A Decomposition of the Tensor Product of Matrices

Caixing Gu ${ }^{\text {a }}$, Jaehui Park ${ }^{\text {b }}$
${ }^{a}$ California Polytechnic State University
${ }^{b}$ Seoul National University

Abstract

In this paper we decompose (under unitary equivalence) the tensor product $A \oplus A$ into a direct sum of irreducible matrices, when A is a 3×3 matrix.

1. Introduction

Let H be a complex separable Hilbert space and $\mathcal{B}(H)$ the algebra of all bounded linear operators on H. A reducing subspace M for $A \in \mathcal{B}(H)$ is a closed subspace of H which is invariant for both A and A^{*}. An operator $A \in \mathcal{B}(H)$ is said to be irreducible if A has no nontrivial reducing subspace. A reducing subspace M for A is said to be minimal if the restriction $A \mid M$ is irreducible.

It is known that the set of irreducible operators is dense in $\mathcal{B}(H)$ (cf. [3]) and its complement (the set of all reducible operators) is also dense in $\mathcal{B}(H)$ (cf. [6]).

Let $H \otimes H$ be the tensor product Hilbert space, and let $A, B \in \mathcal{B}(H)$. If either A or B is reducible, then it is clear that the tensor products $A \otimes B$ and $A \otimes I+I \otimes B$ are reducible operators in $\mathcal{B}(H \otimes H)$. However, if both A and B are irreducible, we cannot guarantee that $A \otimes B$ and $A \otimes I+I \otimes B$ are irreducible (cf. [4]). We focus on the case $A=B$. Let $A \in \mathcal{B}(H)$ be irreducible, and let

$$
\begin{aligned}
W(A) & :=A \otimes A \\
T(A) & :=A \otimes I+I \otimes A
\end{aligned}
$$

where $I=I_{H}$ denotes the identity operator on H. The operators $W(A)$ and $T(A)$ are always reducible. Two reducing subspaces are

$$
\begin{aligned}
H_{s} & :=\operatorname{Span}\{h \otimes h: h \in H\}, \\
H_{a s} & :=\operatorname{Span}\{h \otimes g-g \otimes h: g, h \in H\},
\end{aligned}
$$

where "Span" means the closed linear span in $H \otimes H$. It is easy to see that $H \otimes H=H_{s} \oplus H_{a s}$, and H_{s} and $H_{a s}$ are two reducing subspaces of both $W(A)$ and $T(A)$. Let

$$
\begin{aligned}
W_{s}(A) & :=W(A)\left|H_{s}, \quad W_{a s}(A):=W(A)\right| H_{a s}, \\
T_{s}(A) & :=T(A)\left|H_{s}, \quad T_{a s}(A):=T(A)\right| H_{a s} .
\end{aligned}
$$

We record the above observation as a lemma.

[^0]Lemma 1.1. If $A \in \mathcal{B}(H)$, then $T(A)=T_{s}(A) \oplus T_{a s}(A)$ and $W(A)=W_{s}(A) \oplus W_{a s}(A)$ on $H_{s} \oplus H_{a s}$.
Proof. We include a more abstract proof which indicates more general results hold for operators invariant under the permutation group on the tensor product $H \otimes \cdots \otimes H$ (cf. [2], [5]). Let σ denote the permutation of $\{1,2\}$, i.e., $\sigma=(12)$. Let U_{σ} be the unitary operator on $H \otimes H$ defined by $U_{\sigma}(h \otimes g)=g \otimes h$. Then $U_{\sigma}^{2}=I$. The eigenvalues of U_{σ} are 1 and -1 , and the corresponding eigenspaces are H_{s} and $H_{a s}$, respectively. Since $W(A) U_{\sigma}=U_{\sigma} W(A)$, it follows that both H_{s} and $H_{a s}$ are reducing subspaces of $W(A)$. Similarly, both H_{s} and $H_{a s}$ are reducing subspaces of $T(A)$.

The above lemma motivates the following questions.
Problem 1.2. For which irreducible operator A are both $W_{s}(A)$ and $W_{a s}(A)$ irreducible?
For which irreducible operator A are both $T_{s}(A)$ and $T_{a s}(A)$ irreducible?
For a square matrix A, the operator $T(A)$ is the Kronecker sum $A \boxplus A$ of A with itself. The decomposition of $T(A)$ when A is 3×3 matrix has been characterized in the paper [1].

Suppose that $\operatorname{dim} H=3$, i.e., $H \cong \mathbb{C}^{3}$, where " \cong " stands for unitary equivalence. Then we may regard an operator $A \in \mathcal{B}(H)$ as a 3×3 matrix with complex entries. Note that H_{s} is the subspace of symmetric tensors and $H_{a s}$ is the subspace of anti-symmetric tensors. If $\left\{e_{1}, e_{2}, e_{3}\right\}$ is any orthonormal basis for H, then H_{s} and $H_{a s}$ have the following orthonormal bases:

$$
\begin{aligned}
& H_{s}=\operatorname{Span}\left\{e_{n} \otimes e_{n}, \frac{1}{\sqrt{2}}\left(e_{n} \otimes e_{m}+e_{m} \otimes e_{n}\right): 1 \leq n \leq 3, n<m \leq 3\right\} \\
& H_{a s}=\operatorname{Span}\left\{\frac{1}{\sqrt{2}}\left(e_{n} \otimes e_{m}-e_{m} \otimes e_{n}\right): 1 \leq n \leq 3, n<m \leq 3\right\}
\end{aligned}
$$

Theorem 1.3 ([1]). Let A be a 3×3 irreducible matrix. Then
(i) $T_{s}(A)$ is reducible if and only if A is unitarily equivalent to a matrix of the form

$$
\alpha I+\left[\begin{array}{ccc}
0 & a & 0 \\
0 & d & a \\
0 & 0 & 2 d
\end{array}\right],
$$

where $\alpha, d, a \in \mathbb{C}$ and $a \neq 0$. In this case, $T_{s}(A)$ has two minimal reducing subspaces H_{1} and H_{2} whose dimensions are 5 and 1, respectively.
(ii) $T_{a s}(A)$ is always irreducible.

In this paper we resolve Problem 1.2 for W_{s} and $W_{a s}$ when A is an arbitrary 3×3 complex matrix by proving the following two theorems. For complex numbers a, b, c, and δ, let

$$
J(\delta, a, b, c)=\left[\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & \delta
\end{array}\right] .
$$

Theorem 1.4. Let A be a 3×3 irreducible matrix. Assume that A is not invertible. Then
(i) $W_{s}(A)$ is reducible. Spectifically, $H_{s}=H_{1} \oplus H_{2}$, where H_{1} and H_{2} are reducing subspaces for $W_{s}(A)$ whose dimensions are 5 and 1, respectively.
(ii) $W_{s}(A) \mid H_{1}$ is reducible if and only if either $A \cong J(0, a, 0, c)$ or $A \cong J(\delta, a, 0, c)$ with $\delta \neq 0$ and $|a|^{2}=|c|^{2}+|\delta|^{2}$. In this case, $H_{1}=K_{1} \oplus K_{2}$, where K_{1} and K_{2} are minimal reducing subspaces for $W_{s}(A) \mid H_{1}$ whose dimensions are 3 and 2, respectively.
(iii) $W_{a s}(A)$ is reducible. In this case, $H_{a s}=K_{1} \oplus K_{2}$, where K_{1} and K_{2} are minimal reducing subspaces for $W_{a s}(A)$ whose dimensions are 2 and 1 , respectively.

When A is invertible, the results for $W_{s}(A)$ and $W_{a s}(A)$ are in agreement with $T_{s}(A)$ and $T_{a s}(A)$.
Theorem 1.5. Let A be a 3×3 irreducible matrix. Assume that A is invertible and $\sigma(A) \neq\left\{\lambda, \lambda \omega, \lambda \omega^{2}\right\}$, where $\lambda \in \mathbb{C}$ and $\omega=e^{2 \pi i / 3}$. Then
(i) $W_{s}(A)$ is reducible if and only if for some nonzero numbers α and a, either

$$
A \cong \alpha\left[\begin{array}{ccc}
1 & a(1-\lambda) & a^{2}(1-\lambda)^{2} / 2 \\
0 & \lambda & a \lambda(1-\lambda) \\
0 & 0 & \lambda^{2}
\end{array}\right] \text { for } \lambda \neq 1 \quad \text { or } \quad A \cong \alpha\left[\begin{array}{ccc}
1 & 2 a & 2 a^{2} \\
0 & 1 & 2 a \\
0 & 0 & 1
\end{array}\right] .
$$

In this case, $H_{s}=H_{1} \oplus H_{2}$, where H_{1} and H_{2} are minimal reducing subspaces for $W_{s}(A)$ whose dimensions are 5 and 1, respectively.
(ii) $W_{a s}(A)$ is irreducible.

Here is the outline of the paper. In Section 2, we establish the matrix representation of $W_{s}(A)$ and $W_{a s}(A)$, and observe several lemmas. Section 3 is devoted to the proof of Theorem 1.4. Section 4 is devoted to the proof of Theorem 1.5.

2. Preliminaries

Note that $W_{s}(A)$ (resp. $\left.W_{a s}(A)\right)$ is irreducible if and only if $W_{s}\left(U^{*} A U\right)$ (resp. $W_{a s}\left(U^{*} A U\right)$) is irreducible, when U is unitary. Hence, by Schur's unitary triangularization, we can assume that A is an upper triangular irreducible matrix. If $\alpha \neq 0$, then $W_{s}(\alpha A)=\alpha^{2} W_{s}(A)$, and so $W_{s}(A)$ is irreducible if and only if $W_{s}(\alpha A)$ is irreducible. This allows us to assume that one of the nonzero eigenvalues of A is 1 , if it exists. We introduce some notation. Let

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
\beta & a & b \\
0 & \gamma & c \\
0 & 0 & \delta
\end{array}\right], \quad W=W(A)=A \otimes A \cong\left[\begin{array}{cc}
W_{s} & 0 \\
0 & W_{a s}
\end{array}\right], \quad W_{s}=W_{s}(A), \quad W_{a s}=W_{a s}(A), \\
& f_{1}=e_{1} \otimes e_{1}, \quad f_{2}=\frac{1}{\sqrt{2}}\left(e_{1} \otimes e_{2}+e_{2} \otimes e_{1}\right), \quad f_{3}=\frac{1}{\sqrt{2}}\left(e_{1} \otimes e_{3}+e_{3} \otimes e_{1}\right), \\
& f_{4}=e_{2} \otimes e_{2}, \quad f_{5}=\frac{1}{\sqrt{2}}\left(e_{2} \otimes e_{3}+e_{3} \otimes e_{2}\right), \quad f_{6}=e_{3} \otimes e_{3}, \\
& g_{1}=\frac{1}{\sqrt{2}}\left(e_{1} \otimes e_{2}-e_{2} \otimes e_{1}\right), \quad g_{2}=\frac{1}{\sqrt{2}}\left(e_{1} \otimes e_{3}-e_{3} \otimes e_{1}\right), \quad g_{3}=\frac{1}{\sqrt{2}}\left(e_{2} \otimes e_{3}-e_{3} \otimes e_{2}\right) .
\end{aligned}
$$

Then $\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}\right\}$ and $\left\{g_{1}, g_{2}, g_{3}\right\}$ are orthonormal bases for H_{s} and $H_{a s}$, respectively. By direct computation, we have the following matrix representations of W_{s} and $W_{a s}$ under these bases.
Lemma 2.1. With respect to the orthonormal bases $\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}\right\}$ and $\left\{g_{1}, g_{2}, g_{3}\right\}$, we have

$$
W_{s}=\left[\begin{array}{cccccc}
\beta^{2} & \sqrt{2} \beta a & \sqrt{2} \beta b & a^{2} & \sqrt{2} a b & b^{2} \\
0 & \beta \gamma & \beta c & \sqrt{2} \gamma a & a c+\gamma b & \sqrt{2} b c \\
0 & 0 & \beta \delta & 0 & \delta a & \sqrt{2} \delta b \\
0 & 0 & 0 & \gamma^{2} & \sqrt{2} \gamma c & c^{2} \\
0 & 0 & 0 & 0 & \gamma \delta & \sqrt{2} \delta c \\
0 & 0 & 0 & 0 & 0 & \delta^{2}
\end{array}\right] \quad \text { and } \quad W_{a s}=\left[\begin{array}{ccc}
\beta \gamma & \beta c & a c-\gamma b \\
0 & \beta \delta & \delta a \\
0 & 0 & \gamma \delta
\end{array}\right] .
$$

Proof. The proof is a routine computation. For example,

$$
\begin{aligned}
W\left(e_{1} \otimes e_{2} \pm e_{2} \otimes e_{1}\right) & =A e_{1} \otimes A e_{2} \pm A e_{2} \otimes A e_{1} \\
& =\left(\beta e_{1}\right) \otimes\left(a e_{1}+\gamma e_{2}\right) \pm\left(a e_{1}+\gamma e_{2}\right) \otimes\left(\beta e_{1}\right) \\
& =\beta a\left(e_{1} \otimes e_{1} \pm e_{1} \otimes e_{1}\right)+\beta \gamma\left(e_{1} \otimes e_{2} \pm e_{2} \otimes e_{1}\right),
\end{aligned}
$$

and so $W_{s} f_{2}=\sqrt{2} \beta a f_{1}+\beta \gamma f_{2}$ and $W_{a s} g_{1}=\beta \gamma g_{1}$. We omit the remaining computation.

