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Abstract. The subject of this paper is an analytic approximate method for a class of stochastic differential
equations with coefficients that do not necessarily satisfy the Lipschitz and linear growth conditions but
behave like a polynomials. More precisely, equations from the observed class have unique solutions with
bounded moments and their coefficients satisfy polynomial condition. Approximate equations are defined
on partitions of a time interval, and their coefficients are Taylor approximations of the coefficients of the
initial equation. The rate of Lp convergence increases when degrees in Taylor approximations of coefficients
increase. At the end of the paper, an example is provided to support the main theoretical result.

1. Introduction

On the basis of the extensive literature one can observe that most of the stochastic differential equations
are not explicitly solvable. In addition, many real-life phenomena are modeled by stochastic differential
equations with coefficients which are highly nonlinear. One analytic method to find their approximate
solutions in an explicit form, or in a form suitable for the application of numerical methods, will be
presented. The method is based on the Taylor approximations of the coefficients of the initial equations. The
closeness in the Lp sense between the exact and approximate solutions will be estimated. Moreover, almost
sure convergence of the sequence of the approximate solutions to the exact solution will be established.

The main motivation for this paper came from the work of Atalla [1, 2]. Following Atalla’s papers,
Janković and Ilić constructed approximate solutions to stochastic differential [12] and integrodifferential [13]
equations, defined on a partition of a time-interval. In the corresponding approximate equations coefficients
are Taylor series, up to arbitrary derivatives, of the coefficients of the initial equations. Closeness of the exact
and approximate solutions is measured in the sense of the Lp-norm and with probability one. This method
was appropriately extended by Milošević, Jovanović and Janković to various types of stochastic differential
equations such as functional [25], pantograph with Markovian switching [23], with time-dependent delay
[24] and with Poisson random measure [22]. In all of these papers the Lipschitz and linear growth conditions
for the drift and diffusion coefficients are used, which guarantees the existence and uniqueness of solution
of the initial equation. In a view of the cited papers one can conclude that the rate of the Lp-closeness
between the exact and approximate solutions increases as degrees in Taylor expansions increase. However,
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most of coefficients of the stochastic differential equations do not satisfy these conditions. Our idea is to
weaken those conditions in a way that they can satisfy some other conditions instead which guarantee
boundedness of the moments (such as one-sided Lipschitz condition, monotone condition, for example)
and satisfy polynomial condition. Existence and uniqueness of solutions of the initial and approximate
equations are assumed, but can be easily proven if an appropriate condition is added.

In that way, we extend the results from [12] to a class of stochastic differential equations with drift
coefficients which could be highly nonlinear. This extension requires the application of the technique which
is slightly different than that used in the cited paper. It should be pointed out that, by this extension, the main
result remains the same, that is, the rate of the Lp-closeness of the sequence of the approximate solutions to
the exact solution increases as the numbers of degrees in the Taylor approximations of the coefficients of the
initial equation increase. It should be stressed that, in the recent years, the existence and uniqueness of the
exact solutions, development of the approximate methods, stability of the exact and approximate solutions
and other qualitative and quantitative properties of the exact and approximate solutions, under highly
nonlinear conditions on coefficients of the appropriate stochastic differential equations have attracted the
attention of many researchers. We refer the reader, for example, to [4, 8, 17, 20, 21], among many other. So,
the main aim of this paper is to provide a contribution to the analysis of stochastic differential equations
with highly nonlinear drift coefficients, that is, with drifts which satisfy the polynomial condition.

As one can observe from the papers [27–29], the approximations based on the Taylor expansions are
appropriately applied in the context of LIBOR modelling. Models in the cited papers are based on ordinary
stochastic differential equations, as well as, on stochastic differential equations driven by Lévy processes or
general semimartingales. The results from these papers suggest that the results of the present paper could
be applied in the modelling of certain market parameters, bearing in mind that they are often described by
stochastic differential equations with conditions which do not satisfy linear growth conditions.

Whole consideration in this paper is related to the complete probability space (Ω,F ,P) with the filtration
{Ft}t≥0 which satisfies usual conditions (it is nondecreasing, right continuous and F0 contains all P-null
sets). Let W = {W(t), t ≥ 0}= {(W1(t), ...,Wd1 (t))T, t ≥ 0} be a d1-dimensional Brownian motion defined on this
probability space. The marks | · | and 〈·,·〉 represent the Euclidean norm of vectors or the Frobenius (trace)
norm of matrices and the standard Euclidean scalar product of vectors, respectively. Let a ∧ b = min{a, b}
and a ∨ b = max{a, b}.

The subject of consideration is stochastic differential equation of the Itô type

dx(t) = a(t, x(t))dt + b(t, x(t))dW(t), t ∈ [0,T], x(0) = x0,

or, in integral form

x(t) = x0 +

∫ t

0
a(s, x(s))ds +

∫ t

0
b(s, x(s))dW(s), t ∈ [0,T], (1)

where a : [0,T] × Rd
→ Rd and b : [0,T] × Rd

→ Rd×d1 . Let us assume that the initial condition x0 is
independent of W. This condition is not particularly restrictive.

The approximate equations will be defined on a partition of a time interval [0,T]. For any positive integer
n consider the partition of the form

0 = t0 < t1 < · · · < tn = T, δn = max
0≤k≤n−1

(tk+1 − tk). (2)

For the completeness of the paper, we shall introduce the notion of the Fréchet derivative. Let X =
(X, ||·||1) andY = (Y, ||·||2) be normed spaces over the same fieldF. L(X,Y) represents the space of all bounded
linear operators from X to Y. The norm || · ||1,2 in L(X,Y) is going to be defined as ||A||1,2 = sup

||x||1≤1 ||Ax||2,
A ∈ L(X,Y). Let U be an open subset of X, let f : U→ Y be a mapping, and let x0 ∈ U.

