3

1,2).
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This leads to that

((A1 ⊗R1,2 A2) ⊗T3
1,2

A3) ⊗ A4 = (A1 ⊗R1,2 A2) ⊗ (A3 ⊗R3,4 A4),

As results one can get

A1 ⊗R1,2 A2 ⊗T2
3,4

(A3 ⊗R3,4 A4) =A1 ⊗T1
2,3

(A2 ⊗R2,3 A3) ⊗T4
2,3

A4

=(A1 ⊗R1,2 A2) ⊗T3
1,2

A3 ⊗R3,4 A4.

Note that all the twisted tensor products associated with above twisting maps are ∗-algebras. Together
with these, the ∗-algebra A1⊗R1,2 A2⊗R2,3 A3⊗R3,4 A4 is well defined. We call it the iterated twisted tensor
product of A1, · · · ,A4, and it is a finite dimensional C∗-algebra.
To see this, let us review that A1 ⊗R1,2 A2 ⊗R2,3 A3 is a finite dimensional C∗-algebra. The action of finite
dimensional Hopf C∗-algebra A4 on A1 ⊗R1,2 A2 ⊗R2,3 A3 is

A4(x).(A1(ϕ) ⊗ A2(y) ⊗ A3(ψ)) = A1(ϕ) ⊗ A2(y) ⊗ A3(x→ ψ),

such that A1 ⊗R1,2 A2 ⊗R2,3 A3 is a left A4-module algebra, then the ∗-algebra (A1 ⊗R1,2 A2 ⊗R2,3 A3) oA4 is
a C∗-algebra of finite dimension. Combining the above, the desired result is obtained.

(2) Without loss of generality assume that i < j−1 and i < k. We consider only the cases i = j−2 or k = j−2
(other cases are either similar or all maps are flips except Ri,k), one can obtain the compatibility of the
maps Ri,k,Ti

j−1, j and Tk
j−1, j in the same way as Proposition 3.9.

Suppose that the conclusions hold for A1, . . . ,An−1, then given j = 1, . . . ,n, for any i, the ∗-algebras

A1 ⊗R1,2 · · · ⊗Ri−3,i−2 Ai−2 ⊗Ti−2
i−1,i

(Ai−1 ⊗Ri−1,i Ai) ⊗Ti+1
i−1,i

Ai+1 ⊗Ri+1,i+2 · · · ⊗R j−3, j−2 A j−2

⊗T j−2
j−1, j

(A j−1 ⊗R j−1, j A j) ⊗T j+1
j−1, j

A j+1 ⊗R j+1, j+2 · · · ⊗Rn−2,n−1 An−1 ⊗Rn−1,n An

are all equal, thus these all ∗-algebras

A1 ⊗R1,2 · · · ⊗Ri−3,i−2 Ai−2 ⊗Ti−2
i−1,i

(Ai−1 ⊗Ri−1,i Ai) ⊗Ti+1
i−1,i

Ai+1 ⊗Ri+1,i+2 · · · ⊗Rn−1,n An

are equal, one can build the iterated twisted tensor product

A1 ⊗R1,2 A2 ⊗ · · · ⊗Rn−2,n−1 An−1 ⊗Rn−1,n An.

By induction, the action of finite dimensional Hopf C∗-algebra An on finite dimensional C∗-algebra
A1 ⊗R1,2 · · · ⊗Rn−2,n−1 An−1 gives rise to the C∗-algebra (A1 ⊗R1,2 A2 ⊗ · · · ⊗Rn−2,n−1 An−1) o An, which shows
that the ∗-algebra A1 ⊗R1,2 A2 ⊗ · · · ⊗Rn−2,n−1 An−1 ⊗Rn−1,n An is a finite dimensional C∗-algebra.