The following simple observation is the key lemma for the main theorems.
Lemma 2.2. Suppose that B is reducible and $B=B_{1} \oplus B_{2}$ on $H_{1} \oplus H_{2}$. If λ is an eigenvalue of B, and if the eigenspace $\operatorname{ker}(B-\lambda I)$ of B corresponding to λ is not orthogonal to H_{1}, then λ is an eigenvalue of B_{1} and $\operatorname{ker}(B-\lambda I) \cap H_{1} \neq\{0\}$. In particular, if $\operatorname{ker}(B-\lambda I) \not \perp H_{1}$ and $\operatorname{dim} \operatorname{ker}(B-\lambda I)=1$, then $\operatorname{ker}(B-\lambda I) \subseteq H_{1}$.

Proof. Since both H_{1} and H_{2} are invariant for B, it follows that

$$
\begin{aligned}
\operatorname{ker}(B-\lambda I) & =\left[\operatorname{ker}(B-\lambda I) \cap H_{1}\right] \oplus\left[\operatorname{ker}(B-\lambda I) \cap H_{2}\right] \\
& =\left[\operatorname{ker}\left(B_{1}-\lambda I\right) \cap H_{1}\right] \oplus\left[\operatorname{ker}\left(B_{2}-\lambda I\right) \cap H_{2}\right] .
\end{aligned}
$$

Thus if $\operatorname{ker}(B-\lambda I) \not \perp H_{1}$, then $\operatorname{ker}(B-\lambda I) \nsubseteq H_{2}$, and hence $\operatorname{ker}(B-\lambda I) \cap H_{1} \neq\{0\}$ and $\lambda \in \sigma\left(B_{1}\right)$.
Since we are dealing with a linear transformation acting on H_{s} and $\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}\right\}$ is an orthonormal basis for H_{s}, we will denote a vector $v=\sum_{i=1}^{6} x_{i} f_{i}$ in H_{s} by $\left(x_{1}, \ldots, x_{6}\right)$. In other words, we will directly work with the matrix represented by $T_{s}(A)$. For example, when we say e_{1} is in ker W_{s}, it actually means f_{1} is in $\operatorname{ker} W_{s}$.

We divide the proof of Main Theorems into three big cases according to whether A has one or two, or three distinct eigenvalues. In each big case we further divide the proof into several small cases. We have spent much time to consolidate and unify different cases, but we still have a number of cases to discuss to ensure the completeness and accuracy of our results. The following simple observation will be used repeatedly, sometimes without explicit mentioning. Let $\sigma(B)$ denote the set of (distinct) eigenvalues of B. For several subspaces H_{1}, \ldots, H_{k} of H, we denote by $\bigvee_{i=1}^{k} H_{i}$ the smallest subspace of H containing all H_{i} 's. An alternative notation is $\bigvee_{i=1}^{k} H_{i}=H_{1}+H_{2}+\cdots+H_{k}$.

We record, without proof, the following obvious characterization of one-dimensional reducing subspaces.

Lemma 2.3. Let v be a nonzero vector in H. Then Span $\{v\}$ is a reducing subspace of B if and only if there exists $\lambda \in \sigma(B)$ such that

$$
B v=\lambda v \quad \text { and } \quad B^{*} v=\bar{\lambda} v
$$

In other words, there is a one-dimensional reducing subspace for B if and only if B and B* have a common eigenvector.
We also need the following lemma:
Lemma 2.4. Let

$$
A=\left[\begin{array}{lll}
\beta & a & b \\
0 & \gamma & c \\
0 & 0 & \delta
\end{array}\right]
$$

Then the following statements hold.
(i) If A has three distinct eigenvalues, then A is reducible if and only if two of a, b, c are zero.
(iia) If $\beta=\gamma \neq \delta$, then A is reducible if and only if $a=0$ or $b=c=0$.
(iib) If $\beta \neq \gamma=\delta$, then A is reducible if and only if $c=0$ or $a=b=0$.
(iic) If $\beta=\delta \neq \gamma$, then A is reducible if and only if $(\gamma-\beta) b=a c$ or $a=c=0$.
(iii) If A has one distinct eigenvalue, then A is reducible if and only if ac $=0$.

Proof. The proof is a routine computation, and we omit the proof. (For the detail of the proof, see [1].)

3. Proof of Theorem 1.4

Suppose that A is a 3×3 irreducible matrix which is not invertible. By Schur's unitary triangularization, we may assume that

$$
A=\left[\begin{array}{lll}
0 & a & b \\
0 & \gamma & c \\
0 & 0 & \delta
\end{array}\right] .
$$

We first prove the statement (iii) of Theorem 1.4: $W_{a s}$ is reducible and $H_{a s}=K_{1} \oplus K_{2}$, where K_{1} and K_{2} are minimal reducing subspaces for $W_{a s}$ whose dimensions are 2 and 1 , respectively.

Proof. By Lemma 2.1,

$$
W_{a s}=\left[\begin{array}{ccc}
0 & 0 & a c-\gamma b \\
0 & 0 & \delta a \\
0 & 0 & \gamma \delta
\end{array}\right] .
$$

It follows from Lemma 2.4 that $W_{a s}$ is reducible. Hence $H_{a s}=K_{1} \oplus K_{2}$, where K_{1} and K_{2} are reducing subspaces for $W_{a s}$ with $\operatorname{dim} K_{1}=2$ and $\operatorname{dim} K_{2}=1$. Assume that K_{2} is not a minimal reducing subspace for $W_{a s}$. Then $W_{a s}$ is diagonalizable, and so it is normal, i.e., $W_{a s}^{*} W_{a s}=W_{a s} W_{a s}^{*}$. By computation, we obtain $a c-\gamma b=\delta a=\gamma \delta=0$. By using Lemma 2.4, it is easy to check that A is reducible, which is a contradiction. Hence K_{1} is a minimal reducing subspace for $W_{a s}$. This proves Theorem 1.4(iii).

We will divide the proof of Theorem 1.4(i) and (ii) into three cases according the number of distinct eigenvalues of A. By scaling, we can assume that one of the nonzero eigenvalue of A is 1 . Then we will discuss four cases

$$
A=\left[\begin{array}{lll}
0 & a & b \\
0 & 1 & c \\
0 & 0 & \delta
\end{array}\right] \text { with } \delta \neq 0,1,\left[\begin{array}{lll}
0 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right] .
$$

We first deal with the case when A has three distinct eigenvalues.
Case 3.1. Suppose that

$$
A=\left[\begin{array}{lll}
0 & a & b \\
0 & 1 & c \\
0 & 0 & \delta
\end{array}\right] \text { is irreducible with } \delta \neq 0,1
$$

Then $H_{s}=H_{1} \oplus H_{2}$, where H_{1} and H_{2} are minimal reducing subspaces for W_{s} with $\operatorname{dim} H_{1}=5$ and $\operatorname{dim} H_{2}=1$.
Proof. By Lemma 2.1, we have

$$
W_{s}=\left[\begin{array}{cccccc}
0 & 0 & 0 & a^{2} & \sqrt{2} a b & b^{2} \\
0 & 0 & 0 & \sqrt{2} a & a c+b & \sqrt{2} b c \\
0 & 0 & 0 & 0 & \delta a & \sqrt{2} \delta b \\
0 & 0 & 0 & 1 & \sqrt{2} c & c^{2} \\
0 & 0 & 0 & 0 & \delta & \sqrt{2} \delta c \\
0 & 0 & 0 & 0 & 0 & \delta^{2}
\end{array}\right], \quad W_{s}^{*}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\bar{a}^{2} & \sqrt{2} \bar{a} & 0 & 1 & 0 & 0 \\
\sqrt{2} \bar{a} \bar{b} & \overline{a c}+\bar{b} & \bar{\delta} \bar{a} & \sqrt{2} \bar{c} & \bar{\delta} & 0 \\
\bar{b}^{2} & \sqrt{2} \bar{b} \bar{c} & \sqrt{2} \delta \bar{b} & \bar{c}^{2} & \sqrt{2} \delta \bar{c} & \bar{\delta}^{2}
\end{array}\right] .
$$

Since ker $W_{s}=\operatorname{Span}\left\{e_{1}, e_{2}, e_{3}\right\}$,
$\operatorname{ker} W_{s} \cap \operatorname{ker} W^{*}=\operatorname{Span}\{v\}, \quad$ where $v=\left(\sqrt{2},-\bar{a}, \frac{\overline{a c}-\bar{b}}{\bar{\delta}}, 0,0,0\right)$.

Therefore $W_{s}=W_{1} \oplus W_{2}$, where $W_{1}=W_{s} \mid \operatorname{Span}\{v\}^{\perp}$ and $W_{2}=W_{s} \mid \operatorname{Span}\{v\}$. We will prove that W_{1} is irreducible by a contradiction. Assume $W_{1}=W_{3} \oplus W_{4}$ on $H_{3} \oplus H_{4}$ where $\operatorname{dim} H_{i} \geq 2$ for $i=3,4$, since W_{1} and W_{1}^{*} have no common eigenvector anymore. Since A is irreducible, one of the following holds.
(i) $a c \neq 0$,
(ii) $a=0$ and $b c \neq 0$,
(iii) $c=0$ and $a b \neq 0$.

Case 1: $a c \neq 0$. Then

$$
\begin{aligned}
\operatorname{ker}\left(W_{s}^{*}-\bar{\delta}^{2} I\right) & =\operatorname{Span}\left\{e_{6}\right\}, \quad \operatorname{ker}\left(W_{s}^{*}-\bar{\delta} I\right)=\operatorname{Span}\left\{\left(0,0,0,0,1, \frac{\sqrt{2} \bar{c}}{1-\bar{\delta}}\right)\right\} \\
\operatorname{ker}\left(W_{s}^{*}-I\right) & =\operatorname{Span}\left\{\left(0,0,0,1, \frac{\sqrt{2} \bar{c}}{1-\bar{\delta}^{\prime}}, \frac{\bar{c}^{2}}{(1-\bar{\delta})^{2}}\right)\right\}
\end{aligned}
$$

Without loss of generality, assume

$$
\begin{equation*}
\operatorname{ker}\left(W_{s}^{*}-\bar{\delta}^{2} I\right)=\operatorname{Span}\left\{e_{6}\right\} \subseteq H_{3} \tag{1}
\end{equation*}
$$

Since $c \neq 0, \operatorname{ker}\left(W_{s}^{*}-\bar{\delta} I\right)$ is not orthogonal to $\operatorname{ker}\left(W_{s}^{*}-\bar{\delta}^{2} I\right)$, and $\operatorname{ker}\left(W_{s}^{*}-I\right)$ is not orthogonal to $\operatorname{ker}\left(W_{s}^{*}-\delta^{2} I\right)$. Therefore, by (1) and Lemma 2.2,

$$
\begin{equation*}
\operatorname{ker}\left(W_{s}^{*}-\bar{\lambda}^{2} I\right)+\operatorname{ker}\left(W_{s}^{*}-\bar{\lambda} I\right)+\operatorname{ker}\left(W_{s}^{*}-I\right) \subseteq H_{3}, \text { and } \operatorname{Span}\left\{e_{4}, e_{5}, e_{6}\right\} \subseteq H_{3} \tag{2}
\end{equation*}
$$

Since H_{3} is reducing for W_{s}, so $W_{s} e_{4}=\left(a^{2}, \sqrt{2} a, 0,1,0,0,0\right) \in H_{4}$. Since $a \neq 0$, it is easy to see that

$$
\operatorname{dim} H_{3} \geq \operatorname{dim} \operatorname{Span}\left\{e_{4}, e_{5}, e_{6}, W_{5} e_{4}\right\}=4
$$

which is a contradiction to $\operatorname{dim} H_{4} \geq 2$.
Case 2: $a=0$ and $b c \neq 0$. As in the previous case, (2) still holds since $c \neq 0$. Since H_{3} is reducing for W_{s}, we have $W_{s} e_{5}=(0, b, 0, \sqrt{2} c, \lambda, 0) \in H_{3}$. Since $b \neq 0$, it is easy to see that

$$
\operatorname{dim} H_{3} \geq \operatorname{dim} \operatorname{Span}\left\{e_{4}, e_{5}, e_{6}, W_{s} e_{5}\right\}=4
$$

which is a contradiction to $\operatorname{dim} H_{4} \geq 2$.
Case 3: $a b \neq 0$ and $c=0$. Then

$$
W_{s}=\left[\begin{array}{cccccc}
0 & 0 & 0 & a^{2} & \sqrt{2} a b & b^{2} \\
0 & 0 & 0 & \sqrt{2} a & b & 0 \\
0 & 0 & 0 & 0 & \delta a & \sqrt{2} \delta b \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \delta & 0 \\
0 & 0 & 0 & 0 & 0 & \delta^{2}
\end{array}\right], \quad W_{s}^{*}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\bar{a}^{2} & \sqrt{2} \bar{a} & 0 & 1 & 0 & 0 \\
\sqrt{2} \bar{a} \bar{b} & \bar{b} & \bar{\delta} \bar{a} & 0 & \bar{\delta} & 0 \\
\bar{b}^{2} & 0 & \sqrt{2 \delta} \bar{b} & 0 & 0 & \bar{\delta}^{2}
\end{array}\right] .
$$

By a direct computation,

$$
\begin{aligned}
\operatorname{ker}\left(W_{s}^{*}-I\right) & =\operatorname{Span}\left\{e_{4}\right\}, \quad \operatorname{ker}\left(W_{s}^{*}-\bar{\delta}^{2} I\right)=\operatorname{Span}\left\{e_{6}\right\} \\
\operatorname{ker}\left(W_{s}-I\right) & =\operatorname{Span}\left\{\left(a^{2}, \sqrt{2} a, 0,1,0,0\right)\right\} \\
\operatorname{ker}\left(W_{s}-\delta^{2} I\right) & =\operatorname{Span}\left\{\left(\frac{b^{2}}{\delta^{2}}, 0, \frac{\sqrt{2} b}{\delta}, 0,0,1\right)\right\}
\end{aligned}
$$

Without loss of generality, assume

$$
\begin{equation*}
\operatorname{ker}\left(W_{s}-I\right) \subseteq H_{3} \tag{3}
\end{equation*}
$$

Since $a b \neq 0, \operatorname{ker}\left(W_{s}-\lambda^{2} I\right)$ is not orthogonal to $\operatorname{ker}\left(W_{s}-I\right)$. Therefore, by (3) and Lemma 2.2,

$$
\operatorname{ker}\left(W_{s}-I\right)+\operatorname{ker}\left(W_{s}-\lambda^{2} I\right) \subseteq H_{3}, \text { and }\left\{1, \lambda^{2}\right\} \subseteq \sigma\left(W_{3}\right)
$$

Hence

$$
\operatorname{ker}\left(W_{s}^{*}-I\right)+\operatorname{ker}\left(W_{s}^{*}-\bar{\lambda}^{2} I\right)+\operatorname{ker}\left(W_{s}-I\right)+\operatorname{ker}\left(W_{s}-\lambda^{2} I\right) \subseteq H_{3}
$$

Since $a b \neq 0$, it is easy to see the subspace on the left side of the above relation has dimension 4. Hence $\operatorname{dim} H_{3} \geq 4$, which is a contradiction to $\operatorname{dim}\left(H_{2}\right) \geq 2$.

