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Abstract. In this paper we study the triple reverse-order law (ABC)D = CDBDAD for the Drazin invertible
operators A,B and C under the commutative relations [AB,B] = 0, [BC,B] = 0 and [AB,BC] = 0.

1. Introduction and preliminaries

Let X and Y be two infinite dimensional Banach spaces. Denote by B(X,Y) the Banach space of all
bounded linear operators from X to Y. If X = Y, we will simply write B(X) instead of B(X,X). By N(T) and
R(T), we denote the null space and the range of T, respectively. An operator P ∈ B(X) with the property
P2 = P is called a projection. For any two operators T,S ∈ B(X), we define the commutator [T,S] to be
TS − ST.

Recall that an operator T ∈ B(X) is Drazin invertible if there exists S ∈ B(X) that satisfies the following
equations

TS = ST, S = STS, Tk+1S = Tk. (1)

The third equation in (1) means that T − TST is nilpotent of index k, in this case we write ind(T) = k. It
is worth pointing out that the Drazin inverse S of T, when it exists, it is unique. In the sequel, S will be
denoted by TD.

It is also common to cite Koliha’s paper [6] as the pioneering work on generalized Drazin inverses, his
definition generalizes (1) by replacing the third equation with the assumption T − TST is quasi-nilpotent.
Drazin invertible as well as generalized Drazin invertible operators have many suitable properties. Mainly,
an operator T ∈ B(X) is Drazin invertible if and only if 0 is a pole of the resolvent and the spectral projection
Tπ of T corresponding to {0} is given by Tπ = I − TTD. It is extremely useful to mention that

X = N(Tπ) ⊕ R(Tπ).

Consequently, T = T1 ⊕ T2 with T1 = TN(Tπ) is invertible and T2 = TR(Tπ) is nilpotent.
Among other things, nilpotent operators of index n are Drazin invertible with TD = (TD)n+1Tn = 0.

Projections P are also Drazin invertible with PD = P.
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In the literature, it is a common knowledge that if A,B ∈ B(X) are invertible then AB is also invertible
and (AB)−1 = B−1A−1, this is often known as the reverse order law for ordinary inverse. However, this rule
is not well-adapted to other inverses, such as Drazin inverse. In fact, if A,B and AB are Drazin invertible
(AB)D = BDAD is meaningless. This problem was a source of interesting research as operator theorists
sought to determine exactly what properties A and B must possess in order to satisfy this equality. Among
the many paper which featured the aforesaid problem are [9, 11]and [10]. One can find other related results
for various inverses in [2–4] and references therein.

Let H be an infinite dimensional Hilbert space, by T† we denote the Moore-Penrose inverse of T ∈ B(H).
With regard to the triple reverse order law for the Moore-Penrose inverses, the authors of [5] obtained
necessary and sufficient conditions under which

(ABC)† = C†B†A†,

where A,B,C and ABC are Hilbert space operators with closed ranges.
The issue to be discussed in this paper concerns some reverse order law for Drazin invertible operators

A,B and C under the commutative relations [AB,B] = 0, [BC,B] = 0 and [AB,BC] = 0. In the light of these
relations, we are interested in the relationship between A,B,C and AD,BD,CD. Consequently, we provide
some necessary and sufficient conditions for which

(BCAB)D = BDADCDBD.

Additionally, we obtain several triple reverse order law corresponding to (ABC)D.

2. Preparations

We drawn particular attention in this paper to 2×2 operator matrices on the Banach space X⊕Y defined
by (

T1 T2
T3 T4

)
where T1 ∈ B(X), T2 ∈ B(Y,X), T3 ∈ B(X,Y) and T4 ∈ B(Y). The important point to note here is that every
bounded operator on X ⊕ Y has the aforementioned form.
We are now going to concern our self with operators A,B,C ∈ B(X). If B is Drazin invertible with ind(B) = n
then the Banach space X obeys the following decomposition X = N(Bπ)⊕R(Bπ) and A,B,C have these forms

A =

(
A1 A2
A3 A4

)
, B =

(
B1 0
0 N1

)
and C =

(
C1 C2
C3 C4

)
. (2)

Such that B1 ∈ B(N(Bπ)) is invertible, N1 ∈ B(R(Bπ)) is nilpotent, Bn = Bn
1 ⊕ 0 and BD = B−1

1 ⊕ 0.
Before going any further we began by the following lemmas which have an adequate amount of

properties required.

