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Abstract. For all 0 < q < +∞ the Privalov class Πq consists of all analytic functions f in a unit disk such
that

sup
0≤r<1

1
2π

∫ π

−π

(
ln+
| f (reiθ)|

)q
dθ < +∞.

In this paper we solve a multiple interpolation problem in the class Πq for all 0 < q < 1. Namely, we find
the sufficient conditions for the explicit construction of the function that solves the interpolation problem
in the Privalov class. In addition, we discuss the necessity of these conditions.

1. Introduction

Let C be the complex plane, D be the unit disk on C, H(D) be the set of all functions, holomorphic in D.
For all 0 < q < +∞we define the Privalov class of function Πq as follows:

Πq =

{
f ∈ H(D) : sup

0≤r<1

1
2π

∫ π

−π

(
ln+
| f (reiθ)|

)q
dθ < +∞

}
.

Here, as usual, ln+
|a| = max(ln |a|, 0), ∀a ∈ C.

The classes Πq were first considered by I. I. Privalov in [11]. If q = 1 the Privalov class coincides with
the Nevanlinna class N, well-known in scientific literature (see [10]). Using Holder’s inequality, it is easy
to prove the inclusion chain:

Πq (q > 1) ⊂ N ⊂ Πq (0 < q < 1).

In the case of 1 ≤ q < +∞ the Privalov spaces were studied by M. Stoll, V. I. Gavrilov, A. V. Subbotin,
D. A. Efimov, R. Mestrovic, Z. Pavicevic, etc. The monograph [7] contains a brief overview of their results.
Certain results were distributed to case 0 < q < 1 by author of this paper (see [14]). Notice that the case
0 < q < 1 was studied little in the scientific literature. Apparently, the Privalov classes Πq (0 < q < 1) were
studied only in papers [14], [15], [18] and [19]. Factorization representation is not obtained for these classes,
which makes it difficult to solve many existing problems. Motivated by the recent results of F. A. Shamoyan
given in [18] and related investigations for the Πq (q > 1), here we consider the interpolation questions on
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the set of multiple nodes in the Privalov classes Πq (0 < q < 1). Our methods are similar to those used for
the area Nevanlinna type spaces in [2] and [13].

State the problem of multiple interpolation for the class Πq: let {αk}
∞

1 and {wk}
∞

1 be the arbitrary sequences
of complex numbers, {αk}

∞

1 ⊂ D; we put p j be the multiplicity of the number α j in the sequence {αk}
∞

1 , s j ≥ 1
be the multiplicity of the number α j on the interval {αk}

j
1. Obviously, 1 ≤ s j ≤ p j ≤ +∞. We need to find

conditions for growth of αk and distribution of wk under which one can construct a function f ∈ Πq such
that the following task is solvable:

f (sk−1)(αk) = wk, k = 1, 2, . . . . (1)

In this case {αk}
∞

1 is called interpolating sequence. For sk = 1 we say that the interpolation is performed on a
set of simple nodes {αk}

∞

1 .
The fundamental result in the theory of interpolation belongs to L. Carleson. In [3] he fully described

interpolating sequences for the class of bounded analytic functions. The interpolation problem in classes of
functions with bounded characteristic was solved by A. G. Naftalevic in [9]; a so-called free interpolation
problem in these spaces was investigated by A. Hartmann, X. Massaneda, A. Nicolau, P. Thomas in [6]. The
same problems in the Hardy spaces were studied by H. Shapiro, A. Shields in [23] and by K. Seip in [24];
multiple interpolation problem for Hardy’s spaces was solved by M. M. Djrbashian in [5]. The questions
of interpolation on the sets of simple nodes in the Smirnov classes were investigated by N. Yanagihara
in [26], the same questions on the sets of simple and multiple nodes in the classes of analytic functions
with the restrictions on the Nevanlinna characteristic were studied by V. A. Bednazh, F. A. Shamoyan
and E. G. Rodikova (see [1], [2], [12], [13], [21]; for a detailed description of the mentioned classes see
the monograph [22]). Overview of early results on interpolation theory is contained in the monograph of
S. A. Vinogradov, V. P. Havin (see [25]).

So-called free interpolation problem on the Carleson sets (i.e. in the case of uniformly separated
sequence) in the Πq - classes was solved by R. Mestrovic, J. Susic in [8] for q > 1, and by the author of this
paper and V. A. Bednazh in [15] for 0 < q < 1. Recall that a sequence {αk}

∞

1 ⊂ D is said to be uniformly
separated if∏

k,n

∣∣∣∣∣ αk − αn

1 − αkαn

∣∣∣∣∣ ≥ δ > 0, ∀k ∈N. (2)

In [15] the authors also investigated the questions of multiple interpolation in Πq - classes for q > 1 provided
that the nodes are in the Stoltz angles and satisfy the condition of so-called weak separation instead of (2).

Thus, in this work we continue the study of interpolation issues in the Privalov classes.
The paper is organized as follows: in the second part of the paper we prove auxiliary assertions and

present the main result, and in the third part of the article we prove the main result, namely, we construct
an explicit solution to the interpolation problem (1).