We conclude that W_{1} is irreducible, and the proof of Case 3.1 is complete.
We next disscuss the case when A is not invertible and A has two distinct eigenvalues. The proofs in this case are more involved. By scaling we need to discuss two cases:

$$
A=\left[\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 1
\end{array}\right], \quad\left[\begin{array}{lll}
0 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right]
$$

Case 3.2. Suppose that

$$
A=\left[\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 1
\end{array}\right] \text { is irreucible. }
$$

Then $H_{s}=H_{1} \oplus H_{2}$, where H_{1} and H_{2} are reducing subspaces for W_{s} with $\operatorname{dim} H_{1}=5$ and $\operatorname{dim} H_{2}=1$. Moreover, $W_{s} \mid H_{1}$ is reducible if and only if $b=0$ and $|a|^{2}=|c|^{2}+1$, in which case, $H_{1}=H_{3} \oplus H_{4}$, where $\operatorname{dim} H_{3}=3$, $\operatorname{dim} H_{4}=2$, and both H_{3} and H_{4} are minimal reducing subspaces for $W_{s} \mid H_{1}$.

Proof. By Lemma 2.1,

$$
W_{s}=\left[\begin{array}{cccccc}
0 & 0 & 0 & a^{2} & \sqrt{2} a b & b^{2} \\
0 & 0 & 0 & 0 & a c & \sqrt{2} b c \\
0 & 0 & 0 & 0 & a & \sqrt{2} b \\
0 & 0 & 0 & 0 & 0 & c^{2} \\
0 & 0 & 0 & 0 & 0 & \sqrt{2} c \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \quad W_{s}^{*}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\bar{a}^{2} & 0 & 0 & 0 & 0 & 0 \\
\sqrt{2} \bar{a} \bar{b} & \overline{a c} & \bar{a} & 0 & 0 & 0 \\
\bar{b}^{2} & \sqrt{2} \bar{b} \bar{c} & \sqrt{2} \bar{b} & \bar{c}^{2} & \sqrt{2} \bar{c} & 1
\end{array}\right] .
$$

Since A is irreducible, we have $a \neq 0$. Hence ker $W_{s}=\operatorname{Span}\left\{e_{1}, e_{2}, e_{3}\right\}$ and

$$
v:=(0,1,-\bar{c}, 0,0,0) \in \operatorname{ker} W_{s}^{*} \cap \operatorname{ker} W_{s}
$$

is a common eigenvector. Therefore $W_{s}=W_{1} \oplus W_{2}$, where $W_{1}=W_{s} \mid \operatorname{Span}\{v\}^{\perp}$ and $W_{2}=W_{s} \mid \operatorname{Span}\{v\}$. Since A is irreducible, we have two cases:
(i) $a b \neq 0, \quad$ (ii) $b=0$ and $a c \neq 0$.

Case 1: $a \neq 0$ and $b \neq 0$. We will prove that W_{1} is irreducible by a contradiction. Assume $W_{1}=W_{3} \oplus W_{4}$ on $H_{3} \oplus H_{4}$ where $\operatorname{dim} H_{i} \geq 2$ for $i=3,4$, since W_{1} and W_{1}^{*} have no common eigenvector anymore. Note that

$$
\operatorname{ker}\left(W_{s}^{*}-I\right)=\operatorname{Span}\left\{e_{6}\right\}, \quad \operatorname{ker} W_{s}^{*} \cap \operatorname{Span}\{v\}^{\perp}=\operatorname{Span}\left\{v_{1}, v_{2}\right\}
$$

where $v_{1}=(0,0,0, \sqrt{2},-\bar{c}, 0)$ and $v_{2}=\left(0,0,0, c, \sqrt{2},-\bar{c}\left(|c|^{2}+2\right)\right)$. Without loss of generality, assume

$$
\operatorname{ker}\left(W_{s}^{*}-I\right)=\operatorname{Span}\left\{e_{6}\right\} \subseteq H_{3}
$$

Then $\sigma\left(W_{3}\right)=\{0,1\}$ and $\sigma\left(W_{4}\right)=\{0\}$. Note that v_{1} is a vector in $\operatorname{ker} W_{s}^{*} \cap \operatorname{Span}\{v\}^{\perp}$ that is orthgonal to $\operatorname{ker}\left(W_{s}^{*}-I\right)$. Hence $v_{1} \in H_{4}$. It follows that $v_{2} \in H_{3}$. Let

$$
w_{2}=v_{2}+\bar{c}\left(|c|^{2}+2\right) e_{6}=(0,0,0, c, \sqrt{2}, 0) \in H_{3} .
$$

Then

$$
w_{3}=\frac{W_{s} e_{6}-c w_{2}-e_{6}}{b}=(b, \sqrt{2} c, \sqrt{2}, 0,0,0) \in H_{3}, \quad w_{4}=\frac{W_{s} w_{2}}{a}=(a c+2 b, \sqrt{2} c, \sqrt{2}, 0,0,0) \in H_{3}
$$

Since $\operatorname{Span}\left\{e_{6}, w_{2}, w_{3}, w_{4}\right\} \subseteq H_{3},\left\{e_{6}, w_{2}, w_{3}, w_{4}\right\}$ is linearly dependent (otherwise $\operatorname{dim} H_{3} \geq 4$, a contradiction). It follows that $a c+b=0$. But then $W_{s}^{*} w_{3}=\bar{a}\left(0,0,0,-c|a|^{2}, \sqrt{2}\left(1+|b|^{2}+|c|^{2}\right), \star\right) \in H_{3}$ and $\left\{e_{6}, w_{2}, w_{3}, W_{s}^{*} w_{3}\right\}$ is linearly independent. Thus $\operatorname{dim} H_{3} \geq 4$, which is a contradiction.

Case 2: $b=0$ and $a c \neq 0$. We will prove that W_{1} is reducible if and only if $|a|^{2}=|c|^{2}+1$. Assume $W_{1}=W_{3} \oplus W_{4}$ on $H_{3} \oplus H_{4}$ where $\operatorname{dim} H_{i} \geq 2$ for $i=3,4$. Assume that $\operatorname{ker}\left(W_{s}^{*}-I\right)=\operatorname{Span}\left\{e_{6}\right\} \subseteq H_{3}$. Then

$$
\begin{aligned}
& v_{1}=\frac{1}{c}\left(W_{s} e_{6}-e_{6}\right)=(0,0,0, c, \sqrt{2}, 0) \in H_{3}, \\
& v_{2}=\frac{1}{a} W_{s} v_{1}=(a c, \sqrt{2} c, \sqrt{2}, 0,0,0) \in H_{3}, \\
& v_{3}=\frac{1}{\bar{a}} W_{s}^{*} v_{2}=\left(0,0,0,|a|^{2} c, \sqrt{2}\left(1+|c|^{2}\right), 0\right) \in H_{3} .
\end{aligned}
$$

If $|a|^{2} \neq 1+|c|^{2}$, then $\left\{e_{6}, v_{1}, v_{2}, v_{3}\right\}$ is linearly independent, and so $\operatorname{dim} H_{3} \geq 4$, which is a contradiction. If $|a|^{2}=1+|c|^{2}$, then

$$
\begin{aligned}
& H_{3}=\operatorname{Span}\left\{e_{6}, v_{1}, v_{2}\right\}, \\
& H_{4}=\operatorname{Span}\left\{\left(0,0,0, \sqrt{2},-\bar{c}, 0, u_{2}\right),\left(-\frac{\sqrt{2}\left(1+|c|^{2}\right)}{\overline{a c}}, c, 1,0,0,0\right)\right\} .
\end{aligned}
$$

Similarly we can check that H_{3} and H_{4} are minimal reducing subspaces. We omit the details.
It is surprising that the proof of the next case is easy even though the A in this case and the A in the above case are related in that they both have two distinct eigenvalues. This indicates that for W_{s}, the multiplicity of the zero eigenvalue also plays an important role.

Case 3.3. Suppose that

$$
A=\left[\begin{array}{lll}
0 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right] \text { is irreducible. }
$$

Then $H_{s}=H_{1} \oplus H_{2}$, where H_{1} and H_{2} are minimal reducing subspaces for W_{s} with $\operatorname{dim} H_{1}=5$ and $\operatorname{dim} H_{2}=1$.
Proof. Note that A is irreducible if and only if $c \neq 0$ and either $a \neq 0$ or $b \neq 0$. Also, by Lemma 2.1,

$$
W_{s}=\left[\begin{array}{cccccc}
0 & 0 & 0 & a^{2} & \sqrt{2} a b & b^{2} \\
0 & 0 & 0 & \sqrt{2} a & a c+b & \sqrt{2} b c \\
0 & 0 & 0 & 0 & a & \sqrt{2} b \\
0 & 0 & 0 & 1 & \sqrt{2} c & c^{2} \\
0 & 0 & 0 & 0 & 1 & \sqrt{2} c \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \quad W_{s}^{*}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\bar{a}^{2} & \sqrt{2} \bar{a} & 0 & 1 & 0 & 0 \\
\sqrt{2} \bar{a} \bar{b} & \overline{a c}+\bar{b} & \bar{a} & \sqrt{2} \bar{c} & 1 & 0 \\
\bar{b}^{2} & \sqrt{2} \bar{c} \bar{c} & \sqrt{2} b & \bar{c}^{2} & \sqrt{2} \bar{c} & 1
\end{array}\right] .
$$

Since $\operatorname{ker} W_{s}=\operatorname{Span}\left\{e_{1}, e_{2}, e_{3}\right\}$, it can be check that

$$
v:=\left(1,-\frac{\bar{a}}{\sqrt{2}}, \frac{\overline{a c}-\bar{b}}{\sqrt{2}}, 0,0,0\right) \in \operatorname{ker} W_{s} \cap \operatorname{ker} W_{s}^{*}
$$

is the only common eigenvector (up to scalar). Therefore $W_{s}=W_{1} \oplus W_{2}$ where $W_{1}=W_{s} \mid \operatorname{Span}\{v\}^{\perp}$ and $W_{2}=W_{s} \mid \operatorname{Span}\{v\}$. We will show W_{1} is irreducible. Assume $W_{1}=W_{3} \oplus W_{4}$ on $H_{3} \oplus H_{4}$ where $\operatorname{dim} H_{i} \geq 2$ for $i=3,4$. Without loss of generality, let

$$
\operatorname{ker}\left(W_{1}-I\right)=\operatorname{ker}\left(W_{s}-I\right)=\operatorname{Span}\{u\} \subseteq H_{3}, \text { where } u=\left(a^{2}, \sqrt{2} a, 0,1,0,0\right)
$$

Since $\operatorname{ker}\left(W_{1}-I\right)$ is one-dimensional, $\sigma\left(W_{3}\right)=\{1\}$ and $\sigma\left(W_{4}\right)=\{0\}$. Hence $u \perp \operatorname{ker} W_{1}$, where

$$
\operatorname{ker} W_{1}=\operatorname{ker}\left(W_{s}\right) \cap \operatorname{Span}\{v\}^{\perp}=\operatorname{Span}\left\{\left(\frac{a}{\sqrt{2}}, 1,0,0,0,0\right),\left(-\frac{a c-b}{\sqrt{2}}, 0,1,0,0,0\right)\right\}
$$

Therefore

$$
a^{2} \frac{\bar{a}}{\sqrt{2}}+\sqrt{2} a=0
$$

Hence $a=0$. It follows that $u=e_{4} \in H_{3}$. Since $W_{s}^{*} e_{4}=\left(0,0,0,1, \sqrt{2} \bar{c}, \bar{c}^{2}\right) \in H_{3}$, we have $(0,0,0,0, \sqrt{2}, \bar{c}) \in H_{3}$. Since $W_{s}^{*}(0,0,0,0, \sqrt{2}, c)=(0,0,0,0, \sqrt{2}, 3 \bar{c}) \in H_{3}$, we have $e_{5}, e_{6} \in H_{3}$. Since $b \neq 0$, it is easy to see that $\left\{e_{4}, e_{5}, e_{6}, W_{s} e_{6}\right\}$ is linearly independent. Thus $\operatorname{dim} H_{3} \geq 4$, which is a contradiction to $\operatorname{dim} H_{4} \geq 2$.

Finally, we deal with the case when A is irreucible, not invertible, and A has one distinct eigenvalue, i.e., $\sigma(A)=\{0\}$. By scaling, we can assume that $a=1$.