If there exists some F ∈ L(X,Y) such that

lim
h→0

‖ f (x0 + h) − f (x0) − Fh‖2
‖h‖1

= 0 (3)
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holds, then F is the Fréchet derivative of f at x0. The notation used here is F = f ′x0
. Previous limit is taken

as the vector h tends to zero in X and the Fréchet derivative is unique in the case when it exists.
Now, let f : U → Y be a mapping which is Fréchet differentiable at every point x0 ∈ U. In this case

f ′x0
∈ L(X,Y). We can consider the mapping x0 7→ f ′x0

from U to L(X,Y). If this mapping is Fréchet
differentiable at x0, then the second Fréchet derivative is f ′′x0

∈ L(X,L(X,Y)).
In the case when the second Fréchet derivative exists in some surrounding U of the vector x0 ∈ X, we

can define F : U→ L(X,Y) as F(x) = f ′x , for every x ∈ U. That way, we have

lim
h→0

‖F(x0 + h) − F(x0) − F′x0
h‖1,2

‖ h‖1
= lim

h→0

‖ f ′x0+h − f ′x0
− f ′′x0

h‖1,2
‖ h‖1

= 0. (4)

Let X1 = (X1, || · ||1), . . . ,Xn = (Xn, || · ||n),Y = (Y, || · ||Y) be normed spaces over the same field F, and
let B : X1 × · · · × Xn → Y be a mapping, which is linear at every argument. B is called an n-linear
operator from X1 × · · · × Xn to Y. Such B is bounded, if there exists some constant M ≥ 0 such that for all
(x1, . . . , xn) ∈ X1 × · · · × Xn the following holds:

‖B(x1, . . . , xn)‖Y ≤M‖ x1‖1 · · · ‖ xn‖n. (5)

The set of all bounded n-linear operators from X1 × · · · × Xn to Y is denoted byMn(X1, ...,Xn; Y). We use
shortlyMn(X, ...,X; Y) ≡ Mn(Xn; Y).

It is easy to see that the Mn(X1, . . . ,Xn; Y) is a vector space. Moreover, if we define the norm of
B ∈ Mn(X1, . . . ,Xn; Y) as the infimum of all admissible M in the inequality (5), thenMn(X1, . . . ,Xn; Y) is a
normed space. The norm of B, obtained in a described way, is denoted by ‖B‖M,n. Multi-linear operators
and bounded linear operators are in a close relation in a sense thatMn(Xn; Y) is isometrically isomorphic to
L(X,L(X, . . . ,L(X︸              ︷︷              ︸

n times

,Y)...)) with respect to standard norms on these spaces. So, if x ∈ X then f ′′x0
(x) ∈ L(X,Y).

If y ∈ X, then f ′′x0
(x)(y) = f ′′x0

(x, y) ∈ Y and the mapping

(x, y) 7→ f ′′x0
(x, y)

belongs to M2(X2; Y). The norm ‖ f ′′x0
‖ = || f ′′x0

||M,2 is the same in the space L(X,L(X,Y)) and in the space
M2(X2; Y).

In the same manner we can define higher Fréchet derivatives, in the case when they exist. Thus, the
n-th Fréchet derivative of the function f at x0 is

f (n)
x0
∈ L (X, . . . ,L(X︸        ︷︷        ︸

n times

,Y)...),

if the function x0 7→ f (n−1)
x0

is Fréchet differentiable in some neighborhood of the x0.

Let us now recall the Taylor formula [3, 5]. Let X = (X, || · ||1) and Y = (Y, || · ||2) be normed spaces over
the same field F, let U be an open subset of X, and let f : U → Y be (n + 1)-times Fréchet differentiable.
Assume that x0, x ∈ U such that the segment [x0, x] ⊂ U (that is, x0 +θ(x− x0) ∈ U for every 0 ≤ θ ≤ 1). Then
the following formula holds:

f (x) − f (x0) =

n∑
k=1

1
k!

f (k)
x0

(x − x0, . . . , x − x0)︸                 ︷︷                 ︸
k times

+
1

(n + 1)!
f (n+1)
x0+θ(x−x0) (x − x0, . . . , x − x0)︸                 ︷︷                 ︸

n+1 times

.

Notice that the k-th Fréchet derivative is a k-linear operator, so the notation f (k)
x0

(x − x0, . . . , x − x0)︸                 ︷︷                 ︸
k times

≡

f (k)
x0

(x − x0)k will be used throughout the paper.
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Bear in mind that if t ∈ [0,T] is fixed, we can consider functions a and b from (1) as a = a(t, ·) : Rd
→ Rd

and b = b(t, ·) : Rd
→ Rd×d1 . That way, if we consider vector spaces X = Rd and Y = Rd (or Rd×d1 ), over field

R, equipped with norms | · |, the upper-mentioned Fréchet derivatives can easily be represented via partial
derivatives. For example, if f = ( f1, ..., fd) : Rd

→ Rd is Fréchet-differentiable in x0 ∈ Rd (enough times),
than f ′x0

= f (1)
x0

=
[
∂ fi
∂x j

(x0)
]

d×d
: Rd

→ Rd, f ′′x0
= f (2)

x0
=

[
∂2 fi
∂x j∂xk

(x0)
]

d×d×d
: Rd

→ L(Rd,Rd) or f ′′x0
: (Rd)2

→ Rd

(differentiating the cases f ′′x0
∈ L(X,L(X,Y)) and f ′′x0

∈ M(X2; Y)), and so on.

Solutions of equations

xn(t) = xn(tk) +

∫ t

tk

m1∑
i=0

a(i)
x

(
s, xn(tk)

)
i!

(
xn(s) − xn(tk)

)i
ds +

∫ t

tk

m2∑
i=0

b(i)
x

(
s, xn(tk)

)
i!