In particular, for any n,m ∈ Z and n ≤ m, set

An,m B An ⊗Rn,n+1 An+1 ⊗ · · · ⊗ Am−1 ⊗Rm−1,m Am,

which is a finite dimensional C∗-algebra.
Notice that if n < n′ and m′ < m, then An′,m′ ⊆ An,m. The inclusions i : An′,m′ → An,m given by

i(xn′ ⊗ xn′+1 ⊗ · · · ⊗ xm′ ) = 1An ⊗ · · · ⊗ 1An′−1 ⊗ xn′ ⊗ xn′+1 ⊗ · · · ⊗ xm′ ⊗ 1Am′+1 ⊗ · · · ⊗ 1Am

are ∗-homomorphisms and norm-preserving, thus increasing C∗-algebras {An,m}n,m∈Z together with inclu-
sions constitute a directed system of C∗-algebras {An,m}n,m∈Z, where 1Ai is the unit in Ai.

Accordingly, for any n,m ∈ Z and n ≤ m, let B be the C∗-inductive limit of the directed system
{An,m, n,m ∈ Z} as follows:

B B
⋃
n<m

An,m .
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In other words,

B B · · ·H1 ⊗R−2,−1 Ĥ ⊗R−1,0 H1 ⊗R0,1 Ĥ ⊗R1,2 H1 ⊗R2,3 Ĥ · · · ,

where “· · · ” includes a C∗-inductive limit procedure. We call B the infinite iterated twisted tensor product.
Moreover, B can be expressed in terms of the following form according to the Example 3.6 (2)

B = · · · oH1 o Ĥ oH1 o Ĥ oH1 o · · · .

Now it’s time to arrive at the main result of the paper, which is given by the following theorem.

Theorem 3.13. The infinite iterated twisted tensor product B is ∗-isomorphic toAH1 .

Proof. Let I = I′ ∩Z, where I′ denotes the closed finite subintervals ofR,AH1 (I) be a ∗-algebra generated by
Ai, i ∈ I, which is further a finite dimensional C∗-algebra. By the definition ofAH1 one can get

AH1 =
⋃

I

AH1 (I).

Let Φ0,2 : A0 ⊗R0,1 A1 ⊗R1,2 A2 →A
H1
0,2 be given by

Φ0,2(x ⊗ ϕ ⊗ y) = A0(x)A1(ϕ)A2(y),

where x ⊗ ϕ ⊗ y ∈ A0 ⊗R0,1 A1 ⊗R1,2 ⊗A2.
Then

Φ0,2(x ⊗ ϕ ⊗ y)Φ0,2(z ⊗ ψ ⊗ w)
=A0(x)A1(ϕ)A2(y)A0(z)A1(ψ)A2(w)
=A0(x)A1(ϕ)A0(z)A2(y)A1(ψ)A2(w)

=
∑

(ϕ)(y)(z)(ψ)

A0(x)A0(z(1))〈z(2), ϕ(1)〉A1(ϕ(2))A1(ψ(1))〈ψ(2), y(1)〉A2(y(2))A2(w)

=
∑

(ϕ)(y)(z)(ψ)

A0(xz(1))〈z(2), ϕ(1)〉A1(ϕ(2)ψ(1))〈ψ(2), y(1)〉A2(y(2)w),

where the equalities follow from the commutation relations inAH1,loc.
On the other hand,

Φ0,2((x ⊗ ϕ ⊗ y)(z ⊗ ψ ⊗ w))

=Φ0,2(
∑

(ϕ)(y)(z)(ψ)

xz(1)〈z(2), ϕ(1)〉 ⊗ ϕ(2)ψ(1)〈ψ(2), y(1)〉 ⊗ y(2)w)

=
∑

(ϕ)(y)(z)(ψ)

A0(xz(1))〈z(2), ϕ(1)〉A1(ϕ(2)ψ(1))〈ψ(2), y(1)〉A2(y(2)w).

Furthermore, Φ0,2 preserves the adjoint, that is, Φ0,2 ◦ ∗ = ∗ ◦Φ0,2.