Case 3.4. Suppose that

$$
A=\left[\begin{array}{lll}
0 & 1 & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right] \text { is irreducible with } c \neq 0
$$

Then $H_{s}=H_{1} \oplus H_{2}$, where H_{1} and H_{2} are reducing subspaces for W_{s} with $\operatorname{dim} H_{1}=5$ and $\operatorname{dim} H_{2}=1$. Moreover, $W_{s} \mid H_{1}$ is reducible if and only if $b=0$, in which case, $H_{1}=H_{3} \oplus H_{4}$, where $\operatorname{dim} H_{3}=3, \operatorname{dim} H_{4}=2$, and both H_{3} and H_{4} are minimal reducing subspaces for $W_{s} \mid H_{1}$.

Proof. By Lemma 2.1,

$$
W_{s}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 1 & \sqrt{2} b & b^{2} \\
0 & 0 & 0 & 0 & c & \sqrt{2} b c \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & c^{2} \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], \quad W_{s}^{*}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
\sqrt{2} b & \bar{c} & 0 & 0 & 0 & 0 \\
\bar{b}^{2} & \sqrt{2 b} \bar{c} & 0 & \bar{c}^{2} & 0 & 0
\end{array}\right] .
$$

Since the third row and the third column of W_{s} are zero, e_{3} is a common eigenvector of W_{s} and W_{s}^{*}. By an abuse of notation, $W_{s}=W_{1} \oplus[0]$, where

$$
W_{1}=\left[\begin{array}{ccccc}
0 & 0 & 1 & \sqrt{2} b & b^{2} \\
0 & 0 & 0 & c & \sqrt{2} b c \\
0 & 0 & 0 & 0 & c^{2} \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], \quad W_{1}^{*}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
\sqrt{2 b} & \bar{c} & 0 & 0 & 0 \\
\bar{b}^{2} & \sqrt{2} \bar{b} \bar{c} & \bar{c}^{2} & 0 & 0
\end{array}\right] .
$$

Case 1: $b \neq 0$. We will show W_{1} is irreducible by a contradiction. Assume $W_{1}=W_{3} \oplus W_{4}$ on $H_{3} \oplus H_{4}$ where $\operatorname{dim} H_{i} \geq 2$ for $i=3,4$, since W_{1} and W_{1}^{*} have no common eigenvector anymore:

$$
\operatorname{ker} W_{1}=\operatorname{Span}\left\{e_{1}, e_{2}\right\}, \quad \operatorname{ker} W_{1}^{*}=\operatorname{Span}\left\{e_{4}, e_{5}\right\}
$$

Since $\sigma\left(W_{3}\right)=\sigma\left(W_{4}\right)=\{0\}$, by Lemma 2.2, ker $W_{1} \cap H_{i}$ and ker $W_{1}^{*} \cap H_{i}$ are of dimension one for $i=3,4$. Without loss of generality,

$$
\begin{aligned}
& H_{3} \supseteq \operatorname{Span}\left\{v_{1}, v_{2}\right\}, \text { where } v_{1}=(1, \alpha, 0,0,0,0) \text { and } v_{2}=(0,0,0,0, \beta, \gamma) \\
& H_{4} \supseteq \operatorname{Span}\left\{u_{1}, u_{2}\right\}, \text { where } u_{1}=(-\bar{\alpha}, 1,0,0,0,0) \text { and } u_{2}=(0,0,0,0,-\bar{\gamma}, \bar{\beta})
\end{aligned}
$$

for some α and $(\beta, \gamma) \neq 0$. Note that $W_{1}^{*}\left(v_{1}\right)=(\star, \star, 1, \star, \star) \notin \operatorname{Span}\left\{v_{1}, v_{2}\right\}$, where \star represents some quantity whose precise formula is not needed. Hence $\operatorname{dim} H_{3}=3$ and $\operatorname{dim} H_{4}=2$. We consider two cases according whether α is nonzero or not.

Case 1a: $\alpha=0$. Note that $W_{1}\left(u_{2}\right)=\left(\star, \star, \bar{\beta} c^{2}, 0,0\right) \in \operatorname{Span}\left\{u_{1}, u_{2}\right\}$ only when $\beta=0$. But when $\beta=0, W_{1}\left(u_{2}\right)=-\bar{\gamma}(\sqrt{2} b, c, 0,0,0), W_{1}^{*} W_{1}\left(u_{2}\right)=-\bar{\gamma}(0,0, \sqrt{2} b, \star, \star) \notin \operatorname{Span}\left\{u_{1}, u_{2}\right\}$ since $\bar{\gamma} b \neq 0$, contradicting $\operatorname{dim} H_{4}=2$.

Case 1b: $\alpha \neq 0$. Then $W_{1}^{*}\left(v_{2}\right)=(0,0,-\bar{\alpha}, \star, \star) \notin \operatorname{Span}\left\{u_{1}, u_{2}\right\}$, again contradicting $\operatorname{dim} H_{4}=2$.
Case 2: $b=0$. The desired result follows from the following computation.

$$
\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]^{T}\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & c & 0 \\
0 & 0 & 0 & 0 & c^{2} \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ll|lll}
0 & c & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & c^{2} \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

The proof of Case 3.4 is complete.

4. Proof of Theorem 1.5

Suppose that A is a 3×3 irreducible matrix which is invertible. By Schur's unitary triangularization, we may assume that A is an upper triangular irreducible matrix. Thus

$$
A=\left[\begin{array}{lll}
\beta & a & b \\
0 & \gamma & c \\
0 & 0 & \delta
\end{array}\right]
$$

where $\beta \gamma \delta \neq 0$. We can easily check by using Lemma 2.4 that

$$
W_{a s}=\left[\begin{array}{ccc}
\beta \gamma & \beta c & a c-\gamma b \\
0 & \beta \delta & \delta a \\
0 & 0 & \gamma \delta
\end{array}\right]
$$

is irreducible. The remaining of this section is devoted to the proof of Theorem 1.5(i).
Since A is invertible, there exists a 3×3 matrix B such that $A=\exp B=\sum_{n=0}^{\infty} \frac{1}{n!} B^{n}$. It follows that

$$
\begin{aligned}
W(A) & =A \otimes A=\exp B \otimes \exp B=(\exp B \otimes I)(I \otimes \exp B) \\
& =\exp (B \otimes I) \exp (I \otimes B)=\exp (B \otimes I+I \otimes B)=\exp (T(B))
\end{aligned}
$$

If $T(B)$ is reducible, then so is $\exp (T(B))=W(A)$. By Theorem $1.3, T_{s}(B)$ is reducible if and only if

$$
B \cong \beta I+\left[\begin{array}{ccc}
0 & a & 0 \\
0 & d & a \\
0 & 0 & 2 d
\end{array}\right]
$$

where $\beta, d, a \in \mathbb{C}$ and $a \neq 0$. In the case $d=0$,

$$
A=\exp B \cong e^{\beta}\left[\begin{array}{ccc}
1 & a & a^{2} / 2 \\
0 & 1 & a \\
0 & 0 & 1
\end{array}\right]
$$

In the case $d \neq 0$,

$$
A=\exp B \cong e^{\beta}\left[\begin{array}{ccc}
1 & \frac{a}{d}(\lambda-1) & \left(\frac{a}{d}\right)^{2}(\lambda-1)^{2} / 2 \\
0 & \lambda & \frac{a}{d}(\lambda-1) \lambda \\
0 & 0 & \lambda^{2}
\end{array}\right], \text { where } \lambda=e^{d} \neq 1
$$

From this we can guess the condition for the reducibility of $W_{s}(A)$.
Before starting the proof of Theorem 1.5(i), we record the following lemma.
Lemma 4.1. Let B be an $n \times n$ matrix with $n \geq 2$ such that $\sigma(B)=\{\lambda\}$. Then there exist nonzero $v \in \operatorname{ker}(B-\lambda I)$ and nonzero $u \in \operatorname{ker}\left(B^{*}-\bar{\lambda} I\right)$ such that $v \perp u$.

Proof. By Schur's unitary triangularization, there exists a unitary matrix U such that $U^{*}(B-\lambda I) U$ is a strictly upper triangular $n \times n$ matrix. It is easy to see that $U^{*}(B-\lambda I) U e_{1}=0$ and $U^{*}\left(B^{*}-\bar{\lambda} I\right) U e_{n}=0$. Then $v=U e_{1}$ and $u=U e_{n}$ satisfy the desired properties.

Let us now prove Theorem 1.5(i). We start with the case when A has one distinct nonzero eigenvalue, i.e., $\sigma(A)=\{\lambda\}$, where $\lambda \neq 0$. As in the proof of Theorem 1.4, we may assume that $\lambda=1$.

Case 4.2. Suppose that

$$
A=\left[\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right] \text { is irreducible. }
$$

Then $W_{s}(A)$ is reducible if and only if $|a|=|c|$ and $b=a c / 2$. In this case, $H_{s}=H_{1} \oplus H_{2}$, where $\operatorname{dim} H_{1}=5$, $\operatorname{dim} H_{2}=1$, and both H_{1} and H_{2} are minimal reducing subspaces for $W_{s}(A)$.

Proof. Since A is irreducible, it follows from Lemma 2.4 that $a c \neq 0$. By Lemma 2.1,

$$
W_{s}=\left[\begin{array}{cccccc}
1 & \sqrt{2} a & \sqrt{2} b & a^{2} & \sqrt{2} a b & b^{2} \\
0 & 1 & c & \sqrt{2} a & a c+b & \sqrt{2} b c \\
0 & 0 & 1 & 0 & a & \sqrt{2} b \\
0 & 0 & 0 & 1 & \sqrt{2} c & c^{2} \\
0 & 0 & 0 & 0 & 1 & \sqrt{2} c \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \quad W_{s}^{*}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
\sqrt{2} \bar{a} & 1 & 0 & 0 & 0 & 0 \\
\sqrt{2} b & \bar{c} & 1 & 0 & 0 & 0 \\
\bar{a}^{2} & \sqrt{2} \bar{a} & 0 & 1 & 0 & 0 \\
\sqrt{2} \bar{a} \bar{b} & \bar{b}+\overline{a c} & \bar{a} & \sqrt{2} \bar{c} & 1 & 0 \\
\bar{b}^{2} & \sqrt{2} \bar{c} \bar{c} & \sqrt{2 b} & \bar{c}^{2} & \sqrt{2} \bar{c} & 1
\end{array}\right] .
$$

Note that

$$
\begin{aligned}
& \operatorname{ker}\left(W_{s}-I\right)=\operatorname{Span}\left\{(1,0,0,0,0,0),\left(0, \frac{2 b-a c}{\sqrt{2} c},-\frac{\sqrt{2} a}{c}, 1,0,0\right)\right\} \\
& \operatorname{ker}\left(W_{s}^{*}-I\right)=\operatorname{Span}\left\{\left(0,0,-\frac{\sqrt{2} \bar{c}}{\bar{a}}, 1, \frac{2 \bar{b}-\overline{a c}}{\sqrt{2} \bar{a}}, 0\right),(0,0,0,0,0,1)\right\}
\end{aligned}
$$

Note also that W_{s} and W_{s}^{*} have a common eigenvector if and only if

$$
\frac{\sqrt{2} b}{c}-\frac{a}{\sqrt{2}}=0, \quad-\frac{\sqrt{2} a}{c}=-\frac{\sqrt{2} \bar{c}}{\bar{a}}, \quad \text { and } \quad 0=\frac{\sqrt{2} \bar{b}}{\bar{a}}-\frac{\bar{c}}{\sqrt{2}}
$$

if and only if $|a|=|c|$ and $b=a c / 2$.
Case 1: $|a| \neq|c|$ or $b \neq a c / 2$. We will show that W_{s} is irreducible. Assume to the contrary that $W_{s}=W_{1} \oplus W_{2}$ on $H_{1} \oplus H_{2}$ where $\operatorname{dim} H_{i} \geq 2$ for $i=1,2$. Note that

$$
\sigma\left(W_{1}\right)=\sigma\left(W_{2}\right)=\{1\}
$$

By Lemma 4.1, $\operatorname{ker}\left(W_{s}-I\right) \perp \operatorname{ker}\left(W_{s}^{*}-I\right)$ which is a contradiction since

$$
\left(-\frac{\sqrt{2} a}{c}\right)\left(-\frac{\sqrt{2} c}{a}\right)+1 \cdot 1=3 \neq 0
$$

Case 2: $|a|=|c|$ and $b=a c / 2$. In this case, let

$$
v=\left(0,0,-\frac{\sqrt{2} a}{c}, 1,0,0\right) .
$$

Then $\operatorname{ker}\left(W_{s}-I\right) \cap \operatorname{ker}\left(W_{s}^{*}-I\right)=\operatorname{Span}\{v\}$, and

$$
\begin{equation*}
\operatorname{ker}\left(W_{s}-I\right)=\operatorname{Span}\left\{v, e_{1}\right\} \quad \text { and } \quad \operatorname{ker}\left(W_{s}^{*}-I\right)=\operatorname{Span}\left\{v, e_{6}\right\} . \tag{4}
\end{equation*}
$$

Thus $W_{s}=W_{1} \oplus W_{2}$, where $W_{1}=W_{s} \mid \operatorname{Span}\{v\}^{\perp}$ and $W_{2}=W_{s} \backslash \operatorname{Span}\{v\}$. It follows from (4) that

$$
\operatorname{ker}\left(W_{1}-I\right)=\operatorname{Span}\left\{e_{1}\right\}
$$

Assume to the contrary that $W_{1}=W_{3} \oplus W_{4}$ on $H_{3} \oplus H_{4}$ where $\operatorname{dim} H_{i} \geq 1$. Then $\sigma\left(W_{3}\right)=\sigma\left(W_{4}\right)=\{1\}$, and $\operatorname{ker}\left(W_{1}-I\right)=\operatorname{ker}\left(W_{3}-I\right) \oplus \operatorname{ker}\left(W_{4}-I\right)$. Hence $\operatorname{dim} \operatorname{ker}\left(W_{1}-I\right) \geq 2$, which is a contradiction. Therefore, W_{1} is irreducible.

