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Abstract. In this paper we decompose (under unitary equivalence) the tensor product A ⊕ A into a direct
sum of irreducible matrices, when A is a 3 × 3 matrix.

1. Introduction

Let H be a complex separable Hilbert space and B(H) the algebra of all bounded linear operators on H.
A reducing subspace M for A ∈ B(H) is a closed subspace of H which is invariant for both A and A∗. An
operator A ∈ B(H) is said to be irreducible if A has no nontrivial reducing subspace. A reducing subspace
M for A is said to be minimal if the restriction A|M is irreducible.

It is known that the set of irreducible operators is dense in B(H) (cf. [3]) and its complement (the set of
all reducible operators) is also dense in B(H) (cf. [6]).

Let H⊗H be the tensor product Hilbert space, and let A,B ∈ B(H). If either A or B is reducible, then it is
clear that the tensor products A⊗ B and A⊗ I + I ⊗ B are reducible operators in B(H ⊗H). However, if both
A and B are irreducible, we cannot guarantee that A ⊗ B and A ⊗ I + I ⊗ B are irreducible (cf. [4]). We focus
on the case A = B. Let A ∈ B(H) be irreducible, and let

W(A) := A ⊗ A,
T(A) := A ⊗ I + I ⊗ A,

where I = IH denotes the identity operator on H. The operators W(A) and T(A) are always reducible. Two
reducing subspaces are

Hs := Span{h ⊗ h : h ∈ H},
Has := Span{h ⊗ 1 − 1 ⊗ h : 1, h ∈ H},

where “Span” means the closed linear span in H ⊗H. It is easy to see that H ⊗H = Hs ⊕Has, and Hs and Has
are two reducing subspaces of both W(A) and T(A). Let

Ws(A) := W(A)|Hs, Was(A) := W(A)|Has,

Ts(A) := T(A)|Hs, Tas(A) := T(A)|Has.

We record the above observation as a lemma.
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Lemma 1.1. If A ∈ B(H), then T(A) = Ts(A) ⊕ Tas(A) and W(A) = Ws(A) ⊕Was(A) on Hs ⊕Has.

Proof. We include a more abstract proof which indicates more general results hold for operators invariant
under the permutation group on the tensor product H ⊗ · · · ⊗H (cf. [2], [5]). Let σ denote the permutation
of {1, 2}, i.e., σ = (1 2). Let Uσ be the unitary operator on H ⊗ H defined by Uσ(h ⊗ 1) = 1 ⊗ h. Then U2

σ = I.
The eigenvalues of Uσ are 1 and −1, and the corresponding eigenspaces are Hs and Has, respectively. Since
W(A)Uσ = UσW(A), it follows that both Hs and Has are reducing subspaces of W(A). Similarly, both Hs and
Has are reducing subspaces of T(A).

The above lemma motivates the following questions.

Problem 1.2. For which irreducible operator A are both Ws(A) and Was(A) irreducible?
For which irreducible operator A are both Ts(A) and Tas(A) irreducible?

For a square matrix A, the operator T(A) is the Kronecker sum A�A of A with itself. The decomposition
of T(A) when A is 3 × 3 matrix has been characterized in the paper [1].

Suppose that dim H = 3, i.e., H � C3, where “�” stands for unitary equivalence. Then we may regard
an operator A ∈ B(H) as a 3 × 3 matrix with complex entries. Note that Hs is the subspace of symmetric
tensors and Has is the subspace of anti-symmetric tensors. If {e1, e2, e3} is any orthonormal basis for H, then
Hs and Has have the following orthonormal bases:

Hs = Span
{
en ⊗ en,

1
√

2
(en ⊗ em + em ⊗ en) : 1 ≤ n ≤ 3, n < m ≤ 3

}
,

Has = Span
{ 1
√

2
(en ⊗ em − em ⊗ en) : 1 ≤ n ≤ 3, n < m ≤ 3

}
.

Theorem 1.3 ([1]). Let A be a 3 × 3 irreducible matrix. Then

(i) Ts(A) is reducible if and only if A is unitarily equivalent to a matrix of the form

αI +

0 a 0
0 d a
0 0 2d

 ,
where α, d, a ∈ C and a , 0. In this case, Ts(A) has two minimal reducing subspaces H1 and H2 whose
dimensions are 5 and 1, respectively.

(ii) Tas(A) is always irreducible.

In this paper we resolve Problem 1.2 for Ws and Was when A is an arbitrary 3 × 3 complex matrix by
proving the following two theorems. For complex numbers a, b, c, and δ, let

J(δ, a, b, c) =

0 a b
0 0 c
0 0 δ

 .
Theorem 1.4. Let A be a 3 × 3 irreducible matrix. Assume that A is not invertible. Then

(i) Ws(A) is reducible. Spectifically, Hs = H1 ⊕ H2, where H1 and H2 are reducing subspaces for Ws(A) whose
dimensions are 5 and 1, respectively.

(ii) Ws(A)|H1 is reducible if and only if either A � J(0, a, 0, c) or A � J(δ, a, 0, c) with δ , 0 and |a|2 = |c|2 + |δ|2. In
this case, H1 = K1 ⊕ K2, where K1 and K2 are minimal reducing subspaces for Ws(A)|H1 whose dimensions are
3 and 2, respectively.

(iii) Was(A) is reducible. In this case, Has = K1 ⊕ K2, where K1 and K2 are minimal reducing subspaces for Was(A)
whose dimensions are 2 and 1, respectively.
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When A is invertible, the results for Ws(A) and Was(A) are in agreement with Ts(A) and Tas(A).

Theorem 1.5. Let A be a 3 × 3 irreducible matrix. Assume that A is invertible and σ(A) , {λ, λω, λω2
}, where

λ ∈ C and ω = e2πi/3. Then
(i) Ws(A) is reducible if and only if for some nonzero numbers α and a, either

A � α

1 a(1 − λ) a2(1 − λ)2/2
0 λ aλ(1 − λ)
0 0 λ2

 for λ , 1 or A � α

1 2a 2a2

0 1 2a
0 0 1

 .
In this case, Hs = H1 ⊕H2, where H1 and H2 are minimal reducing subspaces for Ws(A) whose dimensions are
5 and 1, respectively.

(ii) Was(A) is irreducible.

Here is the outline of the paper. In Section 2, we establish the matrix representation of Ws(A) and Was(A),
and observe several lemmas. Section 3 is devoted to the proof of Theorem 1.4. Section 4 is devoted to the
proof of Theorem 1.5.

2. Preliminaries

Note that Ws(A) (resp. Was(A)) is irreducible if and only if Ws(U∗AU) (resp. Was(U∗AU)) is irreducible,
when U is unitary. Hence, by Schur’s unitary triangularization, we can assume that A is an upper triangular
irreducible matrix. If α , 0, then Ws(αA) = α2Ws(A), and so Ws(A) is irreducible if and only if Ws(αA) is
irreducible. This allows us to assume that one of the nonzero eigenvalues of A is 1, if it exists. We introduce
some notation. Let

A =

β a b
0 γ c
0 0 δ

 , W = W(A) = A ⊗ A �

[
Ws 0
0 Was

]
, Ws = Ws(A), Was = Was(A),

f1 = e1 ⊗ e1, f2 =
1
√

2
(e1 ⊗ e2 + e2 ⊗ e1), f3 =

1
√

2
(e1 ⊗ e3 + e3 ⊗ e1),

f4 = e2 ⊗ e2, f5 =
1
√

2
(e2 ⊗ e3 + e3 ⊗ e2), f6 = e3 ⊗ e3,

11 =
1
√

2
(e1 ⊗ e2 − e2 ⊗ e1), 12 =

1
√

2
(e1 ⊗ e3 − e3 ⊗ e1), 13 =

1
√

2
(e2 ⊗ e3 − e3 ⊗ e2).

