
Filomat 35:1 (2021), 251–270
https://doi.org/10.2298/FIL2101251A

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

New Directions in LB-valued General Fuzzy Automata:
A Topological View

Khadijeh Abolpoura, Mohammad Mehdi Zahedib

aDepartment of Mathematics, Shiraz Branch, Islamic Azad University, Shiraz, Iran
bDepartment of Mathematics, Graduate University of Advanced Technology, Kerman, Iran

Abstract. In the current study, we define the different L-valued operators on LB-valued general fuzzy
automata or simply LB-valued GFA, where B is considered as a complete infinitely distributive lattice
of propositions about the GFA. In particular, this study demonstrates that the L-valued successor and
predecessor operators induce L-valued co-topologies while the L-valued residuated and approximation
operators induce L-valued topologies on the state set of given LB-valued GFA. Further, we show that the
continuity and separation properties of such LB-valued general fuzzy automaton can be examined in terms
of these topologies. Moreover, we study and explicate the LB-valued GFA structure space and LB-valued
GFA homotopy in more details.

1. Introduction

The concept of ‘fuzzy‘ together with a number of some other notions in mathematics and other areas
were fuzzified by Zadeh [28] in 1965. Within this real, among the first investigations was the concept of
fuzzy automaton suggested by Wee [26] and Santos [17]. In their research, they dealt with the notions such
as vagueness and imprecision which were often appeared in the investigations on natural languages. After
a study by Bavel [7] on algebraic automata theory, the connection between topology and an automaton
was initiated [20, 21]. There, it was shown that several known topological concepts and ideas can often be
employed in automata theory in order to obtain certain results therein which is related, for the most part, to
their connectivity and separation properties. From the application point of view, fuzzy automata propose a
useful practical situation for ambiguous and confusing calculations and have highlighted their significance
in solving meaningful problems with respect to learning systems, pattern recognition and data base theory
[6, 12, 13]. Moreover, a study by Malik et al. [11] to a large extend contributed to the algebraic examination
of fuzzy automata and fuzzy languages in which simpler notions of a fuzzy finite state machine (which is
almost identical to a fuzzy automata) were established.

The concept of L-valued automata theory based on quantum logic is introduced in Ying [27]. The
quantum logic can be understood as a logic whose truth value set is an orthomodular lattice, and an
element of orthomodular lattice is assigned to each transition of an automaton ( Ying [27]). In Qiu [12], it
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has been shown that the concepts of L-valued source and L-valued successor operators, associated with L-
valued automata, induced L-valued topologies on the state-set of an L-valued automaton. The relationship
between L-valued topologies depends on the distributivity of the associated lattice. In another study, Tiwari
and his coworkers introduced the LM -valued automata theory from algebraic and topological point of view,
where L is a residuated lattice and M is a completely distributive lattice. Such automaton may be assumed
to be more general than that existing in literature in the sense that for M as one element lattice and L = [0, 1],
it turns out to be fuzzy automaton studied in [22, 23]; while for M as one element lattice and residuated
lattice L, it turns out to be fuzzy automaton studied in [1, 3, 22, 23].

Doostfatemeh and Kremer [10] used an extension of the notion of fuzzy automata and suggested the
concept of general fuzzy automata. Their key impetus in introducing the concept general fuzzy automata
was the insufficiency of the current literature to deal with the applications which depend on fuzzy automata
as a modeling tool, allocating membership values to active states of a fuzzy automaton. In all types of
conventional automata, a zero-weight transition means no transition, while in ourapproach applied for
general fuzzy automata; a zero-weight transition does not necessarily entail no transition. That is why we
will use [0,1] as the fuzzy interval.

Moreover, the basis of some ordered algebras (e.g. BL-algebra, MV algebra, and BCK-algebra) is derived
from the residuated lattice. Therefore, when we consider the residuated lattice as an ordered algebra, it
bears a strong structural similarity to [0,1]. Hence, working with that is considered as both a generalization
of the concept of fuzzy set and a connection between algebraic-logic and fuzzy automaton. Actually, very
little has been found in literature showing a suitable solution for multi-membership problem. In essence,
multi-membership is an issue which is inherent to the fuzzy-finite-state automata (FFA), and it occurs
due to its fuzzy nature which is showing up under any condition. Accordingly, the problem should be
resolved appropriately, using a system to fulfill its necessary requirements. The most important reasons
that emphasize the necessity of multi-membership resolution can be if the multi-membership active state
is final, then there will be an obvious need for a single membership value since a final state is applied to
produce a crisp output for the related system. On the other hand, even if the multi-membership active state
has not been final, there should be a need to allocate a single membership value to some intermediate or
non-final states during the usual operation of a FFA. Moreover, the membership values of successors can
be calculated for each membership value of the state but this will result in an unnecessary blow up, making
it very difficult to trace the continual operation of FFA. In this respect, it seems general fuzzy automata
system can appropriately resolve the multi-membership problems in an effective way.

A number of investigations have also been conducted on the development of fuzzy automata theory
by Zahedi and Abolpour and some other researchers [1–4, 14–16, 18, 19, 22–25]. In the present study,
LB-valued general fuzzy automata theory is scrutinized from algebraic and topological point of view, where
L stands for residuated lattice and B is a set of propositions about the general fuzzy automaton, in which
its underlying structure is a complete infinitely distributive lattice. In addition, LB-valued GFA structure
space and LB-valued GFA homotopy are studied and explicated in more details.

2. Preliminaries

In this section, some concepts which are significantly related to LB-valued general fuzzy automaton,
complete lattice, residuated lattices and fuzzy topological spaces are introduced and explained in details.

A fuzzy set µQ defined on a set Q (discrete or continuous), is a function mapping each element of Q to
a unique element of the interval [0,1].

µQ : Q→ [0, 1].

Then, the fuzzy power set of Q denoted as P̃(Q), is the set of all fuzzy subsets µQ, which can be defined on
the set Q.

P̃(Q) = {µQ|µQ : Q→ [0, 1]}

Definition 2.1. ([10]) A general fuzzy automaton (GFA) is considered as:

F̃ = (Q,Σ, R̃,Z, δ̃, ω,F1,F2),
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where (i) Q is a finite set of states, Q = {q1, q2, . . . , qn}, (ii) Σ is a finite set of input symbols, Σ = {a1, a2, . . . , am},
(iii) R̃ is the set of fuzzy start states, R̃ ⊆ P̃(Q), (iv) Z is a finite set of output symbols, Z = {b1, b2, . . . , bk}, (v)
ω : Q→ Z is the output function, (vi) δ̃ : (Q × [0, 1]) × Σ ×Q→ [0, 1] is the augmented transition function.
(vii) Function F1 : [0, 1]× [0, 1]→ [0, 1] is called membership assignment function. Function F1(µ, δ), as it is
seen, is motivated by two parameters µ and δ, where µ is the membership value of a predecessor and δ is
the weight of a transition.

With this definition, the process that happens upon the transition from state qi to q j an input ak is
characterized by:

µt+1(q j) = δ̃((qi, µ
t(qi)), ak, q j) = F1(µt(qi), δ(qi, ak, q j)).

It means that membership value (mv) of the state q j at time t + 1 is calculated by function F1 utilizing both
the membership value of qi at time t and the weight of the transition.

There have been many options for the function F1(µ, δ). For instance, it can be max{µ, δ}, min{µ, δ},
µ + δ

2
, or any other pertinent mathematical functions.

As it can be observed in the above mentioned formulas, associated with each fuzzy transition, there
exists a membership value (mv) in unit interval [0, 1]. We identify this membership value as the weight of
the transition. The transition from state qi (current state) to state q j (next state) upon input ak is designated
as δ(qi, ak, q j). Hereafter, we categorize this notation to refer both to a transition and its weight. Whenever
δ(qi, ak, q j) is used as a value, it refers to the weight of the transition. Otherwise, it identifies the transition
itself. The set of all transitions of a general fuzzy automaton F̃, is denoted as ∆F̃. However, whenever it is
recognized we remove the subscript, and simply write ∆.

(viii) F2 : [0, 1]∗ → [0, 1], is called multi-membership resolution function. The multi-membership
resolution function determines the multi-membership active states and allocates a single membership
value to them.

We let Qact(ti) be the set of all active state at time ti, ∀i ≥ 0. We have Qact(t0) = R̃ and Qact(ti) =
{(q, µti (q))|∃q′ ∈ Qact(ti−1),∃a ∈ Σ, δ(q′, a, q) ∈ ∆}, ∀i ≥ 1. Since Qact(ti) is a fuzzy set, to demonstrate
that a state q belongs to Qact(ti) and T is a subset of Qact(ti), we should write: q ∈ Domain(Qact(ti)) and
T ⊆ Domain(Qact(ti)); henceforth, we simply specify them by: q ∈ Qact(ti) and T ⊆ Qact(ti).

Definition 2.2. ([10]) The successor set of a state qm on input symbol ak denoted as Qsucc(qm, ak), is the set of
all states q j which will be reached via transitions δ(qm, ak, q j).

Qsucc(qm, ak) = {q j|δ(qm, ak, q j) ∈ 4}

Similarly, we can define the predecessor set of a state set as follows:

Qpred(qm, ak) = {q j|δ(q j, ak, qm) ∈ 4}.

Definition 2.3. ([9]) A complete lattice is a lattice L = (L,≤,∧,∨, 0, 1) in which arbitrary suprema and infima
exist. A lattice L is called infinitely distributive if∧distributes over arbitrary joins, i.e., ∀a ∈ L, {b j : j ∈ J} ⊆ L,

a ∧ {∨(b j : j ∈ J)} = ∨{(a ∧ b j) : j ∈ J}.

Definition 2.4. ([8]) A residuated lattic is an algebra L = (L,∧,∨,⊗,→, 0, 1) such that:
(i) (L,∧,∨, 0, 1) is a lattice with the least element 0 and the greatest element 1,
(ii) (L,⊗, 1) is a commutative monoid with unit 1, and
(iii) ⊗ and→ form an adjoint pair, i.e., for all x, y, z ∈ L, x ⊗ y ≤ z⇔ x ≤ y→ z.