Next we look at the case when A has two distinct nonzero eigenvalues. We may assume that the eigenvalue of multiplicity 2 is 1 , and arrange the eigenvalues $\{1,1, \lambda\}$ on the diagonal of A in any desired order.

Case 4.3. Suppose that

$$
A=\left[\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & \lambda
\end{array}\right] \text { is irreducible with } \lambda \neq 0,1
$$

Then W_{s} is irreducible.
Proof. Since A is irreducible, Lemma 2.4 implies that one of the following holds:

$$
\text { (i) } a c \neq 0, \quad \text { (ii) } c=0 \text { and } a b \neq 0
$$

By Lemma 2.1,

$$
W_{s}=\left[\begin{array}{cccccc}
1 & \sqrt{2} a & \sqrt{2} b & a^{2} & \sqrt{2} a b & b^{2} \\
0 & 1 & c & \sqrt{2} a & a c+b & \sqrt{2} b c \\
0 & 0 & \lambda & 0 & \lambda a & \sqrt{2} \lambda b \\
0 & 0 & 0 & 1 & \sqrt{2} c & c^{2} \\
0 & 0 & 0 & 0 & \lambda & \sqrt{2} \lambda c \\
0 & 0 & 0 & 0 & 0 & \lambda^{2}
\end{array}\right], \quad W_{s}^{*}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
\sqrt{2} \bar{a} & 1 & 0 & 0 & 0 & 0 \\
\sqrt{2} \bar{b} & c & \bar{\lambda} & 0 & 0 & 0 \\
\bar{a}^{2} & \sqrt{2} \bar{a} & 0 & 1 & 0 & 0 \\
\sqrt{2} \bar{a} \bar{b} & \bar{b}+\overline{a c} & \bar{a} \bar{\lambda} & \sqrt{2} \bar{c} & \bar{\lambda} & 0 \\
\bar{b}^{2} & \sqrt{2} \bar{b} \bar{c} & \sqrt{2 b \lambda} & \bar{c}^{2} & \sqrt{2} \bar{c} \bar{\lambda} & \bar{\lambda}^{2}
\end{array}\right] .
$$

It can be checked by direct computation that W_{s} and W_{s}^{*} have no common eigenvector. We will show that W_{s} is irreducible by a contradiction. There is a complication when $\lambda^{2}=1$, i.e., $\lambda=-1$, since in this case $\operatorname{ker}\left(W_{s}^{*}-\bar{\lambda}^{2} I\right)\left(=\operatorname{ker}\left(W_{s}^{*}-I\right)\right)$ is of dimension 2 . We find it cumbersome and difficult to unify the proofs of $\lambda^{2}=1$ case and $\lambda^{2} \neq 1$ case. So we will prove these two cases separately. Assume $W_{s}=W_{1} \oplus W_{2}$ on $H_{1} \oplus H_{2}$ with $\operatorname{dim} H_{i} \geq 2$ for $i=1,2$.

Case 1: $\lambda^{2} \neq 1$ and $a c \neq 0$. Note that

$$
\begin{aligned}
& \operatorname{ker}\left(W_{s}^{*}-\bar{\lambda}^{2} I\right)=\operatorname{Span}\left\{e_{6}\right\}, \quad \operatorname{ker}\left(W_{s}^{*}-\bar{\lambda} I\right)=\operatorname{Span}\left\{\left(0,0,0,0,1, \frac{\sqrt{2} \bar{c}}{1-\bar{\lambda}}\right)\right\} \\
& \operatorname{ker}\left(W_{s}^{*}-I\right)=\operatorname{Span}\left\{\left(0,0,0,1, \frac{\sqrt{2} \bar{c}}{\bar{\lambda}-1}, \star\right)\right\}
\end{aligned}
$$

Without loss of generality, assume

$$
\operatorname{ker}\left(W_{s}^{*}-\bar{\lambda}^{2} I\right)=\operatorname{Span}\left\{e_{6}\right\} \subseteq H_{1}
$$

Since $c \neq 0, \operatorname{ker}\left(W_{s}^{*}-\bar{\lambda} I\right)$ is not orthogonal to $\operatorname{ker}\left(W_{s}^{*}-\bar{\lambda}^{2} I\right)$. By Lemma 2.2,

$$
\operatorname{ker}\left(W_{s}^{*}-\bar{\lambda}^{2} I\right)+\operatorname{ker}\left(W_{s}^{*}-\bar{\lambda} I\right) \subseteq H_{1}, \quad \text { or } \quad \operatorname{Span}\left\{e_{5}, e_{6}\right\} \subseteq H_{1}
$$

Again, since $c \neq 0, \operatorname{ker}\left(W_{s}^{*}-I\right)$ is not orthogonal to H_{1}. Hence $\sigma\left(W_{1}\right)=\left\{1, \lambda, \lambda^{2}\right\}$. But either 1 or λ is in $\sigma\left(W_{2}\right)$. It follows from Lemma 2.2 that either $\operatorname{dim} \operatorname{ker}\left(W_{s}^{*}-I\right) \geq 2$ or $\operatorname{dim} \operatorname{ker}\left(W_{s}^{*}-\bar{\lambda} I\right) \geq 2$, which is a contradiction.

Case 2: $\lambda^{2} \neq 1, c=0$, and $a b \neq 0$. We prove the result by a similar argument using eigenspaces of W_{s}. Note that

$$
W_{s}=\left[\begin{array}{cccccc}
1 & \sqrt{2} a & \sqrt{2} b & a^{2} & \sqrt{2} a b & b^{2} \\
0 & 1 & 0 & \sqrt{2} a & b & 0 \\
0 & 0 & \lambda & 0 & \lambda a & \sqrt{2} \lambda b \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \lambda & 0 \\
0 & 0 & 0 & 0 & 0 & \lambda^{2}
\end{array}\right], \quad W_{s}^{*}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
\sqrt{2} \bar{a} & 1 & 0 & 0 & 0 & 0 \\
\sqrt{2} \bar{b} & 0 & \bar{\lambda} & 0 & 0 & 0 \\
\bar{a}^{2} & \sqrt{2} \bar{a} & 0 & 1 & 0 & 0 \\
\sqrt{2} \bar{a} \bar{b} & \bar{b} & \bar{a} \bar{\lambda} & 0 & \bar{\lambda} & 0 \\
\bar{b}^{2} & 0 & \sqrt{2 b} \bar{\lambda} & 0 & 0 & \bar{\lambda}^{2}
\end{array}\right],
$$

and, since $a \neq 0$, we have

$$
\begin{aligned}
\operatorname{ker}\left(W_{s}-I\right) & =\operatorname{Span}\left\{e_{1}\right\}, \quad \operatorname{ker}\left(W_{s}-\lambda I\right)=\operatorname{Span}\{(-\sqrt{2} b, 0,1-\lambda, 0,0,0)\}, \\
\operatorname{ker}\left(W_{s}-\lambda^{2} I\right) & =\operatorname{Span}\{(\star, 0,-\sqrt{2} b, 0,0,1-\lambda)\} .
\end{aligned}
$$

Without loss of generality, assume that

$$
\operatorname{ker}\left(W_{s}-I\right)=\operatorname{Span}\left\{e_{1}\right\} \subseteq H_{1}
$$

Since $b \neq 0, \operatorname{ker}\left(W_{s}-\lambda I\right)$ is not orthogonal to $\operatorname{ker}\left(W_{s}-I\right)$. By Lemma 2.2,

$$
\operatorname{ker}\left(W_{s}-I\right)+\operatorname{ker}\left(W_{s}-\lambda I\right) \subseteq H_{1}, \quad \text { or } \quad \operatorname{Span}\left\{e_{1}, e_{3}\right\} \subseteq H_{1}
$$

Since $b \neq 0, \operatorname{ker}\left(W_{s}-\lambda^{2} I\right)$ is not orthogonal to H_{1}. Hence $\sigma\left(W_{1}\right)=\left\{1, \lambda, \lambda^{2}\right\}$. But either $1 \in \sigma\left(W_{2}\right)$ or $\lambda \in \sigma\left(W_{2}\right)$. It follows from Lemma 2.2 that either $\operatorname{dim} \operatorname{ker}\left(W_{s}-I\right) \geq 2$ or $\operatorname{dim} \operatorname{ker}\left(W_{s}-\lambda I\right) \geq 2$, which is a contradiction.

We next deal with the case $\lambda^{2}=1$, that is, $\lambda=-1$. In this case, both $\operatorname{ker}\left(W_{s}-I\right)$ and $\operatorname{ker}\left(W_{s}^{*}-I\right)$ are of dimension 2.

Case 3: $\lambda=-1$ and $a c \neq 0$. Then

$$
\begin{aligned}
& \operatorname{ker}\left(W_{s}^{*}+I\right)=\operatorname{Span}\left\{\left(0,0,0,0,1, \frac{\sqrt{2} \bar{c}}{2}\right)\right\} \\
& \operatorname{ker}\left(W_{s}^{*}-I\right)=\operatorname{Span}\left\{e_{6}, v\right\}, \text { where } v:=\left(0,0,0,1, \frac{\sqrt{2} \bar{c}}{2}, 0\right) \\
& \operatorname{ker}\left(W_{s}-I\right)=\operatorname{Span}\left\{e_{1}, u\right\}, \text { where } u:=\left(\star, \star, \star, \star,-\frac{\sqrt{2} c}{2}, 1\right)
\end{aligned}
$$

Without loss of generality, assume

$$
\operatorname{ker}\left(W_{s}^{*}+I\right) \subseteq H_{1}
$$

Since $c \neq 0, \operatorname{ker}\left(W_{s}^{*}-I\right)$ is not orthogonal to $\operatorname{ker}\left(W_{s}^{*}+I\right)$. By Lemma 2.2, $\sigma\left(W_{1}\right)=\{-1,1\}$ and $\sigma\left(W_{2}\right)=\{1\}$, and thus $\operatorname{dim} H_{1}=4$ and $\operatorname{dim} H_{2}=2$. Using appropriate linear combinations of e_{6} and v, we write

$$
\operatorname{ker}\left(W_{s}^{*}-I\right)=\operatorname{Span}\left\{u_{1}, u_{2}\right\}, \text { where } u_{1}=\left(0,0,0, \frac{2 c}{\bar{c}\left(|c|^{2}+2\right)}, \frac{\sqrt{2} c}{\left(|c|^{2}+2\right)}, 1\right), u_{2}=\left(0,0,0,1, \frac{\sqrt{2} \bar{c}}{2},-\frac{\bar{c}}{c}\right)
$$

Note that $u_{1} \perp u_{2}$ and $u_{2} \perp \operatorname{ker}\left(W_{s}^{*}+I\right)$. Thus $u_{2} \in H_{2}$ and $u_{1} \in H_{1}$. We would like to do a similar decomposition for $\operatorname{ker}\left(W_{s}-I\right)$. Since the explicit form of u is complicated, we write

$$
\operatorname{ker}\left(W_{s}-I\right)=\left[\operatorname{ker}\left(W_{s}-I\right) \cap H_{1}\right] \oplus\left[\operatorname{ker}\left(W_{s}^{*}-I\right) \cap H_{2}\right]
$$

where

$$
\operatorname{ker}\left(W_{s}-I\right) \cap H_{1}=\operatorname{Span}\left\{a_{1} e_{1}+a_{2} u\right\} \quad \text { and } \quad \operatorname{ker}\left(W_{s}-I\right) \cap H_{2}=\operatorname{Span}\left\{b_{1} e_{1}+b_{2} u\right\}
$$

for some constants $a_{1}, a_{2}, b_{1}, b_{2}$. Now we have

$$
H_{2}=\operatorname{Span}\left\{u_{2}, b_{1} e_{1}+b_{2} u\right\}
$$

Since $\sigma\left(W_{2}\right)=\{1\}, u_{2} \in \operatorname{ker}\left(W_{2}^{*}-I\right)$, and $b_{1} e_{1}+b_{2} u \in \operatorname{ker}\left(W_{2}-I\right)$, Lemma 4.1 implies that $b_{1} e_{1}+b_{2} u \perp u_{2}$. But $b_{1} e_{1}+b_{2} u$ is orthogonal to u_{1}. Thus $b_{1} e_{1}+b_{2} u \perp \operatorname{ker}\left(W_{s}^{*}-I\right)$ and $b_{1} e_{1}+b_{2} u=\left(\star, \star, \star, \star, \star, b_{2}\right) \perp e_{6}$. This implies that $b_{2}=0$ and $e_{1} \in H_{2}$. Since $a \neq 0$, the set $\left\{u_{2}, e_{1}, W_{s}^{*} e_{1}\right\}$ is linearly indenpdent, which is a contradiction to $\operatorname{dim} H_{2}=2$.