2. Formulation of main result and proof of auxiliary assertions

To formulate and prove the results of the work we introduce some more notations and definitions.
For any β > −1 we denote by πβ(z, αk) the M. M. Djrbashian’s infinite product with zeros at points of the

sequence {αk}
∞

1 ⊂ D (see [4]):

πβ(z, αk) =

+∞∏
k=1

(
1 −

z
αk

)
exp(−Uβ(z, αk)), (3)

where

Uβ(z, αk) =
2(β + 1)
π

1∫
0

π∫
−π

(1 − ρ2)β ln |1 − ρeiθ

αk
|

(1 − zρe−iθ)β+2 dθρdρ.
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We denote by πβ,n(z, αk) the infinite product πβ(z, αk) without n-th factor.
As stated in [4], the infinite product πβ(z, αk) is absolutely and uniformly convergent in the unit disk D

if and only if the following series converges:

+∞∑
k=1

(1 − |αk|)β+2 < +∞.

If β + 1 = p ∈ Z+, then product (3) takes a form (see [4]):

πp(z, αk) =

+∞∏
k=1

αk(αk − z)
1 − αkz

exp
p+1∑
j=1

1
j

(
1 − |αk|

2

1 − αkz

) j

.

Definition 1. The Stolz angle Γδ(θ) with the vertex at the point eiθ is the angle of the solution πδ, 0 < δ < 1, whose
bisector coincides with the segment reiθ, 0 ≤ r < 1, that is the set of points z ∈ D for which the following inequalities
hold: ∣∣∣∣arg

(
eiθ
− z

)
− θ

∣∣∣∣ ≤ πδ2 ,∣∣∣eiθ
− z

∣∣∣ < cos
πδ
2
.

Everywhere below, unless otherwise specified, we assume that 0 < q < 1.
Also by c, c1, ..., cn(α, β, ...) we denote arbitrary positive constants depending on α, β, ..., whose value

immaterial.
For all 0 ≤ r < 1 by definition, put n(r) = card{αk : |αk| < r}. The sequence {αk}

∞

1 ⊂ D, satisfying the
following conditions

1∫
0

nq(r)dr < +∞, (4)

∣∣∣πp,k(αk, α j)
∣∣∣ ≥ exp

−µ(k)

(1 − |αk|)
1
q

, (5)

where p > 1
q − 1, µ(k) > 0, µ(k) = o(1), k→ +∞,

sup
k≥1
{pk} < +∞,

we associate with a class ∆̃.
For given sequence {αk}

∞

1 ⊂ D and fixed 0 < q < 1 we denote by l̃q(αk) a sequence space {wk}
∞

1 such that

ln+
|wk| = o

(
(1 − |αk|)−1/q

)
, k→ +∞,

i.e.

|wk| = exp
µ1(k)

(1 − |αk|)1/q , (6)

µ1(k) > 0, µ1(k) = o(1), k→ +∞.
Notice, that class l̃q is natural for solving the interpolation problem in Privalov’s spaces Πq, because the

following assertion is valid:
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Theorem 1 (see [14]). Let 0 < q < 1. If f ∈ Πq, M(r, f ) = max
|z|=r
| f (z)|, z ∈ D, then

ln+ M(r, f ) = o
(
(1 − r)−1/q

)
, r→ 1 − 0, (7)

and this estimate is exact.

The main result of this article is proof of the following theorem:

Theorem 2. Let {αk}
∞

1 ⊂
n⋃

s=1
Γδ(θs) for a certain 0 < δ < 1.

If {αk}
∞

1 ∈ ∆̃, then for any sequence {wk}
∞

1 from l̃q(αk) it is possible to construct explicit the function f ∈ Πq that
solve the multiple interpolation problem (1) for all sk ≥ 1.

Proof of main result are based on the following statements.

Theorem 3. (see [18]) If {αk}
∞

1 is a sequence of zeros for a function f ∈ Πq, then

n(r) ≤
c

(1 − r)1/q .

Conversely: assume that {αk}
∞

1 ⊂
n⋃

s=1
Γδ(θs) for a certain 0 < δ < 1; if the following integral is convergent:

1∫
0

nq(r)dr < +∞,

then we can construct a nontrivial function f from Πq such that f (αk) = 0, k = 1, 2, . . ..

Remark 1. In the recent work [16] the author established that the sufficient condition in Theorem 3 is also necessary.

Remark 2. Notice that zero set of function from the class Πq (q > 1) is completely characterized by the Blaschke
condition due to inclusion this class in the Nevanlinna class N.

We consider a function h associated with a sequence {αk}
∞

1 in class Πq:

h = hk(z) = exp
n∑

s=1

+∞∑
m=1

um
k

(1 − ρm
2)β

(1 − zρme−iθs )β+
1
q

, z ∈ D, (8)

where 0 < β < 1/q, 0 < ρm < 1, m = 1, 2, ..., {uk}
∞

1 is a positive infinitesimal sequence depending from the
interpolation nodes {αk}

∞

1 .
We show that h ∈ Πq. Without loss of generality, we assume that all interpolation nodes are in the angle