If, in addition (L,∧,∨, 0, 1) is a complete lattice, then L is called a complete residuated lattice.
The precomplement on L is the mapping ¬ : L → L such that ¬x = x → 0,∀x ∈ L. Some of the basic

properties of complete residuated lattices, which we use, are as follows:
(i) a ⊗ b ≤ c⇔ a ≤ b→ c;
(ii) 1→ a = a;
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(iii) (a→ b) ⊗ (b→ c) ≤ a→ c;
(iv) a ⊗ b→ c = a→ (b→ c);
(v) a ⊗ (∨i∈Jbi) = ∨i∈J(a ⊗ bi).

The concepts L-valued relations, L-valued topologies and LB-valued general fuzzy automata have the
membership values in a complete residuated lattice. For example, an L-valued set of a nonempty set X is a
function from X to L, an LM-valued set of a nonempty set X is a map from X to LM and an L-valued relation
on X is a function from X × X to L. Throughout this study, LX denotes the family of all L-valued subsets of
X and a denotes the a-valued constant L-valued subset of X.

Let F̃ = (Q,Σ, R̃,Z, δ̃,w,F1,F2) be a general fuzzy automaton. If we fix an input ak ∈ Σ at time ti the
proposition α|ak can be computed by µti (qi) if the general fuzzy automaton F̃ is in the state qi at time ti
otherwise α|ak is 0 if F̃ is not in the active state qi. Accordingly, for each state qi ∈ Q we can assess the truth
value of α|ak , it is indicated by α|ak (qi). As explained above α|ak (qi) ∈ [0, 1]. This section aims to derive the
logic B which is a set of propositions about the general fuzzy automaton F̃ formulated by the observer and
constructing a complete infinitely distributive lattice B = (B,≤,∧,∨, 0, 1). We can establish the order ≤ on B
as follows:

For α, β ∈ B, α ≤ β if and only if α(qi) ≤ β(qi) for all qi ∈ Q. One can instantly check that the contradiction,
i.e., the proposition with constant truth value 0, is the least element and the tautology, i.e., the proposition
with constant truth value 1 is the greatest component of the B. Note that any component ith of 1 is the
maximum membership values of active states at time ti, for any i ≥ 0.

Let L = ([0, 1],≤,∧,∨,⊗,→) be a residuated lattice and B = (B,≤,∧,∨, 0, 1) be a complete infinitely
distributive lattice of propositions about the general fuzzy automaton F̃.

The most examined and applied structures of truth values, defined on the real unit interval [0,1] with
x ∧ y = min(x, y) and x ∨ y = max(x, y), belong to the Lukasiewicz structure (x ⊗ y = max(x + y − 1, 0), x→
y = min(1 − x + y, 1)), the product structure (x ⊗ y = x.y, x → y = 1 if x ≤ y and =

y
x otherwise) and the

Godel structure (x ⊗ y = min(x, y), x→ y = 1 if x ≤ y and = y otherwise). In the present study, we use the
Godel structure.

We define LB-valued subset of Q×Σ×Q, i.e., a map δ : Q×Σ×Q→ LB. The range set LB allows to interpret
LB as a map assigning each (q, ak, p) to δ(q, ak, p) : B → L. This interpretation of transition map δ allows to
represent it as the family

{
δα : α ∈ B

}
of L-valued sets δα ∈ LQ×Σ×Q of Q × Σ ×Q ordered by the elements of

B, where the L-valued sets δα are defined by δα(q, ak, p) = δ(q, ak, p)(α) =

1 if q = p
α(q) ∨ α(p) otherwise.

Definition 2.5. ([5]) An LB -valued general fuzzy automaton is a 8- tuple F̃ = (Q,Σ, R̃,Z, ω, δ̃,F1, F2), where
δ̃ is an LB-valued subset of (Q × L) × Σ ×Q, i.e., a map δ̃ : (Q × L) × Σ ×Q→ LB such that:

δ̃((qi, µ
t(qi)), ak, q j)(α) = F1(µt(qi), δ(qi, ak, q j)(α)).

Let Σ∗ be a monoid generated by a nonempty set Σ. Define a map δ̃∗ : (Q × L) × Σ∗ ×Q→ LB

δ̃∗((q, µt(q)),∧, p)(α) = δ̃((q, µt(q)),∧, p)(α) =

{
1 if q = p
0 otherwise

such that, ∀q, p ∈ Q,∀u ∈ Σ∗,∀x ∈ Σ and ∀α ∈ B

δ̃∗((q, µti (q)),ux, p)(α) = ∨
{
δ̃∗((q, µti (q)),u, q′)(α) ⊗ δ̃((q′, µt j (q′)), x, p)(α)

|q′ ∈ Qpred(p, x)
}
.

Definition 2.6. ([5]) Let F̃ be an LB-valued general fuzzy automaton and b ∈ B. The LB-valued successor
and the LB-valued predecessor of b are as follows:

S(b)(qm)(α) = ∨
{
b(q j) ⊗ δ̃((qm, µti (qm)),u, q j)(α)|q j ∈ Qsucc(qm,u),u ∈ Σ

}
, and

P(b)(qm)(α) = ∨
{
b(q j) ⊗ δ̃((q j, µt j (q j)),u, qm)(α)|q j ∈ Qpred(qm,u),u ∈ Σ

}
, for qm ∈ Qact(ti), α ∈ B.
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Remark 2.7. ([5]) It can be seen that the LB-valued successor and LB-valued predecessor are the maps
S,P : B→ (LB)Q. For each α ∈ B, these can be represented as L-valued successor and predecessor operators
Sα,Pα : B→ LQ, where Sα(b)(qm) = S(b)(qm)(α), and Pα(b)(qm) = P(b)(qm)(α) for b ∈ B and qm ∈ Q.

Example 2.8. Consider the GFA in Figure 1, it is specified as F̃ = (Q,Σ, R̃,Z, ω, δ̃,F1,F2), where Q ={
q0, q1, q2, q3

}
is the set of states, Σ =

{
a, b

}
is the set of input symbols, R̃ =

{
(q0, 1)

}
,Z = ∅ and w is not

applicable.

Fig. 1 The GFA of Example 2.8

We check operation of the GFA in Example 2.8 upon input ”ab2ab”.
If we choose F1(µ, δ) = δ,F2() = µt+1(qm) = ∧n

i=1(F1(µt(qi), δ(qi, ak, qm)), then we have:
µt0 (q0) = 1,

µt1 (q1) = F1(µt0 (q0), δ(q0, a, q1)) = δ(q0, a, q1) = 0.3,

µt2 (q0) = F1(µt1 (q1), δ(q1, b, q0)) = δ(q1, b, q0) = 0.8,

µt2 (q2) = F1(µt1 (q1), δ(q1, b, q2)) = δ(q1, b, q2) = 0.2,

µt3 (q3) = F1(µt2 (q0), δ(q0, b, q3)) ∧ F1(µt2 (q2), δ(q2, b, q3))

= δ(q0, b, q3) ∧ δ(q2, b, q3) = 0.5 ∧ 0.1 = 0.1,

µt4 (q0) = F1(µt3 (q3), δ(q3, a, q0) = δ(q3, a, q0) = 0.3,

µt4 (q2) = F1(µt3 (q3), δ(q3, a, q2)) = δ(q3, a, q2) = 0.2,

µt5 (q3) = F1(µt4 (q0), δ(q0, b, q3)) ∧ F1(µt4 (q2), δ(q2, b, q3))

= δ(q0, b, q3) ∧ δ(q2, b, q3) = 0.5 ∧ 0.1 = 0.1.
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Table 1: Active states and their membership values (mv) at different times in Example 2.8
time t0 t1 t2 t3 t4 t5

