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Abstract.The aim of the paper is to obtain a new version of Serret-Frenet formulae for a quaternionic
curve in R4 by using the method given by Bharathi and Nagaraj. Then, we define quaternionic helices
in H named as quaternionic right and left X−helix with the help of given a unit vector field X. Since the
quaternion product is not commutative, the authors ([4], [7]) have used by one-sided multiplication to find
a space curve related to a given quaternionic curve in previous studies. Firstly, we obtain new expressions
by using the right product and the left product for quaternions. Then, we generalized the construction
of Serret-Frenet formulae of quaternionic curves. Finally, as an application, we obtain an example that
supports the theory of this paper.

1. Introduction

The quaternion number system was first defined by Irısh Mathematician Hamilton in 1843 and it was
applied to mathematics in R3. At first, quaternions were considered problematic because the commutative
property for multiplication in quaternions was not provided. Then, they were used to represent the
rotation and translation movements in geometry with their unique structures. Quaternions are used in
classical Newton physics, quantum physics, computer applications, and Astrophysics. Especially in recent
years, they have been used to obtain kinematic and dynamic expressions used in robotic applications and
animations.

The set of real quaternions corresponds to the 4-dimensional vector space R4 and its characteristic
greater than 2. Each element of the set is expressed q = ae1 + be2 + ce3 + de4 where a, b, c, d are ordinary
numbers and ei(1 ≤ i ≤ 4) is the standard orthonormal bases for R4 and satisfy the relations given in Eq.(1).
The Clifford algebra on R4 is denoted byH.

K. Baharatti and M. Nagaraj studied quaternionic curves in three-dimensional and four-dimensional
space and their Frenet formulas [7]. Then A.C. Coken and A. Tuna worked the differential geometry of
quaternionic curves in 4-dimensional semi-Euclidean space [1].

The velocity vector of a general helix in Euclidean space with a fixed direction makes a constant angle
along the curve. Quaternionic helices are helices defined using quaternions. Yoon characterized helices in
R4 by a constant function(K
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with the help of curvatures of quaternionic curves [3]. In the interesting paper, Aksoyak has obtained a new
version of Serret-Frenet formulae for the quaternionic curve inR4 by using a method similar to the method
given in [7] and called it Type 2-Quaternionic Frame [4]. Also, she has given an application of this new type
of the quaternionic frame by an example. Except for them, many authors have reported on quaternionic
curves by using the quaternionic Frenet formulas and defined some new special quaternionic curves in ([5],
[6], [8], [9], [11], [12]).

In this study, we give a new perspective finding the Frenet formulas of quaternionic curves. In this
perspective, first of all, we consider a smooth unit quaternion X along to quaternionic curve β and we

define a new unit quaternion Y(s) =
1

‖X′ (s)‖
X′

(s) in terms of X. Although the quaternion product does

not provide the commutative property for the multiplication, in the previous studies, were used by one-
sided multiplication by some researchers. Then we obtain two space curves with their frames

{
ξi, ηi, %i

}
for

i = R or i = L, and they are related to the quaternionic curve β. Furthermore, we want to emphasize that
ξR (s) = Y(s)× X̄(s) and ξL (s) = X̄(s)×Y(s) along to the paper. As a result, we construct two new expressions
of the Serret-Frenet frame of the quaternionic curve β using the right product and the left product. Finally,
we introduce new quaternionic helices inH named as quaternionic right and left X−helices with the help of
a general quaternionic frame. It is possible to say that the paper is the generalization of the theory in ([3],
[4], [7]).

2. Basic concepts and background

We now mention basic concepts on real quaternion algebra. Denote the algebra of real quaternions by
H and its natural basis by {e1, e2, e3, e4}. The multiplication ofH is defined as follows:

ei × ei = −e4, e4 = 1 (1 ≤ i ≤ 3)
ei × e j = −e j × ei = ek (1 ≤ i, j ≤ 3) (1)

where (i jk) is even permutation of (123). An element of H is called a real quaternion and is denoted
by q = ae1 + be2 + ce3 + de4. A real quaternion q can also expressed as q = Sq + Vq where Sq = d and
Vq = ae1 + be2 + ce3 are named as the scalar and vector part of q ∈ H, respectively. If Sq = 0, then real
quaternion q is called a pure real quaternion.

The conjugate of q = Sq + Vq = ae1 + be2 + ce3 + de4 ∈H is denoted by q̄ and given by

q̄ = Sq − Vq = de4 − ae1 − be2 − ce3. (2)

Let p = Sp + Vp and q = Sq + Vq be any two elements ofH and the product of p and q is defined by

p × q = SpSq− < Vp,Vq > +SpVq + SqVp + Vp ∧ Vq (3)

where <,> and ∧ denote the inner product and cross product in R3, respectively.
We give quaternionic inner product h (see [7] ) as follows:

h : H ×H −→ H

(p, q) −→ h(p, q) =
1
2
(
p × q̄ + q × p̄

) (4)

and the norm of any real quaternion q = ae1 + be2 + ce3 + de4 is denoted by the equality

Nq =
∥∥∥q

∥∥∥2
= h(q, q) = q × q̄ = q̄ × q = a2 + b2 + c2 + d2.

