Triple Reverse Order Law of Drazin Invertible Operators

Safae Alaoui Chrifia ${ }^{\text {, }}$ Abdelaziz Tajmouati ${ }^{\text {a }}$
${ }^{a}$ Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar Al Mahraz, Laboratory of Mathematical Analysis and Applications, Fez, Morocco.

Abstract

In this paper we study the triple reverse-order law $(A B C)^{D}=C^{D} B^{D} A^{D}$ for the Drazin invertible operators A, B and C under the commutative relations $[A B, B]=0,[B C, B]=0$ and $[A B, B C]=0$.

1. Introduction and preliminaries

Let X and Y be two infinite dimensional Banach spaces. Denote by $\mathcal{B}(X, Y)$ the Banach space of all bounded linear operators from X to Y. If $X=Y$, we will simply write $\mathcal{B}(X)$ instead of $\mathcal{B}(X, X)$. By $N(T)$ and $R(T)$, we denote the null space and the range of T, respectively. An operator $P \in \mathcal{B}(X)$ with the property $P^{2}=P$ is called a projection. For any two operators $T, S \in \mathcal{B}(X)$, we define the commutator $[T, S]$ to be $T S-S T$.

Recall that an operator $T \in \mathcal{B}(X)$ is Drazin invertible if there exists $S \in \mathcal{B}(X)$ that satisfies the following equations

$$
\begin{equation*}
T S=S T, \quad S=S T S, \quad T^{k+1} S=T^{k} \tag{1}
\end{equation*}
$$

The third equation in (1) means that $T-T S T$ is nilpotent of index k, in this case we write $\operatorname{ind}(T)=k$. It is worth pointing out that the Drazin inverse S of T, when it exists, it is unique. In the sequel, S will be denoted by T^{D}.

It is also common to cite Koliha's paper [6] as the pioneering work on generalized Drazin inverses, his definition generalizes (1) by replacing the third equation with the assumption $T-T S T$ is quasi-nilpotent. Drazin invertible as well as generalized Drazin invertible operators have many suitable properties. Mainly, an operator $T \in \mathcal{B}(X)$ is Drazin invertible if and only if 0 is a pole of the resolvent and the spectral projection T^{π} of T corresponding to $\{0\}$ is given by $T^{\pi}=I-T T^{D}$. It is extremely useful to mention that

$$
X=N\left(T^{\pi}\right) \oplus R\left(T^{\pi}\right)
$$

Consequently, $T=T_{1} \oplus T_{2}$ with $T_{1}=T_{N\left(T^{\pi}\right)}$ is invertible and $T_{2}=T_{R\left(T^{\pi}\right)}$ is nilpotent.
Among other things, nilpotent operators of index n are Drazin invertible with $T^{D}=\left(T^{D}\right)^{n+1} T^{n}=0$. Projections P are also Drazin invertible with $P^{D}=P$.

[^0]In the literature, it is a common knowledge that if $A, B \in \mathcal{B}(X)$ are invertible then $A B$ is also invertible and $(A B)^{-1}=B^{-1} A^{-1}$, this is often known as the reverse order law for ordinary inverse. However, this rule is not well-adapted to other inverses, such as Drazin inverse. In fact, if A, B and $A B$ are Drazin invertible $(A B)^{D}=B^{D} A^{D}$ is meaningless. This problem was a source of interesting research as operator theorists sought to determine exactly what properties A and B must possess in order to satisfy this equality. Among the many paper which featured the aforesaid problem are [9, 11] and [10]. One can find other related results for various inverses in [2-4] and references therein.

Let H be an infinite dimensional Hilbert space, by T^{\dagger} we denote the Moore-Penrose inverse of $T \in \mathcal{B}(H)$. With regard to the triple reverse order law for the Moore-Penrose inverses, the authors of [5] obtained necessary and sufficient conditions under which

$$
(A B C)^{\dagger}=C^{\dagger} B^{\dagger} A^{\dagger}
$$

where A, B, C and $A B C$ are Hilbert space operators with closed ranges.
The issue to be discussed in this paper concerns some reverse order law for Drazin invertible operators A, B and C under the commutative relations $[A B, B]=0,[B C, B]=0$ and $[A B, B C]=0$. In the light of these relations, we are interested in the relationship between A, B, C and A^{D}, B^{D}, C^{D}. Consequently, we provide some necessary and sufficient conditions for which

$$
(B C A B)^{D}=B^{D} A^{D} C^{D} B^{D}
$$

Additionally, we obtain several triple reverse order law corresponding to $(A B C)^{D}$.