input ∧ a b b a b
Qact(ti) q0 q1 q0|q2 q3 q0|q2 q3

mv 1 0.3 0.8|0.2 0.1 0.3|0.2 0.1

The set B =
{
0, α0, α1, α2, α3, α4, α5, 1

}
of possible propositions about the general fuzzy automaton F̃ is as

follows:
-0 means that the GFA is not in active states of Q,
-α0 means that the GFA is in active states at time t0,
-α1 means that the GFA is in active states at time t1,
-α2 means that the GFA is in active states at time t2,
-α3 means that the GFA is in active states at time t3,
-α4 means that the GFA is in active states at time t4,
-α5 means that the GFA is in active states at time t5,
-1 means that the GFA is in at least one active state at time ti for any i ≥ 0.
We may consider B with the algebra [0, 1]Q as follows:
0 = (0, 0, 0, 0), α0 = (1, 0, 0, 0), α1 = (0, 0.3, 0, 0), α2 = (0.8, 0, 0.2, 0), α3 = (0, 0, 0, 0.1), α4 = (0.3, 0, 0.2, 0), α5 =
(0, 0, 0, 0.1), 1 = (1, 0.3, 0.2, 0.1).
Here, α(qi) is the maximum membership values of active states at time ti for any i ≥ 0.
By the definition of LB-valued general fuzzy automaton we have:
δ(q0, a, q1)(α1) = α1(q0) ∨ α1(q1) = 0 ∨ 0.3 = 0.3,
δ(q2, a, q2)(α1) = 1,
δ(q2, b, q3)(α3) = α3(q2) ∨ α3(q3) = 0 ∨ 0.1 = 0.1,
δ̃∗((q0, µt0 (q0)), ab, q2)(α1) = δ̃((q0, µt0 (q0)), a, q1)(α1) ⊗ δ̃((q1, µt1 (q1)), b, q2)(α1)
= F1((µt0 (q0), δ(q0, a, q1)(α1)) ⊗ F1((µt1 (q1), δ(q1, b, q2)(α1))
= δ(q0, a, q1)(α1) ⊗ δ(q1, b, q2)(α1)
= [α1(q0) ∨ α1(q1)] ⊗ [α1(q1) ∨ α1(q2)]
= [0 ∨ 0.3] ⊗ [0.3 ∨ 0] = 0.3 ⊗ 0.3 = 0.3,
δ̃∗((q1, µt1 (q1)), b2a, q0)(α2) = δ̃∗((q1, µt1 (q1)), b2, q3)(α2) ⊗ δ̃((q3, µt3 (q3)), a, q0)
(α2) = [(δ̃((q1, µt1 (q1)), b, q0)(α2) ⊗ δ̃((q0, µt2 (q0)), b, q3)(α2))
∨(δ̃((q1, µt1 (q1)), b, q2)(α2) ⊗ δ̃((q2, µt2 (q2)), b, q3)(α2))] ⊗ δ̃((q3, µt3 (q3)), a, q0)
(α2) = [(F1(µt1 (q1), δ(q1, b, q0)(α2)) ⊗ F1(µt2 (q0), δ(q0, b, q3)(α2))) ∨ (F1(µt1 (q1), δ(q1, b, q2)(α2)) ⊗ F1(µt2 (q2), δ(q2, b,
q3)(α2))] ⊗ F1(µt3 (q3), δ(q3, a, q0)(α2))
= [(δ(q1, b, q0)(α2) ⊗ δ(q0, b, q3)(α2)) ∨ (δ(q1, b, q2)(α2) ⊗ δ(q2, b, q3)(α2))] ⊗ δ(q3, a, q0)(α2)
= [((α2(q1) ∨ α2(q0)) ⊗ ((α2(q0) ∨ α2(q3)) ∨ ((α2(q1) ∨ α2(q2)) ⊗ ((α2(q2) ∨ α2(q3)))] ⊗ (α2(q3) ∨ α2(q0))
= [((0 ∨ 0.8) ⊗ (0.8 ∨ 0)) ∨ ((0 ∨ 0.2) ⊗ (0.2 ∨ 0))) ⊗ (0 ∨ 0.8)
= [(0.8 ⊗ 0.8) ∨ (0.2 ⊗ 0.2)] ⊗ 0.8 = 0.8 ⊗ 0.8 = 0.8.

Proposition 2.9. ([5]) Let F̃ be an LB-valued general fuzzy automaton and S,P : B→ (LB)Q be the induced LB-valued
successor and predecessor operators, respectively.Then for all λ, γ, (λ j : j ∈ J) ∈ B and α ∈ B,

(i) S(a) = a and P(a) = a,∀a ∈ L;

(ii) if λ ≤ γ then P(λ) ≤ P(γ) and S(λ) ≤ S(γ);

(iii) λ ≤ P(λ) and λ ≤ S(λ);

(iv) P(
⋃{

λ j : j ∈ J
}
) =

⋃{
P(λ j : j ∈ J)

}
and S(

⋃{
λ j : j ∈ J

}
) =

⋃{
S(λ j : j ∈ J)

}
;
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(v) P(P(λ)) = P(λ) and S(S(λ)) = S(λ);

(vi) P(
⋂{

λ j : j ∈ J
}
) ≤

⋂{
P(λ j : j ∈ J)

}
and S(

⋂{
λ j : j ∈ J

}
) ≤

⋂{
S(λ j : j ∈ J)

}
;

(vii) α ≤ β⇒ P(λ)(qm)(α) ≥ P(λ)(qm)(β) and S(λ)(qm)(α) ≥ S(λ)(qm)(β),
∀qm ∈ Qact(ti), β ∈ B.

Definition 2.10. ([5]) For an LB-valued general fuzzy automaton F̃, α ∈ B is called an LB-valued subpropo-
sition of F̃ if P(α) ≤ α. Further, this LB-valued subproposition is called separated if P(αc) ≤ αc.

Proposition 2.11. ([5]) For an LB-valued subproposition α of an LB-valued GFA F̃, the following conditions are
equivalent:

(i) α is separated;
(ii) P(αc) = αc.

Definition 2.12. ([5]) Let F̃ be an LB-valued general fuzzy automaton and α ∈ B. The LB-valued residuated
operator of α is given by

R(α)(qm)(b) = ∧
{
δ̃((p, µt j (p)),u, qm)(b)→ α(p)|p ∈ Qpred(qm,u),u ∈ Σ

}
for qm ∈ Qact(ti) and b ∈ B.

Remark 2.13. ([5]) It can be seen that LB-valued residuated operator is a map R : B→ (LB)Q, which induces
a family of L-valued residuated operators

{
Rb : B→ LQ

|b ∈ B
}
, where

Rb(α)(qm) = R(α)(qm)(b),∀α ∈ B, qm ∈ Qact(ti).

Proposition 2.14. ([5]) Let F̃ be an LB-valued general fuzzy automaton and R : B→ (LB)Q be the induced LB-valued
residuated operator. Then for all λ, γ, (λ j : j ∈ J) ∈ B,

(i) R(a) = (a),∀a ∈ L;
(ii) if λ ≤ γ then R(λ) ≤ R(γ);
(iii) R(λ) ≤ λ;
(iv) R(

⋂{
λ j| j ∈ J

}
) =

⋂{
R(λ j| j ∈ J)

}
;

(v) R(R(λ)) = R(λ);
(vi)

⋃{
R(λ j| j ∈ J)

}
≤ R(

⋃{
λ j| j ∈ J

}
);

(vii) α ≤ β⇒ R(λ)(qm)(α) ≤ R(λ)(qm)(β),∀qm ∈ Qact(ti), α, β ∈ B.

Proposition 2.15. ([5]) Let F̃ be an LB-valued general fuzzy automaton and α ∈ B. The L-valued residuated operator
viewed as function Rα : B→ LQ, which sends each b ∈ B to Rα(b), is a Kuratowski L-valued interior operator on Q.

Definition 2.16. ([5]) Let F̃ be an LB-valued general fuzzy automaton. Then α ∈ B is called:
(i) dynamic if S(α) ≤ P(α) ;

(ii) dynamically closed if there exists β ≤ α such that S(β) ≤ P(β) and P(β) = α;

(iii) primary if α is a minimal dynamically closed subproposition of F̃.

Definition 2.17. ([5]) Let A = (A,≤,∧,∨, 0, 1) be a complete infinitely distributive lattice of propositions
about the general fuzzy automaton F̃ = (Q,Σ, R̃,Z, w, δ̃, F1,F2) and B = (B,≤,∧,∨, 0, 1) be a complete
infinitely distributive lattice of propositions about the general fuzzy automaton F̃′ = (Q′,Σ, R̃′,Z,w′, δ̃′,
F1,F2). A homomorphism from an LA-valued GFA F̃ to an LB-valued GFA F̃′ is a pair ( f , 1) of maps, where
f : Q→ Q′ and 1 : A→ B are functions such that:
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(i)δ̃′(( f (q), µt( f (q))),u, f (p))(1(α)) ≥ δ̃((q, µt(q)),u, p)(α),

(ii)w(q) = z⇔ w( f (q)) = z,

(iii) f (q0) = q′0,
for all α ∈ A and p, q ∈ Q.
The pair ( f , 1) is called a strong homomorphism if for all α ∈ A
δ̃′(( f (q), µt( f (q))),u, f (p))(1(α)) = ∨

{
δ̃((q, µt(q)),u, p′)(α)|p′ ∈ Q, f (p) = f (p′)

}
.

3. Main Results

In what follows the L-valued operators and their associated L-valued topologies are discussed. More-
over, LB-valued GFA structure space and LB-valued GFA homotopy are investigated. Further, the relation-
ships between LB-valued general fuzzy automaton and associated L-valued subpropositions are studied
and explicated in more details.

3.1. L-valued Operators and their Associated L-valued Topologies
In this subsection, some concepts as L-valued topologies/co-topologies induced by the LB-valued succes-

sor/predecessor/residuated/approximation operator for fixed element of B are suggested and examined. In
particular, it is shown that the L-valued successor and predecessor operators induce L-valued co-topologies
and the L-valued residuated/approximation operator induces L-valued topology on the state set of given
LB-valued general fuzzy automaton. Further, it is also demonstrated that the induced L-valued topolo-
gies and co-topologies can be applied to characterize the algebraic concepts of an LB-valued general fuzzy
automaton.

Proposition 3.1. Let F̃ be an LB-valued general fuzzy automaton and α ∈ B.
(a) L-valued successor and the L-valued predecessor viewed as functions Sα : B → LQ and Pα : B → LQ, turns

out to be Alexandroff Kuratowski L-valued closure operators on Q.
(b) These two operators induce two L-valued co-topologies on Q which we shall respectively denote as Tα(Q) and

T′α(Q), where Tα(Q) =
{
b ∈ B|Sα(b) = b

}
and T′α(Q) =

{
b ∈ B|Pα(b) = b

}
.

(c) The L-valued co-topologies Tα(Q) and T′α(Q) are dual with in the sense that b ∈ B is Tα(Q)-closed if and only
if bc is T′α(Q)-closed.

Proof. It follows from Proposition 2.9 and Definition 2.6.

Proposition 3.2. The L-valued topology on Q given by the Alexandroff Kuratowski L-valued interior operator Rα is
precisely Tα(Q).

Proof. To prove this proposition, we need to show that Rα(b) = b iff Sα(b) = b for all b ∈ B. First, let Sα(b) = b.
Then
Sα(b) = b⇒ S(b)(qi)(α) = b(qi)
⇒ ∨

{
b(q j) ⊗ δ̃((qi, µti (qi)),u, q j)(α)|q j ∈ Qsucc(qi,u),u ∈ Σ

}
= b(qi)

⇒ b(q j) ⊗ δ̃((qi, µti (qi)),u, q j)(α) ≤ b(qi), q j ∈ Qsucc(qi,u),u ∈ Σ

⇒ b(q j) ≤ δ̃((qi, µti (qi)),u, q j)(α)→ b(qi), qi ∈ Qpred(q j,u),u ∈ Σ

⇒ b(q j) ≤ ∧
{
δ̃((qi, µti (qi)),u, q j)(α)→ b(qi)|qi ∈ Qpred(q j,u),u ∈ Σ

}
⇒ b(q j) ≤ Rα(b)(q j).
Also, as Rα(b)(q j) ≤ b(q j), we have Rα(b) = b.