If Nq = 1, then q is called a unit real quaternion.
On the other hand, a curve α : I→ Rn is said to ccr-curve (that is to say, it has constant curvature ratios)

if all the ratios
ki+1

ki
are constant for 1 ≤ i ≤ n − 2, [10].
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3. A Generalization of Quaternion Valued Frame and an Application in R4

First of all, we give Serret Frenet Formulas for quaternionic curves in R3 and R4 given by Bharathi and
Nagaraj [7]. Then we construct a general quaternionic frame for a quaternionic curve inH by using a similar
method of Bharathi and Nagaraj. As an application, we obtain the same helical curves that generalized the
papers [3] and [9]. The definitions and characterizations of quaternionic helices via quaternionic right or
left frame are similar. Hence in the following section, we consider the quaternionic right frame.

Theorem 3.1. Let γ = γ(s) be a unit speed spatial quaternionic curve in R3 with its Frenet frame {t(s),n(s), b(s)}
and curvatures {k(s), r(s)}. Then, the Frenet formulas are denoted by

t′(s) = k(s)n(s)
n′(s) = −k(s)t(s) + r(s)b(s)
b′(s) = −r(s)n(s)

(5)

where t(s) = γ′(s) is unit tangent, k(s) = ‖t′(s)‖ is the principal curvature, n(s) is unit principal normal, b(s) =
t(s) × n(s) is binormal, where × denotes the quaternion product and r(s) is the torsion of γ(s). Moreover these Frenet
vectors hold h(t, t) = h(n,n) = h(b, b) = 1 and h(t,n) = h(t, b) = h(n, b) = 0 [7].

If we denote the vectors n(s), c(s) =
n′(s)
‖n′(s)‖

= −
k
f

t +
r
f

b and w(s) = n(s) × c(s) =
r
f

t +
k
f

b along to the

spatial quaternionic curve γ inR3. Then, we can construct an alternative moving quaternionic frame along
the curve γ in R3 with the help of a similar method in [2]. Then, we can find a new alternative moving
quaternionic frame {n(s), c(s),w(s)} and new curvature functions

{
f (s), 1(s)

}
of γ. It is easily calculate that

f =
√

k2 + r2 and 1 =
k2

k2 + r2

( r
k

)′
which are named as curvatures of the curve γ in terms of the alternative

moving quaternionic frame. Moreover these new alternative moving quaternionic frame vectors hold
h(n,n) = h(c, c) = h(w,w) = 1 and h(n, c) = h(n,w) = h(c,w) = 0. Consequently, the above expressions give
that the Frenet formulas of alternative moving quaternionic frame with the following theorem.

Theorem 3.2. Let γ = γ(s) be a unit speed spatial quaternionic curve in R3 with its new Frenet apparatus{
n(s), c(s),w(s); f (s), 1(s)

}
. Then, the derivatives of alternative moving quaternionic frame are given by

n′(s) = f (s)c(s),
c′(s) = − f (s)n(s) + 1(s)w(s),
w′(s) = −1(s)c(s).

(6)

Theorem 3.3. The four-dimensional Euclidean spaceR4 is identified with the space of unit quaternions. Let I = [0, 1]
be an interval in the real line R and s ∈ I be the arc-length parameter along the curve

β : I ⊂ R −→ H
s −→ β(s) = β0(s)e1 + β1(s)e2 + β2(s)e3 + β3(s)e4

where β = β(s) is called a quaternionic curve inH. Considering the Frenet vectors {T(s),N1(s),N2(s),N3(s)} and
non-zero curvatures {K(s), k(s), (r − K) (s)} , the Frenet formulas are denoted by

T′ (s) = K(s)N1(s),
N′1(s) = −K(s)T(s) + k(s)N2(s),
N′2(s) = −k(s)N1(s) + (r − K) (s)N3(s),
N′3(s) = − (r − K) (s)N2(s).

(7)

where T(s) = β′(s) is a unit tangent vector, N1(s),N2(s),N3(s) are unit normal vectors of the curve β(s). Moreover,
K(s) = ‖T′(s)‖ , k(s) and (r − K) (s) denote the principal curvature, the torsion and the bitorsion of the curve β(s),
respectively [7].
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Remark 3.4. Bharathi and Nagaraj [7] introduced the Serret-Frenet formulae and Frenet apparatus of the curve β in
R4 by using the Serret-Frenet formulae of the curve γ in R3 with the following theory:

Assume that γ is a spatial quaternionic curve with Frenet apparatus

{t(s),n(s), b(s); k(s), r(s)}

and β is a quaternionic curve with Frenet apparatus

{T(s),N1(s),N2(s),N3(s); K(s) k(s), (r − K) (s)} .

The quaternionic curve β is related to the spatial quaternionic curveγbecause that the unit spatial quaternion
N1 × T̄ is equal to the unit tangent vector t of the curve γ in [7]. And then, by using the Frenet vectors and
curvatures functions of the curve γ in R3, the other Frenet vectors and curvatures of the curve β in H are
obtained. The Frenet vectors β satisfying the following equalities:

N1 = t × T, t = N1 × T̄, N2 = n × T, N3 = b × T, (8)
h(T,T) = h(N1,N1) = h(N2,N2) = h(N3,N3) = 1,

h(T,N1) = h(T,N2) = h(T,N3) = h(N1,N2) = h(N2,N3) = 0.