Γδ(θ). Denote for a brevity β′ = β + 1
q . We have:

sup
0≤r<1

1
2π

π∫
−π

(ln+
|h(reiϕ)|)qdϕ = sup

0≤r<1

1
2π

π∫
−π

ln+

∣∣∣∣∣∣∣exp
+∞∑
m=1

um
k

(1 − ρm
2)β

(1 − reiϕρme−iθ)β′

∣∣∣∣∣∣∣


q

dϕ ≤

≤ sup
0≤r<1

1
2π

π∫
−π

 +∞∑
m=1

um
k

(1 − ρm
2)β

|1 − rρmei(ϕ−θ)|β
′


q

dϕ.
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We continue the assessment:

sup
0≤r<1

1
2π

π∫
−π

(ln+
|h(reiϕ)|)qdϕ ≤ sup

0≤r<1

1
2π

+∞∑
m=1

π∫
−π

(
um

k

(1 − ρm
2)β

|1 − rρmei(ϕ−θ)|β
′

)q

dϕ =

= sup
0≤r<1

1
2π

+∞∑
m=1

π∫
−π

umq
k

(1 − ρm
2)βq

|1 − rρmei(ϕ−θ)|β
′q dϕ ≤ sup

0≤r<1

1
2π

+∞∑
m=1

umq
k (1 − ρm

2)βq

(1 − rρm)(β′q−1)
=

= sup
0≤r<1

1
2π

+∞∑
m=1

umq
k (1 − ρm

2)βq

(1 − rρm)βq ≤
2βq

2π

+∞∑
m=1

umq
k =

2βq

2π
·

uq
k

1 − uq
k

< +∞.

Thus we have hk ∈ Πq.
The following statement is valid.

Lemma 1. Let h(z) is defined by equality (8) under the following conditions:

uk =
(
µ1(k) + µ(k)

) 1

2m(1)
0 , k = 1, 2, . . . ,

here µ1, µ are infinitesimals sequences from equations (6) and (5) respectively, m(1)
0 = inf

ρm>rk
m,

1 − ρm = (2uq
k)m, m = 1, 2, . . . .

If points of a sequence {αk}
∞

1 are in the finite number of the Stolz angles, i.e. {αk}
∞

1 ⊂
n⋃

s=1
Γδ(θs), then for the function

h(z) the following estimate is valid:

|h(αk)| ≥ exp
µ0(k)

(1 − |αk|)1/q , (9)

µ0(k) > 0, µ0(k) = o(1), k→ +∞.

Proof. Without loss of generality, we assume that all interpolation nodes belong to the angle Γδ(θ). For
brevity we denote β′ = β + 1

q . So we have

h(z) = hk(z) = exp
+∞∑
m=1

um
k

(1 − ρm
2)β

(1 − zρme−iθ)β′
, z ∈ D.

We estimate h(αk) in the angle Γδ(θ).

|h(αk)| = exp
+∞∑
m=1

um
k<

(1 − ρm
2)β

(1 − αkρme−iθ)β′
= exp

+∞∑
m=1

um
k (1 − ρm

2)β
<(1 − αkρmeiθ)β

′

|1 − αkρme−iθ|2β
′
.

But

<(1 − αkρmeiθ)β
′

=<
(
1 − rkρme−i(ϕk−θ)

)β′
=<

(
1 − ρmrk + ρmrk(1 − e−i(ϕk−θ))

)β′
=

=<
(
1 − ρmrk + ρmrk(1 − e−i(ϕk−θ))

)β′
== (ρmrkρ)β

′

· <

(
1 − ρmrk

ρmrkρ
+ e−iϕ

)β′
,

where αk = rkeiϕk , (1 − e−i(ϕk−θ)) = ρe−iϕ, |ϕ| < π
2β′ . Therefore we have <(1 − αkρmeiθ)β

′

≥ c1(ρmrkρ)β
′

by
Lemma 1.3 proved in the work of F.A. Shamoyan [17].
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On the other hand,

|1 − e−i(ϕk−θ)
|
β′ = 2β

′

sinβ
′

(
θ − ϕk

2

)
,

whence

<
1

(1 − αkρme−iθ)β′
≥

c1(ρmrk)β
′

2β
′

sinβ
′
(
θ−ϕk

2

)
(
(1 − ρmrk)2 + 4 sin2

(
θ−ϕk

2

)
ρmrk

)β′ ≥
≥

c1(ρmrk)β
′

2β
′

sinβ
′
(
θ−ϕk

2

)
(
(1 − ρmrk)2 + 4 sin2

(
θ−ϕk

2

))β′ ≥ c̃1 · 2β
′

sinβ
′ θ−ϕk

2

(1 − ρmrk)2β′ ·

(
1 +

4 sin2 θ−ϕk
2

(1−ρmrk)2

)β′ .
Since {αk}

∞

1 ⊂ Γδ(θ), we have∣∣∣∣sin
(
θ−ϕk

2

)∣∣∣∣
(1 − rk)

≤ C.

As a result, we obtain:

<
1

(1 − αkρme−iθ)β′
≥

c(β′)
(1 − ρmrk)β′

.

Thus for the function h(αk) in the angle Γδ(θ) the following estimate is held:

|h(αk)| ≥ exp c(β′)
+∞∑
m=1

um
k

(1 − ρm
2)β

(1 − rkρm)β′
.

Note that the series
+∞∑
m=1

um
k

(1−ρm
2)β

(1−rkρm)β′ is convergent. Indeed,

um
k

(1 − ρm
2)β

(1 − rkρm)β′
≤ um

k

(1 − ρm
2)β

(1 − ρm)β′
≤ um

k
2β

(1 − ρm)1/q .

