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Abstract. The convergence of difference scheme for initial-boundary value problem for the heat equation
with concentrated capacity and time-dependent coefficient of the space derivatives, is considered. Frac-
tional order convergence rate estimate in a special discrete Sobolev norms , compatible with the smoothness
of the coefficient and solution, is proved.

1. Introduction

The finite-difference method is one of the basic tools for the numerical solution of partial differential
equations. In the case of problems with discontinuous coefficients and concentrated factors (Dirac delta
functions, free boundaries, etc.) the solution has weak global regularity and it is impossible to establish
convergence of finite difference schemes using the classical Taylor series expansion. Often, the Bramble-
Hilbert lemma takes the role of the Taylor formula for functions from the Sobolev spaces [4], [6], [10].

Following Lazarov et al. [10], a convergence rate estimate of the form

‖u − v‖Wk
2,h
≤ Chs−k

‖u‖Ws
2
, s > k, (1)

is called compatible with the smoothness (regularity) of the solution u of the boundary-value problem.
Here v is the solution of the discrete problem, h is the spatial mesh step, Ws

2 and Wk
2,h are Sobolev spaces of

functions with continuous and discrete argument, respectively, C is a constant which doesn’t depend on u
and h. For the parabolic case typical estimates are of the form

‖u − v‖Wk,k/2
2,hτ
≤ C(h +

√
τ)s−k
‖u‖Ws,s/2

2
, s > k, (2)

where τ is the time step.
In the case of equations with variable coefficients the constant C in the error bounds depends on norms

of the coefficients (see, for example, [6], [13])
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One interesting class of parabolic problems model processes in heat-conducting media with concentrated
capacity in which the heat capacity coefficient contains a Dirac delta function, or equivalently, the jump
of the heat flow in the singular point is proportional to the time-derivative of the temperature [11]. Such
problems are nonstandard and the classical tools of the theory of finite difference schemes are difficult to
apply to their convergence analysis.

Finite difference approximation of initial-boundary value problems for the heat equation with concen-
trated capacity is considered in [8], [9], [1], [2]. Integer order convergence rate estimates are proved in [8],
[1], [2]. Fractional order convergence rate estimate is derived in [9], for the problem with variable (but not
time-dependent) coefficients. In the present paper problem with time-dependent coefficient is considered.
Fractional order convergence rate estimate is proved.

2. Differential problem and its approximation

Let us consider the initial-boundary-value problem for the heat equation in the presence of a concentrated
capacity at the interior point x = ξ :

(1 + Kδ(x − ξ))
∂u
∂t
−
∂
∂x

(
a(x, t)

∂u
∂x

)
+ b(x, t)u = f (x, t) , in Q = Ω × (0,T) ,

u(0, t) = 0 , u(1, t) = 0 , 0 < t < T, (3)
u(x, 0) = u0(x) , x ∈ (0, 1) ,

where δ(x) is the Dirac delta function, K > 0 , and Ω = (0, 1). We shall assume that

a ∈Ws−1,(s−1)/2
2 (QL) ∩Ws−1,(s−1)/2

2 (QR) , b ∈Ws−2,s/2−1
2 (QL) ∩Ws−2,s/2−1

2 (QR) , a > 0 , b > 0 (4)

f ∈Ws−2,s/2−1(Q) , u0(x) ∈Ws−1
2 (ΩL) ∩Ws−1

2 (ΩR) , (5)

u ∈Ws,s/2
2 (QL) ∩Ws,s/2

2 (QR) , (6)

for 5/2 < s ≤ 3 , where ΩL = (0, ξ) ,ΩR = (ξ, 1) and QL = ΩL
× (0,T) ,QR = ΩR

× (0,T). Note that conditions
(4)-(5) express the minimal smoothness requirements on the data under which the solution u of (3) may
belong to the function space stated in (6) (see [9]). To guarantee that such u really exists, we also need some
additional compatibility conditions at the corners of Q (see [5]).

Let wh– uniform mesh with step size h on (0, 1), ω−h = ωh ∪ {0} and ωh = ωh ∪ {0, 1}. Suppose that ξ is a
rational number. Then one can choose the step h so that ξ ∈ ωh. Let ωτ be an uniform mesh on (0,T) with
the step size τ = T/m , ω+

τ = ωτ ∪ {T} and ω̄τ = ωτ ∪ {0,T}. Also we assume that the condition c1h2
≤ τ ≤ c2h2

is satisfied. Define finite differences in the usual way [12]:

vx̄(x, t) =
v(x, t) − v(x − h, t)

h
= vx(x − h, t) ,

vxx̄(x, t) = (vx(x, t))x̄ =
v(x + h, t) − 2v(x, t) + v(x − h, t)

h2 ,

vt̄(x, t) =
v(x, t) − v(x, t − τ)

τ
= vt(x, t − τ) .