We want to emphasize that the torsion of β is the principal curvature of the curve γ and the bitorsion of β
is (r − K), where r is the torsion of γ and K is the principal curvature of β.

Theorem 3.5. Let I = [0, 1] be an interval in the real line R and s ∈ I be the arc-length parameter along the
quaternionic curve

β : I ⊂ R −→ H
s −→ β(s) = β0(s)e1 + β1(s)e2 + β2(s)e3 + β3(s)e4

Considering the Frenet vectors {T(s),N1(s),N2(s),N3(s)} and non-zero curvatures {K(s), r(s), (K − k) (s)} , the Frenet
formulas are denoted by

T′ (s) = K(s)N1(s),
N′1(s) = −K(s)T(s) − r(s)N2(s),
N′2(s) = r(s)N1(s) + (K − k) (s)N3(s),
N′3(s) = − (K − k) (s)N2(s).

(9)

where T(s) = β′(s) is a unit tangent vector, N1(s),N2(s),N3(s) are unit normal vectors of the curve β(s). Moreover,
K(s) = ‖T′(s)‖ , −r(s) and (K − k) (s) denote the principal curvature, the torsion and the bitorsion of the curve β(s),
respectively [4].

Remark 3.6. Aksoyak [4] introduced a new approach to constructing the Serret-Frenet formulae and Frenet apparatus
of the curve β in R4 by using the Serret-Frenet formulae of the curve γ in R3 with the following theory:

Assume that γ is a spatial quaternionic curve with Frenet apparatus

{t(s),n(s), b(s); k(s), r(s)}

and β is a quaternionic curve with Frenet apparatus

{T(s),N1(s),N2(s),N3(s); K(s) k(s), (r − K) (s)} .

The quaternionic curve β is related to the spatial quaternionic curveγbecause that the unit spatial quaternion
N1 × T̄ is equal to the unit binormal vector b of the curve γ in [4]. And then by using the Frenet vectors and
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curvatures functions of the curve γ in R3, the other Frenet vectors and curvatures of β in H are obtained.
The Frenet vectors β satisfying the following equalities:

N1 = b × T, b = N1 × T̄, N2 = n × T, N3 = t × T, (10)
h(T,T) = h(N1,N1) = h(N2,N2) = h(N3,N3) = 1

h(T,N1) = h(T,N2) = h(T,N3) = h(N1,N2) = h(N2,N3) = 0.

We want to emphasize that the torsion of β is the torsion of the curve γ and the bitorsion of β is (K − k),
where k is the principal curvature of γ and K is the principal curvature of β .

Now, in the present paper, we define a new alternative moving quaternionic frame of the quaternionic
curve of β inHwith the help of a similar method given in [4]. This new quaternionic frame is a generalization
of the frames given in [4] and [7], and it is given with the following theorems. Furthermore, we will give a
Corollary which is one of the special cases of our theory but different from the theories in [4] and [7].

Theorem 3.7. (Main Theorem) Let X be a smooth unit quaternion function of s in H and Y be a unit quaternion

function constructed by X with the following equality Y(s) =
1

‖X′ (s)‖
X′

(s). Then considering the quaternionic curve

β : I ⊂ R −→ H
s −→ β(s) = β0(s)e1 + β1(s)e2 + β2(s)e3 + β3(s)e4

related to pure quaternionic curve γi = γi(s) (for i = R and i = L we get ξR (s) = Y(s)× X̄(s) and ξL (s) = X̄(s)×Y(s),
respectively.) we can introduce two different types Frenet formulas with the help of X(s) along the curve β. Here

the most important point is that

ξi(s), ηi =
ξ′i∥∥∥ξ′i∥∥∥ , %i(s) = ξi(s) × ηi ; r1(s), r2(s)

 is the general moving orthonormal

quaternionic frame of the curve γi. And we can note that it is constructed by the quaternionic curve β.
Type I (Right Frenet Frame):

X′

(s) = r3(s)Y(s),
Y′(s) = −r3(s)X(s) + r1(s)Z(s),
Z′(s) = −r1(s)Y(s) + (r2 − r3) (s)W(s),
W′(s) = − (r2 − r3) (s)Zs).

(11)

where
{
X(s),Y(s),Z(s) = ηR (s) × X(s),W(s) = %R (s) × X(s)

}
define an orthonormal frame along the curve β with

condition ξR = Y× X̄. And then, r3(s) = ‖X′(s)‖ , r1(s) and (r2 − r3) (s) are non-zero principal curvature, torsion and
bitorsion of the curve β, respectively.

On the other hand, we should say a critical point that r1 and r2 are general curvatures and torsion of the curve γR ,
respectively.

Type II (Left Frenet Frame):

X′ (s) = r3(s)Y(s),
Y′(s) = −r3(s)X(s)+r1(s)Z(s),
Z′(s) = −r1(s)Y(s)+ (r2+r3) (s)W(s),
W′(s) = − (r2+r3) (s)Z(s).

(12)

where
{
X(s),Y(s),Z(s) = X(s) × η

L
(s),W(s) = X(s) × %

L
(s)

}
define an orthonormal frame along the curve β with

condition ξL = X̄ × Y, r3(s) = ‖X′(s)‖ , r1(s) and (r2+r3) (s) are non-zero principal curvature, torsion and bitorsion of
the curve β, respectively.