(
xn(s) − xn(tk)

)i
dW(s), (6)

t ∈ [tk, tk+1], k ∈ {0, 1, . . . ,n − 1},

in which the drift and diffusion coefficients are Taylor approximations of functions a and b, respectively,
while xn(t0)=x0 a.s, are used to approximate solution x = {x(t), t ∈ [0,T]} of the equation (1) on the partition
(2). Functions a(i)

x and b(i)
x represent i-th partial derivatives on the second argument of functions a and b,

respectively. The approximate solution xn = {xn(t), t∈ [0,T]}, constructed in (6) by successive connecting of
the processes {xn(t), t ∈ [tk, tk+1]} in points tk, k ∈ {0, 1, . . . ,n − 1}, is almost surely continuous process.

One can observe from (6) that the coefficients of the approximate equations do not depend on the
remainders in Taylor expansions which is not the case when the Ito-Taylor expansion is applied. The
Ito-Taylor expansion is obtained by iterated applications of the Ito formula to the integrands in the integral
version of the stochastic differential equations, and unified by a canonical system of repeated stochastic
Ito integrals with polynomial weight functions [14]. These expansions are the basis for the well-known
stochastic numerical methods such as Euler, Milstein, Wagner-Platen, which are based on Taylor expansions
of zero, first and second degrees, respectively. For higher-order numerical schemes one requires adequate
smoothness of the drift and diffusion coefficients, but also an appropriate information about the driving
Wiener processes. This information is contained in the remainders consisting of multiple stochastic integrals
with respect to the Brownian motion and theirs estimation is difficult [15, 16]. The method in the present
paper is convenient when the number of degrees in Taylor expansions of the coefficients is bigger than 1.

The existence and uniqueness of solutions of equations (1) and (6) is assumed without considering any
conditions which are satisfied by theirs coefficients. All Lebesgue and Itô integrals are supposed to be
defined well.

We introduce the following assumptions which are necessary for proving the main results of this paper.
A1: Functions a and b have Taylor approximations on second argument till the orders m1 and m2,

respectively.
A2: Functions a(m1+1)

x and b(m2+1)
x are uniformly bounded, that is, there exist positive constants L1 and

L2, such that
sup

(t,x)∈[0,T]×Rd

|a(m1+1)
x (t, x)| ≤ L1 and sup

(t,x)∈[0,T]×Rd

|b(m2+1)
x (t, x)| ≤ L2.

A3: Functions a and b satisfy polynomial condition, i.e. there exist a positive real number D and a
nonnegative integer q, such that for every t ∈ [0,T] and x, y ∈ Rd,

|a(t, x) − a(t, y)|2 ∨ |b(t, x) − b(t, y)|2 ≤ D
(
1 + |x|q + |y|q

)
|x − y|2.

A4: Functions a(·, 0) and b(·, 0) are bounded on [0,T]. More precisely, there exist positive constants Ca
and Cb such that |a(t, 0)| ≤ Ca and |b(t, 0)| ≤ Cb for every t ∈ [0,T].
A5: There exist unique, almost surely continuous solutions x and xn of equations (1) and (6) respectively,

satisfying
E sup

t∈[0,T]
|x(t)|p(M∨q+1)

∨ E sup
t∈[0,T]

|xn(t)|p(M∨q+1)2
≤ Q < ∞,

for p > 2, where Q > 0 is a constant independent of n and M = m1 ∨m2.
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Remark 1.1. The Lipschitz condition implies that the coefficients do not change faster than a linear function
of x as change in x and thus, it is too restrictive. A wide class of stochastic differential equations has
coefficients which do not satisfy global Lipschitz condition or linear growth condition, which are sufficient
conditions for existence and uniqueness of solution to the equation (see, for example, [6, 19]). Existence
and uniqueness of solution to equation (1) is assumed, and under different conditions for coefficients of
the equation can be proven, for example, if coefficients satisfy local Lipschitz and monotone conditions
(Theorem 2.3.5 [19]).

The local Lipschitz condition holds if for every positive real number R, there exists a constant KR
depending only on R, such that for every x, y ∈ Rd with |x| ∨ |y| ≤ R, we have that

|a(t, x) − a(t, y)|2 ∨ |b(t, x) − b(t, y)|2 ≤ KR|x − y|2, t ∈ [0,T].

If there exists a positive constant S̃ such that for all (t, x) ∈ [0,T] ×Rd

xTa(t, x) +
1
2
|b(t, x)|2 ≤ S̃

(
1 + |x|2

)
, (7)

then coefficients of equation (1) satisfy the monotone condition.
Note that one-sided Lipschitz condition for the drift, and global Lipschitz condition for the diffusion

coefficient imply that monotone condition (7) holds for coefficients of the equation (1).
If there exists a positive constant µ > 0 such that〈

x − y, a(t, x) − a(t, y)
〉
≤ µ|x − y|2, (8)

for every t ∈ [0,T], x, y ∈ Rd, then function a satisfies the one-sided Lipschitz condition.
If there exists a positive constant c such that

|b(t, x) − b(t, y)|2 ≤ c|x − y|2, (9)

for t ∈ [0,T] and x, y ∈ Rd, then function b satisfies the global Lipschitz condition.
Besides that, in [9] authors proved that under assumptions (8) and (9), stochastic differential equation

(1) has a bounded p-th moment for p > 2, i.e., for every p > 2, there is C = C(p,T) > 0, such that

E sup
t∈[0,T]

|x(t)|p ≤ C
(
1 + E|x0|

p
)
.

In this paper some well-known inequalities, such as Hölder and Burkholder-Davis-Gundy inequality
are used in the proofs. Likewise, the elementary inequality is used in the sequel: for every r ≥ 0 and for
ai ∈ R, i ∈ {1, 2, ...,n},n ∈N,∣∣∣∣ n∑

i=1

ai

∣∣∣∣ r
≤ (nr−1

∨ 1) ·
n∑

i=1

|ai|
r. (10)

The following integral Bihary type inequality plays an important role in the future analysis (see Remark
3.3 [26]).