Then { f1, f2, f3, f4, f5, f6} and {11, 12, 13} are orthonormal bases for Hs and Has, respectively. By direct compu-
tation, we have the following matrix representations of Ws and Was under these bases.

Lemma 2.1. With respect to the orthonormal bases { f1, f2, f3, f4, f5, f6} and {11, 12, 13}, we have

Ws =



β2
√

2βa
√

2βb a2
√

2ab b2

0 βγ βc
√

2γa ac + γb
√

2bc
0 0 βδ 0 δa

√
2δb

0 0 0 γ2
√

2γc c2

0 0 0 0 γδ
√

2δc
0 0 0 0 0 δ2


and Was =

βγ βc ac − γb
0 βδ δa
0 0 γδ

 .

Proof. The proof is a routine computation. For example,

W(e1 ⊗ e2 ± e2 ⊗ e1) = Ae1 ⊗ Ae2 ± Ae2 ⊗ Ae1

= (βe1) ⊗ (ae1 + γe2) ± (ae1 + γe2) ⊗ (βe1)
= βa(e1 ⊗ e1 ± e1 ⊗ e1) + βγ(e1 ⊗ e2 ± e2 ⊗ e1),

and so Ws f2 =
√

2βa f1 + βγ f2 and Was11 = βγ11. We omit the remaining computation.
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The following simple observation is the key lemma for the main theorems.

Lemma 2.2. Suppose that B is reducible and B = B1⊕B2 on H1⊕H2. If λ is an eigenvalue of B, and if the eigenspace
ker(B−λI) of B corresponding to λ is not orthogonal to H1, then λ is an eigenvalue of B1 and ker(B−λI)∩H1 , {0}.
In particular, if ker(B − λI) 6⊥ H1 and dim ker(B − λI) = 1, then ker(B − λI) ⊆ H1.

Proof. Since both H1 and H2 are invariant for B, it follows that

ker(B − λI) = [ker(B − λI) ∩H1] ⊕ [ker(B − λI) ∩H2]
= [ker(B1 − λI) ∩H1] ⊕ [ker(B2 − λI) ∩H2].

Thus if ker(B − λI) 6⊥ H1, then ker(B − λI) * H2, and hence ker(B − λI) ∩H1 , {0} and λ ∈ σ(B1).

Since we are dealing with a linear transformation acting on Hs and { f1, f2, f3, f4, f5, f6} is an orthonormal
basis for Hs, we will denote a vector v =

∑6
i=1 xi fi in Hs by (x1, . . . , x6). In other words, we will directly work

with the matrix represented by Ts(A). For example, when we say e1 is in ker Ws, it actually means f1 is in
ker Ws.

We divide the proof of Main Theorems into three big cases according to whether A has one or two, or
three distinct eigenvalues. In each big case we further divide the proof into several small cases. We have
spent much time to consolidate and unify different cases, but we still have a number of cases to discuss
to ensure the completeness and accuracy of our results. The following simple observation will be used
repeatedly, sometimes without explicit mentioning. Let σ(B) denote the set of (distinct) eigenvalues of B.
For several subspaces H1, . . . ,Hk of H, we denote by

∨k
i=1 Hi the smallest subspace of H containing all Hi’s.

An alternative notation is
∨k

i=1 Hi = H1 + H2 + · · · + Hk.
We record, without proof, the following obvious characterization of one-dimensional reducing sub-

spaces.

Lemma 2.3. Let v be a nonzero vector in H. Then Span{v} is a reducing subspace of B if and only if there exists
λ ∈ σ(B) such that

Bv = λv and B∗v = λv.

In other words, there is a one-dimensional reducing subspace for B if and only if B and B∗ have a common eigenvector.

We also need the following lemma:

Lemma 2.4. Let

A =

β a b
0 γ c
0 0 δ

 .
Then the following statements hold.

(i) If A has three distinct eigenvalues, then A is reducible if and only if two of a, b, c are zero.
(iia) If β = γ , δ, then A is reducible if and only if a = 0 or b = c = 0.
(iib) If β , γ = δ, then A is reducible if and only if c = 0 or a = b = 0.
(iic) If β = δ , γ, then A is reducible if and only if (γ − β)b = ac or a = c = 0.
(iii) If A has one distinct eigenvalue, then A is reducible if and only if ac = 0.

Proof. The proof is a routine computation, and we omit the proof. (For the detail of the proof, see [1].)
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3. Proof of Theorem 1.4

Suppose that A is a 3×3 irreducible matrix which is not invertible. By Schur’s unitary triangularization,
we may assume that

A =

0 a b
0 γ c
0 0 δ

 .
We first prove the statement (iii) of Theorem 1.4: Was is reducible and Has = K1 ⊕ K2, where K1 and K2 are
minimal reducing subspaces for Was whose dimensions are 2 and 1, respectively.

Proof. By Lemma 2.1,

Was =

0 0 ac − γb
0 0 δa
0 0 γδ

 .
It follows from Lemma 2.4 that Was is reducible. Hence Has = K1 ⊕ K2, where K1 and K2 are reducing
subspaces for Was with dim K1 = 2 and dim K2 = 1. Assume that K2 is not a minimal reducing subspace
for Was. Then Was is diagonalizable, and so it is normal, i.e., W∗

asWas = WasW∗
as. By computation, we obtain

ac − γb = δa = γδ = 0. By using Lemma 2.4, it is easy to check that A is reducible, which is a contradiction.
Hence K1 is a minimal reducing subspace for Was. This proves Theorem 1.4(iii).

We will divide the proof of Theorem 1.4(i) and (ii) into three cases according the number of distinct
eigenvalues of A. By scaling, we can assume that one of the nonzero eigenvalue of A is 1. Then we will
discuss four cases

A =

0 a b
0 1 c
0 0 δ

 with δ , 0, 1,

0 a b
0 1 c
0 0 1

 ,
0 a b
0 0 c
0 0 1

 ,
0 a b
0 0 c
0 0 0

 .
We first deal with the case when A has three distinct eigenvalues.

Case 3.1. Suppose that

A =

0 a b
0 1 c
0 0 δ

 is irreducible with δ , 0, 1.

Then Hs = H1 ⊕H2, where H1 and H2 are minimal reducing subspaces for Ws with dim H1 = 5 and dim H2 = 1.

Proof. By Lemma 2.1, we have

Ws =



0 0 0 a2
√

2ab b2

0 0 0
√

2a ac + b
√

2bc
0 0 0 0 δa

√
2δb

0 0 0 1
√

2c c2

0 0 0 0 δ
√

2δc
0 0 0 0 0 δ2


, W∗

s =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
a2 √

2a 0 1 0 0
√

2ab ac + b δa
√

2c δ 0

b
2 √

2bc
√

2δb c2 √
2δc δ

2


.