On the other hand, we should say an important point that r1 and r2 are general curvatures and torsion of the curve
γL, respectively.
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Proof. Let β be a smooth quaternionic curve with the arc-length parameter s and X be a smooth unit
quaternion function of s in R4. Since ‖X(s)‖ = 1, the curve β can be determined by X(s) = β′(s). Then by
using the definition of quaternionic inner product given in Eq.(4) we can write

X × X̄ = 1. (13)

The differantiation of the Eq.(13) with respect to parameter s, we obtained

X′ × X̄ + X × X̄′ = 0. (14)

The equality (14) implies two interesting and important results that first one is X′(s) is h-orthogonal to X,
that is, h(X(s),X′(s)) = 0 and second one is X′(s) × X̄(s) is a smooth unit spatial quaternion. Furthermore,
the principal curvature of the curve β is written by r3(s) = ‖X′(s)‖ and then we can construct a new smooth

unit quaternion function Y =
1

r3(s)
X′(s) of the parameter s in R4. It gives us

X′(s) = r3(s)Y(s), ‖Y(s)‖ = 1. (15)

Then the equations (14) and (15) imply that

Y × X̄ + X × Ȳ = 0. (16)

The equality (16) gives us that Y(s) is h-orthogonal to X(s), that is, h(Y(s),X(s)) = 0 and Y(s) × X̄(s)
or X̄(s) × Y(s) is a spatial quaternion. Hence we can determine two-unit spatial quaternions such that
ξR (s) = Y(s) × X̄(s) or ξL (s) = X̄(s) × Y(s). We can construct two different frames of the curve β in terms of
them. Let′s consider the unit and smooth spatial quaternion ξR because that the other one can be easily
obtained using a similar method. It is clear that ξR is a unit spatial quaternion since both X and Y are unit
quaternions in R4.

Since ξR a unit spatial quaternion, we can write Y(s) as follows:

Y = ξR × X where ξR = Y × X̄ along the curve β. (17)

The point that ξR is determined uniquely as a smooth unit spatial quaternion via the Eq.(17). Hence we can

determine a new spatial quaternionic curveγ = γ(s) inR3 with an orthonormal frame
{
ξR , ηR =

ξR

‖ξR‖
, %R = ξR × ηR

}
on γ(s). By using a similar method to construct Frenet formulae for a spatial quaternionic curve inR3 given
in [7], we can easily construct general spatial quaternionic Frenet formulae as follows: ξ

′

R
(s)

η′
R
(s)

%′
R
(s)

 =

 0 r1(s) 0
−r1(s) 0 r2(s)

0 −r2(s) 0


 ξR (s)
ηR (s)
%R (s)

 (18)

where r1(s) =
∥∥∥ξR (s)

∥∥∥ and r2(s) are the curvature and torsion of the curve β(s) in the 3−dimensional space,
respectively.

By differentiating the (17) with respect to s and using the Eqs.(15) and (18), we have

Y′(s) = r1(s)ηR (s) × X(s) + r3(s)ξR (s) × Y(s). (19)

If we define a unit and smooth quaternion

Z(s) = ηR (s) × X(s) (20)

then using the Eq.(17), the Eq.(19) can be rewritten by

Y′(s) = −r3(s)X(s) + r1(s)Z(s). (21)
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About the quaternion Z(s), it is easy to see that

h(X,Z) = h(Y,Z) = 0 and h(Z,Z) = 1,

hence the quaternion Z(s) is unit and h-orthogonal to the unit quaternions X(s) and Y(s).
Similarly, by taking derivatives of the Eq.(20) with respect to s and using the Eqs.(15) and (18), we get

Z′(s) = −r1(s)ξR (s) × X(s) + r2(s)%R (s) × X(s) + ηR (s) × ξR (s) × Y(s)

or defining a unit and smooth quaternion

W(s) = %R (s) × X(s) (22)

and using the Eq.(17) we have

Z′(s) = −r1(s)Y(s) + (r2 − r3) (s)W(s) (23)

Then it can be easily calculated that

h(X,W) = h(Y,W) = h(Z,W) = 0 and h(W,W) = 1,

hence the quaternion W(s) is unit and h-orthoganal to the unit quaternions X(s),Y(s) and Z(s).
Finally, by taking derivatives of the Eq.(22) with respect to s and using the Eqs.(15), (17) and (18),

we obtain

W′(s) = − (r2 − r3) (s)Z(s). (24)

With the help of the Eqs.(15), (19), (23) and (24) we have the Eq.(11).
The new orthonormal Frenet elements {X(s),Y(s),Z(s),W(s)} in the 4-dimensional space of the quater-

nionic curve β(s) is named as general Type I Frenet formulas of β.
With the help of ξL (s) = X̄(s) × Y(s) and similar operations of Type I, the new Frenet elements

{X(s),Y(s),Z(s),W(s)} in the 4-dimensional space of the quaternionic curve β(s) curve are obtained as Type
II Frenet formulas in (12). Thus, the proof is completed.

In the following notes, we will introduce a new approach to constructing the Serret-Frenet formulae and
Frenet apparatus of the curve β in R4 in terms of alternative Frenet frame of spatial quaternionic curve γ in
R3.