Conversely, let Rα(b) = b. Then
Rα(b) = b⇒ R(b)(q j)(α) = b(q j)
⇒ ∧

{
δ̃((qi, µti (qi)),u, q j)(α)→ b(qi)|qi ∈ Qpred(q j,u),u ∈ Σ

}
= b(q j)
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⇒ b(q j) ≤ δ̃((qi, µti (qi)),u, q j)(α)→ b(qi), qi ∈ Qpred(q j,u),u ∈ Σ

⇒ b(q j) ⊗ δ̃((qi, µti (qi)),u, q j)(α) ≤ b(qi), q j ∈ Qsucc(qi,u),u ∈ Σ

⇒ ∨

{
b(q j) ⊗ δ̃((qi, µti (qi)),u, q j)(α)|q j ∈ Qsucc(qi,u),u ∈ Σ

}
≤ b(qi)

⇒ Sα(b)(qi) ≤ b(qi).
Also, as b(qi) ≤ Sα(b)(qi), whereby Sα(b) = b. Hence, Rα(b) = b iff Sα(b) = b.

Proposition 3.3. Let F̃ be an LB-valued general fuzzy automaton and b ∈ B. Then for fixed α ∈ B, b is an LB-valued
subproposition of B if and only if b is T′α-closed.

Proof. The proof is straightforward from definition of subproposition and Proposition 3.1.

Proposition 3.4. For fixed α ∈ B and an LB-valued subproposition b of an LB-valued general fuzzy automaton F̃, b
is separated iff b is Tα-closed.

Proof. It follows from Propositions 2.11 and 3.1.

Before stating the next part, we introduce the following concept of an L-valued regular closed subset in
an L-valued topology.

Definition 3.5. A closed L-valued subset in an L-valued topological space is called regular closed if it is
equal to the closure of its interior.

The following is towards the L-valued topological characterization of the concept of dynamically closed
L-valued subset in an LB-valued general fuzzy automaton.

Proposition 3.6. Let F̃ be an LB-valued general fuzzy automaton. Then a closed L-valued subset b ∈ B is dynamically
closed if and only if b is regular closed.

Proof. Let b ∈ B be dynamically closed. Then there exists a ∈ B, a ≤ b such that for all α ∈ B,Sα(a) ≤ Pα(a) = b.
Now, Sα(a)(q j) ≤ b(q j)⇒ S(a)(q j)(α) ≤ b(q j)
⇒ ∨

{
a(qi) ⊗ δ̃((q j, µt j (q j)),u, qi)(α)|qi ∈ Qsucc(q j,u),u ∈ Σ

}
≤ b(q j)

⇒ a(qi) ⊗ δ̃((q j, µt j (q j)),u, qi)(α) ≤ b(q j), qi ∈ Qsucc(q j,u),u ∈ Σ

⇒ a(qi) ≤ δ̃((q j, µt j (q j)),u, qi)(α)→ b(q j), q j ∈ Qpred(qi,u),u ∈ Σ

⇒ a(qi) ≤ ∧
{
δ̃((q j, µt j (q j)),u, qi)(α)→ b(q j)|q j ∈ Qpred(qi,u),u ∈ Σ

}
⇒ a(qi) ≤ R(b)(qi)(α)
⇒ a(qi) ≤ Rα(b)(qi)
⇒ Pα(a)(qi) ≤ Pα(Rα(b))(qi)
⇒ b(qi) ≤ Pα(Rα(b))(qi).
Again, Rα(b) ≤ b⇒ Pα(Rα(b)) ≤ Pα(b) = b. Therefore Pα(Rα(b)) = b.

Conversely, let Pα(Rα(b)) = b and a = Rα(b). Then a ≤ b. Now,

Sα(Rα(b))(q j) = ∨
{
Rα(b)(qi) ⊗ δ̃((q j, µ

t j (q j)),u, qi)(α)|qi ∈ Qsucc(q j,u),u ∈ Σ
}

= ∨
{
(∧

{
δ̃((qk, µ

tk (qk)), v, qi)(α)→ b(qk)|qk ∈ Qpred(qi, v), v ∈ Σ
}
)

⊗ δ̃((q j, µ
t j (q j)),u, qi)(α)|qi ∈ Qsucc(q j,u),u ∈ Σ

}
= ∨

{
δ̃((q j, µ

t j (q j)),u, qi)(α) ⊗ (∧
{
δ̃((qk, µ

tk (qk)), v, qi)(α)→ b(qk)|

qk ∈ Qpred(qi, v), v ∈ Σ
}
)|qi ∈ Qsucc(q j,u),u ∈ Σ

}
≤ ∨

{
δ̃((q j, µ

t j (q j)),u, qi)(α) ⊗ (δ̃((qk, µ
tk (qk)), v, qi)(α)→

b(qk))|q j ∈ Qpred(qi,u),u ∈ Σ
}
≤ b(q j) = Pα(Rα(b))(q j)

i. e., Sα(a) ≤ Pα(a) = b. Hence proved.



Kh. Abolpour, M. M. Zahedi / Filomat 35:1 (2021), 251–270 260

Remark 3.7. Let F̃ be an LB-valued general fuzzy automaton and α ∈ B be a primary. Then α is a minimal
regular closed subproposition of F̃.

Definition 3.8. Let F̃ be an LB-valued general fuzzy automaton and α ∈ B. Consider an L-valued relation
E on Q given by if p ∈ Qpred(q,u) ⇒ E(p, q) = Pα(1)(q) = P(1)(q)(α) = ∨

{
1(p) ⊗ δ̃((p, µt(p)),u, q)(α)|p ∈

Qpred(q,u),u ∈ Σ
}

for all q ∈ Q.

We can show that L-valued relation E on Q is L-valued reflexive and L-valued transitive. To show E
is L-valued reflexive, we need to demonstrated that E(p, p) = 1. Let p ∈ Qpred(p,u),E(p, p) = Pα(1)(p) =

P(1)(p)(α) = ∨
{
1(p) ⊗ δ̃((p, µt(p)),u, p)(α)|p ∈ Qpred(p,u),u ∈ Σ

}
= δ̃((p, µt(p)), ∧, p)(α) = 1. Thus, E is

L-valued reflexive. To show E is L-valued transitive, we need to display that E(p, r) ≥ E(p, q) ⊗ E(q, r)
where, p ∈ Qpred(q,u), q ∈ Qpred(r, v), i.e., Pα(1)(r) ≥ Pα(1)(q) ⊗ Pα(1)(r). Now, Pα(1)(q) ⊗ Pα(1)(r) = [∨

{
1(q′) ⊗

δ̃((q′, µti (q′)),u, q)(α)|q′ ∈ Qpred(q,u),u ∈ Σ}]⊗ [∨
{
1(r′)⊗ δ̃((r′, µt j (r′)), v, r) (α)|r′ ∈ Qpred(r, v), v ∈ Σ

}
] = ∨

{
(1(q′)⊗

δ̃((q′, µti (q′)),u, q)(α)) ⊗ (∨
{
1(r′) ⊗ δ̃((r′, µt j (r′)), v, r)(α)|r′ ∈ Qpred(r, v), v ∈ Σ

}
)|q′ ∈ Qpred(q,u),u ∈ Σ

}
= ∨

{
δ̃((q′,

µti (q′)),u, q)(α) ⊗ (∨
{
δ̃((r′, µt j (r′)), v, r)(α)|r′ ∈ Qpred(r, v), v ∈ Σ})| q′ ∈ Qpred(q,u),u ∈ Σ} = ∨[δ̃((p, µti (p)),u,

q)(α) ⊗ δ̃((q, µt j (q)), v, r)(α)| p ∈ Qpred(q,u), q ∈ Qpred(v, r),u, v ∈ Σ} = ∨
{
δ̃∗((p, µti (p)),uv, r)(α)|p ∈ Qpred(q, u), q ∈

Qpred(v , r),u, v ∈ Σ} = ∨
{
1(p)⊗ δ̃∗((p, µti (p)),uv, r)(α)|p ∈ Qpred(q,u), q ∈ Qpred(r, v),u, v ∈ Σ

}
= Pα(1)(r) = E(p, r).

Thus, E(p, r) = E(p, q) ⊗ E(q, r). Hence, E is L-valued transitive.

Definition 3.9. Let F̃ be an LB-valued general fuzzy automaton and α ∈ B. The L-valued approximation
operator on Q is as follows:
Dα(q) = D(α)(q) = ∨

{
E(p, q) ⊗ α(p)|p ∈ Qpred(q,u),u ∈ Σ

}
for all q ∈ Q.

Proposition 3.10. Let F̃ be an LB-valued general fuzzy automaton and α ∈ B. An L-valued relation E on a non-empty
set Q is L-valued reflexive and L-valued transitive if and only if L-valued approximation operator D is a Kuratowski
saturated L-valued closure operator on Q.