By condition, 1 − ρm = (2uq
k)m. Therefore

um
k

(1 − ρm
2)β

(1 − rkρm)β′
≤

2β

2m ,

and the series in question is convergent in Γδ(θ) in view of the convergence of the series
+∞∑
m=1

1
2m .

We continue to search for a lower bound of |h(αk)|. To do this, we divide the internal amount into parts:

S =

+∞∑
m=1

um
k

(1 − ρm
2)β

(1 − rkρm)β′
=

∑
(1−ρm)<(1−rk)

(. . .) +
∑

(1−ρm)>(1−rk)

(. . .) +
∑

(1−ρm)=(1−rk)

(. . .) =

= S1(k) + S2(k) + S3(k).

We evaluate each of these sums separately.

S2(k) =
∑

(1−ρm)>(1−rk)

um
k

(1 − ρm
2)β

(1 − rkρm)β′
≥

∑
ρm<rk

um
k

1
(1 − ρ2

m)β′−β
≥

(1
2

)1/q ∑
ρm<rk

um
k

1

(1 − ρm)
1
q

.
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By condition, 1 − ρm = (2uq
k)m. Therefore

S2(k) ≥
1

21/q ·
∑
ρm<rk

( 1
21/q

)m

= c(q,m0) = const.

Here m0 is a number for which ρm = rk. Now we estimate the sum S3(k).

S3(k) =
∑

(1−ρm)=(1−rk)

um
k

(1 − ρm
2)β

(1 − rkρm)β′
=

∑
ρm=rk

um
k

1
(1 − r2

k)1/q
=

um0
k

(1 − r2
k)1/q

.

Further, we seek a lower bound for the sum S1(k).

S1(k) =
∑

(1−ρm)<(1−rk)

um
k

(1 − ρm
2)β

(1 − rkρm)β′
=

∑
ρm>rk

um
k

(1 − ρm
2)β

(1 − rkρm)
1
q (1 − rkρm)β

≥

≥
1

(1 − r2
k)

1
q

∑
ρm>rk

um
k

(1 − ρm
2)β

(1 − rkρm)β
≥

≥
1

(1 − r2
k)β+

1
q

·

um0
k (1 − ρ2

m0
)β +

∑
ρm>rk ,m,m(1)

0

um
k

(1 − ρm
2)β

(1 − rkρm)β

 .
Taking into account the conditions 1 − ρm = (2uq

k)m and 0 < β < 1/q, we obtain:

S1(k) ≥
2m(1)

0 β · u
(qβ+1)m(1)

0
k

(1 − r2
k)β+

1
q

≥
u

2m(1)
0

k

(1 − r2
k)β+

1
q

.

Here m(1)
0 = inf

ρm>rk
m. From the estimates S1, S2, S3 we conclude:

S ≥
u

2m(1)
0

k

(1 − rk)β+
1
q

+ c(q,m0) +
um0

k

(1 − rk)1/q ,

whence

S(k) >
u

2m(1)
0

k

(1 − rk)
1
q

.

As a result, we obtain:

|h(αk)| ≥ exp
µ0(k)

(1 − rk)
1
q

, k = 1, 2, . . . , (10)

where µ0(k) = µ(k) + µ1(k) ≤ u
2m(1)

0
k , µ0(k) = o(1), k→ +∞. Lemma 1 is proved.

For a fixed αk ∈ Γδ(θ) by definition, put

Kη(αk) :=
{

z ∈ D : |z − αk| <
1
A

exp
−η(k)

(1 − |αk|)1/q

}
,

where η(k) > 0, η(k) = o(1), k→ +∞, A > 1/ cos
(
πδ
2

)
, and Kη(αk)

⋂
Kη(αn) = Ø, k , n.
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Lemma 2. For all t ∈ Kη(αk) the following estimate holds:

|h(t)| ≥ exp
µ0(k)

(1 − |αk|)1/q , (11)

where µ0(k) is positive infinitesimal sequence from the equation (9).

Proof. Without loss of generality, we assume that all interpolation nodes belong to the angle Γδ(θ) and θ = 0.
For brevity denote β′ = β + 1

q . So we have

h(t) = hk(t) = exp
+∞∑
m=1

um
k

(1 − ρm
2)β

(1 − tρm)β′
.

We find a lower bound for a function h(t) in the circle Kη(αk).

|h(t)| = exp
+∞∑
m=1

um
k<

(1 − ρm
2)β

(1 − tρm)β′
= exp

+∞∑
m=1

um
k (1 − ρm

2)β
<(1 − tρm)β

′

|1 − tρm|
2β′ .

Consider the denominator.

|1 − tρm|
2β′ = |1 − αkρm + αkρm − tρm|

2β′ =
∣∣∣1 − αkρm + ρm(αk − t)

∣∣∣2β′ ≤
≤

(
|1 − αkρm| + ρm|αk − t|

)2β′
≤ 22β′

·

(
|1 − αkρm|

2β′ + ρ
2β′
m |αk − t|2β

′
)

=

= 4β
′

· |1 − αkρm|
2β′
·

1 + ρ
2β′
m

(
|αk − t|
|1 − αkρm|

)2β′ ≤
≤ 4β

′

· |1 − αkρm|
2β′
·

(
1 +

(
|αk − t|
1 − |αk|

)2β′)
.