Assume that γ is a spatial quaternionic curve with alternative Frenet apparatus{
n(s), c(s),w(s); f (s), 1(s)

}
and β is a quaternionic curve with Frenet apparatus

{T(s),N1(s),N2(s),N3(s); K(s) k(s), (r − K) (s)} .

The quaternionic curve β is related to the spatial quaternionic curve γ because of the fact that the unit spatial
quaternion N1 × T̄ is equal to the unit normal vector n of the curve γ in R3. And then by using the Frenet
vectors and curvatures functions of the curve γ in R3, the other Frenet vectors and curvatures of β inH are
obtained. The Frenet vectors β satisfying the following equalities:

N1 = n × T, n = N1 × T̄, N2 = c × T, N3 = w × T, (25)
h(T,T) = h(N1,N1) = h(N2,N2) = h(N3,N3) = 1

h(T,N1) = h(T,N2) = h(T,N3) = h(N1,N2) = h(N2,N3) = 0.

Considering the above construction, we can give the following corollary for the quaternionic curve β inH.
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Corollary 3.8. Let β = β(s) be a unit speed quaternionic curve in H with an alternative Frenet apparatus
{T(s),N1(s),N2(s),N3(s),K(s), f (s), (1 − K)(s)}. Then the new alternative Frenet formulas of the curve β are de-
noted by

T′ (s) = K(s)N1(s),
N′1(s) = −K(s)T(s) + f (s)N2(s),
N′2(s) = − f (s)N1(s) +

(
1 − K

)
(s)N3(s),

N′3(s) = −
(
1 − K

)
(s)N2(s).

(26)

where f (s) =
(
k2 + r2

)1/2
(s), 1(s) =

k2

(k2 + r2)3/2

( r
k

)′
, T(s) = β′(s) is unit tangent vector, N1(s),N2(s),N3(s) are unit

normal vectors of the curve β(s). Moreover K(s) = ‖T′(s)‖ , f (s) and
(
1 − K

)
(s) denote the principal curvature, the

torsion and the bitorsion of the curve β(s), respectively.

Definition 3.9. Let β(s) : I ⊂ R→H be a quaternionic curve with non-zero curvatures inH and
{X(s),Y(s),Z(s),W(s)} be an orthonormal frame on along curve β(s). We call the curve β(s) as a quaternionic right
X−helix if the unit vector fields X makes a constant angle θ with a fixed and unit direction UR , that is,

h(X,UR ) = cosθ, θ = constant ,
π
2

where
∥∥∥UR (s)

∥∥∥ = 1 and UR is a constant reel quaternion named as the axis of the curve β for all s ∈ I with the unit
vector space on X(s).

Theorem 3.10. Let β(s) : I ⊂ R → H be an arc-lengthed parameter real quaternionic curve and X be a unit real
quaternion ofH such that

{X(s),Y(s),Z(s),W(s); r3(s), r1(s), (r2 − r3)(s)}

is Frenet apparatus of the quaternionic curve along the curve β. If the curve β is a real quaternionic right X−helix,
then the axis of the β is given by

UR (s) = (Q(s) × X(s)) cosθ

where ρ(s) =
r3(s)
r1(s)

, σ(s) =
ρ′(s)

(r2 − r3) (s)
and Q(s) = 1 + ρ(s)ηR (s) + σ(s)ρR (s) is a real quaternion.

Proof. Assume that β(s) is a quaternionic right X-helix with non-zero curvatures in H. Then the
Definition (3.9) gives us

h(X,UR ) = cosθ, θ ,
π
2
, θ = constant (27)

If we differantiate (27) with respect to s this equation, we obtain that

h(X′,UR ) = 0

and considering the Eq.(11) we have

h(Y,UR ) = 0. (28)

Again if we differantiate the last equation and applying the equation (11) we get

h(Z,UR ) = ρ(s)h(X,UR ) =
r3(s)
r1(s)

cosθ. (29)
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The differantiation of the (29) via the equation (11) gives us

h(Z′,UR ) = ρ′(s) cosθ.

Since h(Y,UR ) = 0 the last equality can be written as

h(W(s),UR ) = σ(s) cosθ (30)

Consequently, the axis of the right X-helix can be easily given by

UR (s) = (Q(s) × X(s)) cosθ

where ρ(s) =
r3(s)
r1(s)

, σ(s) =
ρ′(s)

(r2 − r3) (s)
and Q(s) = 1 + ρ(s)ηR (s) + σ(s)ρR (s) is a real quaternion. Hence the

proof is completed.

Definition 3.11. Let β : I ⊂ R → H be a regular real quaternionic curve given by arc-lengthed parameter s and

{X(s),Y(s),Z(s),W(s); r3(s), r1(s), (r2 − r3)(s)} be the Frenet apparatus of the curve β. If we consider ρ(s) =
r3(s)
r1(s)

and

σ(s) =
ρ′(s)

(r2 − r3) (s)
then the real quaternion,

D = Q(s) × X(s)
= X(s) + ρ(s)Z(s) + σ(s)W(s)

is called the Darboux quaternion of real quaternionic right X-helix β.

Corollary 3.12. Let β : I ⊂ R→H be an arc-lengthed real quaternionic curve given and
{X(s),Y(s),Z(s),W(s); r3(s), r1(s), (r2 − r3)(s)} be the Frenet apparatus of the curve β. Then β is a real quaternionic
right X-helix if and only ifD is a constant real quaternion.