2. Preparations

We drawn particular attention in this paper to 2×2 operator matrices on the Banach space $X \oplus Y$ defined by

$$
\left(\begin{array}{ll}
T_{1} & T_{2} \\
T_{3} & T_{4}
\end{array}\right)
$$

where $T_{1} \in \mathcal{B}(X), T_{2} \in \mathcal{B}(Y, X), T_{3} \in \mathcal{B}(X, Y)$ and $T_{4} \in \mathcal{B}(Y)$. The important point to note here is that every bounded operator on $X \oplus Y$ has the aforementioned form.
We are now going to concern our self with operators $A, B, C \in \mathcal{B}(X)$. If B is Drazin invertible with ind $(B)=n$ then the Banach space X obeys the following decomposition $X=N\left(B^{\pi}\right) \oplus R\left(B^{\pi}\right)$ and A, B, C have these forms

$$
A=\left(\begin{array}{ll}
A_{1} & A_{2} \tag{2}\\
A_{3} & A_{4}
\end{array}\right), \quad B=\left(\begin{array}{cc}
B_{1} & 0 \\
0 & N_{1}
\end{array}\right) \quad \text { and } \quad C=\left(\begin{array}{ll}
C_{1} & C_{2} \\
C_{3} & C_{4}
\end{array}\right) .
$$

Such that $B_{1} \in \mathcal{B}\left(N\left(B^{\pi}\right)\right)$ is invertible, $N_{1} \in \mathcal{B}\left(R\left(B^{\pi}\right)\right)$ is nilpotent, $B^{n}=B_{1}^{n} \oplus 0$ and $B^{D}=B_{1}^{-1} \oplus 0$.
Before going any further we began by the following lemmas which have an adequate amount of properties required.
Lemma 2.1. [6, 11] $A, B, C, N \in \mathcal{B}(X)$, requiring N to be nilpotent of index n.
(1) If $[N, A N]=0$ then $A N$ and $N A$ are nilpotent with $\max \{\operatorname{ind}(N A), \operatorname{ind}(A N)\} \leq n$;
(2) If $[N, N C]=0$ then $N C$ and $C N$ are nilpotent with $\max \{\operatorname{ind}(N C), \operatorname{ind}(C N)\} \leq n$;
(3) If A, B, C are Drazin invertible and $\{A, B, C\}$ are mutual-commutative then A, B, C, A^{D}, B^{D} and C^{D} are all commute with

$$
(A B C)^{D}=A^{D} B^{D} C^{D}=C^{D} B^{D} A^{D}
$$

Lemma 2.2. 8] For $A \in \mathcal{B}(X), B \in \mathcal{B}(Y, X), C_{1} \in \mathcal{B}(Y, X)$ and $C_{2} \in \mathcal{B}(X, Y)$. We denote by

$$
M_{C_{1}}=\left(\begin{array}{cc}
A & C_{1} \\
0 & B
\end{array}\right) \quad M_{C_{2}}=\left(\begin{array}{cc}
A & 0 \\
C_{2} & B
\end{array}\right)
$$

where the two operators $M_{C_{1}}$ and $M_{C_{2}}$ are in $\mathcal{B}(X \oplus Y)$.
(1) If two of $M_{C_{1}}, A$ and B are Drazin invertible, then the third is also Drazin invertible;
(2) If two of $M_{C_{2}}, A$ and B are Drazin invertible, then the third is also Drazin invertible;
(3) If A and B are Drazin invertible with ind $(A)=s$ and ind $(B)=t$. Then

$$
M_{C_{1}}^{D}=\left(\begin{array}{cc}
A^{D} & X \\
0 & B^{D}
\end{array}\right) \quad M_{C_{2}}^{D}=\left(\begin{array}{cc}
A^{D} & 0 \\
Y & B^{D}
\end{array}\right)
$$

where

$$
X=\left(A^{D}\right)^{2}\left[\sum_{n=0}^{t-1}\left(A^{D}\right)^{n} C_{1} B^{n}\right] B^{\pi}+A^{\pi}\left[\sum_{n=0}^{s-1} A^{n} C_{1}\left(B^{D}\right)^{n}\right]\left(B^{D}\right)^{2}-A^{D} C_{1} B^{D}
$$

and

$$
Y=\left(B^{D}\right)^{2}\left[\sum_{n=0}^{s-1}\left(B^{D}\right)^{n} C_{2} A^{n}\right] A^{\pi}+B^{\pi}\left[\sum_{n=0}^{t-1} B^{n} C_{2}\left(A^{D}\right)^{n}\right]\left(A^{D}\right)^{2}-B^{D} C_{2} A^{D}
$$

Lemma 2.3. [7] Let $A, B \in \mathcal{B}(X)$. If $A B$ is Drazin invertible then $B A$ is also Drazin invertible. In this case:

$$
(A B)^{D}=A\left((B A)^{D}\right)^{2} B .
$$

3. Main results

Let $A, B, C \in \mathcal{B}(X)$. Suppose that B is Drazin invertible having index n. First we assume that $[B, A B]=0$, then $\left[B^{n}, A B\right]=0$. From (2) it follows that

$$
A=\left(\begin{array}{cc}
A_{1} & A_{2} \tag{3}\\
0 & A_{4}
\end{array}\right) \quad B=\left(\begin{array}{cc}
B_{1} & 0 \\
0 & N_{1}
\end{array}\right) \quad \text { and } \quad A B=\left(\begin{array}{cc}
A_{1} B_{1} & 0 \\
0 & A_{4} N_{1}
\end{array}\right)
$$

according to the Banach space decomposition $X=N\left(B^{\pi}\right) \oplus R\left(B^{\pi}\right)$. This gives

$$
\begin{equation*}
\left[A_{1}, B_{1}\right]=0, \quad\left[N_{1}, A_{4} N_{1}\right]=0 \quad \text { and } \quad A_{2} N_{1}=0 \tag{4}
\end{equation*}
$$