Lemma 2.1. [6, 11] A,B,C,N ∈ B(X), requiring N to be nilpotent of index n.

(1) If [N,AN] = 0 then AN and NA are nilpotent with max{ind(NA), ind(AN)} ≤ n;
(2) If [N,NC] = 0 then NC and CN are nilpotent with max{ind(NC), ind(CN)} ≤ n;
(3) If A,B,C are Drazin invertible and {A,B,C} are mutual-commutative then A,B,C,AD,BD and CD are all

commute with
(ABC)D = ADBDCD = CDBDAD.

Lemma 2.2. [8] For A ∈ B(X), B ∈ B(Y,X), C1 ∈ B(Y,X) and C2 ∈ B(X,Y). We denote by

MC1 =

(
A C1
0 B

)
MC2 =

(
A 0
C2 B

)
where the two operators MC1 and MC2 are in B(X ⊕ Y).
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(1) If two of MC1 ,A and B are Drazin invertible, then the third is also Drazin invertible;
(2) If two of MC2 ,A and B are Drazin invertible, then the third is also Drazin invertible;
(3) If A and B are Drazin invertible with ind(A) = s and ind(B) = t. Then

MD
C1

=

(
AD X
0 BD

)
MD

C2
=

(
AD 0
Y BD

)
where

X = (AD)2[
t−1∑
n=0

(AD)nC1Bn]Bπ + Aπ[
s−1∑
n=0

AnC1(BD)n](BD)2
− ADC1BD;

and

Y = (BD)2[
s−1∑
n=0

(BD)nC2An]Aπ + Bπ[
t−1∑
n=0

BnC2(AD)n](AD)2
− BDC2AD.

Lemma 2.3. [7] Let A,B ∈ B(X). If AB is Drazin invertible then BA is also Drazin invertible. In this case:

(AB)D = A((BA)D)2B.

3. Main results

Let A,B,C ∈ B(X). Suppose that B is Drazin invertible having index n. First we assume that [B,AB] = 0,
then [Bn,AB] = 0. From (2) it follows that

A =

(
A1 A2
0 A4

)
B =

(
B1 0
0 N1

)
and AB =

(
A1B1 0

0 A4N1

)
, (3)

according to the Banach space decomposition X = N(Bπ) ⊕ R(Bπ). This gives

[A1,B1] = 0, [N1,A4N1] = 0 and A2N1 = 0. (4)

We next suppose that [B,BC] = 0, thus [Bn,BC] = 0 with respect to (2)

B =

(
B1 0
0 N1

)
C =

(
C1 0
C3 C4

)
and BC =

(
B1C1 0

0 N1C4

)
. (5)

Continually on X = N(Bπ) ⊕ R(Bπ). Hence:

[B1,C1] = 0, [N1,N1C4] = 0 and N1C3 = 0. (6)

We thus get ABC =

(
A1B1C1 0

0 A4N1C4

)
.

To sharpen these forms we further assume that [AB,BC] = 0, then:

[A1,C1] = 0 and [A4N1,N1C4] = 0. (7)

This yields that A1,B1 and C1 are pairwise commutative. Nevertheless A,B and C are not necessary
commutative (e.g. AC , CA).

The following lemma is essential to prove certain results.

Lemma 3.1. Let A,C,N ∈ B(X), where N is nilpotent.