Proof. It can be easily proved with the help of Theorem 3.10.

Theorem 3.13. Let β : I ⊂ R→H be an arc-lengthed real quaternionic curve given and
{X(s),Y(s),Z(s),W(s); r3(s), r1(s), (r2 − r3)(s)} be the Frenet apparatus of the curve β. Then β is a real quaternionic
right X-helix if and only if

ρ2(s) + σ2(s) (31)

is a constant function where ρ(s) =
r3(s)
r1(s)

and σ(s) =
ρ′(s)

(r2 − r3) (s)
.

Proof. Let β(s) be a real quaternionic X-helix inH and the axis of the curve β(s) be the unit vector UR (s).
Then, we have h(X(s),UR (s)) is a constant along to the curve. By differentiating this constant equation with
the respect to s and using the right helix frame formulas in (11), we have

0 =
d
ds

h(X(s),UR (s)) =
1
2

d
ds

(X(s) × ŪR(s) + UR (s) × X̄(s))

=
1
2

(X′(s) × ŪR(s) + UR (s) × X̄′(s))

= h(X′(s),UR (s))
= r3(s)h(Y(s),UR (s)).

Therefore, the unit vector UR (s) can be written as follows:

UR (s) = a1X(s) + a2(s)Z(s) + a3(s)W(s) . (32)
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where h(X(s),UR (s)) = a1 = constant, h(Z(s),UR (s)) = a2(s), h(W(s),UR (s)) = a3(s) and a2
1 + a2(s)2 + a3(s)2 = 1.

If we differentiate the Eq.(32), we have

(a1r3 − a2r1) (s)Y(s) + a′2 − a3)(s) (r2 − r3) (s)Z(s) + a′3 + a2)(s) (r2 − r3) (s)W(s) = 0,

and then it implies that

a1(s)r3(s) − a2(s)r1(s) = 0,
a′2(s) − a3(s) (r2 − r3) (s) = 0,(
a′3(s) + a2(s) (r2 − r3) (s)

)
= 0.

The above equalities gives us

a2(s) = ρ(s)a1(s) = −
a′3(s)

(r2−r3)(s) , (33)

a′2(s) = a3(s) (r2 − r3) (s).

By differentiating the first equation of (33) and using the second equation of (33), we obtain the ODE for
a3(s) as follows

a′′3 (s) −
(r2 − r3)′(s)
(r2 − r3)(s)

a′3 + (r2 − r3)2(s)a3 = 0. (34)

If we change variable in (34) as t =
∫ s

0 (r2 − r3)(s)ds, then the equation (34) becomes

d2

dt2 a3(s) + a3(s) = 0. (35)

Thus, the solution of the differential equation (35) is given by

a3(s) = A cos t(s) + B sin t(s), (36)

for some constants A and B. From the first equation of (33) and (36), we find

a2(s) = a1(s)ρ(s) = A sin t(s) − B cot t(s),
a3(s) = σ(s)a1(s) = A cos t(s) + B sin t(s).

From the above equations, we obtain

A = a1(s)
(
ρ(s) sin t(s) + σ(s) cos t(s)

)
,

B = a1(s)
(
σ(s) sin t(s) − ρ(s) cos t(s)

)
which imply that

A2+B2 = a2
1(s)

(
ρ2(s) + σ2(s)

)
.

Thus, we have the equation (31).
Conversely, if the condition (31) holds, then we can always find a constant unit vector UR satisfying

h(X,UR ) =constant. We consider the unit vector defined by

UR (s) = X(s) + ρ(s)Z(s) + σ(s)W(s). (37)

Differentiation of UR is equal to zero, that is, U′
R

= 0 means that UR is a constant vector. Consequently, the
curve β(s) is a general right X-helix inH.
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Corollary 3.14. Let β : I ⊂ R→H be an arc-lengthed quaternionic curve given and
{X(s),Y(s),Z(s),W(s); r3(s), r1(s), (r2 − r3)(s)} be the Frenet apparatus of the curve β. Then β is a real quaternionic
right X-helix if and only if

ρ(s)(r2 − r3)(s) + σ′(s) = 0.

Proof. Assume that β is a real quaternionic right X-helix. Then the Corollary 3.12 gives usD is a constant
real quaternion. If we differentiateD along the curve β and use the Eq. (11) we get ρ(s)(r2− r3)(s) +σ′(s) = 0.
Conversely if the equation ρ(s)(r2 − r3)(s) + σ′(s) = 0 holds it is easy to obtain thatD′ = 0 orD is a constant
real quaternion. Hence, the curve β is a real quaternionic right X-helix. This completes the proof.

Corollary 3.15. Let β : I ⊂ R → H be an arc-lengthed real quaternionic curve with quaternionic Frenet apparatus
{X(s),Y(s),Z(s),W(s); r3(s), r1(s), (r2 − r3)(s)} and the curve γ(s) =

∫
t(s)ds be the spatial quternionic curve related

to the curve β. If the curve β is a quaternionic CCR curve (see [5] and [10]) then the curve γ is a helix in R3.

Proof. Let β be an arc-lengthed real quaternionic CCR curve with its curvatures r3, r1, (r2 − r3) and
γ(s) =

∫
ξR (s)ds be the spatial quaternionic curve whose curvatures r1, r2. Since β is real quaternionic CCR

curve
r3

r1
and

r2 − r3

r1
are constants. Then it is easy to show that

r2

r1
is constant. So, the curve γ is a helix in

R3.