We next suppose that $[B, B C]=0$, thus $\left[B^{n}, B C\right]=0$ with respect to 2

$$
B=\left(\begin{array}{cc}
B_{1} & 0 \tag{5}\\
0 & N_{1}
\end{array}\right) \quad C=\left(\begin{array}{cc}
C_{1} & 0 \\
C_{3} & C_{4}
\end{array}\right) \quad \text { and } \quad B C=\left(\begin{array}{cc}
B_{1} C_{1} & 0 \\
0 & N_{1} C_{4}
\end{array}\right)
$$

Continually on $X=N\left(B^{\pi}\right) \oplus R\left(B^{\pi}\right)$. Hence:

$$
\begin{equation*}
\left[B_{1}, C_{1}\right]=0, \quad\left[N_{1}, N_{1} C_{4}\right]=0 \quad \text { and } \quad N_{1} C_{3}=0 \tag{6}
\end{equation*}
$$

We thus get $A B C=\left(\begin{array}{cc}A_{1} B_{1} C_{1} & 0 \\ 0 & A_{4} N_{1} C_{4}\end{array}\right)$.
To sharpen these forms we further assume that $[A B, B C]=0$, then:

$$
\begin{equation*}
\left[A_{1}, C_{1}\right]=0 \quad \text { and } \quad\left[A_{4} N_{1}, N_{1} C_{4}\right]=0 \tag{7}
\end{equation*}
$$

This yields that A_{1}, B_{1} and C_{1} are pairwise commutative. Nevertheless A, B and C are not necessary commutative (e.g. $A C \neq C A$).

The following lemma is essential to prove certain results.
Lemma 3.1. Let $A, C, N \in \mathcal{B}(X)$, where N is nilpotent.
(1) If $[N, A N]=0$ and $[A N, A N C]=0$ then $C A N$ is also nilpotent;
(2) If $[N, N C]=0$ and $[A N, N C]=0$ then $N C A$ is also nilpotent;
(3) If $[N, A N]=0($ or, $[N, N C]=0)$ and $[A N, N C]=0$ then $A N C$ is also nilpotent.

Proof. (1) As N is nilpotent and $[N, A N]=0$ we have $A N$ is also nilpotent with index m (see Lemma 2.1). Further, by $[A N, A N C]=0$, it is easily seen that $\left[(A N)^{k}, A N C\right]=0$ for every $k \in \mathbb{N}$. Therefore:

$$
\begin{aligned}
(C A N)^{m} & =(C A N)^{m-2} C A N C A N=(C A N)^{m-2} C A N A N C \\
& =(C A N)^{m-2} C(A N)^{2} C \\
& =(C A N)^{m-3} C A N C(A N)^{2} C \\
& =(C A N)^{m-3} C(A N)^{3} C^{2} \\
& =\ldots \\
& =C(A N)^{m} C^{m-1}
\end{aligned}
$$

(2) From Lemma 2.1. $N C$ is nilpotent having index n. It is clear that $\left[A N,(N C)^{k}\right]=0$ and $\left[N,(N C)^{k}\right]=0$ for every $k \in \mathbb{N}$, so:

$$
\begin{aligned}
(N C A)^{n} & =N C A N C A(N C A)^{n-2}=A N N C C A(N C A)^{n-2} \\
& =A N C N C A(N C A)^{n-2} \\
& =A(N C)^{2} A N C A(N C A)^{n-3} \\
& =A A N(N C)^{2} C A(N C A)^{n-3} \\
& =A^{2}(N C)^{2} N C A(N C A)^{n-3} \\
& =A^{2}(N C)^{3} A(N C A)^{n-3} \\
& =\ldots \\
& =A^{n-1}(N C)^{n} A
\end{aligned}
$$

(3) In the same way we have $\left[N,(A N)^{k}\right]=0$ and $\left[(A N)^{k}, N C\right]=0\left(\right.$ or, $\left[N,(N C)^{k}\right]=0$ and $\left.\left[A N,(N C)^{k}\right]=0\right)$ for each $k \in \mathbb{N}$. Thus one can show that $(A N C)^{m}=(A N)^{m} C^{m}\left(\right.$ or, $\left.(A N C)^{n}=A^{n}(N C)^{n}\right)$.

We can now formulate our first main result.
Theorem 3.2. Let $A, B, C \in \mathcal{B}(X), B$ is Drazin invertible with $B, A B$ and $B C$ are all commute. Write

$$
\begin{aligned}
\mathcal{A}= & \left\{A B C, B C A, C A B, A B C B, B C A B, A B C B^{D}, B^{D} A B C, A B B^{D} C, B^{D} C A B, B C A B^{D}, C A B B^{D},\right. \\
& \left.A B C B B^{D}, B B^{D} A B C\right\} ; \\
\mathcal{B}= & \left\{B, B^{D}, B B^{D}, A B, B C, A B C,(A B C)^{D}, B B^{D}(A B C)^{D},(A B C)^{D} B B^{D}\right\} .
\end{aligned}
$$

(1) If only one element of \mathcal{A} is Drazin invertible, then all elements of \mathcal{A} are Drazin invertible.
(2) If only one element of \mathcal{A} is Drazin invertible, then all elements of \mathcal{B} commute.
(3) If only one element of \mathcal{A} is Drazin invertible, then each of the following statements hold:
(i)

$$
\begin{aligned}
(A B C)^{D} & =(A B C)^{D} B B^{D}=B B^{D}(A B C)^{D}=\left(A B C B^{D}\right)^{D} B^{D}=B^{D}\left(A B C B^{D}\right)^{D} \\
& =\left(B^{D} A B C\right)^{D} B^{D}=B^{D}\left(B^{D} A B C\right)^{D} ;
\end{aligned}
$$