Here we have used the inequality (a+b)p
≤ 2p
· (ap +bp), valid for any positive values a, b, p. It can be argued

that for sufficiently large values of A we have:

|αk − t| <
1
A

(1 − |αk|)1/q <
1
A

(1 − |αk|).

Therefore

|1 − tρm|
2β′
≤ c(β′)|1 − αkρm|

2β′ . (12)

Now we consider numerator. By definition, put t = αk + ηeiτ = Reiγ. So we have

<(1 − tρm)β
′

=<
(
1 − Rρme−iγ

)β′
=

=<
(
1 − ρmR + ρmR(1 − e−iγ)

)β′
= (ρmR)β

′

· <

(
1 − ρmR
ρmR

+ (1 − e−iγ)
)β′
.

The constant A is chosen so that the circle Kη(αk) belongs to the same Stolz angle as the interpolation node
αk (in this case, Γδ(0)). By Lemma 1.3 established in the work of F.A. Shamoyan [17], we obtain:

<(1 − tρm)β
′

≥ c1(Rρmρ0)β
′

,

where ρ0 =
∣∣∣1 − e−iγ

∣∣∣ = 2 sin γ
2 . But

R =
∣∣∣αk + ηeiτ

∣∣∣ = |αk| ·

∣∣∣∣∣1 +
η

|αk|
ei(τ−ϕk)

∣∣∣∣∣ .
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Therefore

<(1 − tρm)β
′

≥ c1|αk|
β′ (ρm)β

′

2β
′

(
sin

γ

2

)β′
·

∣∣∣∣∣1 +
η

|αk|
ei(τ−ϕk)

∣∣∣∣∣β′ =

= c1|αk|
β′ (ρm)β

′

2β
′

(
sin

γ

2

)β′
·

(
1 + 2

η

|αk|
cos(τ − ϕk) +

η2

|αk|
2

) β′
2

.

Obviously, we can choose the constant A in the definition of the circle Kη(αk) so large that the following
estimate holds:

<(1 − tρm)β
′

≥ c̃1|αk|
β′ (ρm)β

′

2β
′

(
sin

ϕk

2

)β′
. (13)

From (13) and (12) we conclude that

<(1 − tρm)β
′

|1 − tρm|
2β′ ≥

c̃(β′)|αk|
β′ (ρm)β

′

2β
′
(
sin ϕk

2

)β′
|1 − αkρm|

2β′ .

Further, continuing to argue as in the proof of Lemma 1, we obtain the required estimate. Lemma 2 is
proved.

Lemma 3. (see [2]) For any z ∈ Kη(αk) the following estimate is valid:

1
2
|m j(αk)| ≤ |m j(z)| ≤

3
2
|m j(αk)|,

where

m j(z) =

(
1 − |α j|

2

1 − α jz

)
, α j ∈ D, j = 1, 2, . . . .

Lemma 4. Suppose {α j}
∞

1 ⊂ ∆̃; then there exists η > 0, such that for any z ∈ Kη(αn), n = 1, 2, ..., the following
estimate is valid

|πp,n(z, α j)| ≥ exp
−ε̃(n)

(1 − |αn|)
1
q

,

where p > 1
q − 1, ε̃(n) > 0, ε̃(n) = o(1), n→ +∞.

Proof. The proof is almost completely repeats the arguments given in [2] (see Lemma 2.8). For under-
standing, we present it. We fix n ∈ N and estimate the product πp,n(z, α j) in the circle Kη(αn). Since
Kη(αk)

⋂
Kη(αn) = Ø, k , n, we have:

lnπp,n(z, α j) =

+∞∑
j=1, j,n

ln A j(z, α j) =

=

+∞∑
j=1
j,n

ln (
1 −

1 − |α j|
2

1 − α jz

)
+

p∑
s=1

1
s

(
1 − |α j|

2

1 − α jz

)s ,
where the main branch of the logarithm is chosen.

We split the sum Σ =
+∞∑
j=1
j,n

ln A j(z, α j) on two parts:

Σ = Σ1 + Σ2,
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where
Σ1 =

∑
|m j(z)|≤ 1

2

ln A j(z, α j),

Σ2 =
∑

|m j(z)|> 1
2

ln A j(z, α j).

It is obvious that

Σ1 =

+∞∑
j=1
j,n

+∞∑
s=p+1

1
s

(m j(z))s =

+∞∑
j=1
j,n

(m j(z))p+1
·

 +∞∑
s=p+1

1
s

(m j(z))s−p−1

 .
Therefore we have

|Σ1| =

∣∣∣∣∣∣∣∣
∑

|m j(z)|≤ 1
2

ln A j(z, α j)

∣∣∣∣∣∣∣∣ ≤
∑

|m j(z)|≤ 1
2

|m j(z)|p+1
+∞∑

s=p+1

1
s
|m j(z)|s−p−1

≤

≤

∑
|m j(z)|≤ 1

2

|m j(z)|p+1
+∞∑
k=0

1
2k
≤ 2

∑
|m j(z)|≤ 1

2

(1 − |α j|
2)p+1

|1 − α jz|p+1 .

By Lemma 3, we obtain:

|Σ1| ≤
3p+1

2p

∑
|m j(z)|≤ 1

2

(1 − |α j|
2)p+1

|1 − α jαn|
p+1 .