Theorem 1.2. Let F̄ be the class of functions ϕ : R+
→ R+ which satisfy the following conditions:

1) ϕ is nondecreasing and continuous in R+ and ϕ(u) > 0 for u > 0;
2) 1

α ϕ(u) ≤ ϕ( u
α ), u ≥ 0, α ≥ 1.

Let f = f (t),u = u(x) be a real valued nonnegative continuous functions on S, where S is any bounded open set in
R. If 1 = 1(x) is a positive, nondecreasing continuous function on S and ϕ belongs to class F̄ for which the following
inequality

u(x) ≤ 1(x) +

∫ x

x0
f (t)ϕ(u(t))dt
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holds for all x ∈ S with x ≥ x0
∈ S, then for x0

≤ x ≤ x∗,

u(x) ≤ 1(x)G−1
(
G(1) +

∫ x

x0
f (t)dt

)
,

where

G(z) =

∫ z

z0

ds
ϕ(s)

, z ≥ z0 > 0,

G−1 is the inverse of G and x∗ is chosen so that

G(1) +

∫ x

x0
f (t)dt ∈ Dom(G−1).

2. Main results

The main goal in this paper is to estimate the closeness between the solutions x and xn, as well as the
speed of convergence of the sequence {xn,n ∈ N} to the solution x. In that sense the next lemma will be
proved.

Lemma 2.1. Let xn be the solution to equation (6) and let the assumptions A1 − A5 hold. Then, for every 0 < r ≤
p (M ∨ q + 1),

E|xn(t) − xn(tk)|r ≤ C′δr/2
n , t ∈ [tk, tk+1], k ∈ {0, 1, . . . ,n − 1},

where C′ is a universal constant which is independent of n and δn.

Proof. We consider the sequence of equations (6) on the partition (2) in the form

xn(t) = xn(tk) +

∫ t

tk

A
(
s, xn(tk), xn(s)

)
ds +

∫ t

tk

B
(
s, xn(tk), xn(s)

)
dW(s),

where t ∈ [tk, tk+1], k ∈ {0, 1, . . . ,n − 1} and

A
(
t, xn(tk), xn(t)

)
=

m1∑
i=0

a(i)
x (t, xn(tk))

i!

(
xn(t) − xn(tk)

)i
, (11)

B
(
t, xn(tk), xn(t)

)
=

m2∑
i=0

b(i)
x (t, xn(tk))

i!

(
xn(t) − xn(tk)

)i
.

Firstly, for r ≥ 2, by applying the elementary inequality (10) on (6) and afterwards the Hölder inequality on
Lebesgue integral and Burkholder-Davis-Gundy and Hölder inequality on Itô integral, as well as Fubini
theorem, for every t ∈ [tk, tk+1], k ∈ {0, 1, . . . ,n − 1}, one can conclude that

E|xn(t) − xn(tk)|r ≤ 2r−1

[
E
∣∣∣∣ ∫ t

tk

A
(
s, xn(tk), xn(s)

)
ds

∣∣∣∣r + E
∣∣∣∣ ∫ t

tk

B
(
s, xn(tk), xn(s)

)
dW(s)

∣∣∣∣r]
≤ 2r−1

[
(t − tk)r−1

∫ t

tk

E
∣∣∣A(s, xn(tk), xn(s))

∣∣∣rds + cr(t − tk)r/2−1
∫ t

tk

E
∣∣∣B(s, xn(tk), xn(s))

∣∣∣rds
]

≡ 2r−1(t − tk)r/2−1
[
(t − tk)r/2 J1(t) + cr J2(t)

]
. (12)
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In estimating integrals J1(t) =
∫ t

tk
E
∣∣∣A(s, xn(tk), xn(s))

∣∣∣rds and J2(t) =
∫ t

tk
E
∣∣∣B(s, xn(tk), xn(s))

∣∣∣rds we use as-
sumptionsA1 −A5. Then, we have that

J1(t) =

∫ t

tk

E
∣∣∣(a(s, xn(s)) − a(s, 0)) + a(s, 0) −

(
a(s, xn(s)) − A(s, xn(tk), xn(s))

)∣∣∣rds

≤ 3r−1

{∫ t

tk

E
∣∣∣a(s, xn(s)) − a(s, 0)

∣∣∣ r
ds +

∫ t

tk

E|a(s, 0)|rds +

∫ t

tk

E
∣∣∣ a(s, xn(s)) − A(s, xn(tk), xn(s))

∣∣∣rds
}

≡ 3r−1
{
J1
1(t) + J2

1(t) + J3
1(t)

}
. (13)

To estimate the term J1
1(t), we apply the polynomial conditionA3, inequality (10) and assumptionA5. Thus,

we obtain

J1
1(t) ≡

∫ t

tk

E
∣∣∣ a(s, xn(s)) − a(s, 0)

∣∣∣ r
ds =

∫ t

tk

E
(∣∣∣ a(s, xn(s)) − a(s, 0)

∣∣∣2)r/2
ds

≤

∫ t

tk

E
(
D
(
1 + |xn(s)| q

)
· |xn(s)| 2

)r/2
ds

≤ Dr/22(r−2)/2
∫ t

tk

E
((

1 + |xn(s)| rq/2
)
|xn(s)|r

)
ds

= Dr/22(r−2)/2
∫ t

tk

(
E|xn(s)| r + E|xn(s)| r(1+q/2)

)
ds

≤ Dr/22(r−2)/22
∫ t

tk

Qds = QDr/22r/2(t − tk). (14)

AssumptionA4 is used for estimating the integral J2
1(t) from (13). Therefore,

J2
1(t) ≡

∫ t

tk

E|a(s, 0)| rds ≤ Cr
a(t − tk). (15)

In order to estimate the integral J3
1(t) in (13), we use assumptions A1, A2, inequality (10) and A5. There

exists θ1 ∈ (0, 1) such that

J3
1(t) ≡

∫ t

tk

E
∣∣∣∣a(s, xn(s)

)
− A

(
s, xn(tk), xn(s)

)∣∣∣∣rds

≡

∫ t

tk

E
∣∣∣∣∣a(m1+1)

x

(
s, xn(tk)+ θ1

(
xn(s) − xn(tk)

))
(m1 + 1)!