Case 4: $\lambda=-1, c=0$, and $a b \neq 0$. Note that

$$
W_{s}=\left[\begin{array}{cccccc}
1 & \sqrt{2} a & \sqrt{2} b & a^{2} & \sqrt{2} a b & b^{2} \\
0 & 1 & 0 & \sqrt{2} a & b & 0 \\
0 & 0 & -1 & 0 & -a & -\sqrt{2} b \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \quad W_{s}^{*}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
\sqrt{2} \bar{a} & 1 & 0 & 0 & 0 & 0 \\
\sqrt{2} \bar{b} & 0 & -1 & 0 & 0 & 0 \\
\bar{a}^{2} & \sqrt{2} \bar{a} & 0 & 1 & 0 & 0 \\
\sqrt{2} \bar{a} \bar{b} & \bar{b} & -\bar{a} & 0 & -1 & 0 \\
\bar{b}^{2} & 0 & -\sqrt{2} \bar{b} & 0 & 0 & 1
\end{array}\right] .
$$

Then

$$
\begin{aligned}
& \operatorname{ker}\left(W_{s}-I\right)=\operatorname{Span}\left\{e_{1},(0,0, \sqrt{2} b, 0,0,-2)\right\} \quad \operatorname{ker}\left(W_{s}^{*}-I\right)=\operatorname{Span}\left\{e_{4}, e_{6}\right\} \\
& \operatorname{ker}\left(W_{s}+I\right)=\operatorname{Span}\{(\sqrt{2} b, 0,-2,0,0,0)\}, \quad \operatorname{ker}\left(W_{s}^{*}+I\right)=\operatorname{Span}\left\{e_{5}\right\}
\end{aligned}
$$

Without loss of generality, assume

$$
\operatorname{ker}\left(W_{s}^{*}+I\right)+\operatorname{ker}\left(W_{s}+I\right) \subseteq H_{1}
$$

Observe that $\operatorname{ker}\left(W_{s}-I\right)$ is not orthogonal to $\operatorname{ker}\left(W_{s}+I\right)$. By Lemma 2.2, $\sigma\left(W_{1}\right)=\{-1,1\}$ and $\sigma\left(W_{2}\right)=\{1\}$. Thus $\operatorname{dim} H_{1}=4$ and $\operatorname{dim} H_{2}=2$. If a_{1} and a_{2} are constants and $a_{1} e_{1}+a_{2}(0,0, \sqrt{2} b, 0,0,-2) \perp \operatorname{ker}\left(W_{s}+I\right)$, then $a_{1} \bar{b}=2 a_{2} b$. Thus

$$
H_{2}=\operatorname{Span}\left\{\left(b, 0, \frac{\sqrt{2}}{2}|b|^{2}, 0,0,-\bar{b}\right), b_{1} e_{4}+b_{2} e_{6}\right\}
$$

for some constants b_{1}, b_{2}. Then $-\overline{b_{2}} e_{4}+\overline{b_{1}} e_{6} \perp H_{2}$, which implies $b_{1}=0$. It follows that

$$
H_{2}=\operatorname{Span}\left\{u, e_{6}\right\}, \quad \text { where } u:=(\sqrt{2}, 0, \bar{b}, 0,0,0)
$$

Thus $W_{s} e_{6} \in H_{2}$, but then $\left\{u, e_{6}, W_{s} e_{6}\right\}$ is a linearly independent subset of H_{2}, which is a contradiction.
Therefore W_{s} is irreducible, and the proof is complete.

Next look at the case when A has three distinct nonzero eigenvalues β, γ, δ :

$$
A=\left[\begin{array}{lll}
\beta & a & b \\
0 & \gamma & c \\
0 & 0 & \delta
\end{array}\right], \quad W_{s}=\left[\begin{array}{cccccc}
\beta^{2} & \sqrt{2} \beta a & \sqrt{2} \beta b & a^{2} & \sqrt{2} a b & b^{2} \\
0 & \beta \gamma & \beta c & \sqrt{2} \gamma a & a c+\gamma b & \sqrt{2} b c \\
0 & 0 & \beta \delta & 0 & \delta a & \sqrt{2} \delta b \\
0 & 0 & 0 & \gamma^{2} & \sqrt{2} \gamma c & c^{2} \\
0 & 0 & 0 & 0 & \gamma \delta & \sqrt{2} \delta c \\
0 & 0 & 0 & 0 & 0 & \delta^{2}
\end{array}\right] .
$$

Then $\sigma\left(W_{s}\right)=\left\{\beta^{2}, \beta \gamma, \beta \delta, \gamma^{2}, \gamma \delta, \delta^{2}\right\}$. There are complications when W_{s} has an eigenvalue of multiplicity 2 . Next we discuss when this happens. There are two choices that will reduce our algebra (sometimes greatly). First we may arrange $\{\beta, \gamma, \delta\}$ on the diagonal of A in any order desired. Second, we can scale one of $\{\beta, \gamma, \delta\}$ to be 1 . Through these two choices, one of the following statements holds.
(i) $\sigma\left(W_{s}\right)$ consists of 6 distinct numbers; then we can assume $\beta=1$.
(ii) $\sigma\left(W_{s}\right)$ consists of 5 distinct numbers; we can assume $\beta=1$ and either $\gamma=-1$ or $\delta=\gamma^{2}$.
(iii) $\sigma\left(W_{s}\right)$ consists of 4 distinct numbers; we can assume $\beta=1, \gamma=i$, and $\delta=-1$.
(iv) $\sigma\left(W_{s}\right)$ consists of 3 distinct numbers; we can assume $\{\beta, \gamma, \delta\}=\left\{1, \omega, \omega^{2}\right\}$, where $\omega=e^{2 \pi i / 3}$.

Note that if A is irreducible, then one of the following holds.

$$
\text { (i) } a c \neq 0, \quad \text { (ii) } c=0 \text { and } a b \neq 0, \quad \text { (iii) } a=0 \text { and } b c \neq 0 .
$$

Case 4.4. Suppose that $\sigma\left(W_{s}\right)$ consists of 6 distinct numbers. Assume that $\beta=1$. Then W_{s} is irreducible.
Proof. By Lemma 2.1,

$$
W_{s}=\left[\begin{array}{cccccc}
1 & \sqrt{2} a & \sqrt{2} b & a^{2} & \sqrt{2} a b & b^{2} \\
0 & \gamma & c & \sqrt{2} \gamma a & a c+\gamma b & \sqrt{2} b c \\
0 & 0 & \delta & 0 & \delta a & \sqrt{2} \delta b \\
0 & 0 & 0 & \gamma^{2} & \sqrt{2} \gamma c & c^{2} \\
0 & 0 & 0 & 0 & \gamma \delta & \sqrt{2} \delta c \\
0 & 0 & 0 & 0 & 0 & \delta^{2}
\end{array}\right], \quad W_{s}^{*}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
\sqrt{2} \bar{a} & \bar{\gamma} & 0 & 0 & 0 & 0 \\
\sqrt{2} b & \bar{c} & \bar{\delta} & 0 & 0 & 0 \\
\bar{a}^{2} & \sqrt{2} \bar{a} \bar{\gamma} & 0 & \bar{\gamma}^{2} & 0 & 0 \\
\sqrt{2} \bar{a} \bar{b} & \bar{b} \bar{\gamma}+\overline{a c} & \bar{a} \bar{\delta} & \sqrt{2} \overline{c \gamma} & \bar{\gamma} \bar{\delta} & 0 \\
\bar{b}^{2} & \sqrt{2 b} \bar{c} & \sqrt{2 b \delta} & \bar{c}^{2} & \sqrt{2} \bar{c} \bar{\delta} & \bar{\delta}^{2}
\end{array}\right] .
$$

It can be checked that W_{s} and W_{s}^{*} have no common eigenvector. We will show that W_{s} is irreducible by a contradiction. Assume $W_{s}=W_{1} \oplus W_{2}$ on $H_{1} \oplus H_{2}$ with $\operatorname{dim} H_{i} \geq 2$ for $i=1,2$.

Case 1: $a c \neq 0$. Note that

$$
\begin{aligned}
\operatorname{ker}\left(W_{s}-I\right) & =\operatorname{Span}\left\{e_{1}\right\}, \quad \operatorname{ker}\left(W_{s}-\gamma I\right)=\operatorname{Span}\{(\sqrt{2} a, \gamma-1,0,0,0,0)\}, \\
\operatorname{ker}\left(W_{s}-\delta I\right) & =\operatorname{Span}\{(\star, c, \delta-\gamma, 0,0,0)\} .
\end{aligned}
$$

Since $a \neq 0, \operatorname{ker}\left(W_{s}-\gamma I\right)$ is not orthogonal to $\operatorname{ker}\left(W_{s}-I\right)$, and since $c \neq 0, \operatorname{ker}\left(W_{s}-\delta I\right)$ is not orthogonal to $\operatorname{ker}\left(W_{s}-\gamma I\right)$. By Lemma 2.2, without loss of generality, we may assume that

$$
\operatorname{ker}\left(W_{s}-I\right)+\operatorname{ker}\left(W_{s}-\gamma I\right)+\operatorname{ker}\left(W_{s}-\delta I\right) \subseteq H_{1}, \quad \text { or } \quad \operatorname{Span}\left\{e_{1}, e_{2}, e_{3}\right\} \subseteq H_{1} .
$$

Now $W_{s}^{*} e_{2}, W_{s}^{*} e_{3} \in H_{1}$. Since $\sqrt{2} a \gamma \neq 0$ and $a \delta \neq 0$, the dimension of H_{1} is at least 5 , which is a contradiction.
Case 2: $c=0$ and $a b \neq 0$. In this case,

$$
\operatorname{ker}\left(W_{s}-\delta I\right)=\operatorname{Span}\{(\sqrt{2} b, 0, \delta-1,0,0,0)\},
$$

so $\operatorname{ker}\left(W_{s}-\delta I\right)$ is not orthogonal to $\operatorname{ker}\left(W_{s}-I\right)$. The rest of the argument is the same as in Case 1.

Case 3: $a=0$ and $b c \neq 0$. In this case,

$$
\begin{aligned}
\operatorname{ker}\left(W_{s}-I\right) & =\operatorname{Span}\left\{e_{1}\right\}, \quad \operatorname{ker}\left(W_{s}-\gamma I\right)=\operatorname{Span}\left\{e_{2}\right\} \\
\operatorname{ker}\left(W_{s}-\delta I\right) & =\operatorname{Span}\left\{\left(\frac{\sqrt{2} b(\delta-\gamma)}{\delta-1}, c, \delta-\gamma, 0,0,0\right)\right\}
\end{aligned}
$$

Since $b \neq 0, \operatorname{ker}\left(W_{s}-I\right)$ is not orthogonal to $\operatorname{ker}\left(W_{s}-\delta I\right)$, and since $c \neq 0, \operatorname{ker}\left(W_{s}-\gamma I\right)$ is not orthogonal to $\operatorname{ker}\left(W_{s}-\delta I\right)$. By Lemma 2.2, without loss of generality, we may assume that

$$
\operatorname{ker}\left(W_{s}-I\right)+\operatorname{ker}\left(W_{s}-\gamma I\right)+\operatorname{ker}\left(W_{s}-\delta I\right) \subseteq H_{1}, \quad \text { or } \quad \operatorname{Span}\left\{e_{1}, e_{2}, e_{3}\right\} \subseteq H_{1}
$$

Now $W_{s}^{*} e_{2}=(\star, \star, \star, \star, \bar{b} \bar{\gamma}, \star)$ and $W_{s}^{*} e_{3}=(\star, \star, \star, \star, 0, \sqrt{2 b} \bar{\delta})$ belong to H_{1}. Thus the dimension of H_{1} is at least 5 , which is a contradiction.

Case 4.5. Suppose that $\sigma\left(W_{s}\right)$ consists of 5 distinct numbers. Assume $\beta=1$ and $\gamma=-1$. Then W_{s} is irreducible.
Proof. Note that $\delta^{4} \neq 1$. By Lemma 2.1, we have

$$
W_{s}=\left[\begin{array}{cccccc}
1 & \sqrt{2} a & \sqrt{2} b & a^{2} & \sqrt{2} a b & b^{2} \\
0 & -1 & c & -\sqrt{2} a & a c-b & \sqrt{2} b c \\
0 & 0 & \delta & 0 & \delta a & \sqrt{2} \delta b \\
0 & 0 & 0 & 1 & -\sqrt{2} c & c^{2} \\
0 & 0 & 0 & 0 & -\delta & \sqrt{2} \delta c \\
0 & 0 & 0 & 0 & 0 & \delta^{2}
\end{array}\right], \quad W_{s}^{*}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
\sqrt{2} \bar{a} & -1 & 0 & 0 & 0 & 0 \\
\sqrt{2} \bar{b} & \bar{c} & \bar{\delta} & 0 & 0 & 0 \\
\bar{a}^{2} & -\sqrt{2} \bar{a} & 0 & 1 & 0 & 0 \\
\sqrt{2} \bar{a} \bar{b} & \overline{a c}-\bar{b} & \bar{\delta} \bar{a} & -\sqrt{2} \bar{c} & -\bar{\delta} & 0 \\
\bar{b}^{2} & \sqrt{2} \bar{c} \bar{c} & \sqrt{2 b} \bar{\delta} & \bar{c}^{2} & \sqrt{2} \bar{c} \bar{\delta} & \bar{\delta}^{2}
\end{array}\right] .
$$

Then

$$
\begin{aligned}
& \operatorname{ker}\left(W_{s}^{*}+\bar{\delta} I\right)=\operatorname{Span}\left\{\left(0,0,0,0,1,-\frac{\sqrt{2} \bar{c}}{1+\bar{\delta}}\right)\right\}, \quad \operatorname{ker}\left(W_{s}^{*}-\bar{\delta}^{2} I\right)=\operatorname{Span}\left\{e_{6}\right\} \\
& \operatorname{ker}\left(W_{s}^{*}-\bar{\delta} I\right)=\operatorname{Span}\{(0,0,2,0, \bar{a}, \star)\}
\end{aligned}
$$

It can be checked that W_{s} and W_{s}^{*} have no common eigenvector. We will show that W_{s} is irreducible by a contradiction. Assume $W_{s}=W_{1} \oplus W_{\underline{2}}$ on $H_{1} \oplus H_{2}$ with $\operatorname{dim} H_{i} \geq 2$ for $i=1,2$.