Since ker Ws = Span{e1, e2, e3},

ker Ws ∩ ker W∗ = Span{v}, where v =
(√

2,−a,
ac − b

δ
, 0, 0, 0

)
.
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Therefore Ws = W1 ⊕ W2, where W1 = Ws| Span{v}⊥ and W2 = Ws| Span{v}. We will prove that W1 is
irreducible by a contradiction. Assume W1 = W3 ⊕W4 on H3 ⊕ H4 where dim Hi ≥ 2 for i = 3, 4, since W1
and W∗

1 have no common eigenvector anymore. Since A is irreducible, one of the following holds.

(i) ac , 0, (ii) a = 0 and bc , 0, (iii) c = 0 and ab , 0.

Case 1: ac , 0. Then

ker(W∗

s − δ
2
I) = Span{e6}, ker(W∗

s − δI) = Span
{(

0, 0, 0, 0, 1,

√
2c

1 − δ

)}
,

ker(W∗

s − I) = Span
{(

0, 0, 0, 1,

√
2c

1 − δ
,

c2

(1 − δ)2

)}
.

Without loss of generality, assume

ker(W∗

s − δ
2
I) = Span{e6} ⊆ H3. (1)

Since c , 0, ker(W∗
s −δI) is not orthogonal to ker(W∗

s −δ
2
I), and ker(W∗

s − I) is not orthogonal to ker(W∗
s −δ

2I).
Therefore, by (1) and Lemma 2.2,

ker(W∗

s − λ
2
I) + ker(W∗

s − λI) + ker(W∗

s − I) ⊆ H3, and Span{e4, e5, e6} ⊆ H3. (2)

Since H3 is reducing for Ws, so Wse4 = (a2,
√

2a, 0, 1, 0, 0, 0) ∈ H4. Since a , 0, it is easy to see that

dim H3 ≥ dim Span{e4, e5, e6,Wse4} = 4,

which is a contradiction to dim H4 ≥ 2.
Case 2: a = 0 and bc , 0. As in the previous case, (2) still holds since c , 0. Since H3 is reducing for Ws,

we have Wse5 = (0, b, 0,
√

2c, λ, 0) ∈ H3. Since b , 0, it is easy to see that

dim H3 ≥ dim Span{e4, e5, e6,Wse5} = 4,

which is a contradiction to dim H4 ≥ 2.
Case 3: ab , 0 and c = 0. Then

Ws =



0 0 0 a2
√

2ab b2

0 0 0
√

2a b 0
0 0 0 0 δa

√
2δb

0 0 0 1 0 0
0 0 0 0 δ 0
0 0 0 0 0 δ2


, W∗

s =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
a2 √

2a 0 1 0 0
√

2ab b δa 0 δ 0

b
2

0
√

2δb 0 0 δ
2


.

By a direct computation,

ker(W∗

s − I) = Span{e4}, ker(W∗

s − δ
2
I) = Span{e6}

ker(Ws − I) = Span
{
(a2,
√

2a, 0, 1, 0, 0)
}
,

ker(Ws − δ
2I) = Span

{(b2

δ2 , 0,

√
2b
δ
, 0, 0, 1

)}
.

Without loss of generality, assume

ker(Ws − I) ⊆ H3. (3)
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Since ab , 0, ker(Ws − λ2I) is not orthogonal to ker(Ws − I). Therefore, by (3) and Lemma 2.2,

ker(Ws − I) + ker(Ws − λ
2I) ⊆ H3, and {1, λ2

} ⊆ σ(W3).

Hence

ker(W∗

s − I) + ker(W∗

s − λ
2
I) + ker(Ws − I) + ker(Ws − λ

2I) ⊆ H3.

Since ab , 0, it is easy to see the subspace on the left side of the above relation has dimension 4. Hence
dim H3 ≥ 4, which is a contradiction to dim(H2) ≥ 2.

We conclude that W1 is irreducible, and the proof of Case 3.1 is complete.

We next disscuss the case when A is not invertible and A has two distinct eigenvalues. The proofs in
this case are more involved. By scaling we need to discuss two cases:

A =

0 a b
0 0 c
0 0 1

 ,
0 a b
0 1 c
0 0 1

 .
Case 3.2. Suppose that

A =

0 a b
0 0 c
0 0 1

 is irreucible.

Then Hs = H1 ⊕H2, where H1 and H2 are reducing subspaces for Ws with dim H1 = 5 and dim H2 = 1. Moreover,
Ws|H1 is reducible if and only if b = 0 and |a|2 = |c|2 + 1, in which case, H1 = H3 ⊕ H4, where dim H3 = 3,
dim H4 = 2, and both H3 and H4 are minimal reducing subspaces for Ws|H1.

Proof. By Lemma 2.1,

Ws =



0 0 0 a2
√

2ab b2

0 0 0 0 ac
√

2bc
0 0 0 0 a

√
2b

0 0 0 0 0 c2

0 0 0 0 0
√

2c
0 0 0 0 0 1


, W∗

s =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
a2 0 0 0 0 0
√

2ab ac a 0 0 0

b
2 √

2bc
√

2b c2 √
2c 1


.

Since A is irreducible, we have a , 0. Hence ker Ws = Span{e1, e2, e3} and

v := (0, 1,−c, 0, 0, 0) ∈ ker W∗

s ∩ ker Ws

is a common eigenvector. Therefore Ws = W1 ⊕W2, where W1 = Ws|Span{v}⊥ and W2 = Ws|Span {v}. Since
A is irreducible, we have two cases:

(i) ab , 0, (ii) b = 0 and ac , 0.

Case 1: a , 0 and b , 0. We will prove that W1 is irreducible by a contradiction. Assume W1 = W3 ⊕W4
on H3 ⊕ H4 where dim Hi ≥ 2 for i = 3, 4, since W1 and W∗

1 have no common eigenvector anymore. Note
that

ker(W∗

s − I) = Span{e6}, ker W∗

s ∩ Span{v}⊥ = Span{v1, v2},

where v1 = (0, 0, 0,
√

2,−c, 0) and v2 = (0, 0, 0, c,
√

2,−c(|c|2 + 2)). Without loss of generality, assume

ker(W∗

s − I) = Span{e6} ⊆ H3.



C. Gu, J. Park / Filomat 35:1 (2021), 105–124 112

Then σ(W3) = {0, 1} and σ(W4) = {0}. Note that v1 is a vector in ker W∗
s ∩ Span{v}⊥ that is orthgonal to

ker(W∗
s − I). Hence v1 ∈ H4. It follows that v2 ∈ H3. Let

w2 = v2 + c(|c|2 + 2)e6 = (0, 0, 0, c,
√

2, 0) ∈ H3.

Then

w3 =
Wse6 − cw2 − e6

b
= (b,

√

2c,
√

2, 0, 0, 0) ∈ H3, w4 =
Wsw2

a
= (ac + 2b,

√

2c,
√

2, 0, 0, 0) ∈ H3.