The problem (3) can be approximated on the mesh Qhτ = ωh × ωτ by the following difference scheme with
averaged right-hand side (see [7]):

(1 + Kδh(x − ξ))vt̄ −
1
2

((avx)x̄ + (avx̄)x) + (T2
xT−t b)v = T2

xT−t f , (x, t) ∈ ωh × ω
+
τ ,

v(0, t) = 0 , v(1, t) = 0 , t ∈ ω+
τ , (7)

v(x, 0) = u0(x) , x ∈ ω̄h ,
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where

δh(x − ξ) =

{
0 , x ∈ ωh\{ξ},

1/h , x = ξ

is the mesh Dirac function, and Tx , T−t are Steklov averaging operators defined as follows:

Tx f (x, t) = T±x f (x ∓ h/2, t) =
1
h

x+h/2∫
x−h/2

f (x′, t)dx′ ,

T−t f (x, t) = T+
t f (x, t − τ) =

1
τ

t∫
t−τ

f (x, t′)dt′ .

Notice that these operators are commute and map derivatives into finite differences, for example:

T2
x
∂2u
∂x2 = uxx̄, T−t

∂u
∂t

= ut̄ .

We also define operators

T2−
x f (x, t) =

2
h

x∫
x−h

(
1 +

x′ − x
h

)
f (x′, t)dx′ , T2+

x f (x, t) =
2
h

x+h∫
x

(
1 −

x′ − x
h

)
f (x′, t)dx′ .

We define the following discrete inner products, norms and seminorms:

(v,u)L2(ωh) = h
∑
x∈ωh

v(x)u(x) , ‖v‖L2(ωh) = (v, v)1/2
L2(ωh) ,

(v,u)L2(ω−h ) = h
∑
x∈ω−h

v(x)u(x) , ‖v‖L2(ω−h ) = (v, v)1/2
L2(ω−h ) ,

‖v‖W1
2 (ωh) = ‖vx‖

2
L2(ω−h ) + ‖v‖2L2(ωh) ,

‖v‖2L2(Qhτ) = τ
∑
t∈ω+

τ

‖v(·, t)‖2L2(ωh), ‖v‖
2
L2(ξ×ωτ) = τ

∑
t∈ω+

τ

|v(ξ, t)|2,

|v|2
W1/2

2 (ωτ; L2(ωh))
= τ

∑
t∈ωτ

τ
∑

t′∈ωτ, t′,t

‖v(·, t) − v(·, t′)‖2L2(ωh)

|t − t′|2
,

|v|2
W1/2

2 (ωτ,ξ)
= τ

∑
t∈ωτ

τ
∑

t′∈ωτ, t′,t

|v(ξ, t) − v(ξ, t′)|2

|t − t′|2
,

‖v‖2
W̃1/2

2 (ωτ; L2(ωh))
= |v|2

W1/2
2 (ωτ; L2(ωh))

+ τ
∑
t∈ωτ

( 1
t + τ

+
1

T − t + τ

)
‖v(·, t)‖2L2(ωh),

‖v‖2
W̃1/2

2 (ωτ; ξ)
= |v|2

W1/2
2 (ωτ; ξ)

+ τ
∑
t∈ωτ

( 1
t + τ

+
1

T − t + τ

)
|v(ξ, t)|2,

‖v‖2
W̃1, 1/2

2 (Qhτ)
= τ

∑
t∈ω+

τ

‖v(·, t)‖2W1
2 (ωh) + |v|2

W1/2
2 (ωτ; L2(ωh))

+ |v|2
W1/2

2 (ωτ; ξ)
.
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3. Convergence of the difference scheme

In the section we shall prove the convergence of the difference scheme (7) in the W̃1, 1/2
2 (Qhτ) norm.