(ii) $A B C\left(A B B^{D} C\right)^{\pi}$ and $A B C-(A B C)^{2}\left(B^{D} A B C\right)^{D} B^{D}$ are nilpotent;
(iii) $\left(B^{D} A B C\right)^{D}=(A B C)^{D} B=B(A B C)^{D}$;
(iv) $\left[(A B C)^{D} B, A B C(B)^{D}\right]=0$;
(v) $B B^{\pi}(A B C)^{D}=(A B C)^{D} B B^{\pi}=0$.

Proof. (1) Formulas (3) and (5) provided the forms of A, B, C and $A B C$. Note that $\left\{A_{1}, B_{1}, C_{1}\right\}$ are mutually commutative, $\left[N_{1}, A_{4} N_{1}\right]=0,\left[N_{1}, N_{1} C_{4}\right]=0$ and $\left[A_{4} N_{1}, N_{1} C_{4}\right]=0$. Hence, from Lemma $3.1 A_{4} N_{1} C_{4}$ is nilpotent. Further

$$
\begin{aligned}
A B C \text { is Drazin invertible } & \Longleftrightarrow A_{1} B_{1} C_{1} \text { is Drazin invertible } \\
& \Longleftrightarrow A_{1} C_{1}=\left(A_{1} B_{1} C_{1}\right) B_{1}^{-1} \text { is Drazin invertible }\left(\text { since }\left[A_{1} B_{1} C_{1}, B_{1}^{-1}\right]=0\right) .
\end{aligned}
$$

Also, we have $C A B=\left(\begin{array}{cc}C_{1} A_{1} B_{1} & 0 \\ C_{3} A_{1} B_{1} & C_{4} A_{4} N_{1}\end{array}\right)$, and $B C A=\left(\begin{array}{cc}B_{1} C_{1} A_{1} & B_{1} C_{1} A_{2} \\ 0 & N_{1} C_{4} A_{4}\end{array}\right)$.
By Lemma 3.1 $C_{4} A_{4} N_{1}$ and $N_{1} C_{4} A_{4}$ are nilpotent. Again, $C A B$ and $B C A$ are Drazin invertible if and only if $C_{1} A_{1}$ is Drazin invertible. In this case

$$
\begin{gathered}
(A B C)^{D}=\left(\begin{array}{cc}
\left(A_{1} C_{1}\right)^{D} B_{1}^{-1} & 0 \\
0 & 0
\end{array}\right) \\
(C A B)^{D}=\left(\begin{array}{cc}
\left(A_{1} C_{1}\right)^{D} B_{1}^{-1} & 0 \\
C_{3} A_{1}\left(\left(A_{1} C_{1}\right)^{D}\right)^{2} B_{1}^{-1} & 0
\end{array}\right) \\
(B C A)^{D}=\left(\begin{array}{cc}
\left(A_{1} C_{1}\right)^{D} B_{1}^{-1} & C_{1}\left(\left(A_{1} C_{1}\right)^{D}\right)^{2} B_{1}^{-1} A_{2} \\
0 & 0
\end{array}\right)
\end{gathered}
$$

We deduce that Drazin invertibility of each element of \mathcal{A} lies in Drazin invertibility of $A_{1} C_{1}$.
(2) The set $\{B, A B, B C\}$ is commutative, then from (4), (6) and (7), the set $\left\{A_{1}, B_{1}, C_{1}\right\}$ is also commutative and $\left[N_{1}, A_{4} N_{1}\right]=\left[N_{1}, N_{1} C_{4}\right]=\left[A_{4} N_{1}, N_{1} C_{4}\right]=0$. So clearly

$$
N_{1} A_{4} N_{1} C_{4}=A_{4} N_{1} N_{1} C_{4}=A_{4} N_{1} C_{4} N_{1}
$$

that is $\left[N_{1}, A_{4} N_{1} C_{4}\right]=0$ and, in consequence, $[B, A B C]=0$. Similarly,

$$
A_{4} N_{1} A_{4} N_{1} C_{4}=A_{4} A_{4} N_{1} N_{1} C_{4}=A_{4} N_{1} C_{4} A_{4} N_{1}
$$

which means that $\left[A_{4} N_{1} C_{4}, A_{4} N_{1}\right]=0$, hence $[A B C, A B]=0$. Besides this, $[A B C, B C]=0$ as well. On the other hand all the element of \mathcal{B} can be written as diagonal matrix forms, and this imply that all the elements of \mathcal{B} commute.
(3) Observe that, $A B C B^{D}=A B^{D} B C=A B B^{D} C$

$$
A B C B^{D}=\left(\begin{array}{cc}
A_{1} C_{1} & 0 \\
0 & 0
\end{array}\right) \quad\left(A B C B^{D}\right)^{D}=\left(\begin{array}{cc}
\left(A_{1} C_{1}\right)^{D} & 0 \\
0 & 0
\end{array}\right) .
$$