Example 3.16. Let β = β(s) = cos
s
√

3
+ sin

s
√

3
~e1 +

s
√

3
~e2 +

s
√

3
~e3 be a quaternionic helix curve inH. Now, we

will determine the spatial quaternionic curves γ = γ(s) in R3 associated with the quaternionic curve β inH.
The quaternionic frame of the quaternionic helix curve β is calculated in terms of the theory given in [7].
The unit tangent vector β is given by

X(s) = T(s) = β′(s) =
1
√

3

(
− sin

s
√

3
, cos

s
√

3
, 1, 1

)
. (38)

The principal curvature of β is r3 = ‖X′(s)‖ =
1
3
. Then the principal normal vector of β is

Y(s) = N1(s) =

(
− cos

s
√

3
,− sin

s
√

3
, 0, 0

)
. (39)

Since N1× T̄ is a spatial quaternion, Bharathi and Nagaraj considered that N1× T̄ = t where t is a unit tangent vector
of a space curve γ. It is given by

ξR (s) = t(s) = N1 × T̄ =
1
√

3

(
1, cos

s
√

3
− sin

s
√

3
, cos

s
√

3
+ sin

s
√

3

)
and integration of the last equation gives us

γR (s) =

∫
t(s)ds =

(
s
√

3
, sin

s
√

3
+ cos

s
√

3
, sin

s
√

3
− cos

s
√

3

)
.

By applying the Frenet formulas in three-dimension real space, we obtain the other Frenet vectors of γ and
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we obtain curvatures of γ as follows:

ηR (s) = n(s) =
1
√

2

(
0,− sin

s
√

3
− cos

s
√

3
,− sin

s
√

3
+ cos

s
√

3

)
,

%R (s) = b(s) =
1
√

6

(
2,− cos

s
√

3
+ sin

s
√

3
,− cos

s
√

3
− sin

s
√

3

)
,

r1(s) = k(s) = ‖t′‖ =

√
2

3
,

r2(s) = r(s) =
1
3
,

(r2 − r3) (s) = r(s) − K(s) = 0.

From the following equalities Z(s) = N2(s) = n(s) × T(s) and W(s) = N3(s) = b(s) × T(s) we can calculate

Z(s) = N2(s) =
1
√

6

(
2 sin

s
√

3
,−2 cos

s
√

3
, 1, 1

)
,

W(s) = N3(s) = (0, 0,−
1
√

2
,

1
√

2
).

Similarly considering we can easily find the principal normal vector of the spatial quaternionic curve γL as:

ξL (s) = t(s) = T̄ × N1 =
1
√

3

(
1, sin

s
√

3
+ cos

s
√

3
, cos

s
√

3
− sin

s
√

3

)
and integration of the last equation gives us

γL (s) =

∫
t(s)ds =

(
s
√

3
, sin

s
√

3
− cos

s
√

3
+, sin

s
√

3
+ cos

s
√

3

)
.

By applying the Frenet formulas in three-dimension real space, we obtain the other Frenet vectors of γ and
we obtain curvatures of γ as follows:

ηL (s) = n(s) =
1
√

2

(
0, cos

s
√

3
− sin

s
√

3
,− sin

s
√

3
− cos

s
√

3

)
,

%L (s) = b(s) =
1
√

6

(
−2, cos

s
√

3
+ sin

s
√

3
, cos

s
√

3
− sin

s
√

3

)
,

k(s) = r1(s) = ‖t′‖=
√

2
3
,

r(s) = r2(s) =
1
3
.

From the following equalities Z(s) = N2(s) = T(s) × n(s) and W(s) = N3(s) = T(s) × b(s) we can calculate

Z(s) = N2(s) =
1
√

6

(
2 sin

s
√

3
,−2 cos

s
√

3
, 1, 1

)
,

W(s) = N3(s) =(0, 0,−
1
√

2
,

1
√

2
).

The quaternionic frame of the quaternionic helix curve β is calculated in terms of the theory given in [4](see
for details Example 6).
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Now we need to consider the quaternionic curve β given in [4] and determine the spatial quaternionic
curves γR and γL whose principal normal vectors are equal to N1 × T̄ and T̄×N1, respectively. Furthermore,
we know that the spatial quaternionic curves γR and γL are associated with the quaternionic curve β(s).

With the help of (38) and (39), we can simply find the principal normal vector of the spatial quaternionic
curve γR as

ξR (s) = n(s) = N1 × T̄ =
1
√

3

(
1, cos

s
√

3
− sin

s
√

3
, cos

s
√

3
+ sin

s
√

3

)
by applying the Theorem 3.2, we obtain the other alternative Frenet frame vectors of γ and we obtain
curvatures of γ as follows:

ηR (s) = c(s) =
1
√

2

(
0,− sin

s
√

3
− cos

s
√

3
,− sin

s
√

3
+ cos

s
√

3

)
,

%R (s) = w(s) =
1
√

6

(
2,− cos

s
√

3
+ sin

s
√

3
,− cos

s
√

3
− sin

s
√

3

)
,

f =
√

k2 + r2 = ‖n′‖ =

√
2

3
,

1 = 0

where we consider that k = r = 1
3 .