Case 1: $a c \neq 0$. Assume $\operatorname{ker}\left(W_{s}^{*}+\bar{\delta} I\right) \subseteq H^{1}$. By Lemma 2.2,

$$
\operatorname{ker}\left(W_{s}^{*}+\bar{\delta} I\right)+\operatorname{ker}\left(W_{s}^{*}-\bar{\delta} I\right)+\operatorname{ker}\left(W_{s}^{*}-\bar{\delta}^{2} I\right) \subseteq H_{1}, \quad \text { or } \quad \operatorname{Span}\left\{e_{3}, e_{5}, e_{6}\right\} \subseteq H_{1}
$$

Now $W_{s} e_{3}, W_{s} e_{5} \in H_{1}$. Since $c \neq 0$, the dimension of H_{1} is at least 5 , which is a contradiction.
Case 2: $c=0$ and $a b \neq 0$. In this case,

$$
\operatorname{ker}\left(W_{s}^{*}+\bar{\delta} I\right)=\left\{e_{5}\right\} \quad \text { and } \quad \operatorname{ker}\left(W_{s}^{*}-\bar{\delta} I\right)=\left\{\left(0,0,2,0, \bar{a}, \frac{2 \sqrt{2 b}}{1-\bar{\delta}}\right)\right\}
$$

The rest of the argument is the same as in Case 1.
Case 3: $a=0$ and $b c \neq 0$. In this case,

$$
\begin{aligned}
& \operatorname{ker}\left(W_{s}^{*}+\bar{\delta} I\right)=\operatorname{Span}\left\{\left(0,0,0,0,1,-\frac{\sqrt{2} \bar{c}}{1+\bar{\delta}}\right)\right\}, \quad \operatorname{ker}\left(W_{s}^{*}-\bar{\delta}^{2} I\right)=\operatorname{Span}\left\{e_{6}\right\} \\
& \operatorname{ker}\left(W_{s}^{*}-\bar{\delta} I\right)=\left\{\left(0,0,1,0,0, \frac{\sqrt{2 b}}{1-\bar{\delta}}\right)\right\}
\end{aligned}
$$

Since $b c \neq 0, \operatorname{ker}\left(W_{s}^{*}+\bar{\delta}^{2} I\right)$ is not orthogonal to both $\operatorname{ker}\left(W_{s}^{*}+\bar{\delta} I\right)$ and $\operatorname{ker}\left(W_{s}^{*}-\bar{\delta} I\right)$. By Lemma 2.2, without loss of generality, we may assume that

$$
\operatorname{ker}\left(W_{s}^{*}+\bar{\delta} I\right)+\operatorname{ker}\left(W_{s}^{*}-\bar{\delta} I\right)+\operatorname{ker}\left(W_{s}^{*}-\bar{\delta}^{2} I\right) \subseteq H_{1}, \quad \text { or } \quad \operatorname{Span}\left\{e_{3}, e_{5}, e_{6}\right\} \subseteq H_{1}
$$

Now $W_{s} e_{3}=(\star, c, \star, 0,0,0)$ and $W_{s} e_{5}=(\star, \star, \star,-\sqrt{2} c, \star, 0)$ belong to H_{1}. Thus the dimension of H_{1} is at least 5 , which is a contradiction.

Case 4.6. Suppose that $\sigma\left(W_{s}\right)$ consists of 5 distinct numbers and Assume $\beta=1$ and $\delta=\gamma^{2}$. Then W_{s} is reducible if and only if ac $=2 \gamma b$ and $|c|=|\gamma a|$, in which case, $H_{s}=H_{1} \oplus H_{2}$, where H_{1} and H_{2} are minimal reducing subspaces for W_{s} whose dimensions are 5 and 1 , respectively.

Proof. Note that $\beta^{4} \neq 1$ and $\beta^{3} \neq 1$. By Lemma 2.1, we have

$$
W_{s}=\left[\begin{array}{cccccc}
1 & \sqrt{2} a & \sqrt{2} b & a^{2} & \sqrt{2} a b & b^{2} \\
0 & \gamma & c & \sqrt{2} \gamma a & a c+\gamma b & \sqrt{2} b c \\
0 & 0 & \gamma^{2} & 0 & \gamma^{2} a & \sqrt{2} \gamma^{2} b \\
0 & 0 & 0 & \gamma^{2} & \sqrt{2} \gamma c & c^{2} \\
0 & 0 & 0 & 0 & \gamma^{3} & \sqrt{2} \gamma^{2} c \\
0 & 0 & 0 & 0 & 0 & \gamma^{4}
\end{array}\right], \quad W_{s}^{*}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
\sqrt{2} \bar{a} & \bar{\gamma} & 0 & 0 & 0 & 0 \\
\sqrt{2} b & \bar{c} & \bar{\gamma}^{2} & 0 & 0 & 0 \\
\bar{a}^{2} & \sqrt{2} \bar{a} \bar{\gamma} & 0 & \bar{\gamma}^{2} & 0 & 0 \\
\sqrt{2} \bar{a} \bar{b} & \bar{\gamma} \bar{b}+\overline{a c} & \bar{\gamma}^{2} \bar{a} & \sqrt{2} \overline{\gamma c} & \bar{\gamma}^{3} & 0 \\
\bar{b}^{2} & \sqrt{2 b} \bar{c} & \sqrt{2}^{2} \bar{\gamma}^{2} \bar{b} & \bar{c}^{2} & \sqrt{2} \bar{\gamma}^{2} \bar{c} & \bar{\gamma}^{4}
\end{array}\right] .
$$

Then

$$
\begin{aligned}
& \operatorname{ker}\left(W_{s}-I\right)=\operatorname{Span}\left\{e_{1}\right\}, \quad \operatorname{ker}\left(W_{s}-\gamma I\right)=\operatorname{Span}\left\{\left(\frac{\sqrt{2} a}{\gamma-1}, 1,0,0,0,0\right)\right\}, \\
& \operatorname{ker}\left(W_{s}^{*}-\bar{\gamma}^{4} I\right)=\operatorname{Span}\left\{e_{6}\right\}, \quad \operatorname{ker}\left(W_{s}^{*}-\bar{\gamma}^{3} I\right)=\operatorname{Span}\left\{\left(0,0,0,0,1, \frac{\sqrt{2} \bar{c}}{(1-\bar{\gamma}) \bar{\gamma}}\right)\right\}, \\
& \operatorname{ker}\left(W_{s}-\gamma^{2} I\right)=\operatorname{Span}\left\{\left(\frac{a^{2}}{(\gamma-1)^{2}}, \frac{\sqrt{2} a}{\gamma-1}, 0,1,0,0\right),\left(\frac{\sqrt{2}\left(\gamma^{2} b-\gamma b+a c\right)}{\gamma(\gamma-1)\left(\gamma^{2}-1\right)}, \frac{c}{\gamma(\gamma-1)}, 1,0,0,0\right)\right\}, \\
& \operatorname{ker}\left(W_{s}^{*}-\bar{\gamma}^{2} I\right)=\operatorname{Span}\left\{\left(0,0,1,0, \frac{\bar{a}}{1-\bar{\gamma}^{\prime}}, \frac{\sqrt{2}(\overline{a c}+\bar{b}-\bar{\gamma} \bar{b})}{\left(1-\bar{\gamma}^{2}\right)(1-\bar{\gamma})}\right),\left(0,0,0,1, \frac{\sqrt{2} \bar{c}}{(1-\bar{\gamma}) \bar{\gamma}^{\prime}}, \frac{\bar{c}^{2}}{(1-\bar{\gamma})^{2} \bar{\gamma}^{2}}\right)\right\} .
\end{aligned}
$$

Note that W_{s} and W_{s}^{*} have a common eigenvector if and only if

$$
\operatorname{dim}\left[\operatorname{ker}\left(W_{s}-\gamma^{2} I\right)+\operatorname{ker}\left(W_{s}^{*}-\bar{\gamma}^{2} I\right)\right] \leq 3
$$

if and only if the vectors

$$
\left(\gamma^{2} b-\gamma b+a c, c, \bar{\gamma} \bar{a},(\overline{a c}+\bar{b}-\bar{\gamma} \bar{b}) \bar{\gamma}^{2}\right) \quad \text { and } \quad\left(a^{2} \gamma(\gamma+1), 2 \gamma a, 2 \bar{c}, \bar{c}^{2}(1+\bar{\gamma})\right)
$$

are linearly dependent, if and only if $a c=2 \gamma b$ and $|c|=|\gamma a|$. In that case, a common eigenvector is

$$
v:=(0,0, \sqrt{2} \gamma a,-c, 0,0) .
$$

Case 1: $a c=2 \gamma b \neq 0$ and $|c|=|\gamma a|$. Let $W_{s}=W_{1} \oplus W_{2}$, where $W_{1}=W_{s} \mid \operatorname{Span}\{v\}^{\perp}$ and $W_{2}=W_{s} \mid \operatorname{Span}\{v\}$. We will prove that W_{1} is irreducible by a contradiction. Assume $W_{1}=W_{3} \oplus W_{4}$ on $H_{3} \oplus H_{4}$ where $\operatorname{dim} H_{i} \geq 2$ for $i=3,4$, since W_{1} and W_{1}^{*} have no common eigenvector anymore. By Lemma 2.2, without loss of generality, we may assume that

$$
\operatorname{ker}\left(W_{s}-I\right)+\operatorname{ker}\left(W_{s}-\gamma I\right) \subseteq H_{3}, \quad \text { or } \quad \operatorname{Span}\left\{e_{1}, e_{2}\right\} \subseteq H_{3}
$$

It follows that $\operatorname{Span}\left\{e_{1}, e_{2}, W_{1}^{*} e_{1}, W_{1}^{*} e_{2}\right\} \subseteq H_{3}$, and so $\operatorname{dim} H_{3} \geq 4$, which is a contradiction. Therefore H_{3} and H_{4} are minimal reducing subspaces for W_{s}.

In the remaining cases, W_{s} and W_{s}^{*} have no common eigenvector. We will show that W_{s} is irreducible. Assume to the contrary that $W_{s}=W_{1} \oplus W_{2}$ on $H_{1} \oplus H_{2}$ where $\operatorname{dim} H_{i} \geq 2$ for $i=1,2$.

Case 2: $a c \neq 0$ and either $a c \neq 2 \gamma b$ or $|c| \neq|\gamma a|$. By Lemma 2.2, we may assume that

$$
\operatorname{ker}\left(W_{s}-I\right)+\operatorname{ker}\left(W_{s}-\gamma I\right) \subseteq H_{1}, \quad \text { or } \quad \operatorname{Span}\left\{e_{1}, e_{2}\right\} \subseteq H_{1}
$$

It follows that $\operatorname{Span}\left\{e_{1}, e_{2}, W_{s}^{*} e_{1}, W_{s}^{*} e_{2}\right\} \subseteq H_{1}$. If $b \neq 0$, by using Lemma 2.2 , we can show that $\operatorname{ker}\left(W_{s}^{*}-\bar{\gamma}^{3} I\right) \subseteq$ H_{1} and $\operatorname{ker}\left(W_{s}^{*}-\bar{\gamma}^{4} I\right) \in H_{1}$. Similarly, if $b=0$, then $e_{5}, e_{6} \in H_{1}$. Thus $\operatorname{Span}\left\{e_{1}, e_{2}, W_{s}^{*} e_{1}, W_{s}^{*} e_{2}, e_{5}, e_{6}\right\} \subseteq H_{1}$, so $\operatorname{dim} H_{1} \geq 5$, which is a contradiction.

Case 3: $c=0$ and $a b \neq 0$. Assume $\operatorname{ker}\left(W_{s}-I\right) \subseteq H_{1}$. Since $\operatorname{ker}\left(W_{s}-\gamma I\right)$ is not orthogonal to $\operatorname{ker}\left(W_{s}-I\right)$, it follows Lemma 2.2 that $e_{1}, e_{2} \in H_{1}$. Then $W_{s}^{*} e_{1} \in H_{1}$. It follows that neither $\operatorname{ker}\left(W_{s}^{*}-\bar{\gamma}^{4} I\right) \operatorname{nor} \operatorname{ker}\left(W_{s}^{*}-\bar{\gamma}^{3} I\right)$ is orthogonal to H_{1}. Hence $\left\{e_{1}, e_{2}, e_{5}, e_{6}, W_{s}^{*} e_{1}\right\} \subseteq H_{1}$. Then $\operatorname{dim} H_{1} \geq 5$, which is a contradiction.

Case 4. $a=0$ and $b c \neq 0$. Assume that H_{1} contains $\operatorname{ker}\left(W_{s}^{*}-\bar{\gamma}^{4} I\right)$. By a similar argument in Cases 2, we can show that $\left\{e_{5}, e_{6}, W_{s} e_{6}, e_{1}, e_{2}\right\} \subseteq H_{1}$. Since $\left\{e_{1}, e_{2}, e_{5}, e_{6}, W_{s} e_{6}\right\}$ is linearly independent, it follows that $\operatorname{dim} H_{1} \geq 5$, which is a contradiction.

Therefore W_{s} is irreducible, and the proof is complete.
When $\sigma\left(W_{s}\right)$ consists of 4 distinct numbers, the proof for the irreducibility of W_{s} is rather difficult since we have tried a number of orthogonality conditions without success. In this case when $\sigma\left(W_{s}\right)$ consists of four distinct numbers, we can assume that $\beta=1, \gamma=i$, and $\delta=i^{2}=-1$.