(1) If [N,AN] = 0 and [AN,ANC] = 0 then CAN is also nilpotent;
(2) If [N,NC] = 0 and [AN,NC] = 0 then NCA is also nilpotent;
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(3) If [N,AN] = 0 ( or, [N,NC] = 0 ) and [AN,NC] = 0 then ANC is also nilpotent.

Proof. (1) As N is nilpotent and [N,AN] = 0 we have AN is also nilpotent with index m (see Lemma 2.1).
Further, by [AN,ANC] = 0, it is easily seen that [(AN)k,ANC] = 0 for every k ∈N. Therefore:

(CAN)m = (CAN)m−2CANCAN = (CAN)m−2CANANC

= (CAN)m−2C(AN)2C

= (CAN)m−3CANC(AN)2C

= (CAN)m−3C(AN)3C2

= ...

= C(AN)mCm−1.

(2) From Lemma 2.1, NC is nilpotent having index n. It is clear that [AN, (NC)k] = 0 and [N, (NC)k] = 0 for
every k ∈N, so:

(NCA)n = NCANCA(NCA)n−2 = ANNCCA(NCA)n−2

= ANCNCA(NCA)n−2

= A(NC)2ANCA(NCA)n−3

= AAN(NC)2CA(NCA)n−3

= A2(NC)2NCA(NCA)n−3

= A2(NC)3A(NCA)n−3

= ...

= An−1(NC)nA.

(3) In the same way we have [N, (AN)k] = 0 and [(AN)k,NC] = 0( or, [N, (NC)k] = 0 and [AN, (NC)k] = 0) for
each k ∈N. Thus one can show that (ANC)m = (AN)mCm (or, (ANC)n = An(NC)n).

We can now formulate our first main result.

Theorem 3.2. Let A,B,C ∈ B(X), B is Drazin invertible with B, AB and BC are all commute. Write

A ={ABC,BCA,CAB,ABCB,BCAB,ABCBD,BDABC,ABBDC,BDCAB,BCABD,CABBD,

ABCBBD,BBDABC};

B ={B,BD,BBD,AB,BC,ABC, (ABC)D,BBD(ABC)D, (ABC)DBBD
}.

(1) If only one element ofA is Drazin invertible, then all elements ofA are Drazin invertible.
(2) If only one element ofA is Drazin invertible, then all elements of B commute.
(3) If only one element ofA is Drazin invertible, then each of the following statements hold:

(i)

(ABC)D =(ABC)DBBD = BBD(ABC)D = (ABCBD)DBD = BD(ABCBD)D

=(BDABC)DBD = BD(BDABC)D;

(ii) ABC(ABBDC)π and ABC − (ABC)2(BDABC)DBD are nilpotent;
(iii) (BDABC)D = (ABC)DB = B(ABC)D;
(iv) [(ABC)DB,ABC(B)D] = 0;
(v) BBπ(ABC)D = (ABC)DBBπ = 0.
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Proof. (1) Formulas (3) and (5) provided the forms of A,B,C and ABC. Note that {A1,B1,C1} are mutually
commutative, [N1,A4N1] = 0, [N1,N1C4] = 0 and [A4N1,N1C4] = 0. Hence, from Lemma3.1 A4N1C4 is
nilpotent. Further

ABC is Drazin invertible⇐⇒A1B1C1 is Drazin invertible

⇐⇒A1C1 = (A1B1C1)B−1
1 is Drazin invertible ( since [A1B1C1,B−1

1 ] = 0).

Also, we have CAB =

(
C1A1B1 0
C3A1B1 C4A4N1

)
, and BCA =

(
B1C1A1 B1C1A2

0 N1C4A4

)
.

By Lemma 3.1 C4A4N1 and N1C4A4 are nilpotent. Again, CAB and BCA are Drazin invertible if and only if
C1A1 is Drazin invertible. In this case

(ABC)D =

(
(A1C1)DB−1

1 0
0 0

)
;

(CAB)D =

(
(A1C1)DB−1

1 0
C3A1((A1C1)D)2B−1

1 0

)
;

(BCA)D =

(
(A1C1)DB−1

1 C1((A1C1)D)2B−1
1 A2

0 0

)
.