Since Span{e6,w2,w3,w4} ⊆ H3, {e6,w2,w3,w4} is linearly dependent (otherwise dim H3 ≥ 4, a contradiction).
It follows that ac + b = 0. But then W∗

sw3 = a(0, 0, 0,−c|a|2,
√

2(1 + |b|2 + |c|2), ?) ∈ H3 and {e6,w2,w3,W∗
sw3} is

linearly independent. Thus dim H3 ≥ 4, which is a contradiction.
Case 2: b = 0 and ac , 0. We will prove that W1 is reducible if and only if |a|2 = |c|2 + 1. Assume

W1 = W3 ⊕W4 on H3 ⊕H4 where dim Hi ≥ 2 for i = 3, 4. Assume that ker(W∗
s − I) = Span{e6} ⊆ H3. Then

v1 =
1
c

(Wse6 − e6) = (0, 0, 0, c,
√

2, 0) ∈ H3,

v2 =
1
a

Wsv1 = (ac,
√

2c,
√

2, 0, 0, 0) ∈ H3,

v3 =
1
a

W∗

sv2 = (0, 0, 0, |a|2c,
√

2(1 + |c|2), 0) ∈ H3.

If |a|2 , 1 + |c|2, then {e6, v1, v2, v3} is linearly independent, and so dim H3 ≥ 4, which is a contradiction. If
|a|2 = 1 + |c|2, then

H3 = Span{e6, v1, v2},

H4 = Span
{
(0, 0, 0,

√

2,−c, 0,u2),
(
−

√
2(1 + |c|2)

ac
, c, 1, 0, 0, 0

)}
.

Similarly we can check that H3 and H4 are minimal reducing subspaces. We omit the details.

It is surprising that the proof of the next case is easy even though the A in this case and the A in the above
case are related in that they both have two distinct eigenvalues. This indicates that for Ws, the multiplicity
of the zero eigenvalue also plays an important role.

Case 3.3. Suppose that

A =

0 a b
0 1 c
0 0 1

 is irreducible.

Then Hs = H1 ⊕H2, where H1 and H2 are minimal reducing subspaces for Ws with dim H1 = 5 and dim H2 = 1.

Proof. Note that A is irreducible if and only if c , 0 and either a , 0 or b , 0. Also, by Lemma 2.1,

Ws =



0 0 0 a2
√

2ab b2

0 0 0
√

2a ac + b
√

2bc
0 0 0 0 a

√
2b

0 0 0 1
√

2c c2

0 0 0 0 1
√

2c
0 0 0 0 0 1


, W∗

s =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
a2 √

2a 0 1 0 0
√

2ab ac + b a
√

2c 1 0

b
2 √

2bc
√

2b c2 √
2c 1


.

Since ker Ws = Span{e1, e2, e3}, it can be check that

v :=
(
1,−

a
√

2
,

ac − b
√

2
, 0, 0, 0

)
∈ ker Ws ∩ ker W∗

s
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is the only common eigenvector (up to scalar). Therefore Ws = W1 ⊕W2 where W1 = Ws| Span{v}⊥ and
W2 = Ws| Span{v}. We will show W1 is irreducible. Assume W1 = W3 ⊕W4 on H3 ⊕H4 where dim Hi ≥ 2 for
i = 3, 4. Without loss of generality, let

ker(W1 − I) = ker(Ws − I) = Span{u} ⊆ H3, where u = (a2,
√

2a, 0, 1, 0, 0).

Since ker(W1 − I) is one-dimensional, σ(W3) = {1} and σ(W4) = {0}. Hence u ⊥ ker W1, where

ker W1 = ker(Ws) ∩ Span{v}⊥ = Span
{( a
√

2
, 1, 0, 0, 0, 0

)
,
(
−

ac − b
√

2
, 0, 1, 0, 0, 0

)}
.

Therefore

a2 a
√

2
+
√

2a = 0.

Hence a = 0. It follows that u = e4 ∈ H3. Since W∗
se4 = (0, 0, 0, 1,

√
2c, c2) ∈ H3, we have (0, 0, 0, 0,

√
2, c) ∈ H3.

Since W∗
s(0, 0, 0, 0,

√
2, c) = (0, 0, 0, 0,

√
2, 3c) ∈ H3, we have e5, e6 ∈ H3. Since b , 0, it is easy to see that

{e4, e5, e6,Wse6} is linearly independent. Thus dim H3 ≥ 4, which is a contradiction to dim H4 ≥ 2.

Finally, we deal with the case when A is irreucible, not invertible, and A has one distinct eigenvalue,
i.e., σ(A) = {0}. By scaling, we can assume that a = 1.

Case 3.4. Suppose that

A =

0 1 b
0 0 c
0 0 0

 is irreducible with c , 0.

Then Hs = H1 ⊕H2, where H1 and H2 are reducing subspaces for Ws with dim H1 = 5 and dim H2 = 1. Moreover,
Ws|H1 is reducible if and only if b = 0, in which case, H1 = H3 ⊕H4, where dim H3 = 3, dim H4 = 2, and both H3
and H4 are minimal reducing subspaces for Ws|H1.

Proof. By Lemma 2.1,

Ws =



0 0 0 1
√

2b b2

0 0 0 0 c
√

2bc
0 0 0 0 0 0
0 0 0 0 0 c2

0 0 0 0 0 0
0 0 0 0 0 0


, W∗

s =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
√

2b c 0 0 0 0

b
2 √

2bc 0 c2 0 0


.

Since the third row and the third column of Ws are zero, e3 is a common eigenvector of Ws and W∗
s . By an

abuse of notation, Ws = W1 ⊕ [0], where

W1 =


0 0 1

√
2b b2

0 0 0 c
√

2bc
0 0 0 0 c2

0 0 0 0 0
0 0 0 0 0

 , W∗

1 =


0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
√

2b c 0 0 0

b
2 √

2bc c2 0 0

 .
Case 1: b , 0. We will show W1 is irreducible by a contradiction. Assume W1 = W3 ⊕W4 on H3 ⊕ H4

where dim Hi ≥ 2 for i = 3, 4, since W1 and W∗

1 have no common eigenvector anymore:

ker W1 = Span{e1, e2}, ker W∗

1 = Span{e4, e5}
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Since σ(W3) = σ(W4) = {0}, by Lemma 2.2, ker W1 ∩ Hi and ker W∗

1 ∩ Hi are of dimension one for i = 3, 4.
Without loss of generality,

H3 ⊇ Span{v1, v2}, where v1 = (1, α, 0, 0, 0, 0) and v2 = (0, 0, 0, 0, β, γ)

H4 ⊇ Span{u1,u2}, where u1 = (−α, 1, 0, 0, 0, 0) and u2 = (0, 0, 0, 0,−γ, β)

for some α and (β, γ) , 0. Note that W∗

1(v1) = (?,?, 1, ?, ?) < Span{v1, v2}, where? represents some quantity
whose precise formula is not needed. Hence dim H3 = 3 and dim H4 = 2. We consider two cases according
whether α is nonzero or not.

Case 1a: α = 0. Note that W1(u2) = (?,?, βc2, 0, 0) ∈ Span{u1,u2} only when β = 0. But when
β = 0, W1(u2) = −γ(

√
2b, c, 0, 0, 0), W∗

1W1(u2) = −γ(0, 0,
√

2b, ?, ?) < Span{u1,u2} since γb , 0, contradicting
dim H4 = 2.

Case 1b: α , 0. Then W∗

1(v2) = (0, 0,−α,?,?) < Span{u1,u2}, again contradicting dim H4 = 2.
Case 2: b = 0. The desired result follows from the following computation.

0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1


T 

0 0 1 0 0
0 0 0 c 0
0 0 0 0 c2

0 0 0 0 0
0 0 0 0 0



0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1

 =


0 c 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 c2

0 0 0 0 0

 .
The proof of Case 3.4 is complete.