Let u be the solution of the boundary-value problem (3) and v the solution of the difference problem (7).
The error z = u − v satisfies the finite difference scheme

(1 + Kδh(x − ξ))zt̄ −
1
2

((azx)x̄ + (azx̄)x) + (T2
xT−t b)z = ηx̄ + φt̄ + µ on Qhτ ,

z(0, t) = z(1, t) = 0 , t ∈ ω+
τ , (8)

z(x, 0) = 0 , x ∈ ω̄h ,

where

η = T+
x T−t (a

∂u
∂x

) −
1
2

(a + a+)ux ,

φ = u − T2
xu , µ = (T2

xT−t b)u − T2
xT−t (bu).

and a+(x, t) = a(x + h, t). Let us set φ = φ̃ + δhφ̂ , µ = µ̃ + δhµ̂ where

φ̂ =
h2

6

[
∂u
∂x

]
ξ

,

µ̂ = −
h2

3

[
(T−t b)

(
T−t
∂u
∂x

)]
ξ

and [u]ξ = u(ξ + 0, t) − u(ξ − 0, t) .
The following a priori estimate for the solution of the difference scheme (8) is valid (see [9], [14]):

‖z‖W̃1,1/2
2 (Qhτ) ≤ C(‖η‖L2(Qhτ) + ‖φ̃‖W̃1/2

2 (ωτ; L2(ωh)) + ‖φ̂‖W̃1/2
2 (ωτ; ξ) + ‖µ̃‖L2(Qhτ) + ‖µ̂‖L2(ξ×ωτ)) (9)

Therefore, in order to estimate the rate of convergence of the difference scheme (7), it is sufficient to
estimate the right-hand side of the inequality (9).

Let us estimate the term η. We decompose term η = η1 + η2 + η3 where

η1 = T+
x T−t (a

∂u
∂x

) − (T+
x T−t a)(T+

x T−t
∂u
∂x

),

η2 = (T+
x T−t a − 0.5(a + a+))(T+

x T−t
∂u
∂x

), (10)

η3 = 0.5(a + a+)(T+
x T−t

∂u
∂x
− ux).

The first, we define rectangles e = e(x, t) = {(ξ, ν) : ξ ∈ (x, x + h), ν ∈ (t − τ, t)}. Using linear transformations
ξ = x+hx∗, ν = t+τt∗, a single-sided mapping between e and rectangle E = {(x∗, t∗) : 0 < x∗ < 1, −1 < t∗ < 0}
is established. Also, let’s mark u∗(x∗, t∗) = u(x + hx∗, t + τt∗), a∗(x∗, t∗) = a(x + hx∗, t + τt∗).
Using Cauchy-Schwarz and Hölder’s inequality, we obtain the following estimate

|η1(x, t)| ≤
C
h
||a∗||W λ ,λ/2

q (E)||u
∗
||W µ ,µ/2

2q/(q−2)(E), λ ≥ 0, µ ≥ 1, q > 2.

Further, η1 = 0 whenever a∗ is a constant or u∗ is a polynomial of degree one in x∗ and a constant in t∗.
Applying Bramble-Hilbert lemma [4] we get:

|η1(x, t)| ≤
C
h
|a∗|W λ ,λ/2

q (E)|u
∗
|W µ ,µ/2

2q/(q−2)(E), 0 ≤ λ ≤ 1, 1 ≤ µ ≤ 2, q > 2.
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Going back to the old variables, using the condition c1h2
≤ τ ≤ c2h2, we have:

|a∗|W λ ,λ/2
q (E) ≤ Chλ−

3
q |a|W λ ,λ/2

q (e) and

|u∗|W µ ,µ/2
2q/(q−2)(E) ≤ Chµ−

3(q−2)
2q |u|W µ ,µ/2

2q/(q−2)(e).

Now, we have

|η1(x, t)| ≤ Chλ+µ−5/2
|a|W λ ,λ/2

q (e)|u|W µ ,µ/2
2q/(q−2)(e), 0 ≤ λ ≤ 1, 1 ≤ µ ≤ 2, q > 2. (11)

After summation over the mesh Q+
hτ = ωh × ω+

τ we get

||η1(x, t)||L2(Qhτ) ≤ Chλ+µ−1
||a||W λ ,λ/2

q (Q)||u||W µ ,µ/2
2q/(q−2)(Q), 0 ≤ λ ≤ 1, 1 ≤ µ ≤ 2, q > 2.

Further, using imbeddings

W λ+µ, (λ+µ)/2
2 (Q) ⊂W µ, µ/2

2q/(q−2)(Q), λ ≥ 3/q,

W λ+µ−1, (λ+µ−1)/2
2 (Q) ⊂W λ, λ/2

q (Q), µ ≥ 5/2 − 3/q

and taking λ = 1, q = 3, µ = s − 1 we have

||η1||L2(Qhτ) ≤ Chs−1(||a||W s−1, (s−1)/2
2 (QL)||u||W s, s/2

2 (QL) + ||a||W s−1, (s−1)/2
2 (QR)||u||W s, s/2

2 (QR)) , 2, 5 < s ≤ 3. (12)

Further,

η2 = (T+
x T−t a − 0.5(a + a+))(T+

x T−t
∂u
∂x

) = η21(T+
x T−t

∂u
∂x

),

where η21 = T+
x T−t a − 0.5(a + a+) . Using the continuity of the coefficient, we have

|η21(x, t)| ≤ C ‖a∗‖W λ,λ/2
2 (E) , λ > 3/2.