Case 4.7. Suppose that $\sigma\left(W_{s}\right)$ consists of 4 distinct numbers. Assume $\beta=1, \gamma=i$, and $\delta=-1$. Then W_{s} is reducible if and only if ac $=2 \mathrm{ib}$ and $|c|=|a|$, in which case, $H_{s}=H_{1} \oplus H_{2}$, where H_{1} and H_{2} are minimal reducing subspaces for W_{s} whose dimensions are 5 and 1 , respectively.
Proof. By Lemma 2.1, we have

$$
W_{s}=\left[\begin{array}{cccccc}
1 & \sqrt{2} a & \sqrt{2} b & a^{2} & \sqrt{2} a b & b^{2} \\
0 & i & c & \sqrt{2} i a & a c+i b & \sqrt{2} b c \\
0 & 0 & -1 & 0 & -a & -\sqrt{2} b \\
0 & 0 & 0 & -1 & \sqrt{2} i c & c^{2} \\
0 & 0 & 0 & 0 & -i & -\sqrt{2} c \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \quad W_{s}^{*}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
\sqrt{2} \bar{a} & -i & 0 & 0 & 0 & 0 \\
\sqrt{2} \bar{b} & \bar{c} & -1 & 0 & 0 & 0 \\
\bar{a}^{2} & -\sqrt{2} i \bar{a} & 0 & -1 & 0 & 0 \\
\sqrt{2} \bar{a} \bar{b} & \overline{a c}-i \bar{b} & -\bar{a} & -\sqrt{2} i \bar{c} & i & 0 \\
\bar{b}^{2} & \sqrt{2} \bar{c} \bar{c} & -\sqrt{2} \bar{b} & \bar{c}^{2} & -\sqrt{2} \bar{c} & 1
\end{array}\right] .
$$

Then

$$
\begin{aligned}
& \operatorname{ker}\left(W_{s}-I\right)=\operatorname{Span}\left\{e_{1}, u_{1}:=\left(0, \frac{(1-i) b c+i a c^{2}}{2 \sqrt{2}}, \frac{(1-i) a c-2 b}{2 \sqrt{2}}, \frac{-i c^{2}}{2}, \frac{(i-1) c}{\sqrt{2}}, 1\right)\right\}, \\
& \operatorname{ker}\left(W_{s}^{*}-I\right)=\operatorname{Span}\left\{e_{6}, u_{2}:=\left(1, \frac{(1-i) \bar{a}}{\sqrt{2}}, \frac{(1-i) \overline{a c}+2 \bar{b}}{2 \sqrt{2}}, \frac{-i \bar{a}^{2}}{2}, \frac{(1-i) \bar{a} \bar{b}-i \bar{a}^{2} \bar{c}}{2 \sqrt{2}}, 0\right)\right\}, \\
& \operatorname{ker}\left(W_{s}+I\right)=\operatorname{Span}\left\{\left(\frac{a^{2}}{2}, \frac{-(1+i) a}{\sqrt{2}}, 0,1,0,0\right),\left(\frac{(1-i) a c-2 b}{2 \sqrt{2}}, \frac{(i-1) c}{2}, 1,0,0,0\right)\right\}, \\
& \operatorname{ker}\left(W_{s}^{*}+I\right)=\operatorname{Span}\left\{\left(0,0,1,0, \frac{(1-i) \bar{a}}{2}, \frac{(1-i) \overline{a c}+2 \bar{b}}{2 \sqrt{2}}\right),\left(0,0,0,1, \frac{(1+i) \bar{c}}{\sqrt{2}}, \frac{i \bar{c}^{2}}{2}\right)\right\}, \\
& \operatorname{ker}\left(W_{s}+i I\right)=\operatorname{Span}\left\{\left(\frac{(1+i) a b-a^{2} c}{2 \sqrt{2}}, \frac{(3-i) a c-2 b}{4}, \frac{(1+i) a}{-2}, \frac{(i-1) c}{\sqrt{2}}, 1,0\right)\right\}, \\
& \operatorname{ker}\left(W_{s}^{*}+i I\right)=\operatorname{Span}\left\{\left(0,1, \frac{(1+i) \bar{c}}{2}, \frac{(1-i) \bar{a}}{\sqrt{2}}, \frac{(3-i) \overline{a c}+2 \bar{b}}{4}, \frac{\overline{a c}^{2}+(1+i) \bar{b} \bar{c}}{2 \sqrt{2}}\right)\right\}, \\
& \operatorname{ker}\left(W_{s}-i I\right)=\operatorname{Span}\left\{\left(\frac{(1+i) a}{-\sqrt{2}}, 1,0,0,0,0\right)\right\}, \operatorname{ker}\left(W_{s}^{*}-i I\right)=\operatorname{Span}\left\{\left(0,0,0,0,1, \frac{(1+i) \bar{c}}{\sqrt{2}}\right)\right\} .
\end{aligned}
$$

Note that $\operatorname{dim}\left[\operatorname{ker}\left(W_{s}-I\right)+\operatorname{ker}\left(W_{s}^{*}-I\right)\right]=4$, and

$$
\operatorname{dim}\left[\operatorname{ker}\left(W_{s}+I\right)+\operatorname{ker}\left(W_{s}^{*}+I\right)\right] \leq 3
$$

if and only if $a c=2 i b$ and $|c|=|a|$. These are the necessary and sufficient condition for W_{s} and W_{s}^{*} to have a common eigenvector. In that case, a common eigenvector is

$$
v:=(0,0, \sqrt{2} a, i c, 0,0) .
$$

Case 1: $a c=2 i b \neq 0$ and $|c|=|a|$. Let $W_{s}=W_{1} \oplus W_{2}$, where $W_{1}=W_{s} \mid \operatorname{Span}\{v\}^{\perp}$ and $W_{2}=W_{s} \mid \operatorname{Span}\{v\}$. We will prove that W_{1} is irreducible. Assume $W_{1}=W_{3} \oplus W_{4}$ on $H_{3} \oplus H_{4}$ where $\operatorname{dim} H_{i} \geq 2$ for $i=3,4$, since W_{1} and W_{1}^{*} have no common eigenvector anymore. Without loss of generality, we may assume that $\operatorname{ker}\left(W_{s}-i I\right) \subseteq H_{3}$. Note that

$$
\operatorname{ker}\left(W_{s}+i I\right)=\operatorname{Span}\left\{\left(\frac{(1-i) a b}{2 \sqrt{2}}, \frac{3 i b}{2}, \frac{(1+i) a}{-2}, \frac{(i-1) c}{\sqrt{2}}, 1,0\right)\right\}
$$

Since $a b c \neq 0, \operatorname{ker}\left(W_{s}+i I\right)$ is not orthogonal to $\operatorname{ker}\left(W_{s}-i I\right)$, and so $\operatorname{ker}\left(W_{s}+i I\right) \subseteq H_{3}$ by Lemma 2.2. By the same argument as above,

$$
\operatorname{ker}\left(W_{s}-i I\right)+\operatorname{ker}\left(W_{s}+i I\right)+\operatorname{ker}\left(W_{s}^{*}+i I\right)+\operatorname{ker}\left(W_{s}^{*}-i I\right) \subseteq H_{3}, \quad \text { and so } \quad \operatorname{dim} H_{3} \geq 4
$$

which is a contradiction. Therefore H_{3} and H_{4} are minimal reducing subspaces for W_{s}.
In the remaining cases, W_{s} and W_{s}^{*} have no common eigenvector. We will show that W_{s} is irreducible. Assume to the contrary that $W_{s}=W_{1} \oplus W_{2}$ on $H_{1} \oplus H_{2}$ where $\operatorname{dim} H_{i} \geq 2$ for $i=1,2$.

Case 2: $a c \neq 0$ and either $a c \neq 2 i b$ or $|c| \neq|a|$. Without loss of generality, assume

$$
\operatorname{ker}\left(W_{s}-i I\right) \subseteq H_{1}
$$

Since $\operatorname{ker}\left(W_{s}^{*}+i I\right)$ is not orthogonal to $\operatorname{ker}\left(W_{s}-i I\right)$, it follows that $\operatorname{ker}\left(W_{s}^{*}+i I\right) \subseteq H_{1}$. Since $a c \neq 0$, if $\operatorname{ker}\left(W_{s}-i I\right) \perp \operatorname{ker}\left(W_{s}+i I\right)$ and $\operatorname{ker}\left(W_{s}^{*}-i I\right) \perp \operatorname{ker}\left(W_{s}^{*}+i I\right)$, then

$$
\frac{2 b}{a c}+i=\frac{|a|^{2}+3}{|a|^{2}+1}=-\frac{|c|^{2}+3}{|c|^{2}+1}
$$

which is a contradiction. Thus, by using Lemma 2.2, we can show that

$$
\operatorname{ker}\left(W_{s}-i I\right)+\operatorname{ker}\left(W_{s}^{*}+i I\right)+\operatorname{ker}\left(W_{s}+i I\right)+\operatorname{ker}\left(W_{s}^{*}-i I\right) \subseteq H_{1} .
$$

Since $a \neq 0$, neither $\operatorname{ker}\left(W_{s}-I\right)$ nor $\operatorname{ker}\left(W_{s}+I\right)$ is orthogonal to $\operatorname{ker}\left(W_{s}-i I\right)$. Thus $\sigma\left(W_{1}\right)=\{1,-1, i,-i\}$ by Lemma 2.2. Since $\pm 1 \in \sigma\left(W_{1}\right)$ and $\operatorname{dim} H_{2} \geq 2$, it follows that $\sigma\left(W_{2}\right)=\{-1,1\}$. Let $w_{1} \in \operatorname{ker}\left(W_{2}-I\right)$ and $w_{2} \in \operatorname{ker}\left(W_{2}^{*}-I\right)$. Then

$$
w_{1}=c_{1} e_{1}+c_{2} u_{1} \quad \text { and } \quad w_{2}=d_{1} e_{6}+d_{2} u_{2}
$$

for some constants $c_{1}, c_{2}, d_{1}, d_{2}$. Since $w_{1}, w_{2} \perp H_{1}$, if we assume that $c_{2} \neq 0$ and $d_{2} \neq 0$, then

$$
(1+i)(\bar{a} b / c-2)=|a|^{2} \quad \text { and } \quad(1-i)(b \bar{c} / a+2)=-|c|^{2}
$$

But we can check that these imply a contradiction. Thus $c_{2}=0$ or $d_{2}=0$. That is, either e_{1} or e_{6} belongs to H_{2}, which contradicts to the fact that $H_{2} \perp H_{1}$.

Case 3: $c=0$ and $a b \neq 0$. Then

$$
\begin{aligned}
& \operatorname{ker}\left(W_{s}-i I\right)=\operatorname{Span}\left\{\left(\frac{(1+i) a}{-\sqrt{2}}, 1,0,0,0,0\right)\right\}, \quad \operatorname{ker}\left(W_{s}^{*}-i I\right)=\operatorname{Span}\left\{e_{5}\right\}, \\
& \operatorname{ker}\left(W_{s}+i I\right)=\operatorname{Span}\left\{\left(\frac{(1+i) a b}{2 \sqrt{2}}, \frac{-b}{2}, \frac{(1+i) a}{-2}, 0,1,0\right)\right\} \\
& \operatorname{ker}\left(W_{s}^{*}+i I\right)=\operatorname{Span}\left\{\left(0,1,0, \frac{(1-i) \bar{a}}{\sqrt{2}}, \frac{\bar{b}}{2}, 0\right)\right\} .
\end{aligned}
$$

Assume that H_{1} contains $\operatorname{ker}\left(W_{s}^{*}-i I\right)$. By using Lemma 2.2, we can show that

$$
\operatorname{ker}\left(W_{s}-i I\right)+\operatorname{ker}\left(W_{s}+i I\right)+\operatorname{ker}\left(W_{s}^{*}+i I\right)+\operatorname{ker}\left(W_{s}^{*}-i I\right) \subseteq H_{1}
$$

Also, $W_{s} e_{5} \in H_{1}$. It follows that $\operatorname{dim} H_{1} \geq 5$, which is a contradiction.
Case 4: $a=0$ and $b c \neq 0$. By the same argument as in Case 3, we can show that $\operatorname{dim} H_{1} \geq 5$, which is a contradiction.

Therefore W_{s} is irreducible, and the proof is complete.
In Theorem $1.5(\mathrm{i})$, we assumed that $\sigma(A)$ is not equal to $\left\{\lambda, \lambda \omega, \lambda \omega^{2}\right\}$. We pretty sure that the theorem is true for this case.

References

[1] C. Gu, J. Park, C. Peak, and J. Rowley, Decomposition of the Kronecker sums of matrices into a direct sum of irreducible matrices, Bull. Korean Math. Soc., 58 (2021), no. 3, 637-657.
[2] C. Gu, A. Mendes, and J. Park, Reducing subspaces of tensor products of operators and representation of permutation group, in preparation.
[3] P. R. Halmos, Irreducible operators, Michigan Math J. 15 (1968) 215-223.
[4] C. S. Kubrusly, Regular lattices of tensor products, Linear Algebra Appl. 438 (2013) 428-435.
[5] W. Tung, Group Theory in Physics, World Scientific, Singapore, 1985.
[6] D. Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl. 21 (1976) 97-113.

[^0]: 2010 Mathematics Subject Classification. Primary 47A15, 15A21; Secondary 47L40, 15A69
 Keywords. irreducible operator, unitary equivalence, tensor product, symmetric tensor
 Received: 28 May 2020; Accepted: 11 March 2021
 Communicated by Dragan S. Djordjević
 Corresponding author: Jaehui Park
 Email addresses: cgu@calpoly.edu (Caixing Gu), nephenjia@snu. ac.kr (Jaehui Park)