(
xn(s) − xn(tk)

)m1+1
∣∣∣∣∣rds

≤
Lr

1[
(m1 + 1)!

]r · 2
(m1+1)r−1

∫ t

tk

(
E|xn(s)|(m1+1)r + E|xn(tk)|(m1+1)r

)
ds

≤
2(m1+1)r−1Lr

1[
(m1 + 1)!

]r

∫ t

tk

2E sup
`∈[0,T]

|xn(`)|(M+1)rds

≤
2(m1+1)rLr

1Q
[(m1 + 1)!]r (t − tk). (16)

By applying the relations (14), (15) and (16), the inequality (13) becomes

J1(t) ≤ C1(t − tk), (17)
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where C1 is a universal constant which depends on r,Q,D,Ca,L1 and m1. The application of the previous
procedure yields

J2(t) ≤ C2(t − tk), (18)

where C2 is a universal constant which depends on r,Q,D,Cb,L2 and m2. Finally, by replacing (17) and (18)
in (12) it follows

E|xn(t) − xn(tk)|r ≤ 2r−1(t − tk)r/2
[
C1(t − tk)r/2 + crC2

]
≤ C̃(t − tk)r/2

≤ C̃δr/2
n ,

where C̃ = C̃(C1,C2,T, r) is a constant.
For r ∈ (0, 2), by using the Hölder inequality with conjugate coefficients

(
2/r, 2/(2−r)

)
, following estimate

holds by proven part of the lemma

E|xn(t) − xn(tk)|r ≤
(
E|xn(t) − xn(tk)|2

)r/2
≤

(
C̃δ2/2

n

)r/2
= C′′δr/2

n .

The proof is complete with C′ = C̃ ∨ C′′.

In next theorem we establish a rate of convergence for the analytic method under consideration. We
show that if the degrees of the Taylor approximations of the functions a and b increase, then the rate of the
closeness between solutions x and xn increases in the sense of Lp-norm.

Theorem 2.2. Let x and xn be solutions to equations (1) and (6), respectively. Under the assumptions A1–A5, for
p > 0,

E sup
t∈[0,T]

|x(t) − xn(t)| p ≤ Kδ
(m+1)p

2
n ,

when n→ +∞ and δn → 0, where m = m1 ∧m2 and K is a universal constant which is independent of n and δn.

Proof. Let t ∈ [0,T] be an arbitrary and fixed number. Bearing in mind (11), let us denote

A′(s) =

n−1∑
k=0

[
a(s, x(s)) − A

(
s, xn(tk), xn(s)

)]
I[tk ,tk+1∧t)(s),

B′(s) =

n−1∑
k=0

[
b(s, x(s)) − B

(
s, xn(tk), xn(s)

)]
I[tk ,tk+1∧t)(s), s ∈ [0, t].

Let p ≥ 2. By using inequality (10), Hölder inequality, Burkholder-Davis-Gundy inequality and Fubini
theorem, we get

E sup
s∈[0,t]

|x(s) − xn(s)|p = E sup
s∈[0,t]

∣∣∣∣∣∫ s

0
A′(u)du +

∫ s

0
B′(u)dW(u)

∣∣∣∣∣p
≤ 2p−1

E sup
s∈[0,t]

sp−1
∫ s

0

∣∣∣A′(u)
∣∣∣pdu + cpE

∣∣∣∣∣∣
∫ t

0

∣∣∣B′(u)
∣∣∣2du

∣∣∣∣∣∣p/2


≤ 2p−1

[
tp−1

∫ t

0
E
∣∣∣A′(s)

∣∣∣pds + cpt(p−2)/2
∫ t

0
E
∣∣∣B′(s)

∣∣∣pds
]

≤ 2p−1
[
Tp−1S1(t) + cpT(p−2)/2S2(t)

]
, (19)

where

S1(t) =

∫ t

0
E
∣∣∣A′(s)

∣∣∣pds and S2(t) =

∫ t

0
E
∣∣∣B′(s)

∣∣∣pds.
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The estimate of S1(t) is based on the triangle inequality and inequality (10). Then,

S1(t) =

n−1∑
k=0

∫ tk+1∧t

tk∧t
E
∣∣∣∣a(s, x(s)) − a(s, xn(s)) + a(s, xn(s)) − A

(
s, xn(tk), xn(s)

)∣∣∣∣pds

≤ 2p−1
[ n−1∑

k=0

∫ tk+1∧t

tk∧t
E
∣∣∣∣a(s, x(s)) − a(s, xn(s))

∣∣∣∣pds +

n−1∑
k=0

∫ tk+1∧t

tk∧t
E
∣∣∣∣ a(s, xn(s)) − A

(
s, xn(tk), xn(s)

)∣∣∣∣pds
]
. (20)

One can now estimate the first integral in (20) by applying the polynomial conditionA3, Cauchy-Schwarz-
Bunyakovsky inequality andA5. Hence,∫ t

0
E|a(s, x(s)) − a(s, xn(s))|pds

≤ Dp/2
∫ t

0
E
[(

1 + |x(s)|q + |xn(s)|q
)p/2
|x(s) − xn(s)|p

]
ds

≤ Dp/2
∫ t

0

[
E|x(s) − xn(s)|p

] 1
2
[
E
[(

1 + |x(s)|q + |xn(s)|q
)p
|x(s) − xn(s)|p

]] 1
2 ds

≤ Dp/2
∫ t

0

[
E sup
`∈[0,s]

|x(`) − xn(`)|p
] 1

2
[
E sup
`∈[0,s]

[(
1 + |x(`)|q + |xn(`)|q

)p
|x(`) − xn(`)|p

]] 1
2 ds

≤ Dp/2Q1

∫ t

0

[
E sup
`∈[0,s]

|x(`) − xn(`)|p
] 1

2 ds, (21)

where Q1 = (6pQ)
1
2 is a constant derived via inequality (10) and Hölder inequality.