In addition, $A B C\left(A B B^{D} C\right)^{\pi}=\left(\begin{array}{cc}A_{1} B_{1} C_{1}\left(A_{1} C_{1}\right)^{\pi} & 0 \\ 0 & A_{4} N_{1} C_{4}\end{array}\right)$ is nilpotent. Finally, we can verify by a simple computation the other equalities.
The following theorem gives a partial solution of the reverse order law for the triple product $A B C$.
Theorem 3.3. Let $A, B, C \in \mathcal{B}(X)$. If $B, A B, B C, C$ are Drazin invertible and $B, A B, B C$ are all commute, then $A B C$ is Drazin invertible and the following reverse order laws conditions are equivalent.
(i) $(A B C)^{D}=C^{D}(A B)^{D}$;
(ii) $\left((A B)^{D} A B C\right)^{D}=C^{D}(A B)^{D} A B$;
(iii) $(A B C)^{D} A B=C^{D}(A B)^{D} A B$.

Proof. If B is Drazin invertible and $\{B, A B, B C\}$ are mutually commutative, then by (3) and (5):

$$
A B=\left(\begin{array}{cc}
A_{1} B_{1} & 0 \\
0 & A_{4} N_{1}
\end{array}\right) \quad C=\left(\begin{array}{cc}
C_{1} & 0 \\
C_{3} & C_{4}
\end{array}\right) \quad \text { and } \quad A B C=\left(\begin{array}{cc}
A_{1} B_{1} C_{1} & 0 \\
0 & A_{4} N_{1} C_{4}
\end{array}\right)
$$

From the proof of [11, Theorem 3.1] $A B$ is Drazin invertible if and only if A_{1} is Drazin invertible. In this case

$$
(A B)^{D}=\left(\begin{array}{cc}
A_{1}^{D} B_{1}^{-1} & 0 \\
0 & 0
\end{array}\right)
$$

Also the Drazin invertibility of $B C$ implies that C_{1} is Drazin invertible. Now since C and C_{1} are Drazin invertible then by Lemma $2.2 C_{4}$ is also Drazin invertible.
By assuming that $\operatorname{ind}\left(C_{1}\right)=s$ and $\operatorname{ind}\left(C_{4}\right)=t$, we can assert that $C^{D}=\left(\begin{array}{cc}C_{1}^{D} & 0 \\ Y & C_{4}^{D}\end{array}\right)$, where

$$
Y=\left(C_{4}^{D}\right)^{2}\left[\sum_{n=0}^{s-1}\left(C_{4}^{D}\right)^{n} C_{3} C_{1}^{n}\right] C_{1}^{\pi}+C_{4}^{\pi}\left[\sum_{n=0}^{t-1} C_{4}^{n} C_{3}\left(C_{1}^{D}\right)^{n}\right]\left(C_{1}^{D}\right)^{2}-C_{4}^{D} C_{3} C_{1}^{D}
$$

Also, from Lemma 3.1, $A_{4} N_{1} C_{4}$ is nilpotent $\left\{A_{1}, B_{1}, C_{1}\right\}$ are mutually commutative and A_{1}, B_{1}, C_{1} are all Drazin invertible. Hence, $A B C$ is also Drazin invertible and

$$
(A B C)^{D}=\left(\begin{array}{cc}
A_{1}^{D} B_{1}^{-1} C_{1}^{D} & 0 \\
0 & 0
\end{array}\right)
$$

Now let's mention that

$$
\begin{aligned}
(A B)^{D} A B C & =\left(\begin{array}{cc}
A_{1}^{D} B_{1}^{-1} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
A_{1} B_{1} C_{1} & 0 \\
0 & A_{4} N_{1} C_{4}
\end{array}\right)=\left(\begin{array}{cc}
A_{1}^{D} A_{1} C_{1} & 0 \\
0 & 0
\end{array}\right), \\
\left((A B)^{D} A B C\right)^{D} & =\left(\begin{array}{cc}
A_{1}^{D} A_{1} C_{1}^{D} & 0 \\
0 & 0
\end{array}\right),\left(\text { since }\left[C_{1}, A_{1} A_{1}^{D}\right]=0 \text { and } A_{1} A_{1}^{D}\right. \text { is a projection) } \\
C^{D}(A B)^{D} & =\left(\begin{array}{cc}
C_{1}^{D} & 0 \\
Y & C_{4}^{D}
\end{array}\right)\left(\begin{array}{cc}
A_{1}^{D} B_{1}^{-1} & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
C_{1}^{D} A_{1}^{D} B_{1}^{-1} & 0 \\
Y A_{1}^{D} B_{1}^{-1} & 0
\end{array}\right), \\
C^{D}(A B)^{D} A B & =\left(\begin{array}{cc}
C_{1}^{D} A_{1}^{D} A_{1} & 0 \\
Y A_{1}^{D} A_{1} & 0
\end{array}\right) .
\end{aligned}
$$

We can deduce that $(i) \Leftrightarrow(i i) \Leftrightarrow(i i i) \Leftrightarrow Y A_{1}^{D}=0$.
A similar observation gives the following theorem and its proof will be omitted.
Theorem 3.4. Let $A, B, C \in \mathcal{B}(X)$. If $A, B, A B, B C$ are Drazin invertible and $B, A B, B C$ are all commute, then $A B C$ is Drazin invertible and the following reverse order laws conditions are equivalent.
(i) $(A B C)^{D}=(B C)^{D} A^{D}$;
(ii) $\left(A B C(B C)^{D}\right)^{D}=(B C)^{D}(B C) A^{D}$;
(iii) $B C(A B C)^{D}=(B C)^{D}(B C) A^{D}$.