Proof. Let E be an L-valued reflexive and L-valued transitive relation on Q. To show that D is an L-valued
closure operator on Q, we need to verify the following conditions (∀λ, λ j ∈ B, j ∈ J):

i)D(a) = a,∀a ∈ L;

ii)λ ≤ D(λ);

iii)D(∪
{
λ j| j ∈ J

}
) = ∪

{
D(λ j)| j ∈ J

}
;

iv)D(D(λ)) = D(λ).
Proof of (i) is obviously satisfied and (ii) follows using the reflexivity of E. (iii) is satisfied, since for

q ∈ Q and λ j ∈ B, j ∈ J,D(∪
{
λ j| j ∈ J

}
)(q) = ∨

{
E(p, q) ⊗ (∨

{
λ j(p)| j ∈ J

}
)|p ∈ Qpred(q,u),u ∈ Σ

}
= ∨

{
∨

{
E(p, q) ⊗ λ j(p)|p ∈ QPred(q,u),u ∈ Σ

}
| j ∈ J

}
= ∪

{
D(λ j| j ∈ J)

}
(q). Finally, (iv) is also satisfied by using the transitivity of E as: ∀q ∈ Q

D(D(α))(q) = ∨
{
E(p, q) ⊗D(α)(p)|p ∈ Qpred(q,u),u ∈ Σ

}
= ∨

{
E(p, q) ⊗ (∨

{
E(r, p) ⊗ α(r)|r ∈ Qpred(p, v), v ∈ Σ

}
)|p ∈ Qpred(q,u),u ∈ Σ

}
= ∨

{
(∨

{
E(p, q) ⊗ E(r, p)|p ∈ Qpred(q,u)}) ⊗ α(r)|r ∈ Qpred(p, v),u, v ∈ Σ

}
≤ ∨

{
E(r, q) ⊗ α(r)|r ∈ Qpred(q,w),w ∈ Σ∗

}
= D(α)(q).
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Conversely, let D be an L-valued closure operator on Q and q ∈ Q. Then 1 = 1(q) ≤ D(1)(q). Thus,
D(1)(q) = 1, hence∨

{
E(p, q)⊗1(p)|p ∈ Qpred(q,u),u ∈ Σ

}
= 1 = E(p, p).Hence, E is an L-valued reflexive. Next,

let q ∈ Q, r ∈ Qpred(q,u) for u ∈ Σ. Then D(D(1))(q) ≤ D(1)(q), i.e.,
∨

{
E(p, q) ⊗D(1)(p)|p ∈ Qpred(q,u),u ∈ Σ

}
≤ D(1)(q)

⇒ ∨

{
E(p, q)⊗(∨

{
E(r, p)⊗1(r)

}
|r ∈ Qpred(p, v), v ∈ Σ

}
)|p ∈ Qpred(q,u),u ∈ Σ

}
≤ ∨

{
E(q′, q)⊗1(q′)|q′ ∈ Qpred(q,w),w ∈

Σ
}
, or that ∨

{
E(r, p) ⊗ E(p, q)|p ∈ Qpred(q,u),u ∈ Σ

}
≤ ∨

{
E(q′, q) ⊗ 1(q′)|q′ ∈ Qpred(q,w).w ∈ Σ

}
.

Thus, ∨
{
E(r, p)⊗E(p, q)|p ∈ Qpred(q,u), r ∈ Qpred(p, v)

}
≤ E(r, q). Hence, E is an L-valued transitive also.

Proposition 3.11. Let F̃ be an LB-valued general fuzzy automaton. Then D is a Kuratowski saturated L-valued
closure operator on Q.

Proof. It follows from Proposition 3.10.

Thus, D induces an saturated L-valued topology on Q, say τ(Q).

Remark 3.12. (i) Let F̃ be an LB-valued general fuzzy automaton and α ∈ B. Similar to above, if we
define another L-valued relation E∗ on Q, given by if p ∈ Qsucc(q,u) ⇒ E∗(p, q) = Sα(1)(q) = S(1)(q)(α)
= ∨

{
1(p) ⊗ δ̃((q, µt(q)),u, p) (α)|p ∈ Qsucc(q,u),u ∈ Σ

}
for all q ∈ Q. Then E∗(p, q) = E(q, p) is also an L-valued

reflexive and transitive relation on Q, and hence it will induce another L-valued approximation operator,
say D∗, on Q, which will induce an L-valued topology on Q, say τ∗(Q).

(ii) It can be seen that D(λ) = P(λ) and D∗(λ) = S(λ) for all λ ∈ B.

Definition 3.13. Let F̃ be an LB-valued general fuzzy automaton and α ∈ B. b ∈ B is called an L-valued
successor subproposition of F̃ if

b(p) ≤ ∧
{
δ̃((p, µt(p)),u, q)(α)→ b(q)|q ∈ Qsucc(p,u),u ∈ Σ

}
.

Proposition 3.14. Let F̃ be an LB-valued general fuzzy automaton and α ∈ B. b ∈ B is an L-valued successor
subproposition of F̃ if and only if Pα(b) = b (i.e., b is L-valued T′α(Q)-closed).

Proof. Let Pα(b) = b. Then
Pα(b) = b⇒ Pα(b)(q) = b(q)
⇒ ∨

{
b(p) ⊗ δ̃((p, µt(p)),u, q)(α)|p ∈ Qpred(q,u),u ∈ Σ

}
= b(q)

⇒ b(p) ⊗ δ̃((p, µt(p)),u, q)(α) ≤ b(q), p ∈ Qpred(q,u),u ∈ Σ

⇒ b(p) ≤ δ̃((p, µt(p)),u, q)(α)→ b(q), q ∈ Qsucc(p,u),u ∈ Σ

⇒ b(p) ≤ ∧
{
δ̃((p, µt(p)),u, q)(α)→ b(q)|q ∈ Qsucc(p,u),u ∈ Σ

}
.

Then b is an L-valued successor subproposition of F̃.

Conversely, let b be an L-valued successor subproposition of F̃. Then
b(p) ≤ ∧

{
δ̃((p, µt(p)),u, q)(α)→ b(q)|q ∈ Qsucc(p,u),u ∈ Σ

}
⇒ b(p) ≤ δ̃((p, µt(p)),u, q)(α)→ b(q), q ∈ Qsucc(p,u),u ∈ Σ
⇒ b(p) ⊗ δ̃((p, µt(p)),u, q)(α) ≤ b(q), p ∈ Qpred(q,u),u ∈ Σ

⇒ ∨

{
b(p) ⊗ δ̃((p, µt(p)),u, q)(α)|p ∈ Qpred(q,u),u ∈ Σ

}
≤ b(q)

⇒ Pα(b)(q) ≤ b(q).
Also, as b(q) ≤ Pα(b)(q), whereby Pα(b) = b. Hence, Pα(b) = b iff b be an L-valued successor subproposition
of F̃.

Proposition 3.15. Let F̃ be an LB-valued general fuzzy automaton and α ∈ B. b ∈ B is an L-valued separated
successor subproposition of F̃ if and only if b is T′α(Q)-clopen.
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Proof. Follows from Propositions 2.11 and 3.14.

Definition 3.16. An LB-valued general fuzzy automaton F̃ is called reversible if

δ̃((p, µti (p)),u, q)(α) ≤ ∨{δ̃((q, µt j (q)), v, p)(α)|v ∈ Σ}, ∀p, q ∈ Q,u ∈ Σ and α ∈ B.

Proposition 3.17. An LB-valued general fuzzy automaton F̃ is reversible if and only if L-valued topology τ(Q) is R0
.

Proof. Let F̃ be reversible. Then∀p, q ∈ Q,u ∈ Σ andα ∈ B, δ̃((p, µti (p)),u, q) (α) ≤ ∨{δ̃((q, µt j (q)), v, p)(α)|v ∈ Σ}.
We show that L-valued topology τ(Q) is R0, for which it suffices to show that Pα(1)(q) ≤ Pα(1)(p), ∀p, q ∈ Q

and α ∈ B. As Pα(1)(q) = ∨
{
δ̃((p, µti (p)),u, q)(α)|p ∈ Qpred(q,u),u ∈ Σ

}
and Pα(1)(p) = ∨

{
δ̃((q, µt j (q)), v, p)(α)|q ∈

Qpred(p, v), v ∈ Σ
}
, from the reversibility of F̃, Pα(1)(q) ≤ Pα(1)(p),∀p, q ∈ Q. Therefore, the L-valued topology

τ(Q) is R0. Conversely, let τ(Q) be an R0 L-valued topology on Q. Then ∀p, q ∈ Q,Pα(1)(q) ≤ Pα(1)(p), i.e.,
δ̃((p, µti (p)),u, q)(α) ≤ δ̃((q, µt j (q)), v, p)(α),∀u, v ∈ Σ,∀p, q ∈ Q and α ∈ B.

Hence, F̃ is reversible.

Example 3.18. Consider the GFA in Figure 2, it is specified as F̃ = (Q,Σ, R̃,Z, ω, δ̃,F1,F2), where Q =
{
q0, q1

}
is the set of states, Σ =

{
a, b

}
is the set of input symbols, R̃ =

{
(q0, 1)

}
,Z = ∅ and w is not applicable.

Fig. 2 The GFA of Example 3.18

We check operation of the GFA in Example 3.18 upon input ”aba”.

If we choose F1(µ, δ) = δ,F2() = µt+1(qm) = ∧n
i=1(F1(µt(qi), δ(qi, ak, qm)), then we have:

µt0 (q0) = 1,

µt1 (q1) = F1(µt0 (q0), δ(q0, a, q1)) = δ(q0, a, q1) = 0.3,

µt2 (q1) = F1(µt1 (q1), δ(q1, b, q1)) = δ(q1, b, q1) = 0.1,

µt2 (q0) = F1(µt2 (q1), δ(q1, a, q0)) = δ(q1, a, q0) = 0.4.

Table 2: Active states and their membership values (mv) at different times in Example 3.18
time t0 t1 t2 t3

input ∧ a b a
Qact(ti) q0 q1 q1 q0

mv 1 0.3 0.1 0.4

The set B =
{
0, α0, α1, α2, α3, 1

}
of possible propositions about the general fuzzy automaton F̃ is as follows:

-0 means that the GFA is not in active states of Q,
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-α0 means that the GFA is in active states at time t0,

-α1 means that the GFA is in active states at time t1,

-α2 means that the GFA is in active states at time t2,

-α3 means that the GFA is in active states at time t3,

-1 means that the GFA is in at least one active state at time ti for any i ≥ 0.