We deduce that Drazin invertibility of each element ofA lies in Drazin invertibility of A1C1.
(2) The set {B,AB,BC} is commutative, then from (4), (6) and (7), the set {A1,B1,C1} is also commutative and
[N1,A4N1] = [N1,N1C4] = [A4N1,N1C4] = 0. So clearly

N1A4N1C4 = A4N1N1C4 = A4N1C4N1,

that is [N1,A4N1C4] = 0 and, in consequence, [B,ABC] = 0. Similarly,

A4N1A4N1C4 = A4A4N1N1C4 = A4N1C4A4N1,

which means that [A4N1C4,A4N1] = 0, hence [ABC,AB] = 0. Besides this, [ABC,BC] = 0 as well. On the
other hand all the element ofB can be written as diagonal matrix forms, and this imply that all the elements
of B commute.
(3) Observe that, ABCBD = ABDBC = ABBDC

ABCBD =

(
A1C1 0

0 0

)
(ABCBD)D =

(
(A1C1)D 0

0 0

)
.

In addition, ABC(ABBDC)π =

(
A1B1C1(A1C1)π 0

0 A4N1C4

)
is nilpotent. Finally, we can verify by a simple

computation the other equalities.

The following theorem gives a partial solution of the reverse order law for the triple product ABC.

Theorem 3.3. Let A,B,C ∈ B(X). If B,AB,BC,C are Drazin invertible and B,AB,BC are all commute, then ABC
is Drazin invertible and the following reverse order laws conditions are equivalent.

(i) (ABC)D = CD(AB)D;
(ii) ((AB)DABC)D = CD(AB)DAB;

(iii) (ABC)DAB = CD(AB)DAB.

Proof. If B is Drazin invertible and {B,AB,BC} are mutually commutative, then by (3) and (5):

AB =

(
A1B1 0

0 A4N1

)
C =

(
C1 0
C3 C4

)
and ABC =

(
A1B1C1 0

0 A4N1C4

)
.
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From the proof of [11, Theorem 3.1] AB is Drazin invertible if and only if A1 is Drazin invertible. In this case

(AB)D =

(
AD

1 B−1
1 0

0 0

)
.

Also the Drazin invertibility of BC implies that C1 is Drazin invertible. Now since C and C1 are Drazin
invertible then by Lemma 2.2 C4 is also Drazin invertible.

By assuming that ind(C1) = s and ind(C4) = t, we can assert that CD =

(
CD

1 0
Y CD

4

)
, where

Y = (CD
4 )2[

s−1∑
n=0

(CD
4 )nC3Cn

1]Cπ1 + Cπ4 [
t−1∑
n=0

Cn
4C3(CD

1 )n](CD
1 )2
− CD

4 C3CD
1 .

Also, from Lemma 3.1, A4N1C4 is nilpotent {A1,B1,C1} are mutually commutative and A1,B1,C1 are all
Drazin invertible. Hence, ABC is also Drazin invertible and

(ABC)D =

(
AD

1 B−1
1 CD

1 0
0 0

)
.

Now let’s mention that

(AB)DABC =

(
AD

1 B−1
1 0

0 0

) (
A1B1C1 0

0 A4N1C4

)
=

(
AD

1 A1C1 0
0 0

)
,

((AB)DABC)D =

(
AD

1 A1CD
1 0

0 0

)
, (since [C1,A1AD

1 ] = 0 and A1AD
1 is a projection)

CD(AB)D =

(
CD

1 0
Y CD

4

) (
AD

1 B−1
1 0

0 0

)
=

(
CD

1 AD
1 B−1

1 0
YAD

1 B−1
1 0

)
,

CD(AB)DAB =

(
CD

1 AD
1 A1 0

YAD
1 A1 0

)
.