Further, η21(x, t) = 0 whenever a∗ is a polynomial of degree one in x∗ and a constant in t. Applying
Bramble-Hilbert lemma we get:

|η21(x, t)| ≤ C |a∗|W λ,λ/2
2 (E) , 3/2 < λ ≤ 2.

Going back to the old variables, we have

|a∗|W λ,λ/2
2 (E) ≤ Chλ−

3
2 |a|W λ,λ/2

2 (e) ,

and

|η21(x, t)| ≤ Chλ−
3
2 |a|W λ,λ/2

2 (e).

It’s further

|η2(x, t)| ≤ Chλ−3/2
|a|W λ,λ/2

2 (e)

∥∥∥∥∥∂u
∂x

∥∥∥∥∥
C(QL)

,

and analogous estimate is valid on QR. After summation over the mesh Q+
hτ we get

‖η2‖L2(Qhτ) ≤ Chλ
(
‖a‖W λ,λ/2

2 (QL)

∥∥∥∥∥∂u
∂x

∥∥∥∥∥
C(QL)

+ ‖a‖W λ,λ/2
2 (QR)

∥∥∥∥∥∂u
∂x

∥∥∥∥∥
C(QR)

)
.
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Further, using imbedding

∂u
∂x
∈Ws−1,(s−1)/2

2 (QL) ⊂ C(QL), s > 5/2,

analogous imbedding on QR and taking λ = s − 1 , 5/2 < s ≤ 3, finally obtain

‖η2‖L2(Qhτ) ≤ Chs−1(||a||W s−1, (s−1)/2
2 (QL)||u||W s, s/2

2 (QL) + ||a||W s−1, (s−1)/2
2 (QR)||u||W s, s/2

2 (QR)) , 5/2 < s ≤ 3. (13)

We have

η3 = 0.5(a + a+)(T+
x T−t

∂u
∂x
− ux) = 0.5(a + a+)η31 ,

where η31 = T+
x T−t

∂u
∂x − ux . The following estimate is valid:

|η31(x, t)| ≤
C
h
||u∗||W s, s/2

2 (E), s > 5/2.

Further, η31(x, t) = 0 whenever u∗ is a polynomial of degree two in x∗. Applying Bramble-Hilbert lemma we
get:

|η31(x, t)| ≤
C
h
|u∗|W s,s/2

2 (E) , 5/2 < s ≤ 3.

Going back to the old variables, we have

|u∗|W s,s/2
2 (E) ≤ Ch s− 3

2 |u|W s,s/2
2 (e) ,

and

|η31(x, t)| ≤ Ch s− 5
2 |u|W s,s/2

2 (e).

It’s further

|η3(x, t)| ≤ Chs−5/2
||a||C(QL)|u|W s,s/2

2 (e)

and analogous estimate is valid on QR. After summation over the mesh Q+
hτ we get

‖η3‖L2(Qhτ) ≤ Chs−1(‖a‖C(QL)||u||W s,s/2
2 (QL) + ‖a‖C(QR)||u||W s,s/2

2 (QR)) .

Using imbeddings Ws−1,(s−1)/2
2 (QL) ⊂ C(QL) ,Ws−1,(s−1)/2

2 (QR) ⊂ C(QR), s > 5/2 finally obtain

‖η3‖L2(Qhτ) ≤ Chs−1(||a||W s−1, (s−1)/2
2 (QL)||u||W s, s/2

2 (QL) + ||a||W s−1, (s−1)/2
2 (QR)||u||W s, s/2

2 (QR)) , 5/2 < s ≤ 3. (14)

From estimates (12)- (14) we have

‖η‖L2(Qhτ) ≤ Chs−1(||a||W s−1, (s−1)/2
2 (QL)||u||W s, s/2

2 (QL) + ||a||W s−1, (s−1)/2
2 (QR)||u||W s, s/2

2 (QR)) , 5/2 < s ≤ 3. (15)

Now we estimates the term µ̃. At the point x , ξwe have µ̃ = µ. We decompose term µ = µ̄1 + µ̄2 where