By the Definition 3.16 F̃ is reversible and L-valued topology τ on Q is R0. For example we have:
δ̃((q1, µt2 (q1)), a, q0)(α2) = F1(µt2 (q1), δ(q1, a, q0)(α2)) = δ(q1, a, q0)(α2) = α2(q0) ∨ α2(q1) = 0 ∨ 0.1 = 0.1 and
δ̃((q0, µt0 (q0)), a, q1)(α2) = F1(µt0 (q0), δ(q0, a, q1)(α2)) = δ(q0, a, q1)(α2) = α2(q0) ∨ α2(q1) = 0 ∨ 0.1 = 0.1, then
δ̃((q1, µt2 (q1)), a, q0)(α2) ≤ δ̃((q0, µt0 (q0)) , a, q1)(α2). Also, Pα2 (1)(q0) ≤ Pα2 (1)(q1) Since
Pα2 (1)(q0) = 1(q1) ⊗ δ̃((q1, µt2 (q1)), a, q0)(α2) = 0.3 ⊗ 0.1 = 0.1, Pα2 (1)(q1) = {1(q0) ⊗ δ̃((q0, µt0 (q0)), a, q1)(α2)} ∨
{1(q1) ⊗ δ̃((q1, µt1 (q1)), b, q1)(α2)} = 0.1 ⊗ 0.1 = 0.1.

Proposition 3.19. Let F̃ be an LB-valued general fuzzy automaton and α ∈ B. F̃ is reversible if and only if for any
L-valued successor subproposition b ∈ B of F̃, Pα(b) = b.

Proof. Let F̃ be reversible. Then τ(Q) is R0 L-valued topology. Thus, for any L-valued closed subset b on
Q, Pα(b) ≤ b. Hence, Pα(b) = b. Conversely, let b ∈ B be an L-valued successor subproposition of F̃ such
that Pα(b) = b. Then as b is τ(Q) L-valued closed and contains the closure of its each point, the L-valued
topology τ(Q) is R0. Thus, F̃ is reversible.

Corollary 3.20. An LB-valued general fuzzy automaton F̃ is reversible if and only if each L-valued successor sub-
proposition of F̃ is separated.

Proof. It follows from Propositions 3.14 and 3.19.

3.2. LB-valued GFA Structure Space and LB-valued GFA Homotopy
Let τ be an L-valued topology on Q induced by Kuratowski saturated L-valued closure operator D in

previous subsection. Then τ is said to be the LB-valued GFA structure generated by L-valued topology
associated with an LB-valued GFA and the ordered pair (Q, τ) is said to be an LB-valued GFA structure space.
Moreover, members of τ are said to be an LB-valued GFA open subpropositions and their complements are
said to be an LB-valued GFA closed subpropositions.

Definition 3.21. Let F̃ be an LB-valued GFA and let (Q, τ) be an LB-valued GFA structure space. Let
p, q ∈ Q,u ∈

∑
and α ∈ B. Then the proposition point qα is defined as:

qα(p) =

α(q), p ∈ Qpred(q,u)
0, otherwise

.

Definition 3.22. Let (Q, τ) and (Q′, τ′) be any two LB-valued GFA structure space. A function f : (Q, τ) →
(Q′, τ′) is said to be:

(i) LB-valued GFA continuous if f−1(λ) is an LB-valued GFA open (resp. LB-valued GFA closed) sub-
proposition in (Q, τ) for every LB-valued open (resp. LB-valued closed) subproposition λ in (Q′, τ′).

(ii) LB-valued GFA homomorphism if f is bijective and f , f−1 are LB-valued GFA continuous functions.

Definition 3.23. Let (Q, τ) be an LB-valued GFA structure space and let A ⊆ Q. Then the LB-valued GFA
characteristic function χA of A is defined as:

χA(q) =

1, q ∈ A
0, otherwise

.
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Definition 3.24. Let (Q, τ) be an LB-valued GFA structure space. If A ⊆ Q and χA is the LB-valued GFA
characteristic function of A, then the collection τ/A = {λ/A = λ ∧ χA : λ ∈ τ} is an LB-valued GFA structure
on A which is called the LB-valued GFA subspace structure and the pair (A, τ/A) is called LB-valued GFA
structure subspace of (Q, τ).

Definition 3.25. Let (Q, τ) be a structure space where Q is the non-empty set of states of an LB-valued GFA
F̃. The collection, w(τ) = {χP : P ∈ τ} such that D(χP) = χP is an LB-valued structure on Q introduced by τ.
Then (Q,w(τ)) is called the LB-valued GFA structure space introduced by (Q, τ).

Note 3.26. Let ζ be an Euclidean topology on I, where I = [0, 1] and (I,w(ζ)) be an LB-valued GFA structure
space introduced by the Euclidean space (I, ζ).

Definition 3.27. Let (Q, τ) and (Q′, τ′) be any two LB-valued GFA structure spaces and (I,w(ζ)) be an
LB-valued GFA structure introduced by the Euclidean space (I, ζ). Let f , 1 : (Q, τ) → (Q′, τ′) be any
two LB-valued GFA continuous functions. If there exists an LB-valued GFA continuous function H :
(Q, τ)× (I,w(ζ))→ (Q′, τ′) such that H(qα, 0) = f (qα) and H(qα, 1) = 1(qα), for each proposition point qα of Q,
then f is said to be an LB-valued GFA homotopic to g. Moreover, the function H is said to be an LB-valued
GFA homotopy between f and 1, denoted as f ' 1.

Proposition 3.28. Let (Q, τ) and (Q′, τ′) be any two LB-valued GFA structure spaces. Let U and V be subsets of Q.

Letλ =
λ
U
∨
λ
V

, where
λ
U

and
λ
V

are the LB-valued GFA open subpropositions in (Q, τ). Let f : (U,
τ
U

)→ (Q′, τ′) and

h : (V,
τ
V

)→ (Q′, τ′) be any two LB-valued GFA continuous functions. If
f

U ∩ V
=

h
U ∩ V

, then 1 : (Q, τ)→ (Q′, τ′)
which is defined by,

1(q) =

 f (q), for q ∈ U
h(q), for q ∈ V

is an LB-valued GFA continuous function.

Proof. Let α be an LB-valued GFA open subproposition in (Q′, τ′). Let
λ
U

and
λ
V

be the LB-valued GFA open

subpropositions in (Q, τ). Then
λ
U
∨
λ
V

is an LB-valued GFA open subproposition in (Q, τ). Now,

1−1(α) = 1−1(α) ∧ λ = 1−1(α) ∧ (
λ
U
∨
λ
V

) = (1−1(α) ∧
λ
U

) ∨ (1−1(α) ∧
λ
V

) = f−1(α) ∨ h−1(α).

Since f and h are LB-valued GFA continuous functions, f−1(α) and h−1(α) are the LB-valued GFA open

subpropositions in (U,
λ
U

) and (V,
λ
V

), respectively. Then 1−1(α) is an LB-valued GFA open subproposition

in (Q, τ). Hence, 1 is an LB-valued GFA continuous function.

Proposition 3.29. The homotopy relation ' is an equivalence relation.

Proof. It is clear.

Note 3.30. The equivalence class of the LB-valued GFA function f under the equivalence relation ' id
denoted by [ f ].

Definition 3.31. Let (Q, τ) and (Q′, τ′) be any two LB-valued GFA structure spaces. Let f : (Q, τ)→ (Q′, τ′)
and 1 : (Q′, τ′) → (Q, τ) be LB-valued GFA continuous function such that f o1 = idQ′ and 1o f = idQ, where
idQ and idQ′ are the identity functions of (Q, τ) and (Q′, τ′), respectively. Then (Q, τ) and (Q′, τ′) are said to
LB-valued GFA homotopic equivalent spaces and f is called an LB-valued GFA homotopy equivalence.

Definition 3.32. Let (Q, τ) and (Q′, τ′) be any two LB-valued GFA structure spaces. An LB-valued GFA
function f : (Q, τ)→ (Q′, τ′) is said to be a constant function if for each proposition point qδ in Q f (qδ) = rλ
where rλ is a fixed proposition point in Q′.
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Definition 3.33. An LB-valued GFA structure (Q, τ) is said to be LB-valued GFA contractible space if the
identity function idQ : (Q, τ)→ (Q, τ) is LB-valued GFA homotopic to a constant function h : (Q, τ)→ (Q, τ).

Definition 3.34. Let (Q, τ) and (Q′, τ′) be any two LB-valued GFA structure spaces. Let f , 1 : (Q, τ)→ (Q′, τ′)
be any two LB-valued GFA continuous functions and f ' 1. If 1 is a constant function, then f is called an
LB-valued GFA null-homotopic function.

Proposition 3.35. An LB-valued GFA structure space (Q, τ) is LB-valued GFA contractible if for any arbitrary
LB-valued GFA structure space (Q′, τ′) every LB-valued GFA function f : (Q, τ) → (Q′, τ′) is LB-valued GFA
null-homotopic.

Proof. Assume that for any arbitrary LB-valued GFA structure space (Q′, τ′) the function f : (Q, τ)→ (Q′, τ′)
is LB-valued GFA null-homotopic. Then the identity function idQ : (Q, τ) → (Q, τ) is LB-valued GFA null-
homotopic; and, hence (Q, τ) is LB-valued GFA contractible. Now, assume that (Q, τ) is an LB-valued GFA
contractible space. Then there exists a constant function h : (Q, τ)→ (Q, τ) by h(qδ) = q′δ and LB-valued GFA
homotopy F : (Q, τ) × (I,w(ζ))→ (Q, τ) such that F(qδ, 0) = idQ(qδ); F(qδ, 1) = h(qδ) = q′δ.

If there is an LB-valued GFA f : (Q, τ) → (Q′, τ′), then H : (Q, τ) × (I,w(ζ)) → (Q′, τ′) is defined by
H(qδ, s) = f (F(qδ, s)), where s ∈ I has the following properties:

H(qδ, 0) = f (F(qδ, 0)) = f (idQ(qδ)) = f (qδ) = ( f (q))δ, H(qδ, 1) = f (F(qδ, 1)) = f (h(qδ)) = q′δ.
Hence, H is an LB-valued GFA homotopy from f to a constant map with value f (q′). Thus, f is LB-valued
GFA null-homotopic.

Proposition 3.36. Let (Q, τ), (Q′, σ) and (Q′′, ρ) be any three LB-valued GFA structure spaces. let f , 1 : (Q, τ) →
(Q′, σ) be LB-valued GFA continuous functions such that f ' 1. If h : (Q′, σ)→ (Q′′, ρ) is an LB-valued continuous
function, then ho f , ho1 : (Q, τ)→ (Q′′, ρ) are LB-valued GFA continuous and ho f ' ho1.