4. Proof of Theorem 1.5

Suppose that A is a 3 × 3 irreducible matrix which is invertible. By Schur’s unitary triangularization,
we may assume that A is an upper triangular irreducible matrix. Thus

A =

β a b
0 γ c
0 0 δ

 ,
where βγδ , 0. We can easily check by using Lemma 2.4 that

Was =

βγ βc ac − γb
0 βδ δa
0 0 γδ


is irreducible. The remaining of this section is devoted to the proof of Theorem 1.5(i).

Since A is invertible, there exists a 3 × 3 matrix B such that A = exp B =
∑
∞

n=0
1
n! B

n. It follows that

W(A) = A ⊗ A = exp B ⊗ exp B = (exp B ⊗ I)(I ⊗ exp B)
= exp(B ⊗ I) exp(I ⊗ B) = exp(B ⊗ I + I ⊗ B) = exp(T(B)).

If T(B) is reducible, then so is exp(T(B)) = W(A). By Theorem 1.3, Ts(B) is reducible if and only if

B � βI +

0 a 0
0 d a
0 0 2d

 ,
where β, d, a ∈ C and a , 0. In the case d = 0,

A = exp B � eβ
1 a a2/2
0 1 a
0 0 1

 .
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In the case d , 0,

A = exp B � eβ
1

a
d (λ − 1) ( a

d )2(λ − 1)2/2
0 λ a

d (λ − 1)λ
0 0 λ2

 , where λ = ed , 1.

From this we can guess the condition for the reducibility of Ws(A).
Before starting the proof of Theorem 1.5(i), we record the following lemma.

Lemma 4.1. Let B be an n × n matrix with n ≥ 2 such that σ(B) = {λ}. Then there exist nonzero v ∈ ker(B − λI)
and nonzero u ∈ ker(B∗ − λI) such that v ⊥ u.

Proof. By Schur’s unitary triangularization, there exists a unitary matrix U such that U∗(B−λI)U is a strictly
upper triangular n × n matrix. It is easy to see that U∗(B − λI)Ue1 = 0 and U∗(B∗ − λI)Uen = 0. Then v = Ue1
and u = Uen satisfy the desired properties.

Let us now prove Theorem 1.5(i). We start with the case when A has one distinct nonzero eigenvalue,
i.e., σ(A) = {λ}, where λ , 0. As in the proof of Theorem 1.4, we may assume that λ = 1.

Case 4.2. Suppose that

A =

1 a b
0 1 c
0 0 1

 is irreducible.

Then Ws(A) is reducible if and only if |a| = |c| and b = ac/2. In this case, Hs = H1 ⊕ H2, where dim H1 = 5,
dim H2 = 1, and both H1 and H2 are minimal reducing subspaces for Ws(A).

Proof. Since A is irreducible, it follows from Lemma 2.4 that ac , 0. By Lemma 2.1,

Ws =



1
√

2a
√

2b a2
√

2ab b2

0 1 c
√

2a ac + b
√

2bc
0 0 1 0 a

√
2b

0 0 0 1
√

2c c2

0 0 0 0 1
√

2c
0 0 0 0 0 1


, W∗

s =



1 0 0 0 0 0
√

2a 1 0 0 0 0
√

2b c 1 0 0 0
a2 √

2a 0 1 0 0
√

2ab b + ac a
√

2c 1 0

b
2 √

2bc
√

2b c2 √
2c 1


.

Note that

ker(Ws − I) = Span
{
(1, 0, 0, 0, 0, 0),

(
0,

2b − ac
√

2c
,−

√
2a
c
, 1, 0, 0

)}
,

ker(W∗

s − I) = Span
{(

0, 0,−

√
2c
a
, 1,

2b − ac
√

2a
, 0

)
, (0, 0, 0, 0, 0, 1)

}
.

Note also that Ws and W∗
s have a common eigenvector if and only if

√
2b
c
−

a
√

2
= 0, −

√
2a
c

= −

√
2c
a
, and 0 =

√
2b
a
−

c
√

2
,

if and only if |a| = |c| and b = ac/2.
Case 1: |a| , |c| or b , ac/2. We will show that Ws is irreducible. Assume to the contrary that Ws = W1⊕W2

on H1 ⊕H2 where dim Hi ≥ 2 for i = 1, 2. Note that

σ(W1) = σ(W2) = {1}.
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By Lemma 4.1, ker(Ws − I) ⊥ ker(W∗
s − I) which is a contradiction since(

−

√
2a
c

)(
−

√
2c
a

)
+ 1 · 1 = 3 , 0.

Case 2: |a| = |c| and b = ac/2. In this case, let

v =
(
0, 0,−

√
2a
c
, 1, 0, 0

)
.

Then ker(Ws − I) ∩ ker(W∗
s − I) = Span{v}, and

ker(Ws − I) = Span{v, e1} and ker(W∗

s − I) = Span{v, e6}. (4)

Thus Ws = W1 ⊕W2, where W1 = Ws| Span {v}⊥ and W2 = Ws| Span{v}. It follows from (4) that

ker(W1 − I) = Span{e1}.

Assume to the contrary that W1 = W3 ⊕W4 on H3 ⊕ H4 where dim Hi ≥ 1. Then σ(W3) = σ(W4) = {1}, and
ker(W1 − I) = ker(W3 − I)⊕ ker(W4 − I). Hence dim ker(W1 − I) ≥ 2, which is a contradiction. Therefore, W1
is irreducible.

Next we look at the case when A has two distinct nonzero eigenvalues. We may assume that the
eigenvalue of multiplicity 2 is 1, and arrange the eigenvalues {1, 1, λ} on the diagonal of A in any desired
order.

Case 4.3. Suppose that

A =

1 a b
0 1 c
0 0 λ

 is irreducible with λ , 0, 1.

Then Ws is irreducible.

Proof. Since A is irreducible, Lemma 2.4 implies that one of the following holds:

(i) ac , 0, (ii) c = 0 and ab , 0.

By Lemma 2.1,

Ws =



1
√

2a
√

2b a2
√

2ab b2

0 1 c
√

2a ac + b
√

2bc
0 0 λ 0 λa

√
2λb

0 0 0 1
√

2c c2

0 0 0 0 λ
√

2λc
0 0 0 0 0 λ2


, W∗

s =



1 0 0 0 0 0
√

2a 1 0 0 0 0
√

2b c λ 0 0 0
a2 √

2a 0 1 0 0
√

2ab b + ac aλ
√

2c λ 0

b
2 √

2bc
√

2bλ c2 √
2cλ λ

2


.

It can be checked by direct computation that Ws and W∗
s have no common eigenvector. We will show that

Ws is irreducible by a contradiction. There is a complication when λ2 = 1, i.e., λ = −1, since in this case

ker(W∗
s − λ

2
I) (= ker(W∗

s − I)) is of dimension 2. We find it cumbersome and difficult to unify the proofs of
λ2 = 1 case and λ2 , 1 case. So we will prove these two cases separately. Assume Ws = W1 ⊕W2 on H1 ⊕H2
with dim Hi ≥ 2 for i = 1, 2.
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Case 1: λ2 , 1 and ac , 0. Note that

ker(W∗

s − λ
2
I) = Span{e6}, ker(W∗

s − λI) = Span
{(

0, 0, 0, 0, 1,

√
2c

1 − λ

)}
,

ker(W∗

s − I) = Span
{(

0, 0, 0, 1,

√
2c

λ − 1
, ?