Theorem 3.5. Let $A, B, C \in \mathcal{B}(X)$. If $A, B, C, A B, B C$ are Drazin invertible and $B, A B, B C$ are all commute, then the following reverse order law conditions are equivalent:
(i) $(B C A B)^{D}=B^{D} A^{D} C^{D} B^{D}$;
(ii) $\left(A B B^{D} C\right)^{D}=B B^{D} A^{D} C^{D} B^{D} B$;
(iii) $B(B C A B)^{D} B=B B^{D} A^{D} C^{D} B^{D} B$.

Proof. The Drazin invertibility of $A, B, C, A B, B C$ combined with the commutativity conditions of $B, A B, B C$ provided the following matrix forms

$$
A^{D}=\left(\begin{array}{cc}
A_{1}^{D} & X \tag{8}\\
0 & A_{4}^{D}
\end{array}\right) \quad C^{D}=\left(\begin{array}{cc}
C_{1}^{D} & 0 \\
Y & C_{4}^{D}
\end{array}\right)
$$

with

$$
\begin{gathered}
X=\left(A_{1}^{D}\right)^{2}\left[\sum_{n=0}^{t_{1}-1}\left(A_{1}^{D}\right)^{n} A_{2} A_{4}^{n}\right] A_{4}^{\pi}+A_{1}^{\pi}\left[\sum_{n=0}^{s_{1}-1} A_{1}^{n} A_{2}\left(A_{4}^{D}\right)^{n}\right]\left(A_{4}^{D}\right)^{2}-A_{1}^{D} A_{2} A_{4}^{D}, \\
Y=\left(C_{4}^{D}\right)^{2}\left[\sum_{n=0}^{s_{2}-1}\left(C_{4}^{D}\right)^{n} C_{3} C_{1}^{n}\right] C_{1}^{\pi}+C_{4}^{\pi}\left[\sum_{n=0}^{t_{2}-1} C_{4}^{n} C_{3}\left(C_{1}^{D}\right)^{n}\right]\left(C_{1}^{D}\right)^{2}-C_{4}^{D} C_{3} C_{1}^{D} .
\end{gathered}
$$

Here $\operatorname{ind}\left(A_{1}\right)=s_{1}, \operatorname{ind}\left(A_{4}\right)=t_{1}, \operatorname{ind}\left(C_{1}\right)=s_{2}$ as well as ind $\left(C_{4}\right)=t_{2}$. Also $B C A B=\left(\begin{array}{cc}C_{1}\left(B_{1}\right)^{2} A_{1} & 0 \\ 0 & N_{1} C_{4} A_{4} N_{1}\end{array}\right)$. Certainly, $N_{1} C_{4} A_{4} N_{1}$ is nilpotent and $(B C A B)^{D}=\left(\begin{array}{cc}C_{1}^{D}\left(B_{1}^{-1}\right)^{2} A_{1}^{D} & 0 \\ 0 & 0\end{array}\right)$. Moreover, $A B B^{D} C=\left(\begin{array}{cc}A_{1} C_{1} & 0 \\ 0 & 0\end{array}\right)$ and $\left(A B B^{D} C\right)^{D}=\left(\begin{array}{cc}A_{1}^{D} C_{1}^{D} & 0 \\ 0 & 0\end{array}\right)$. By a simple calculation, we can obtain the following:

$$
\begin{aligned}
B^{D} A^{D} C^{D} B^{D} & =\left(\begin{array}{cc}
A_{1}^{D}\left(B_{1}^{-1}\right)^{2} C_{1}^{D}+B_{1}^{-1} X Y B_{1}^{-1} & 0 \\
0 & 0
\end{array}\right), \\
B B^{D} A^{D} C^{D} B^{D} B & =\left(\begin{array}{cc}
A_{1}^{D} C_{1}^{D}+X Y & 0 \\
0 & 0
\end{array}\right), \\
B(B C A B)^{D} B & =\left(\begin{array}{cc}
C_{1}^{D} A_{1}^{D} & 0 \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

This gives the following equivalences $(i) \Longleftrightarrow(i i) \Longleftrightarrow(i i i) \Longleftrightarrow X Y=0$.
In the following theorem, we get a first glimpse of $(A B C)^{D}=C^{D} B^{D} A^{D}$.
Theorem 3.6. Let $A, B, C \in \mathcal{B}(X)$. If $A, B, C, A B, B C$ are Drazin invertible and $B, A B, B C$ are all commute, then $A B B^{D}, B^{D} B C, A B C$ are all Drazin invertible. Furthermore, the following reverse order law conditions are equivalent:

1. $(A B C)^{D}=C^{D} B^{D} A^{D}$;
2. $C^{D}(A B)^{D}=C^{D} B^{D} A^{D}=(B C)^{D} A^{D}$;
3. $B B^{D} C^{D} B^{D} A^{D}=C^{D} B^{D} A^{D}=C^{D} B^{D} A^{D} B B^{D}$;
4. $\left(A B B^{D}\right)^{D} B^{D}\left(B^{D} B C\right)^{D}=C^{D} B^{D} A^{D}$;
5. $A^{D} B^{D} B C^{D} B^{D} A^{D} A B B^{D}=C^{D} B^{D} A^{D}$;
6. $B^{\pi} C^{D} B^{D} A^{D}=B B^{\pi} C^{D} B^{D} A^{D}$ and $C^{D} B^{D} A^{D} B^{\pi}=C^{D} B^{D} A^{D} B^{\pi} B$.