Proof. Let (I,w(ζ)) be an LB-valued GFA structure space introduced by the Euclidean space (I, ζ). Since h, f
and 1 are LB-valued GFA functions, ho f and ho1 are LB-valued GFA continuous. Since f ' 1 by definition
of LB-valued GFA homotopy there is an LB-valued continuous function G : (Q, τ) × (I,w(ζ)) → (Q′, σ) such
that G(qδ, 0) = f (qδ), G(qδ, 1) = 1(qδ), for each proposition poin qδ o f Q. Now, H : (Q, τ) × (I,w(ζ))→ (Q′′, ρ)
is given by H(qδ, t) = h(G(qδ, t)), where t ∈ I. Since h and 1 are LB-valued GFA continuous functions, H = ho1
is an LB-valued GFA continuous function. Moreover, H satisfies the following conditions:

H(qδ, 0) = h(G(qδ, 0)) = h( f (qδ)) = (ho f )(qδ);

H(qδ, 1) = h(G(qδ, 1)) = h(1(qδ)) = (ho1)(qδ).
Hence, ho f ' ho1.

Proposition 3.37. Let (Q, τ), (Q′, σ) and (Q′′, ρ) be any three LB-valued GFA structure spaces. Suppose that
f1, f2 : (Q, τ) → (Q′, σ) are LB-valued GFA homotopic functions and that 11, 12 : (Q′, σ) → (Q, τ) are LB-valued
GFA homotopic functions, then 11o f1 ' 12o f2.

Proof. Let H : (Q, τ)×(I,w(ζ))→ (Q′, σ) be an LB-valued GFA homotopy f1 to f2 and let G : (Q′, σ)×(I,w(ζ))→
(Q′′, ρ) be an LB-valued GFA homotopy from 11 to 12. Now, let us define a function F : (Q, τ) × (I,w(ζ)) →
(Q′′, ρ) by F(qδ, s) = G(H(qδ, s), s). Since F is a composition of two LB-valued GFA continuous functions, G
and H,F is also an LB-valued GFA continuous function. It is seen that

F(qδ, 0) = G(H(qδ, 0), 0) = 12( f2(qδ));

F(qδ, 1) = G(H(qδ, 1), 1) = 11( f1(qδ)).
Hence, F is an LB-valued GFA homotopy from 11o f1 to 12o f2. Therefore 11o f1 ' 12o f2.

Definition 3.38. Let (Q, τ) and (Q′, σ) be any two LB-valued GFA structure spaces. Let f1 : (Q, τ)→ (Q′, σ) be
an LB-valued GFA continuous function. If there exists an LB-valued GFA continuous function f2 : (Q′, σ)→
(Q, τ) which satisfies the following conditions:
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(i) f1o f2 ' idQ′ and (ii) f2o f1 ' idQ, where idQ and idQ′ are the identity functions of Q and Q′, respectively,
then the function f1 is called an LB-valued GFA homotopy equivalence and the LB-valued GFA structure
spaces (Q, τ) and (Q′, σ) are called LB-valued GFA homotopic equivalent spaces.

Proposition 3.39. Let (Q, τ) and (Q′, σ) be any two LB-valued GFA structure spaces. Every LB-valued GFA
function that is LB-valued GFA homotopic to an LB-valued GFA homotopy equivalence is an LB-valued GFA homotopy
equivalence.

Proof. Let f1 : (Q, τ) → (Q′, σ) be an LB-valued GFA homotopy equivalence and let 1 : (Q, τ) → (Q′, σ)
be LB-valued GFA homotopic to f1. Then by definition of LB-valued GFA homotopy equivalence, there
exists an LB-valued GFA continuous function f2 : (Q′, σ) → (Q, τ) such that f2o f1 ' idQ and f1o f2 ' id′Q,
respectively. Since f1, 1 : (Q, τ) → (Q′, σ) are LB-valued GFA homotopic and by Proposition 3.37 it is seen
that f2o f1 ' f2o1 ' idQ; f1o f2 ' 1o f2 ' idQ′ . Therefore 1 is an LB-valued GFA homotopy equivalence.

Definition 3.40. Let (Q, τ) and (Q′, σ) be any two LB-valued GFA structure spaces. If the bijective function
f : (Q, τ) → (Q′, σ) and its inverse function are LB-valued GFA continuous functions, then the function
f is said to be an LB-valued GFA homeomorphism. Moreover, (Q′, σ) are said to be an LB-valued GFA
homeomorphic spaces.

Proposition 3.41. Every LB-valued GFA homeomorphic spaces are LB-valued GFA homotopy equivalent spaces

Proof. Let (Q, τ) and (Q′, σ) be any two LB-valued GFA structure spaces. Since f1 : (Q, τ) → (Q′, σ) and
f2 : (Q′, σ) → (Q, τ) are LB-valued GFA homeomorphisms, f1o f2 ' idQ′ and f2o f1 = idQ, where idQ and
idQ′ are the identity functions of Q and Q′, respectively. Hence, by Proposition 3.29, (Q, τ) and (Q′, σ) are
LB-valued GFA homotopy equivalent spaces.

3.3. Relationships Between LB-valued GFA and Associated L-valued Subpropositions

In this subsection, we study the concepts associated with L-valued successor (predecessor) subpropo-
sitions of an LB-valued general fuzzy automaton F̃ with the membership values in a complete residuated
lattice. Finally, the continuity properties of such LB-valued general fuzzy automaton are discussed in terms
of the topologies.

Definition 3.42. A reverse LB-valued general fuzzy automaton of an LB-valued GFA F̃ = (Q,Σ, R̃,Z, δ̃, ω,F1,F2)
is an LB-valued GFA ¯̃F = (Q,Σ, R̃,Z, ¯̃δ, ω, F1,F2) where ¯̃δ : (Q × L) × Σ ×Q→ LB is a map such that

¯̃δ((p, µti (p)),u, q)(α) = ∨
{
δ̃((q, µt j (q)), v, p)(α)|v ∈ Σ

}
.

Definition 3.43. Let F̃ be an LB-valued general fuzzy automaton and α ∈ B. Then b ∈ B is called:
i) an L-valued predecessor subproposition of F̃ if

b(q) ≤ ∧
{
δ̃((p, µt(p)),u, q)(α)→ b(p)|p ∈ Qpred(q,u),u ∈ Σ

}
;

ii) a double L-valued subproposition of F̃ if it is both L-valued successor and predecessor subproposition
of F̃.

Proposition 3.44. Let F̃ be an LB-valued general fuzzy automaton and α ∈ B. Then the following are equivalent:
i) b ∈ B is an L-valued successor subproposition of F̃.

ii) b ∈ B is τ(Q)-open.

iii) b ∈ B is a solution to an L-valued relational equation χ ⊗ E = χ, where χ ∈ B is an unknown.
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Proof. (i)→ (ii) Let b be an L-valued successor subproposition of F̃. Then
b(p) ≤ ∧

{
δ̃((p, µt(p)),u, q)(α)→ b(q)|q ∈ Qsucc(p,u),u ∈ Σ

}
⇒ b(p) ≤ δ̃((p, µt(p)),u, q)(α)→ b(q), q ∈ Qsucc(p,u),u ∈ Σ
⇒ b(p) ⊗ δ̃((p, µt(p)),u, q)(α) ≤ b(q), q ∈ Qsucc(p,u),u ∈ Σ

⇒ b(p) ⊗ (∨
{
δ̃((p, µt(p)),u, q)(α)|q ∈ Qsucc(p,u),u ∈ Σ

}
) ≤ b(q)

⇒ b(p) ⊗ (∨
{
1(p) ⊗ δ̃((p, µt(p)),u, q)(α)|p ∈ Qpred(q,u),u ∈ Σ

}
) ≤ b(q)

⇒ b(p) ⊗ (∨
{
E(p, q)|p ∈ Qpred(q,u),u ∈ Σ

}
) ≤ b(q)

⇒ ∨

{
b(p) ⊗ E(p, q)|p ∈ Qpred(q,u),u ∈ Σ

}
≤ b(q)

⇒ D(b)(q) ≤ b(q).
Also, as b(q) ≤ D(b)(q), whereby D(b) = b. Then b is τ(Q)-open.

(ii)→ (iii) Let b be τ(Q)-open. Then b ⊗ E ≤ b. Also, from the reflexivity of E, b ≤ b ⊗ E. Thus b ⊗ E = b,
or that b is a solution of L-valued relation equation χ ⊗ E = χ.

(iii)→ (i) is trivial.

Proposition 3.45. Let F̃ be an LB-valued general fuzzy automaton and α ∈ B. Then the following are equivalent:
i) b ∈ B is an L-valued predecessor subproposition of F̃.

ii) b ∈ B is τ∗(Q)-open.

iii) b ∈ B is a solution to an L-valued relation equation χ ⊗ E = χ, where χ ∈ B is an unknown.

Proof. It is similar to the above mentioned lines.

Proposition 3.46. Let F̃ be an LB-valued general fuzzy automaton and α ∈ B. Then;
i) if b ∈ B is an L-valued predecessor subproposition, then ¬b is an L-valued successor subproposition.

ii) if b ∈ B is an L-valued successor subproposition, then ¬b is an L-valued predecessor subproposition.