(Φ0,2(x ⊗ ϕ ⊗ y))∗ =(A0(x)A1(ϕ)A2(y))∗

=A2(y∗)A1(ϕ∗)A0(x∗)

=
∑

(ϕ)(y)

A1(ϕ∗(1))〈ϕ
∗

(2), y
∗

(1)〉A0(x∗)A2(y∗(2))

=
∑

(x)(ϕ)(y)

A0(x∗(1))〈x
∗

(2), ϕ
∗

(1)〉A1(ϕ∗(2))〈ϕ
∗

(3), y
∗

(1)〉A2(y∗(2))

=Φ0,2(
∑

(x)(ϕ)(y)

x∗(1) ⊗ 〈ϕ(1),S(x(2))〉ϕ∗(2)〈ϕ(3),S(y(1))〉 ⊗ y∗(2))

=Φ0,2(x ⊗ ϕ ⊗ y)∗.
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Notice that Φ0,2 is a bijection, thus it is a ∗-isomorphism from C∗-algebra A0 ⊗R0,1 A1 ⊗R1,2 A2 to C∗-algebra
A

H1
0,2, which implies that Φ0,2 is necessarily norm-decreasing [16]. By induction one can define Φn,m, n < m

in a similar way. This implies that

Φ :
⋃
n<m

An,m →
⋃
n<m

A
H1
n,m

satisfying Φ|An,m = Φn,m is also a ∗-isomorphism since each Φn,m is a ∗-isomorphism. Therefore Φ can be
extended continuously to a ∗-isomorphism

Φ :
⋃
n<m

An,m →
⋃
n<m

A
H1
n,m.

By the uniqueness of the C∗-inductive limit [12] one can get that B =
⋃

n<m
An,m is ∗-isomorphic to AH1 =⋃

I
AH1 (I) .

Remark 3.14. Theorem 3.13 shows that the observable algebra in Hopf spin models determined by a Hopf ∗-subalgebra
H1 of H can be defined as

AH1 B · · ·H1 ⊗R−2,−1 Ĥ ⊗R−1,0 H1 ⊗R0,1 Ĥ ⊗R1,2 H1 ⊗R2,3 Ĥ · · · .

In particular, considering H itself as a Hopf ∗-subalgebra of H, the observable algebraA [19] can be established as

A B · · ·H ⊗R−2,−1 Ĥ ⊗R−1,0 H ⊗R0,1 Ĥ ⊗R1,2 H ⊗R2,3 Ĥ · · · .

The relations above also show thatAH1 is a C∗-subalgebra ofA. If H = CG, H1 = CN, where G is a finite group, N
is a normal subgroup of G, one can accordingly get the observable algebra [28]

A(N,G) B · · ·N ⊗R−2,−1 Ĝ ⊗R−1,0 N ⊗R0,1 Ĝ ⊗R1,2 N ⊗R2,3 Ĝ · · · .

Remark 3.15. In the Hopf spin models determined by a Hopf ∗-subalgebra H1 of H, on each lattice site there is a copy
of finite dimensional Hopf C∗-algebra H1, and on link there is a copy of the dual Ĥ of H, as shown in (1). It’s natural
to ask how about the H and Ĥ1, which are postulated on the lattice site and link, respectively, as shown in (2).

Ĥ Ĥ Ĥ

H1 H1 H1 H1

(1)

Ĥ1 Ĥ1 Ĥ1

H H H H
(2)

However, it is not always possible to construct a twisting map between H and Ĥ1, as demonstrated by the follows.
Define the map φ : H ⊗ Ĥ1 → Ĥ1,

a→ f =
∑
( f )

f(1)〈 f(2), a〉,

where a ∈ H, f ∈ Ĥ1. The map is not well defined because 〈 f(2), x〉 is not matched possibly. In this case, the twisted
tensor product Ĥ1 ⊗ H related with the map φ is meaningless unless H1 is the certain Hopf ∗-subalgebra of H or
change the action of H on Ĥ1. Moreover, the algebra

· · ·H ⊗R−2,−1 Ĥ1 ⊗R−1,0 H ⊗R0,1 Ĥ1 ⊗R1,2 H ⊗R2,3 Ĥ1 · · ·

can not be well defined. Indeed, it is not possible to happen when the number of order factors is much more than
disorder factors in statistical mechanical models.
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