Proof. $A B, B C$ and $A B C$ have the matrix forms:

$$
A B=\left(\begin{array}{cc}
A_{1} B_{1} & 0 \\
0 & A_{4} N_{1}
\end{array}\right), \quad B C=\left(\begin{array}{cc}
B_{1} C_{1} & 0 \\
& N_{1} C_{4}
\end{array}\right) \quad \text { and } \quad A B C=\left(\begin{array}{cc}
A_{1} B_{1} C_{1} & 0 \\
0 & A_{4} N_{1} C_{4}
\end{array}\right)
$$

Of course, $A_{4} N_{1}, N_{1} C_{4}$ and $A_{4} N_{1} C_{4}$ are nilpotent. Moreover, A and $A B$ are Drazin invertible (resp, C and $B C)$ then A_{1} and $A_{4}\left(r e s p, C_{1}\right.$ and $\left.C_{4}\right)$ are Drazin invertible. Hence, it is easy to verify that $A B C$ is Drazin invertible. In this case, we obtain

$$
(A B)^{D}=\left(\begin{array}{cc}
A_{1}^{D} B_{1}^{-1} & 0 \\
0 & 0
\end{array}\right), \quad(B C)^{D}=\left(\begin{array}{cc}
B_{1}^{-1} C_{1}^{D} & 0 \\
& 0
\end{array}\right) \quad \text { and } \quad(A B C)^{D}=\left(\begin{array}{cc}
A_{1}^{D} B_{1}^{-1} C_{1}^{D} & 0 \\
0 & 0
\end{array}\right) .
$$

On the other hand A^{D}, C^{D} can be written as in (8). So we get

$$
C^{D} B^{D} A^{D}=\left(\begin{array}{cc}
A_{1}^{D} B_{1}^{-1} C_{1}^{D} & C_{1}^{D} B_{1}^{-1} X \\
Y B_{1}^{-1} A_{1}^{D} & Y B_{1}^{-1} X
\end{array}\right) .
$$

Equivalent conditions of $(A B C)^{D}=C^{D} B^{D} A^{D}$ are: $\left\{\begin{array}{ll}C_{1}^{D} X & =0 \\ Y A_{1}^{D} & =0 . \\ Y B_{1}^{-1} X & =0\end{array}\right.$. Note that

$$
C^{D}(A B)^{D}=C^{D} B^{D} A^{D} B B^{D}=\left(\begin{array}{cc}
C_{1}^{D} A_{1}^{D} B_{1}^{-1} & 0 \\
Y A_{1}^{D} B_{1}^{-1} & 0
\end{array}\right),
$$

and

$$
(B C)^{D} A^{D}=B B^{D} C^{D} B^{D} A^{D}=\left(\begin{array}{cc}
B_{1}^{-1} C_{1}^{D} A_{1}^{D} & C_{1}^{D} B_{1}^{-1} X \\
0 & 0
\end{array}\right)
$$

Therefore, $(2) \Longleftrightarrow(3) \Longleftrightarrow \begin{cases}C_{1}^{D} X & =0 \\ Y A_{1}^{D} & =0 \text {. Also it is easy to show that } \\ Y B_{1}^{-1} X & =0\end{cases}$

$$
(A B C)^{D}=\left(A B B^{D}\right)^{D} B^{D}\left(B^{D} B C\right)^{D}=A^{D} B^{D} B C^{D} B^{D} A^{D} A B B^{D} .
$$

So,$(1) \Longleftrightarrow(4) \Longleftrightarrow(5)$. Finally,

$$
\begin{aligned}
B^{\pi} C^{D} B^{D} A^{D} & =\left(\begin{array}{cc}
0 & 0 \\
Y B_{1}^{-1} A_{1}^{D} & Y B_{1}^{-1} X
\end{array}\right), \\
C^{D} B^{D} A^{D} B^{\pi} & =\left(\begin{array}{cc}
0 & C_{1}^{D} B_{1}^{-1} X \\
0 & Y B_{1}^{-1} X
\end{array}\right), \\
B B^{\pi} C^{D} B^{D} A^{D} & =\left(\begin{array}{cc}
0 & 0 \\
N_{1} Y B_{1}^{-1} A_{1}^{D} & N_{1} Y B_{1}^{-1} X
\end{array}\right), \\
C^{D} B^{D} A^{D} B^{\pi} B & =\left(\begin{array}{cc}
0 & C_{1}^{D} B_{1}^{-1} X N_{1} \\
0 & Y B_{1}^{-1} X N_{1}
\end{array}\right) .
\end{aligned}
$$

Thus, (6) $\Longleftrightarrow\left\{\begin{array}{l}\left(I-N_{1}\right) C_{1}^{D} B_{1}^{-1} X=0 \\ Y B_{1}^{-1} A_{1}^{D}\left(I-N_{1}\right) \\ \left(I-N_{1}\right) Y B_{1}^{-1} X \\ =0\end{array} \Longleftrightarrow\left\{\begin{array}{ll}C_{1}^{D} X & =0 \\ Y A_{1}^{D} & =0 . \\ Y B_{1}^{-1} X & =0\end{array} \quad B_{1}\right.\right.$ and $I-N_{1}$ are invertible (because N_{1} is nilpotent). This is the desired conclusion.