Proof. (i) Let b be an L-valued predecessor subproposition of F̃. Then
b(q) ≤ ∧

{
δ̃((p, µt(p)),u, q)(α)→ b(p)|p ∈ Qpred(q,u),u ∈ Σ

}
⇒ b(q) ≤ δ̃((p, µt(p)),u, q)(α)→ b(p), p ∈ Qpred(q,u),u ∈ Σ

⇒ b(q) ⊗ δ̃((p, µt(p)),u, q)(α) ≤ b(p), p ∈ Qpred(q,u),u ∈ Σ

⇒ ¬(b(q) ⊗ δ̃((p, µt(p)),u, q)(α)) ≥ ¬b(p), p ∈ Qpred(q,u),u ∈ Σ

⇒ (b(q) ⊗ δ̃((p, µt(p)),u, q)(α))→ 0 ≥ ¬b(p), p ∈ Qpred(q,u),u ∈ Σ

⇒ (δ̃((p, µt(p)),u, q)(α) ⊗ b(q))→ 0 ≥ ¬b(p), p ∈ Qpred(q,u),u ∈ Σ

⇒ δ̃((p, µt(p)),u, q)(α)→ (b(q)→ 0) ≥ ¬b(p), p ∈ Qpred(q,u),u ∈ Σ

⇒ ¬b(p) ≤ δ̃((p, µt(p)),u, q)(α)→ ¬b(q), q ∈ Qsucc(p,u),u ∈ Σ

⇒ ¬b(p) ≤ ∧
{
δ̃((p, µt(p)),u, q)(α)→ ¬b(q)|q ∈ Qsucc(p,u),u ∈ Σ

}
.

Then ¬b is an L-valued successor subproposition of F̃.

(ii) The proof is similar to what has been explained before.

Proposition 3.47. Let F̃ be an LB-valued general fuzzy automaton and α ∈ B. Then b ∈ B is an L-valued successor
subproposition of F̃ if and only if b : (Q,E)→ (L,→) is an preserving map.

Proof. Let b be an L-valued successor subproposition of F̃. Then
b(p) ≤ ∧

{
δ̃((p, µt(p)),u, q)(α)→ b(q)|q ∈ Qsucc(p,u),u ∈ Σ

}
⇒ b(p) ≤ δ̃((p, µt(p)),u, q)(α)→ b(q), q ∈ Qsucc(p,u),u ∈ Σ
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⇒ b(p) ⊗ δ̃((p, µt(p)),u, q)(α) ≤ b(q), q ∈ Qsucc(p,u),u ∈ Σ
⇒ δ̃((p, µt(p)),u, q)(α) ⊗ b(p) ≤ b(q), q ∈ Qsucc(p,u),u ∈ Σ
⇒ δ̃((p, µt(p)),u, q)(α) ≤ b(p)→ b(q), q ∈ Qsucc(p,u),u ∈ Σ
⇒ 1(p) ⊗ δ̃((p, µt(p)),u, q)(α) ≤ b(p)→ b(q), p ∈ Qpred(q,u),u ∈ Σ

⇒ ∨

{
1(p) ⊗ δ̃((p, µt(p)),u, q)(α)|p ∈ Qpred(q,u),u ∈ Σ

}
≤ b(p)→ b(q)

⇒ E(p, q) ≤ b(p)→ b(q).
Thus b : (Q,E)→ (L,→) preservers order. Converse the following similarly.

Proposition 3.48. Let F̃ be an LB-valued general fuzzy automaton and α ∈ B. b ∈ B is an L-valued predecessor
subproposition of F̃ if and only if b : (Q,E∗)→ (L,→) is an order preserving map.

Proof. Similar to that of Proposition 3.47.

Proposition 3.49. Let F̃ be an LB-valued general fuzzy automaton, b ∈ B be an L-valued successor (predecessor)
subproposition of F̃ and α ∈ B. Then for each a ∈ L, b→ a is an L-valued predecessor (successor) subproposition of F̃.

Proof. Let b be an L-valued successor subproposition of F̃. Then
b(p) ≤ ∧

{
δ̃((p, µt(p)),u, q)(α)→ b(q)|q ∈ Qsucc(p,u),u ∈ Σ

}
⇒ b(p) ≤ δ̃((p, µt(p)),u, q)(α)→ b(q), q ∈ Qsucc(p,u),u ∈ Σ
⇒ b(p) ⊗ δ̃((p, µt(p)),u, q)(α) ≤ b(q), q ∈ Qsucc(p,u),u ∈ Σ.
To show that b → a is an L-valued predecessor subproposition of F̃ it is enough to show that (b(q) → a) ≤
δ̃((p, µt(p)),u, q)(α) → (b(p) → a), p ∈ Qpred(q,u),u ∈ Σ, or that (b(q) → a) ⊗ δ̃((p, µt(p)),u, q)(α) ⊗ b(p) ≤ a, p ∈
Qpred(q,u),u ∈ Σ. Now, (b(q) → a) ⊗ δ̃((p, µt(p)),u, q)(α) ⊗ b(p) ≤ (b(q) → a) ⊗ b(q) ≤ a. Thus b → a is an
L-valued predecessor subproposition of F̃. Similary, it can be prove that if b is an L-valued predecessor
subproposition of F̃, then for each a ∈ L, b→ a is an L-valued successor subproposition.

Proposition 3.50. Let F̃ be an LB-valued general fuzzy automaton, b ∈ B be an L-valued successor (predecessor)
subproposition of F̃ and α ∈ B. Then for each a ∈ L, a ⊗ b is an L-valued successor (predecessor) subproposition of F̃.

Proof. Let b be an L-valued successor subproposition of F̃ and a ∈ L. Then
b(p) ≤ ∧

{
δ̃((p, µt(p)),u, q)(α)→ b(q)|q ∈ Qsucc(p,u),u ∈ Σ

}
⇒ b(p) ≤ δ̃((p, µt(p)),u, q)(α)→ b(q), q ∈ Qsucc(p,u),u ∈ Σ
⇒ b(p) ⊗ δ̃((p, µt(p)),u, q)(α) ≤ b(q), q ∈ Qsucc(p,u),u ∈ Σ
⇒ a ⊗ b(p) ⊗ δ̃((p, µt(p)),u, q)(α) ≤ a ⊗ b(q), q ∈ Qsucc(p,u),u ∈ Σ
⇒ (a ⊗ b(p)) ≤ δ̃((p, µt(p)),u, q)(α)→ (a ⊗ b(q)), q ∈ Qsucc(p,u),u ∈ Σ

⇒ (a ⊗ b(p)) ≤ ∧
{
δ̃((p, µt(p)),u, q)(α)→ (a ⊗ b(q))|q ∈ Qsucc(p,u),u ∈ Σ

}
.

Thus a ⊗ b is an L-valued successor subproposition of F̃. The proof for the case of L-valued predecessor
subproposition of F̃ follows similarly.

Definition 3.51. Let F̃ = (Q,Σ, R̃,Z, δ̃, ω,F1, F2) and F̃′ = (Q′,Σ, R̃′,Z, δ̃′, ω′, F1, F2) be two LA-valued and
LB-valued general fuzzy automata, where A and B are regarded as a complete infinitely distributive lattice
of propositions about the general fuzzy automata F̃ and F̃′, respectively. Also, let E and H be L-valued
relation on Q and Q′. A map f : (Q,E)→ (Q′,H) between L-valued general fuzzy automata is called order
preserving if E(p, q) ≤ H( f (p), f (q)),∀p, q ∈ Q.

Proposition 3.52. Let F̃ and F̃′ be two LA-valued and LB-valued general fuzzy automata and f : (Q,E) → (Q′,H)
be order preserving. Then the inverse image of L-valued successor (predecessor) subproposition of F̃′ is an L-valued
successor (predecessor) subproposition of F̃.

Proof. Let p ∈ Qpred(q,u), α ∈ A and λ ∈ B be an L-valued successor subproposition of F̃′. To show that
f−1(λ) is an L-valued successor subproposition of F̃ it is enough to show that
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f−1(λ)(p) ≤ ∧{δ̃((p, µt(p)),u, q)(α)→ f−1(λ)(q)|q ∈ Qsucc(p,u),u ∈ Σ}
⇒ f−1(λ)(p) ≤ δ̃((p, µt(p)),u, q)(α)→ f−1(λ)(q), q ∈ Qsucc(p,u),u ∈ Σ
⇒ f−1(λ)(p) ⊗ δ̃((p, µt(p)),u, q)(α) ≤ f−1(λ)(q), q ∈ Qsucc(p,u),u ∈ Σ

⇒ f−1(λ)(p) ⊗
(
∨{δ̃((p, µt(p)),u, q)(α)|q ∈ Qsucc(p,u),u ∈ Σ}

)
≤ f−1(λ)(q)

⇒ f−1(λ)(p) ⊗
(
∨{1(p) ⊗ δ̃((p, µt(p)),u, q)(α)|p ∈ Qpred(q,u),u ∈ Σ}

)
≤ f−1(λ)(q)

⇒ f−1(λ)(p) ⊗ E(p, q) ≤ f−1(λ)(q).
Now, f−1(λ)(p) ⊗ E(p, q) ≤ λ( f (p)) ⊗ E(p, q) ≤ λ( f (p)) ⊗H( f (p), f (q)) ≤ λ( f (q)) ≤ f−1(λ)(q).

Thus f−1(λ) is an L-valued subproposition of F̃.

Proposition 3.53. Let F̃ and F̃′ be two LA-valued and LB-valued general fuzzy automata. If f : F̃ → F̃′ is
homomorphism, then f : (Q, τ(Q))→ (Q′, τ′(Q′)) is L-valued continuous.

Proof. It follows from Propositions 3.44, 3.45 and 3.52.

4. Conclusion

This study was an attempt to establish the relationships among L-valued successor/predecessor /resid-
uated/ approximation operator, L-valued topology/co-topology, and LB-valued general fuzzy automata.
It also showed that the continuity and separation properties of such LB-valued general fuzzy automaton
could be examined in terms of those topologies. Moreover in this study, LB-valued GFA structure space and
LB-valued GFA homotopy were scrutinized in more details. The discussions presented here offer hope for
some new insights in quantum computation, specifically, in the family of L-valued topology/co-topology.
Possibly, much more investigations can be done than what has been suggested in this study. For example,
it may be possible to introduce an L-valued topology on the state-set of product of two LB-valued general
fuzzy automata. Also, the decompositions of an LB-valued general fuzzy automaton can be proposed and
it will be interesting to set that up to which extent these concepts depend on the distributivity of associated
lattice.
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