On the other hand, since there is ~c = −
r1

f
~t +

r2

f
~b and w =

r2

f
~t +

r1

f
~b, then there is

dγ
ds

= t =
r2

f
~w−

r1

f
~c. This

question is r2
1 + r2

2 = 2
9 because its f =

√
r2

1 + r2
2 =

√
2

3
. If r1 = 1

3 and r2 = 1
3 are selected then

dγ
ds

= t = ( 1
√

3
,
√

3−1
2
√

3
cos s

√
3

+
√

3+1
2
√

3
sin s

√
3
,−
√

3+1
2
√

3
cos s

√
3

+
√

3−1
2
√

3
sin s

√
3
)

γR =
(

s
√

3
,
√

3−1
2 sin s

√
3
−

√
3+1
2 cos s

√
3
,−
√

3+1
2 sin s

√
3

+ 1−
√

3
2 cos s

√
3
)
)
.

From the following equalities Z(s) = N2(s) = c(s) × T(s) and W(s) = N3(s) = w(s) × T(s) we can calculate

Z(s) =
1
√

6

(
2 sin

s
√

3
,−2 cos

s
√

3
, 1, 1

)
,

W(s) =
1
√

2
(0, 0,−1,−1),

(r2 − r3) (s) = r(s) − K(s) = 0.

Similarly considering we can easily find the principal normal vector of the spatial quaternionic curve γL as

ξL (s) = n(s) = T̄ × N1 =
1
√

3

(
1, cos

s
√

3
+ sin

s
√

3
, cos

s
√

3
− sin

s
√

3

)
by applying the Theorem 3.2, we obtain the other alternative Frenet frame vectors of γ and we obtain
curvatures of γ as follows:

ηL (s) = c(s) =
1
√

2

(
0, cos

s
√

3
− sin

s
√

3
,− sin

s
√

3
− cos

s
√

3

)
,

%L (s) = w(s) =
1
√

6

(
−2, cos

s
√

3
+ sin

s
√

3
, cos

s
√

3
− sin

s
√

3

)
,

f =
√

k2+r2 = ‖n′‖ =

√
2

3
,

1 = 0
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(a) (b)

Figure 1: (a) Orthogonal projection for X = 0, (b) Orthogonal projection for Y = 0.

(a) (b)

Figure 2: (a) Orthogonal projection for Z = 0, (b) Orthogonal projection for W = 0.

where we consider that k = r = 1
3 .

On the other hand, since there is c̃ = −
r1

f
t̃+

r2

f
b̃ and w =

r2

f
t̃+

r1

f
b̃, then there is

dγ
ds

= t =
r2

f
w̃−

r1

f
c̃. This

question is r2
1+r2

2=
2
9

because it’s f =
√

r2
1 + r2

2 =

√
2

3
. If r1 = 1

3 and r2 = 1
3 are selected then

dγ
ds = t = (− 1

√
3
, 1−

√
3

2
√

3
cos s

√
3

+ 1+
√

3
2
√

3
sin s

√
3
, 1+

√
3

2
√

3
cos s

√
3

+
√

3−1
2
√

3
sin s

√
3
),

γL =
(
−

s
√

3
, 1−

√
3

2
√

3
sin s

√
3
−

1+
√

3
2
√

3
cos s

√
3
, 1+

√
3

2
√

3
sin s

√
3

+ 1−
√

3
2
√

3
cos s

√
3

)
.

From the following equalities Z(s) = N2(s) = T(s) × c(s) and W(s) = N3(s) = T(s) × w(s) we can calculate

Z(s) = N2(s) =
1
√

6

(
2 sin

s
√

3
,−2 cos

s
√

3
, 1, 1

)
,

W(s) = N3(s) = (0, 0,−
1
√

2
,

1
√

2
).

In the following pictures, we will give the orthogonal projection of the curve β on the hyperplanes x = 0
(Figure 1(a)), y = 0 (Figure 1(b)), z = 0 (Figure 2(a))and w = 0 (Figure 2(b)), respectively.

Finally, in the following figures, we will give the picture of the curves γR and γL (Figure 3) related to
the curve β in terms of two pure quaternions ξR (s) and ξL (s).
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Figure 3: Left-oriented and right-oriented spatial quaternionic helices related to the curve β.

4. Conclusions

In this study, the general helix curves are given by a new perspective using quaternions. Since quater-
nions do not provide the commutative property for multiplication, the authors([3], [4], [7]) have been used
by one-sided multiplication in previous studies. We have obtained new expressions for quaternionic curves
using the right product and the left product for quaternions. It is also possible to see that the paper is a
generalization of some papers published in the last. If we explain clearly that the authors Bharathi and
Nagaraj [7] considered ξR (s) = t(s) and the author Aksoyak [4] considered ξR (s) = b(s) in terms of our theory.
But we considered a general unit spatial quaternion ξR (s). To prove this fact with as an example we consider
the quaternionic curve

β(s) =
(
cos

(
s
√

3

)
, sin

(
s
√

3

)
, s
√

3
, s
√

3

)
given in [4] we obtain spatial quaternionic curves γR = γ(s) and γL = γ(s) whose principal normal vector
is n(s). Finally, we draw the orthogonal projection figures of the curve β and the curves γR = γ(s) and
γL = γ(s).
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