But the last sum is clearly less than
+∞∑
j=1

(1−|α j |
2)p+1

|1−α jαn |
p+1 . We continue the estimate of |Σ1|:

|Σ1| ≤ 2 · 3p+1

1∫
0

(1 − t)p+1

(1 − t|αn|)p+1 dn(t) ≤ 3p+2

1∫
0

(1 − t)pn(t)
(1 − t|αn|)p+1 dt ≤

≤ 3p+2

1∫
0

(1 − t)pεn

(1 − t)
1
q (1 − t|αn|)p+1

dt,

where εn > 0, εn = o(1), n→ +∞. In the last inequality we used the condition (4). Further, we have:

|Σ1| ≤
3p+2εn

(1 − |αn|)1/q−δ

1∫
0

(1 − t)p−1/q

(1 − t|αn|)p+1+δ−1/q dt ≤

≤
3p+2εn

(1 − |αn|)1/q−δ ·
1

(1 − |αn|)δ
=

3p+2εn

(1 − |αn|)1/q .

Thus we obtain:

|Σ1| ≤
ε(1)

n

(1 − |αn|)
1
q

,

where ε(1)
n > 0, ε(1)

n = o(1), n→ +∞.
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Now we estimate Σ2. First note that if |m j(z)| > 1
2 , then |m j(αn)| > 1

2 in the circle Kη(αn) for sufficiently

large η. We find a lower bound for ln
∣∣∣∣ A j(z,α j)

A j(αn,α j)

∣∣∣∣:
ln

∣∣∣∣∣∣ A j(z, α j)
A j(αn, α j)

∣∣∣∣∣∣ =

[
ln
|z − α j|

|αn − α j|
+ ln

∣∣∣∣∣∣1 − α jαn

1 − α jz

∣∣∣∣∣∣
]
+

+

p∑
s=1

1
s
<

(
1 − |α j|

2

1 − α jz

)s

−

p∑
s=1

1
s
<

(
1 − |α j|

2

1 − α jαn

)s

.

We choose η so large that the following inequality holds:

1
2
≤

∣∣∣∣∣∣ z − α j

αn − α j

∣∣∣∣∣∣ =

∣∣∣∣∣∣1 +
z − αn

αn − α j

∣∣∣∣∣∣ ≤ 3
2
.

Taking into account Lemma 3, we obtain:

ln

∣∣∣∣∣∣ A j(z, α j)
A j(αn, α j)

∣∣∣∣∣∣ ≥ − ln 2 + |m j(z)|p+1
×

 p∑
s=1

1
s
<(m j(z))s

·
1

|m j(z)|p+1 −

p∑
s=1

1
s
<(m j(αn))s

·
1

|m j(z)|p+1

 .
Since |<w| ≤ |w|, w ∈ C, we have:

ln

∣∣∣∣∣∣ A j(z, α j)
A j(αn, α j)

∣∣∣∣∣∣ ≥ − ln 2 − |m j(z)|p+1
×

 p∑
s=1

1
s

1
|m j(z)|p+1−s +

p∑
s=1

1
s

1
|m j(αn)|p+1−s

 .
Using the inequality |m j(z)| > 1

2 and |m j(αn)| > 1
2 in the circle Kη(αn), we obtain:

ln

∣∣∣∣∣∣ A j(z, α j)
A j(αn, α j)

∣∣∣∣∣∣ ≥ − ln 2 − |m j(z)|p+1
×

p∑
s=1

1
s

2 · 2p+1−s
≥ − ln 2 − 2p+2

|m j(z)|p+1
×

p∑
s=1

1
s · 2s ,

whence we conclude:

ln

∣∣∣∣∣∣ A j(z, α j)
A j(αn, α j)

∣∣∣∣∣∣ ≥ −|m j(z)|p+1
·

(
ln 2

|m j(z)|p+1 + 2p+2
− 4

)
≥ −|m j(z)|p+1

·

(
2p+1 ln 2 + 2p+2

− 4
)
,

i.e.

ln

∣∣∣∣∣∣ A j(z, α j)
A j(αn, α j)

∣∣∣∣∣∣ ≥ −c2(p)|m j(z)|p+1.

Further, from (5) we have

ln
∣∣∣A j(z, α j)

∣∣∣ ≥ −c2(p)

∣∣∣∣∣∣1 − |α j|
2

1 − α jz

∣∣∣∣∣∣
p+1

−
µ(n)

(1 − |αn|)1/q .

Integrating the estimates for amounts Σ1 and Σ2, we conclude:

+∞∑
j=1
j,n

ln |A j(z, α j)| =
∑

|m j(z)|≤ 1
2

ln |A j(z, α j)| +
∑

|m j(z)|> 1
2

ln |A j(z, α j)| ≥

≥ −
ε(1)

n

(1 − |αn|)
1
q

−
ε(2)

n

(1 − |αn|)
1
q

−
µ(n)

(1 − |αn|)
1
q

.
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As a result, we obtain:

ln |πp,n(z, αn)| =
+∞∑
j=1
j,n

| ln A j(z, α j)| ≥
−ε̃(n)

(1 − |αn|)
1
q

,

where ε̃(n) > 0, ε̃(n) = o(1), n→ +∞.