To estimate the second integral in (20) we use assumptionsA1,A2 and Lemma 2.1. There existsθ1 ∈ (0, 1)
such that

n−1∑
k=0

∫ tk+1∧t

tk∧t
E
∣∣∣∣∣a(m1+1)

x

(
s, xn(tk) + θ1(xn(s)−xn(tk))

)
(m1 + 1)!

(
xn(s) − xn(tk)

)m1+1
∣∣∣∣∣pds

≤
Lp

1[
(m1 + 1)!

]p

n−1∑
k=0

∫ tk+1∧t

tk∧t
E
∣∣∣xn(s) − xn(tk)

∣∣∣(m1+1)p

≤
Lp

1C′T[
(m1 + 1)!

]p · δ
(m1+1)p/2
n . (22)

Then, on the basis of (21) and (22), (20) becomes

S1(t) ≤ 2p−1

Dp/2Q1

∫ t

0

[
E sup
`∈[0,s]

∣∣∣x(`) − xn(`)
∣∣∣p] 1

2 ds +
Lp

1C′Tδ(m1+1)p/2
n[

(m1 + 1)!
]p

 . (23)

Analogously,

S2(t) =

n−1∑
k=0

∫ tk+1∧t

tk∧t
E
∣∣∣∣b(s, x(s)) − b(s, xn(s)) + b(s, xn(s)) − B

(
s, xn(tk), xn(s)

)∣∣∣∣pds

≤2p−1

Dp/2Q1

∫ t

0

[
E sup
`∈[0,s]

|x(`) − xn(`)|p
] 1

2 ds +
Lp

2C′Tδ(m2+1)p/2
n[

(m2 + 1)!
]p

 . (24)
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Now, putting (23) and (24) in (19), we compute

E sup
s∈[0,t]

|x(s) − xn(s)|p ≤ 22p−2C′Tp/2

 Tp/2Lp
1[

(m1 + 1)!
]p · δ

(m1+1)p/2
n +

cpLp
2[

(m2 + 1)!
]p · δ

(m2+1)p/2
n


+ 22p−2Dp/2Q1

(
Tp−1 + cpT(p−2)/2

) ∫ t

0

[
E sup
`∈[0,s]

|x(`) − xn(`)|p
]1/2

ds.

Since n is going to be large enough and δn is going to be small enough (close to 0), δn is going to be less than
1 and then

δ(m1+1)p/2
n ∨ δ(m2+1)p/2

n ≤ δ(m+1)p/2
n ,

where m = m1 ∧m2. The last inequality becomes

E sup
s∈[0,t]

|x(s) − xn(s)|p ≤ Z1(T)δ(m+1)p/2
n + Z2(T)

∫ t

0

[
E sup
`∈[0,s]

|x(`) − xn(`)|p
]1/2

ds, (25)

where

Z1(T) = 22p−2C′Tp/2
{ Tp/2Lp

1[
(m1 + 1)!

]p +
cpLp

2[
(m2 + 1)!

]p

}
,

Z2(T) = 22p−2Dp/2Q1

(
Tp−1 + cpT(p−2)/2

)
.

To finish the proof, we apply the Bihari type inequality (Theorem 1.2) on (25), where the functionϕ is defined
as ϕ : z 7→ z1/2, z ∈ [0,+∞) and function G is a bijection, defined for positive numbers z as G(z) = 2z1/2. Its
inverse function is G−1(y) = 1

4 y2, y > 0. Also,
∫ t

0 f (s)ds = Z2(T)t ≤ Z2(T)T, for every t ∈ [0,T]. Finally, for
every t ∈ [0,T],

E sup
s∈[0,t]

|x(s) − xn(s)|p ≤ Z1(T)δ(m+1)p/2
n

1
4

(
2 + Z2(T)T

)2
= Kδ(m+1)p/2

n ,

where K = 0.25Z1(T)
(
2 + Z2(T)T

)2
is a constant independent of n and δn. The last inequality holds for every

t ∈ [0,T], so

E sup
t∈[0,T]

|x(t) − xn(t)|p ≤ Kδ(m+1)p/2
n . (26)

For 0 < r < 2 proof is analogous to the end of the proof of Lemma 2.1.

Almost sure convergence of the sequence of the approximate solutions to equations (6) to the exact
solution of the equation (1) is established in the next theorem.

Theorem 2.3. Let the conditions of Theorem 2.2 be satisfied and let there exist a monotonic decreasing sequence of
positive numbers (λn)n∈N such that λn → 0 when n → ∞ and

∑
∞

n=1 δnλ−2
n < ∞. Then, the sequence (xn)n∈N of the

approximate solutions of the equations (6) converges almost surely to the solution x of the equation (1).

Proof. Chebyshev inequality and the relation (26) from the proof of the previous theorem yield
∞∑

n=1

P
{

sup
t∈[0,T]

|x(t) − xn(t)|p/2 ≥ λn

}
≤

∞∑
n=1

E sup
t∈[0,T]

|x(t) − xn(t)|pλ−2
n

≤ K
∞∑

n=1

δ(m+1)p/2
n λ−2

n < ∞.

The Borel-Cantelli lemma implies that with probability one only finitely many events {supt∈[0,T] |x(t) −

xn(t)|p/2 ≥ λn} will be realized, that is, for all large enough n supt∈[0,T] |x(t) − xn(t)| < λ2/p
n almost surely.