)}
.

Without loss of generality, assume

ker(W∗

s − λ
2
I) = Span{e6} ⊆ H1.

Since c , 0, ker(W∗
s − λI) is not orthogonal to ker(W∗

s − λ
2
I). By Lemma 2.2,

ker(W∗

s − λ
2
I) + ker(W∗

s − λI) ⊆ H1, or Span{e5, e6} ⊆ H1.

Again, since c , 0, ker(W∗
s − I) is not orthogonal to H1. Hence σ(W1) = {1, λ, λ2

}. But either 1 or λ is in σ(W2).
It follows from Lemma 2.2 that either dim ker(W∗

s − I) ≥ 2 or dim ker(W∗
s −λI) ≥ 2, which is a contradiction.

Case 2: λ2 , 1, c = 0, and ab , 0. We prove the result by a similar argument using eigenspaces of Ws.
Note that

Ws =



1
√

2a
√

2b a2
√

2ab b2

0 1 0
√

2a b 0
0 0 λ 0 λa

√
2λb

0 0 0 1 0 0
0 0 0 0 λ 0
0 0 0 0 0 λ2


, W∗

s =



1 0 0 0 0 0
√

2a 1 0 0 0 0
√

2b 0 λ 0 0 0
a2 √

2a 0 1 0 0
√

2ab b aλ 0 λ 0

b
2

0
√

2bλ 0 0 λ
2


,

and, since a , 0, we have

ker(Ws − I) = Span{e1}, ker(Ws − λI) = Span
{
(−
√

2b, 0, 1 − λ, 0, 0, 0)
}
,

ker(Ws − λ
2I) = Span

{
(?, 0,−

√

2b, 0, 0, 1 − λ)
}
.

Without loss of generality, assume that

ker(Ws − I) = Span{e1} ⊆ H1.

Since b , 0, ker(Ws − λI) is not orthogonal to ker(Ws − I). By Lemma 2.2,

ker(Ws − I) + ker(Ws − λI) ⊆ H1, or Span{e1, e3} ⊆ H1.

Since b , 0, ker(Ws−λ2I) is not orthogonal to H1. Hence σ(W1) = {1, λ, λ2
}. But either 1 ∈ σ(W2) orλ ∈ σ(W2).

It follows from Lemma 2.2 that either dim ker(Ws − I) ≥ 2 or dim ker(Ws − λI) ≥ 2, which is a contradiction.
We next deal with the case λ2 = 1, that is, λ = −1. In this case, both ker(Ws − I) and ker(W∗

s − I) are of
dimension 2.

Case 3: λ = −1 and ac , 0. Then

ker(W∗

s + I) = Span
{(

0, 0, 0, 0, 1,

√
2c
2

)}
,

ker(W∗

s − I) = Span{e6, v}, where v :=
(
0, 0, 0, 1,

√
2c
2
, 0

)
,

ker(Ws − I) = Span{e1,u}, where u :=
(
?,?,?,?,−

√
2c
2
, 1

)
.
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Without loss of generality, assume

ker(W∗

s + I) ⊆ H1.

Since c , 0, ker(W∗
s − I) is not orthogonal to ker(W∗

s + I). By Lemma 2.2, σ(W1) = {−1, 1} and σ(W2) = {1}, and
thus dim H1 = 4 and dim H2 = 2. Using appropriate linear combinations of e6 and v, we write

ker(W∗

s − I) = Span{u1,u2}, where u1 =
(
0, 0, 0,

2c
c(|c|2 + 2)

,

√
2c

(|c|2 + 2)
, 1

)
, u2 =

(
0, 0, 0, 1,

√
2c
2
,−

c
c

)
.

Note that u1 ⊥ u2 and u2 ⊥ ker(W∗
s + I). Thus u2 ∈ H2 and u1 ∈ H1. We would like to do a similar

decomposition for ker(Ws − I). Since the explicit form of u is complicated, we write

ker(Ws − I) = [ker(Ws − I) ∩H1] ⊕ [ker(W∗

s − I) ∩H2],

where

ker(Ws − I) ∩H1 = Span{a1e1 + a2u} and ker(Ws − I) ∩H2 = Span{b1e1 + b2u}

for some constants a1, a2, b1, b2. Now we have

H2 = Span{u2, b1e1 + b2u}.

Since σ(W2) = {1}, u2 ∈ ker(W∗

2 − I), and b1e1 + b2u ∈ ker(W2 − I), Lemma 4.1 implies that b1e1 + b2u ⊥ u2.
But b1e1 + b2u is orthogonal to u1. Thus b1e1 + b2u ⊥ ker(W∗

s − I) and b1e1 + b2u = (?,?,?,?, ?, b2) ⊥ e6.
This implies that b2 = 0 and e1 ∈ H2. Since a , 0, the set {u2, e1,W∗

se1} is linearly indenpdent, which is a
contradiction to dim H2 = 2.

Case 4: λ = −1, c = 0, and ab , 0. Note that

Ws =



1
√

2a
√

2b a2
√

2ab b2

0 1 0
√

2a b 0
0 0 −1 0 −a −

√
2b

0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1


, W∗

s =



1 0 0 0 0 0
√

2a 1 0 0 0 0
√

2b 0 −1 0 0 0
a2 √

2a 0 1 0 0
√

2ab b −a 0 −1 0

b
2

0 −
√

2b 0 0 1


.

Then

ker(Ws − I) = Span
{
e1, (0, 0,

√

2b, 0, 0,−2)
}

ker(W∗

s − I) = Span{e4, e6},

ker(Ws + I) = Span
{
(
√

2b, 0,−2, 0, 0, 0)
}
, ker(W∗

s + I) = Span{e5}.

Without loss of generality, assume

ker(W∗

s + I) + ker(Ws + I) ⊆ H1.

Observe that ker(Ws − I) is not orthogonal to ker(Ws + I). By Lemma 2.2, σ(W1) = {−1, 1} and σ(W2) = {1}.
Thus dim H1 = 4 and dim H2 = 2. If a1 and a2 are constants and a1e1 + a2(0, 0,

√
2b, 0, 0,−2) ⊥ ker(Ws + I),

then a1b = 2a2b. Thus

H2 = Span
{(

b, 0,
√

2
2
|b|2, 0, 0,−b

)
, b1e4 + b2e6

}
for some constants b1, b2. Then −b2e4 + b1e6 ⊥ H2, which implies b1 = 0. It follows that

H2 = Span{u, e6}, where u := (
√

2, 0, b, 0, 0, 0).

Thus Wse6 ∈ H2, but then {u, e6,Wse6} is a linearly independent subset of H2, which is a contradiction.
Therefore Ws is irreducible, and the proof is complete.
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Next look at the case when A has three distinct nonzero eigenvalues β, γ, δ:

A =

β a b
0 γ c
0 0 δ

 , Ws =



β2
√

2βa
√

2βb a2
√

2ab b2

0 βγ βc
√

2γa ac + γb
√

2bc
0 0 βδ 0 δa

√
2δb

0 0 0 γ2
√

2γc c2

0 0 0 0 γδ
√

2δc
0 0 0 0 0 δ2


.

Then σ(Ws) = {β2, βγ, βδ, γ2, γδ, δ2
}. There are complications when Ws has an eigenvalue of multiplicity 2.