We can deduce that (i)⇔ (ii)⇔ (iii)⇔ YAD
1 = 0.

A similar observation gives the following theorem and its proof will be omitted.

Theorem 3.4. Let A,B,C ∈ B(X). If A,B,AB,BC are Drazin invertible and B,AB,BC are all commute, then ABC
is Drazin invertible and the following reverse order laws conditions are equivalent.

(i) (ABC)D = (BC)DAD;
(ii) (ABC(BC)D)D = (BC)D(BC)AD;

(iii) BC(ABC)D = (BC)D(BC)AD.

Theorem 3.5. Let A,B,C ∈ B(X). If A,B,C,AB,BC are Drazin invertible and B,AB,BC are all commute, then the
following reverse order law conditions are equivalent:

(i) (BCAB)D = BDADCDBD;
(ii) (ABBDC)D = BBDADCDBDB;

(iii) B(BCAB)DB = BBDADCDBDB.

Proof. The Drazin invertibility of A,B,C,AB,BC combined with the commutativity conditions of B,AB,BC
provided the following matrix forms

AD =

(
AD

1 X
0 AD

4

)
CD =

(
CD

1 0
Y CD

4

)
, (8)
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with

X = (AD
1 )2[

t1−1∑
n=0

(AD
1 )nA2An

4]Aπ
4 + Aπ

1 [
s1−1∑
n=0

An
1A2(AD

4 )n](AD
4 )2
− AD

1 A2AD
4 ,

Y = (CD
4 )2[

s2−1∑
n=0

(CD
4 )nC3Cn

1]Cπ1 + Cπ4 [
t2−1∑
n=0

Cn
4C3(CD

1 )n](CD
1 )2
− CD

4 C3CD
1 .

Here ind(A1) = s1, ind(A4) = t1, ind(C1) = s2 as well as ind(C4) = t2. Also BCAB =

(
C1(B1)2A1 0

0 N1C4A4N1

)
.

Certainly, N1C4A4N1 is nilpotent and (BCAB)D =

(
CD

1 (B−1
1 )2AD

1 0
0 0

)
. Moreover, ABBDC =

(
A1C1 0

0 0

)
and

(ABBDC)D =

(
AD

1 CD
1 0

0 0

)
. By a simple calculation, we can obtain the following:

BDADCDBD =

(
AD

1 (B−1
1 )2CD

1 + B−1
1 XYB−1

1 0
0 0

)
,

BBDADCDBDB =

(
AD

1 CD
1 + XY 0
0 0

)
,

B(BCAB)DB =

(
CD

1 AD
1 0

0 0

)
.

This gives the following equivalences (i)⇐⇒ (ii)⇐⇒ (iii)⇐⇒ XY = 0.

In the following theorem, we get a first glimpse of (ABC)D = CDBDAD.

Theorem 3.6. Let A,B,C ∈ B(X). If A,B,C,AB,BC are Drazin invertible and B,AB,BC are all commute, then
ABBD,BDBC,ABC are all Drazin invertible. Furthermore, the following reverse order law conditions are equivalent:

1. (ABC)D = CDBDAD;
2. CD(AB)D = CDBDAD = (BC)DAD;
3. BBDCDBDAD = CDBDAD = CDBDADBBD;
4. (ABBD)DBD(BDBC)D = CDBDAD;
5. ADBDBCDBDADABBD = CDBDAD;
6. BπCDBDAD = BBπCDBDAD and CDBDADBπ = CDBDADBπB.

Proof. AB,BC and ABC have the matrix forms:

AB =

(
A1B1 0

0 A4N1

)
, BC =

(
B1C1 0

N1C4

)
and ABC =

(
A1B1C1 0

0 A4N1C4

)
.