Inserting the revers order law of $A B$ in Theorem 3.3 yields the following corollary.
Corollary 3.7. Let $A, B, C \in \mathcal{B}(X)$ be such that $A, B, C, A B, B C$ are Drazin invertible and $B, A B, B C$ are all commute. If $(A B)^{D}=B^{D} A^{D}$ then the following reverse order law conditions are equivalent:
(i) $(A B C)^{D}=C^{D} B^{D} A^{D}$;
(ii) $\left((A B)^{D} A B C\right)^{D}=C^{D} B^{D} A^{D} A B$;
(iii) $(A B C)^{D} A B=C^{D} B^{D} A^{D} A B$.

Proof. The reverse order law condition $(A B)^{D}=B^{D} A^{D}$ is equivalent to $X=0$. Thus $C^{D} B^{D} A^{D}=\left(\begin{array}{cc}A_{1}^{D} B_{1}^{-1} C_{1}^{D} & 0 \\ Y B_{1}^{-1} A_{1}^{D} & 0\end{array}\right)$, and the equality $(A B C)^{D}=C^{D} B^{D} A^{D}$ is equivalent to $Y A_{1}^{D}=0$.

$$
C^{D} B^{D} A^{D} A B=\left(\begin{array}{cc}
C_{1}^{D} A_{1}^{D} A_{1} & 0 \\
Y A_{1}^{D} A_{1} & 0
\end{array}\right) \quad \text { and } \quad\left((A B)^{D} A B C\right)^{D}=\left(\begin{array}{cc}
A_{1}^{D} A_{1} C_{1}^{D} & 0 \\
0 & 0
\end{array}\right) .
$$

Hence, $\left((A B)^{D} A B C\right)^{D}=C^{D} B^{D} A^{D} A B \Longleftrightarrow Y A_{1}^{D}=0$.
Also, $(A B C)^{D} A B=C^{D} B^{D} A^{D} A B \Longleftrightarrow Y A_{1}^{D}=0$. Which complete the proof.

In a similar pattern using the reverse order law of $B C$ in Theorem 3.4, we obtain:
Corollary 3.8. Let $A, B, C \in \mathcal{B}(X)$ be such that $A, B, C, A B, B C$ are Drazin invertible and $B, A B, B C$ are all commute. If $(B C)^{D}=C^{D} B^{D}$ then the following reverse order law conditions are equivalent:
(i) $(A B C)^{D}=C^{D} B^{D} A^{D}$;
(ii) $\left(A B C(B C)^{D}\right)^{D}=B C C^{D} B^{D} A^{D}$;
(iii) $B C(A B C)^{D}=B C C^{D} B^{D} A^{D}$.

Acknowledgments We gratefully acknowledge the judicious comments and suggestions provided by the anonymous referees.

References

[1] P. Aiena, Fredholm and local spectral theory II with application to Weyl-type theorems, Springer, 2018.
[2] Dijana Mosić, Reverse order laws for the generalized Drazin inverse in Banach algebras, J. Math. Anal. Appl, 429 (2015) $461-477$.
[3] Dijana Mosić, Reverse order laws on the conditions of the commutativity up to a factor, RACSAM. 111 (2017) 685-695.
[4] D.S. Djordjević,Unified approach to the reverse order rule for generalized inverses, Acta Sci. Math. (Szeged) 167 (2001) 761-776.
[5] N.C. Dinčić, D.S. Djordjević, Hartwig's triple reverse order law revisited, Lin. Multi. Algebra 62 (2014) 918-924.
[6] J.J. Koliha, A generalized Drazin inverse, Glasgow Math.J 38 (1996) 367-381.
[7] Liao YH, Chen JL, Cui J, Cline's formula for the generalized Drazin inverse, B. Malays. Math. Sci. So 37 (2014) 37-42.
[8] Meyer CD, Rose NJ, The Index and the Drazin Inverse of Block Triangular Matrices, SIAM. J.Appl. Math 33 (19777) 1-7.
[9] H. Wang, J. Huang, Reverse Order Law of Drazin Inverse for Bounded Linear Operators, Filomat 32 (2018) 4857-4864.
[10] H. Wang, J. Huang, Reverse Order Law for the Drazin Inverse in Banach Spaces, Bull. Iran. Math. Soc 45 (2019) $1443-1456$.
[11] X. N. Wang, A. Q. Yu, T. F. Li, C. Y. Deng, Reverse order laws for the Drazin inverses, J. Math. Anal. Appl 444 (2016) 672-689.

[^0]: 2010 Mathematics Subject Classification. Primary 15A09; Secondary 47A08
 Keywords. Reverse order law, Drazin inverse, triple product, operator matrices.
 Received: 29 February 2020; Revised: 27 September 2020; Accepted: 12 October 2020
 Communicated by Dijana Mosić
 Email addresses: safae.alaouichrifi@usmba.ac.ma (Safae Alaoui Chrifi), abdelaziz.tajmouati@usmba.ac.ma (Abdelaziz Tajmouati)