µ̄1 = (T2
xT−t b)(u − T2

xT−t u),
µ̄2 = (T2

xT−t b)(T2
xT−t u) − T2

xT−t (bu).
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At the point x = ξ we decompose term µ̃ = µ+
(1) + µ−(1) + µ+

(2) + µ−(2) where

µ±(1) = (T2±
x T−t b)

[
u − (T2±

x T−t u) ±
h
3

(
T−t
∂u
∂x

)] ∣∣∣∣∣∣
x=ξ±0

,

µ±(2) =

[
(T2±

x T−t b)(T2±
x T−t u) − T2±

x T−t (bu) ±
h
3

((T−t b) − (T2±
x T−t b)

(
T−t
∂u
∂x

)] ∣∣∣∣∣∣
x=ξ±0

.

Using the same technique as for terms ηi we can derive estimates of the form (11) for terms µ̄i and µ±(i). On
that way we get

‖µ̃‖L2(Qhτ) ≤ Chs−1(||b||W s−2, s/2−1
2 (QL)||u||W s, s/2

2 (QL) + ||b||W s−2, s/2−1
2 (QR)||u||W s, s/2

2 (QR)) , 5/2 < s ≤ 3. (16)

Let us estimate the term µ̂. At the point (x, t) ∈ ξ × ωτ we decompose term µ̂ = µ̂+
− µ̂−, where

µ̂± = −
h2

3
(T−t b(ξ ± 0, t))

(
T−t
∂u
∂x

(ξ ± 0, t)
)
.

The following estimate is valid:

|µ̂+(ξ + 0, t)| ≤ Ch|b(ξ + 0, t)|L2(t−τ,t)

∥∥∥∥∥∂u
∂x

∥∥∥∥∥
C(QR)

.

After summation over the mesh ωτ and using obvious imbeddings we have

‖µ̂+
‖L2(ξ×ωτ) ≤ Ch2

‖b(ξ + 0, ·)‖W λ−1/4
2 (0,T)‖u‖W s, s/2

2 (QR)

for λ > 1/4 and s > 5/2. Further, using imbedding W2λ,λ
2 (QR) ⊂ Wλ−1/4

2 (0,T) and taking λ = s/2 − 1, we
obtain

‖µ̂+
‖L2(ξ×ωτ) ≤ Ch2

‖b‖Ws−2,s/2−1
2 (QR)‖u‖W s, s/2

2 (QR). (17)

Analogous estimate is valid for the term µ̂−:

‖µ̂−‖L2(ξ×ωτ) ≤ Ch2
‖b‖Ws−2,s/2−1

2 (QL)‖u‖W s, s/2
2 (QL). (18)

From estimates (17)-(18) we have

‖µ̂‖L2(ξ×ωτ) ≤ Ch2(‖b‖Ws−2,s/2−1
2 (QL)‖u‖Ws,s/2

2 (QL) + ‖b‖Ws−2,s/2−1
2 (QR)‖u‖Ws,s/2

2 (QR)). (19)

Also, the following estimates are valid (see [9]):

‖φ̃‖W̃1/2
2 (ωτ,L2(ωh)) ≤ Chs−1

√
log

1
h

(‖u‖W s, s/2
2 (QL) + ‖u‖W s, s/2

2 (QR)) , 5/2 < s ≤ 3 , (20)

‖φ̂‖W̃1/2
2 (ωτ,ξ) ≤ Ch2

√
log

1
h

(‖u‖W s, s/2
2 (QL) + ‖u‖W s, s/2

2 (QR)) , 5/2 < s ≤ 3 . (21)

Finally from (9) and (15)- (21) we obtain the following result.

Theorem 3.1. Suppose that solution and coefficients of the differential problem (3) satisfy conditions (4)-(6). Then,
the solution of the difference scheme (7) converges in W̃1, 1/2

2 (Qhτ) to the solution of the differential problem (3) and,
assuming that τ � h2, the following estimate is valid:

‖u − v‖W̃1, 1/2
2 (Qhτ) ≤ Chs−1

(
‖a‖W s−1, (s−1)/2

2 (QL) + ‖a‖W s−1, (s−1)/2
2 (QR) + ‖b‖W s−2, s/2−1

2 (QL) + ‖b‖W s−2, s/2−1
2 (QR) + l(h)

)
×

(
‖u‖W s /s/2

2 (QL) + ‖u‖W s /s/2
2 (QR)

)
, 5/2 < s ≤ 3 , (22)

where l(h) =
√

log 1/h.
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