Therefore, the sequence (xn)n∈N converges almost surely to the solution x, uniformly in [0,T].
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The following example illustrates the previous theoretical findings.

Example 2.4. Let us consider an autonomous stochastic differential equation

dx(t) =
(
− αx3(t) + β sin x(t)

)
dt + σ(1 − 2 sin x(t))dW(t), t ∈ [0,T], (27)

with initial condition x(0) = 0 a.s., where α, β and σ are real constants.
The main goal of this example is to demonstrate the situation when the application of the proposed

analytical method leads to the explicitly solvable stochastic differential equation and situation when the
approximate equations are not explicitly solvable, but have unique solutions. In the second situation, the
approximate equations have simpler form than Eq. (27), such that some numerical method could be applied
to find theirs approximate solutions.

Both the drift coefficient a(x) = −αx3+β sin x and diffusion coefficient b(x) = σ(1−2 sin x) are continuously-
differentiable and hence locally Lipschitz continuous, but the drift coefficient is not globally Lipschitz
continuous whilst the diffusion coefficient is. Also, note that one-sided Lipschitz condition (8) holds for
function a when it is α > 0. Thus, in a view of Remark 1.1, all assumptions of the existence and uniqueness
theorem are satisfied and the equation (27) has unique solution x = x(t) which satisfies x(0) = 0 a.s.
ConditionsA3 andA4 hold and Lemma 3.2 [9] implies that E sup0≤t≤T |x(t)|r ≤ C (1 + E|x(0)|r) ≤ Q, for r > 2.
Hence, conditionA5 holds for the solution x. Notice that equation (27) is not explicitly solvable.

The approximate equations (6) will be formed by using Maclaurin approximations of functions a and b
instead of Taylor approximations of those functions near the points x(tk). Because of that the subsegments
[tk, tk+1] of the partition (2) are transformed into [0, tk+1 − tk], k ∈ {0, 1, ...,n − 1}. By the time translation
t = tk + u, for k ∈ {0, . . . ,n − 1}, new Wiener process W̃ and unknown process x̃ are obtained, such that

W̃(u) = W(tk + u) a.s., x̃(u) = x(tk + u) a.s. (28)

Then equation (27) becomes

dx̃(u) =
(
− αx̃3(u) + β sin x̃(u)

)
du + σ(1 − 2 sin x̃(u))dW̃(u), u ∈ [0, tk+1 − tk], k ∈ {0, . . . ,n − 1}. (29)

To demonstrate the fact that the higher order of the derivatives gives the better approximation of the
solution to equation (27), three types of equations are discussed bellow.

(I) Maclaurin approximations of the functions a = a(x) and b = b(x) up to the third and second derivative,
respectively, are

a(x) ≈ −
6α + β

6
x3 + βx, b(x) ≈ −2σx + σ, (x→ 0)

(formally b(x) ≈ 0· x
2

2 −2σx+σ). ConditionsA1 andA2 hold since supx |a
(4)(x)| ≤ |β| and supx |b

′′′

(x)| ≤ 2|σ|. The
approximate solution {x̃n(u), u ∈ [0,T]} is constructed successively by using the solutions of the equations

dx̃n(u) =

(
−

6α + β

6

(
x̃n(u)

)3
+ βx̃n(u)

)
du + σ(1 − 2x̃n(u))dW̃(u), u ∈ [0, tk+1 − tk], k ∈ {0, . . . ,n − 1}. (30)

Equations (30) are not explicitly solvable, but coefficients satisfy the same conditions as coefficients of the
initial equation (27) for α ≥ −β/6 and

E sup
0≤u≤T

|x̃n(u)|r ≤ c1 (1 + E|x(0)|r) ≤ Q, r > 2.

Time translation (28) implies

dxn(t) =

(
−

6α + β

6

(
xn(t)

)3
+ βxn(t)

)
dt + σ(1 − 2xn(t))dW(t), t ∈ [tk, tk+1], k ∈ {0, . . . ,n − 1}. (31)
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Theorem 2.2 gives the rate of closeness in the Lp sense

E sup
t∈[0,T]

|x(t) − xn(t)|p ≤ Kδ
3
2 p
n .

(II) Maclaurin approximations of the functions a = a(x) and b = b(x) up to the second derivatives are

a(x) ≈ βx, b(x) ≈ −2σx + σ, (x→ 0)

(formally a(x) ≈ 0 · x2

2 + βx and b(x) ≈ 0 · x2

2 − 2σx + σ). The approximate solution {x̃n(u), u ∈ [0,T]} is
constructed using the equations

dx̃n(u) = βx̃n(u)du + σ(1 − 2x̃n(u))dW̃(u), u ∈ [0, tk+1 − tk], k ∈ {0, . . . ,n − 1}. (32)

Equations (32) are inhomogeneous linear stochastic differential equations with multiplicative noise and
theirs coefficients satisfy global Lipschitz and linear growth conditions. Hence, equations (32) are explicitly
solvable (see [14], p. 119), theirs solutions are

x̃n(u) = x̃n
0e(β−2σ2)u−2σ(W̃(u)−W̃(0)) + 2σ2

∫ u

0
e−(β−2σ2)(u−s)−2σ(W̃(u)−W̃(s))ds + σ

∫ u

0
e−(β−2σ2)(u−s)+2σ(W̃(u)−W̃(s))dW̃(s),

u ∈ [0, tk+1 − tk], k ∈ {0, . . . ,n − 1},

and E sup0≤t≤T |x
n(t)|r = E sup0≤u≤T |x̃

n(u)|r ≤ c2

(
1 + 3r−1E|x(0)|r

)
≤ Q, for r > 2 (Theorem 2.4.4 [19]). On the

basis of the time translation (28) we obtain

xn(t) = xn(tk)e(β−2σ2)(t−tk)−2σ(W(t)−W(tk))+2σ2
∫ t

tk

e−(β−2σ2)(t−s)−2σ(W(t)−W(s))ds+σ

∫ t

tk

e−(β−2σ2)(t−s)−2σ(W(t)−W(s))dW(s), (33)

t ∈ [tk, tk+1], k ∈ {0, . . . ,n − 1}.