Next we discuss when this happens. There are two choices that will reduce our algebra (sometimes greatly).
First we may arrange {β, γ, δ} on the diagonal of A in any order desired. Second, we can scale one of {β, γ, δ}
to be 1. Through these two choices, one of the following statements holds.

(i) σ(Ws) consists of 6 distinct numbers; then we can assume β = 1.
(ii) σ(Ws) consists of 5 distinct numbers; we can assume β = 1 and either γ = −1 or δ = γ2.

(iii) σ(Ws) consists of 4 distinct numbers; we can assume β = 1, γ = i, and δ = −1.
(iv) σ(Ws) consists of 3 distinct numbers; we can assume {β, γ, δ} = {1, ω, ω2

}, where ω = e2πi/3.

Note that if A is irreducible, then one of the following holds.

(i) ac , 0, (ii) c = 0 and ab , 0, (iii) a = 0 and bc , 0.

Case 4.4. Suppose that σ(Ws) consists of 6 distinct numbers. Assume that β = 1. Then Ws is irreducible.

Proof. By Lemma 2.1,

Ws =



1
√

2a
√

2b a2
√

2ab b2

0 γ c
√

2γa ac + γb
√

2bc
0 0 δ 0 δa

√
2δb

0 0 0 γ2
√

2γc c2

0 0 0 0 γδ
√

2δc
0 0 0 0 0 δ2


, W∗

s =



1 0 0 0 0 0
√

2a γ 0 0 0 0
√

2b c δ 0 0 0
a2 √

2aγ 0 γ2 0 0
√

2ab bγ + ac aδ
√

2cγ γδ 0

b
2 √

2bc
√

2bδ c2 √
2cδ δ

2


.

It can be checked that Ws and W∗
s have no common eigenvector. We will show that Ws is irreducible by a

contradiction. Assume Ws = W1 ⊕W2 on H1 ⊕H2 with dim Hi ≥ 2 for i = 1, 2.
Case 1: ac , 0. Note that

ker(Ws − I) = Span{e1}, ker(Ws − γI) = Span
{
(
√

2a, γ − 1, 0, 0, 0, 0)
}
,

ker(Ws − δI) = Span
{
(?, c, δ − γ, 0, 0, 0)

}
.

Since a , 0, ker(Ws − γI) is not orthogonal to ker(Ws − I), and since c , 0, ker(Ws − δI) is not orthogonal to
ker(Ws − γI). By Lemma 2.2, without loss of generality, we may assume that

ker(Ws − I) + ker(Ws − γI) + ker(Ws − δI) ⊆ H1, or Span{e1, e2, e3} ⊆ H1.

Now W∗
se2,W∗

se3 ∈ H1. Since
√

2aγ , 0 and aδ , 0, the dimension of H1 is at least 5, which is a contradiction.
Case 2: c = 0 and ab , 0. In this case,

ker(Ws − δI) = Span
{
(
√

2b, 0, δ − 1, 0, 0, 0)
}
,

so ker(Ws − δI) is not orthogonal to ker(Ws − I). The rest of the argument is the same as in Case 1.
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Case 3: a = 0 and bc , 0. In this case,

ker(Ws − I) = Span{e1}, ker(Ws − γI) = Span{e2},

ker(Ws − δI) = Span
{( √2b(δ − γ)

δ − 1
, c, δ − γ, 0, 0, 0

)}
.

Since b , 0, ker(Ws − I) is not orthogonal to ker(Ws − δI), and since c , 0, ker(Ws − γI) is not orthogonal to
ker(Ws − δI). By Lemma 2.2, without loss of generality, we may assume that

ker(Ws − I) + ker(Ws − γI) + ker(Ws − δI) ⊆ H1, or Span{e1, e2, e3} ⊆ H1.

Now W∗
se2 = (?,?,?,?, bγ,?) and W∗

se3 = (?,?,?,?, 0,
√

2bδ) belong to H1. Thus the dimension of H1 is at
least 5, which is a contradiction.

Case 4.5. Suppose that σ(Ws) consists of 5 distinct numbers. Assume β = 1 and γ = −1. Then Ws is irreducible.

Proof. Note that δ4 , 1. By Lemma 2.1, we have

Ws =



1
√

2a
√

2b a2
√

2ab b2

0 −1 c −
√

2a ac − b
√

2bc
0 0 δ 0 δa

√
2δb

0 0 0 1 −
√

2c c2

0 0 0 0 −δ
√

2δc
0 0 0 0 0 δ2


, W∗

s =



1 0 0 0 0 0
√

2a −1 0 0 0 0
√

2b c δ 0 0 0
a2

−
√

2a 0 1 0 0
√

2ab ac − b δa −
√

2c −δ 0

b
2 √

2bc
√

2bδ c2 √
2cδ δ

2


.

Then

ker(W∗

s + δI) = Span
{(

0, 0, 0, 0, 1,−

√
2c

1 + δ

)}
, ker(W∗

s − δ
2
I) = Span{e6},

ker(W∗

s − δI) = Span
{
(0, 0, 2, 0, a, ?)

}
.

It can be checked that Ws and W∗
s have no common eigenvector. We will show that Ws is irreducible by a

contradiction. Assume Ws = W1 ⊕W2 on H1 ⊕H2 with dim Hi ≥ 2 for i = 1, 2.
Case 1: ac , 0. Assume ker(W∗

s + δI) ⊆ H1. By Lemma 2.2,

ker(W∗

s + δI) + ker(W∗

s − δI) + ker(W∗

s − δ
2
I) ⊆ H1, or Span{e3, e5, e6} ⊆ H1.

Now Wse3,Wse5 ∈ H1. Since c , 0, the dimension of H1 is at least 5, which is a contradiction.
Case 2: c = 0 and ab , 0. In this case,

ker(W∗

s + δI) = {e5} and ker(W∗

s − δI) =
{(

0, 0, 2, 0, a,
2
√

2b

1 − δ

)}
.

The rest of the argument is the same as in Case 1.
Case 3: a = 0 and bc , 0. In this case,

ker(W∗

s + δI) = Span
{(

0, 0, 0, 0, 1,−

√
2c

1 + δ

)}
, ker(W∗

s − δ
2
I) = Span{e6},

ker(W∗

s − δI) =
{(

0, 0, 1, 0, 0,

√
2b

1 − δ

)}
.
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Since bc , 0, ker(W∗
s + δ

2
I) is not orthogonal to both ker(W∗

s + δI) and ker(W∗
s − δI). By Lemma 2.2, without

loss of generality, we may assume that

ker(W∗

s + δI) + ker(W∗

s − δI) + ker(W∗

s − δ
2
I) ⊆ H1, or Span{e3, e5, e6} ⊆ H1.

Now Wse3 = (?, c, ?, 0, 0, 0) and Wse5 = (?,?,?,−
√

2c, ?, 0) belong to H1. Thus the dimension of H1 is at
least 5, which is a contradiction.

Case 4.6. Suppose that σ(Ws) consists of 5 distinct numbers and Assume β = 1 and δ = γ2. Then Ws is reducible if
and only if ac = 2γb and |c| = |γa|, in which case, Hs = H1 ⊕H2, where H1 and H2 are minimal reducing subspaces
for Ws whose dimensions are 5 and 1, respectively.