To state and prove further results, we introduce additional notation. First we remark that the function

πp,k(z, αk) ·
(

1−|αk |
2

1−αkz

)p+pk+1
is analytic in D and does not vanish in certain neighborhood of the point z = αk for

all p > 1
q − 1. For any k ∈Nwe consider a function

τk(z) =

πp,k(z, αk) ·
(

1 − |αk|
2

1 − αkz

)p+pk+1

· h(z)


−1

,

where h(z) is defined above (see (8)).
It can be argued that in any sufficiently small ε-neighborhood of the point αk the following expansion is

valid:

τk(z) =

∞∑
ν=0

aν(αk)(z − αk)ν, |z − αk| < ε,

where aν(αk) = 1
ν!

dν
dzν

[{
πp,k(z, αk) ·

(
1−|αk |

2

1−αkz

)p+pk+1
· h(z)

}−1
]

z=αk

.

Lemma 5. If {αk}
∞

1 ∈ ∆̃, then the following estimates are valid:

|aν(αk)| ≤ a(ν), 0 ≤ ν ≤ p + pk, k = 1, 2, . . . ,

where a(ν) depends only on the ν.

This lemma is proved in the same way as in [20]; we give the proof for completeness.

Proof. So we have

aν(αk) =
1
ν!

dν

dzν



(

1 − |αk|
2

1 − αkz

)p+pk+1

πp,k(z, αk)h(z)


−1

z=αk

,

where ν = 0, pk, k = 1, 2, . . .. We use the Leibniz formula:

aν(αk) =

ν∑
j=0

C j
ν

1
(1 − |αk|

2)p+pk+1

(
(1 − αkz)p+pk+1

)(ν− j)
(

1
πp,k(z, αk)h(z)

)( j)∣∣∣∣
z=αk

.

We find an upper bound of |aν(αk)| for all ν = 0, p + pk, k = 1, 2, . . .:

|aν(αk)| ≤
ν∑

j=0

C j
ν

|αν− j
k |(p + pk + 1) · ... · (p + pk + 1 − ν + j + 1)

(1 − |αk|
2)p+pk+1 ×

×(1 − |αk|
2)p+pk+1−ν+ j+1

∣∣∣∣∣∣∣
(

1
πp,k(z, αk)h(z)

)( j)
∣∣∣∣∣∣∣
z=αk

≤

≤

ν∑
j=0

C j
ν · c(ν)(1 − |αk|

2)−ν+ j
·

∣∣∣∣∣∣∣
(

1
πp,k(z, αk)h(z)

)( j)
∣∣∣∣∣∣∣
z=αk

.
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Now we use Cauchy’s integral formula in a disc Kη(αk):∣∣∣∣∣∣∣
(

1
πp,k(z, αk)h(z)

)( j)
∣∣∣∣∣∣∣
z=αk

=

∣∣∣∣∣∣∣∣∣
j!

2πi

∫
∂Kη(αk)

π−1
p,k(t, αk)h−1(t)

(t − αk) j+1
dt

∣∣∣∣∣∣∣∣∣ ≤
j!

2π

∫
∂Kη(αk)

|π−1
p,k(t, αk)| · |h−1(t)|

|t − αk|
j+1

dt, k ≥ 1.

Applying estimates from Lemmas 2 and 4, we have:∣∣∣∣∣∣∣
(

1
πp,k(z, αk)h(z)

)( j)
∣∣∣∣∣∣∣
z=αk

≤
j!

2π
exp
−µ0(k) + ε̃(k)
(1 − |αk|)1/q

∫
∂Kη(αk)

1
|t − αk|

j+1
dt =

=
j!

A j exp
−µ0(k) + ε̃(k) + jη(k)

(1 − |αk|)1/q , k ≥ 1.

We continue the estimate of |aν(αk)|:

|aν(αk)| ≤ c(ν) exp
{
ln(1 − |αk|

2)−ν+ j
}
· exp

{
−µ0(k) + ε̃(k) + νη(k)

(1 − |αk|)1/q

}
=

= c(ν) exp
{
−µ0(k) + ε̃(k) + νη(k)

(1 − |αk|)1/q + o
(
(1 − |αk|)−1/q

)}
.

Choosing the sequences η(k), µ1(k) so that −µ0(k) + ε̃(k) +νη(k) < 0, we obtain the required estimate. Lemma
5 is proved.

Consider the polynomials

qk(z) =

pk−sk∑
ν=0

aν(αk)(z − αk)ν, k = 1, 2, . . . .

Now we define a system of analytic functions in D:

Ω̃k(z) =
(z − αk)sk−1qk(z)

(sk − 1)!τk(z)
. (14)

It obvious that these functions can be written in the form:

Ω̃k(z) = h(z)
πp,k(z, αk)
(sk − 1)!

·

(
1 − |αk|

2

1 − αkz

)p+pk+1

·

pk−sk∑
ν=0

aν(αk)(z − αk)ν+sk−1,

k = 1, 2, . . . , where p > 1
q − 1.

We note that the method of constructing such system of functions was first proposed by M. Djrbashian
in [5].

The following assertion holds:

Lemma 6. Functions of the system (14) have the following interpolating properties:

Ω̃(r)
k (αk) =

1, r = sk − 1;
0, r , sk − 1, 0 ≤ r ≤ pk − 1.