Theorem 2.2 gives the same rate of closeness in the Lp sense as in the previous case.
(III) Maclaurin approximations of the functions a = a(x) and b = b(x) up to the derivatives of the order

two and zero, respectively, are
a(x) ≈ βx, b(x) ≈ σ, (x→ 0).

Then the equations

dx̃n(u) = βx̃n(u)du + σdW̃(u), u ∈ [0, tk+1 − tk], k ∈ {0, . . . ,n − 1}. (34)

are explicitly solvable (see [14], p. 118) and theirs solutions are

x̃n(u) = eβu
(
x̃n

0 + σ

∫ u

0
e−βsdW̃(s)

)
, u ∈ [0, tk+1 − tk], k ∈ {0, . . . ,n − 1}.

By applying time translation we get

xn(t) = eβ(t−tk)
(
xn(tk) + σ

∫ t

tk

e−β(s−tk)dW(s)
)
, t ∈ [tk, tk+1], k ∈ {0, . . . ,n − 1}. (35)

Theorem 2.2 gives the rate of closeness in the Lp sense

E sup
t∈[0,T]

|x(t) − xn(t)|p ≤ Kδ
1
2 p
n .

It should be pointed out that in equations (29), (30), (32) and (34), for k = 0 the initial condition is x̃(0) = 0
a.s. and for k ∈ {1, . . . ,n − 1} the initial conditions are determined successively as the values of the process
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x̃(u) in the points tk− tk−1. Moreover, by successive connecting of the processes {xn(t), t ∈ [tk, tk+1]}, k ∈ {0, . . . ,
n−1}, which represent the solutions of the equations (31), (33) and (35), in the partition points almost surely
continuous solution {xn(t), t ∈ [0,T]} is constructed.

The most commonly used method for approximating the solutions of stochastic differential equations
is numerical Euler-Maruyama (EM) method. It is shown in [9] that this method, which is based on Taylor
expansion of zero degrees, has order 1/2. We can compare the approximate solutions of the initial equation
(27) obtained by the numerical EM method and analytical method described in this paper by applying
Taylor expansions of second and zero degrees for different values of the parameters α, β and σ.

The EM method applied to initial equation (27) computes approximations Xk ≈ x(tk), where X0 = 0,

Xk+1 = Xk+
(
−αX3

k + β sin Xk

)
(tk+1− tk) + σ(1 − 2 sin Xk)(W(tk+1) −W(tk)), (36)

X̄(t) = Xk+ (t − tk)
(
−αX3

k + β sin Xk

)
+ σ(1 − 2 sin Xk)(W(t) −W(tk)),

for t ∈ [tk, tk+1] and EM solution is defined by X(t) = X̄(t) for t ∈ [tk, tk+1].
The result of this comparison can be seen in Figures 1 and 2. According to Theorem 2.2 the sequence

of the approximate solutions (33) has greater order of the Lp convergence comparing to solutions (35) and
(36).
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Figure 1: Trajectories of the solutions to the equations (36), (33) and (35) for x0 = 0 and: α = 0.3, β = 0.3π3/108, σ = 0.05 (left), α = 0.1,
β = 0.1, σ = 0.01 (right), for δ10 000 = 0.001 on time interval [0, 10]
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Figure 2: Trajectories of the solutions to the equations (36), (33) and (35) for x0 = 0, α = 0.5, β = −0.2 and: σ = 0.01 (left), σ = −0.01
(right), for δ10 000 = 0.001 on time interval [0, 10]

3. Conclusion

The goal of this paper was to construct the approximate solutions to stochastic differential equation
defined on a partition of a time interval. The coefficients of initial equation are approximated by theirs
Taylor series up to arbitrary derivatives in the case when they behave like polynomials and moment bounds
are available. The closeness of the initial and approximate solutions is estimated in the sense of the Lp-norm
and with probability one.
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The stochastic numerical methods such as Euler, Milstein, Wagner-Platen have order of convergence 1/2,
1, 3/2, respectively, which is exactly the case with analytic approximations described in this paper, obtained
by applying Taylor expansions of zero, first and second degrees, respectively. The authors in [9, 10, 18], for
example, under non-Lipschitz and polynomial conditions for the coefficients of the stochastic differential
equation, proved that Euler-Maruyama solution converges strongly at the rate one half. Milstein-type
[7, 11, 30] schemes, under the same conditions, may achieve a strong convergence order greater than
that of Euler-type schemes and additional computational effort is required to approximate the iterated Ito
integrals for every time step. This will enable these schemes to lose their advantage over Euler-type schemes
in computational efficiency. These facts indicate that numerical approximations based on Taylor expansions
of higher degrees could be improved by combining them with the presented analytic approximations.

It should be stressed that in the present case we obtain bigger error of approximation than in the cases
when the remainders are included, but with the appropriate choice of the number of steps n that error could
be made satisfactory small.

Very often in the applications, when it is more suitable to deal with the polynomials comparing to
cases when the coefficients of equations are complex nonlinear functions, it is useful to apply the analytical
approximations.

The presented method could be appropriately extended to different types of stochastic differential equa-
tions. Besides that, some other conditions for coefficients of the equation can also provide the application
of analytical approximation to coefficients that do not behave necessarily as polynomials.
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[22] Milošević, M.: On the approximations of solutions to stochastic differential delay equations with Poisson random measure via
Taylor series. Filomat, 27(1) (2013) 201–214.
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