Of course, A4N1, N1C4 and A4N1C4 are nilpotent. Moreover, A and AB are Drazin invertible (resp, C and
BC) then A1 and A4 (resp, C1 and C4) are Drazin invertible. Hence, it is easy to verify that ABC is Drazin
invertible. In this case, we obtain

(AB)D =

(
AD

1 B−1
1 0

0 0

)
, (BC)D =

(
B−1

1 CD
1 0

0

)
and (ABC)D =

(
AD

1 B−1
1 CD

1 0
0 0

)
.

On the other hand AD, CD can be written as in (8). So we get

CDBDAD =

(
AD

1 B−1
1 CD

1 CD
1 B−1

1 X
YB−1

1 AD
1 YB−1

1 X

)
.
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Equivalent conditions of (ABC)D = CDBDAD are:


CD

1 X = 0
YAD

1 = 0
YB−1

1 X = 0
. Note that

CD(AB)D = CDBDADBBD =

(
CD

1 AD
1 B−1

1 0
YAD

1 B−1
1 0

)
,

and

(BC)DAD = BBDCDBDAD =

(
B−1

1 CD
1 AD

1 CD
1 B−1

1 X
0 0

)
.

Therefore, (2)⇐⇒ (3)⇐⇒


CD

1 X = 0
YAD

1 = 0
YB−1

1 X = 0
. Also it is easy to show that

(ABC)D = (ABBD)DBD(BDBC)D = ADBDBCDBDADABBD.

So, (1)⇐⇒ (4)⇐⇒ (5). Finally,

BπCDBDAD =

(
0 0

YB−1
1 AD

1 YB−1
1 X

)
,

CDBDADBπ =

(
0 CD

1 B−1
1 X

0 YB−1
1 X

)
,

BBπCDBDAD =

(
0 0

N1YB−1
1 AD

1 N1YB−1
1 X

)
,

CDBDADBπB =

(
0 CD

1 B−1
1 XN1

0 YB−1
1 XN1

)
.

Thus, (6) ⇐⇒


(I −N1)CD

1 B−1
1 X = 0

YB−1
1 AD

1 (I −N1) = 0
(I −N1)YB−1

1 X = 0
⇐⇒


CD

1 X = 0
YAD

1 = 0
YB−1

1 X = 0
. B1 and I − N1 are invertible (because N1 is

nilpotent). This is the desired conclusion.

Inserting the revers order law of AB in Theorem3.3 yields the following corollary.

Corollary 3.7. Let A,B,C ∈ B(X) be such that A,B,C,AB,BC are Drazin invertible and B,AB,BC are all commute.
If (AB)D = BDAD then the following reverse order law conditions are equivalent:

(i) (ABC)D = CDBDAD;
(ii) ((AB)DABC)D = CDBDADAB;

(iii) (ABC)DAB = CDBDADAB.

Proof. The reverse order law condition (AB)D = BDAD is equivalent to X = 0. Thus CDBDAD =

(
AD

1 B−1
1 CD

1 0
YB−1

1 AD
1 0

)
,

and the equality (ABC)D = CDBDAD is equivalent to YAD
1 = 0.

CDBDADAB =

(
CD

1 AD
1 A1 0

YAD
1 A1 0

)
and ((AB)DABC)D =

(
AD

1 A1CD
1 0

0 0

)
.

Hence, ((AB)DABC)D = CDBDADAB⇐⇒ YAD
1 = 0.

Also, (ABC)DAB = CDBDADAB⇐⇒ YAD
1 = 0. Which complete the proof.
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In a similar pattern using the reverse order law of BC in Theorem 3.4, we obtain:

Corollary 3.8. Let A,B,C ∈ B(X) be such that A,B,C,AB,BC are Drazin invertible and B,AB,BC are all commute.
If (BC)D = CDBD then the following reverse order law conditions are equivalent:

(i) (ABC)D = CDBDAD;
(ii) (ABC(BC)D)D = BCCDBDAD;

(iii) BC(ABC)D = BCCDBDAD.
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