Indeed, this follows immediately from the expansion:

Ω̃k(z) =
(z − αk)sk−1

(sk − 1)!
−

(
1 − |αk|

2

1 − αkz

)p+pk+1

·
πp,k(z, αk)h(z)

(sk − 1)!
×

+∞∑
ν=pk−sk+1

aν(αk)(z − αk)ν+sk−1 =

=
(z − αk)sk−1

(sk − 1)!
− λ(z),

and λ(z) has zero of multiplicity pk in the point z = αk.
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3. Proof of main result

We prove Theorem 2.

Proof. Suppose that the interpolation nodes satisfy the following conditions: {αk}
∞

1 ⊂ Γδ(θ) for a certain
0 < δ < 1 and {αk}

∞

1 ∈ ∆̃. For any sequence {wk} ∈ l̃q we construct interpolation function f (z) in the following
way:

f (z) =

+∞∑
k=1

wkΩ̃k(z)
h(z)

h(αk)
, z ∈ D, (15)

where h = hk(z) defined by (8).
Applying Lemma 6, we get: f (sk−1)(αk) = wk, k = 1, 2, . . ..
Now we prove that the function f (z) belongs to the class Πq. Since {αk}

∞

1 ⊂ Γδ(θ) and all members of the
sequence {wk}

∞

1 satisfy condition (6), then by Lemma 1 we have for all k = 1, 2, . . .:

| f (z)| ≤
∑

αk∈Γδ(θ)

∣∣∣∣∣ wk

h(αk)

∣∣∣∣∣ · |Ω̃k(z)| · |h(z)| ≤

≤ c0

∑
αk∈Γδ(θ)

exp
µ1(k) − µ0(k)

(1 − |αk|)
1
q

· |Ω̃k(z)| · |h(z)| ≤

≤ c0

∑
αk∈Γδ(θ)

|Ω̃k(z)| · |h(z)|.

Here we took into account that

exp
µ1(k) − µ0(k)

(1 − |αk|)
1
q

≤ 1.

Thus we have:

| f (z)| ≤ c0

+∞∑
k=1

|Ω̃k(z)| · |h(z)|.

We obtain an upper estimate on Ω̃k(z) for all k = 1, 2, . . .. Recall that

|Ω̃k(z)| = |h(z)|

∣∣∣πp,k(z, αk)
∣∣∣

(sk − 1)!
·

(
1 − |αk|

2

|1 − αkz|

)p+pk+1

×

∣∣∣∣∣∣∣
pk−sk∑
ν=0

aν(αk)(z − αk)ν+sk−1

∣∣∣∣∣∣∣ .
We fix a number k = k0. Taking into account the well-known estimate of M. M. Djrbashian’s infinite product
(see, for example, [17]), we get:

ln+
|πp,k(z, α j)| ≤ cp

+∞∑
j=1

(
1 − |α j|

2

|1 − α jz|

)p+1

.

Therefore for all k ≥ k0 the following estimate holds:

| f (z)| ≤ c0

+∞∑
k=1

|Ω̃k(z)| · |hk0 (z)| ≤

≤ c0|hk0 (z)|2 exp

cp

+∞∑
j=1

(
1 − |α j|

2

|1 − α jz|

)p+1
 ×

 +∞∑
k=1

(
1 − |αk|

2

|1 − αkz|

)p+pk+1

·

∣∣∣∣∣∣∣
pk−sk∑
ν=0

aν(αk)(z − αk)ν+sk−1

∣∣∣∣∣∣∣
 .
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Notice that(
1 − |αk|

2

|1 − αkz|

)p+pk+1

|z − αk|
sk−1+ν

≤

(
1 − |αk|

2

|1 − αkz|

)p+1

.

Therefore we have

| f (z)| ≤ C0|hk0 (z)|2 exp

cp

+∞∑
j=1

(
1 − |α j|

|1 − α jz|

)p+1
 ·

+∞∑
k=1

(
1 − |αk|

2

|1 − αkz|

)p+1

,

whence we conclude:

| f (z)| ≤ C0|hk0 (z)|2
exp

cp

+∞∑
j=1

(
1 − |α j|

|1 − α jz|

)p+1



2

. (16)

As stated by F. A. Shamoyan in the recent paper [18] (see the proof of sufficiency in Theorem 3), if
condition (4) is met, then Djrbashian’s product πp with zeros {αk}

∞

1 located in the Stolz angles belongs to
the class Πq for all p > 1

q − 1. Therefore the majorant in the inequality (16) belongs to the class Πq and hence
the function f belongs to the class Πq for all 0 < q < 1.

Theorem 2 is proved.

Remark 3. Notice that we managed to avoid the Blaschke condition
+∞∑
k=1

(1 − |αk|) < +∞ and replace it with (4) in

Theorem 2; at the same time we replace the Carleson condition with the condition of weak separation (5).
The converse statement in the class Πq (q > 1) was established in [8] for the case of simple nodes. The necessity of

the condition ”interpolation nodes contain in the Stolz angles” for the case q = 1 is proved by Naftalevic in [9]. The
question of the validity of converse Theorem 2 is still open. Apparently, the proof will be based on the factorization
of functions from the class Πq. Shamoyan’s result introduced in Theorem 3 and Remark 1 give hope that sufficient
conditions for interpolation are also necessary. Here we can trace some parallel with the results for the Nevanlinna-type
classes (see [2]).

The author thanks for Professor F. A. Shamoyan for carefully reading of the manuscript and helpful
comments.
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