Proof. Note that β4 , 1 and β3 , 1. By Lemma 2.1, we have

Ws =



1
√

2a
√

2b a2
√

2ab b2

0 γ c
√

2γa ac + γb
√

2bc
0 0 γ2 0 γ2a

√
2γ2b

0 0 0 γ2
√

2γc c2

0 0 0 0 γ3
√

2γ2c
0 0 0 0 0 γ4


, W∗

s =



1 0 0 0 0 0
√

2a γ 0 0 0 0
√

2b c γ2 0 0 0
a2 √

2aγ 0 γ2 0 0
√

2ab γb + ac γ2a
√

2γc γ3 0

b
2 √

2bc
√

2γ2b c2 √
2γ2c γ4


.

Then

ker(Ws − I) = Span{e1}, ker(Ws − γI) = Span
{( √2a
γ − 1

, 1, 0, 0, 0, 0
)}
,

ker
(
W∗

s − γ
4I
)

= Span{e6}, ker
(
W∗

s − γ
3I
)

= Span
{(

0, 0, 0, 0, 1,

√
2c

(1 − γ)γ

)}
,

ker(Ws − γ
2I) = Span

{( a2

(γ − 1)2 ,

√
2a

γ − 1
, 0, 1, 0, 0

)
,
( √2(γ2b − γb + ac)
γ(γ − 1)(γ2 − 1)

,
c

γ(γ − 1)
, 1, 0, 0, 0

)}
,

ker(W∗

s − γ
2I) = Span

{(
0, 0, 1, 0,

a
1 − γ

,

√
2(ac + b − γb)

(1 − γ2)(1 − γ)

)
,
(
0, 0, 0, 1,

√
2c

(1 − γ)γ
,

c2

(1 − γ)2γ2

)}
.

Note that Ws and W∗
s have a common eigenvector if and only if

dim[ker(Ws − γ
2I) + ker(W∗

s − γ
2I)] ≤ 3,

if and only if the vectors(
γ2b − γb + ac, c, γa, (ac + b − γb)γ2

)
and

(
a2γ(γ + 1), 2γa, 2c, c2(1 + γ)

)
are linearly dependent, if and only if ac = 2γb and |c| = |γa|. In that case, a common eigenvector is

v := (0, 0,
√

2γa,−c, 0, 0).

Case 1: ac = 2γb , 0 and |c| = |γa|. Let Ws = W1 ⊕W2, where W1 = Ws| Span{v}⊥ and W2 = Ws| Span{v}.
We will prove that W1 is irreducible by a contradiction. Assume W1 = W3⊕W4 on H3⊕H4 where dim Hi ≥ 2
for i = 3, 4, since W1 and W∗

1 have no common eigenvector anymore. By Lemma 2.2, without loss of
generality, we may assume that

ker(Ws − I) + ker(Ws − γI) ⊆ H3, or Span{e1, e2} ⊆ H3.

It follows that Span{e1, e2,W∗

1e1,W∗

1e2} ⊆ H3, and so dim H3 ≥ 4, which is a contradiction. Therefore H3 and
H4 are minimal reducing subspaces for Ws.
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In the remaining cases, Ws and W∗
s have no common eigenvector. We will show that Ws is irreducible.

Assume to the contrary that Ws = W1 ⊕W2 on H1 ⊕H2 where dim Hi ≥ 2 for i = 1, 2.
Case 2: ac , 0 and either ac , 2γb or |c| , |γa|. By Lemma 2.2, we may assume that

ker(Ws − I) + ker(Ws − γI) ⊆ H1, or Span{e1, e2} ⊆ H1.

It follows that Span{e1, e2,W∗
se1,W∗

se2} ⊆ H1. If b , 0, by using Lemma 2.2, we can show that ker
(
W∗

s −γ
3I) ⊆

H1 and ker
(
W∗

s − γ
4I) ∈ H1. Similarly, if b = 0, then e5, e6 ∈ H1. Thus Span{e1, e2,W∗

se1,W∗
se2, e5, e6} ⊆ H1, so

dim H1 ≥ 5, which is a contradiction.
Case 3: c = 0 and ab , 0. Assume ker(Ws − I) ⊆ H1. Since ker(Ws − γI) is not orthogonal to ker(Ws − I), it

follows Lemma 2.2 that e1, e2 ∈ H1. Then W∗
se1 ∈ H1. It follows that neither ker(W∗

s − γ
4I) nor ker(W∗

s − γ
3I)

is orthogonal to H1. Hence {e1, e2, e5, e6,W∗
se1} ⊆ H1. Then dim H1 ≥ 5, which is a contradiction.

Case 4. a = 0 and bc , 0. Assume that H1 contains ker(W∗
s − γ

4I). By a similar argument in Cases 2,
we can show that {e5, e6,Wse6, e1, e2} ⊆ H1. Since {e1, e2, e5, e6,Wse6} is linearly independent, it follows that
dim H1 ≥ 5, which is a contradiction.

Therefore Ws is irreducible, and the proof is complete.

When σ(Ws) consists of 4 distinct numbers, the proof for the irreducibility of Ws is rather difficult since
we have tried a number of orthogonality conditions without success. In this case when σ(Ws) consists of
four distinct numbers, we can assume that β = 1, γ = i, and δ = i2 = −1.

Case 4.7. Suppose that σ(Ws) consists of 4 distinct numbers. Assume β = 1, γ = i, and δ = −1. Then Ws is
reducible if and only if ac = 2ib and |c| = |a|, in which case, Hs = H1 ⊕ H2, where H1 and H2 are minimal reducing
subspaces for Ws whose dimensions are 5 and 1, respectively.

Proof. By Lemma 2.1, we have

Ws =



1
√

2a
√

2b a2
√

2ab b2

0 i c
√

2ia ac + ib
√

2bc
0 0 −1 0 −a −

√
2b

0 0 0 −1
√

2ic c2

0 0 0 0 −i −
√

2c
0 0 0 0 0 1


, W∗

s =



1 0 0 0 0 0
√

2a −i 0 0 0 0
√

2b c −1 0 0 0
a2

−
√

2ia 0 −1 0 0
√

2ab ac − ib −a −
√

2ic i 0

b
2 √

2bc −
√

2b c2
−
√

2c 1


.

Then

ker(Ws − I) = Span
{
e1,u1 :=

(
0,

(1 − i)bc + iac2

2
√

2
,

(1 − i)ac − 2b

2
√

2
,
−ic2

2
,

(i − 1)c
√

2
, 1

)}
,

ker(W∗

s − I) = Span
{
e6,u2 :=

(
1,

(1 − i)a
√

2
,

(1 − i)ac + 2b

2
√

2
,
−ia2

2
,

(1 − i)ab − ia2c

2
√

2
, 0

)}
,

ker(Ws + I) = Span
{( ia2

2
,
−(1 + i)a
√

2
, 0, 1, 0, 0

)
,
( (1 − i)ac − 2b

2
√

2
,

(i − 1)c
2

, 1, 0, 0, 0
)}
,

ker(W∗

s + I) = Span
{(

0, 0, 1, 0,
(1 − i)a

2
,

(1 − i)ac + 2b

2
√

2

)
,
(
0, 0, 0, 1,

(1 + i)c
√

2
,

ic2

2

)}
,

ker(Ws + iI) = Span
{( (1 + i)ab − a2c

2
√

2
,

(3 − i)ac − 2b
4

,
(1 + i)a
−2

,
(i − 1)c
√

2
, 1, 0

)}
,

ker(W∗

s + iI) = Span
{(

0, 1,
(1 + i)c

2
,

(1 − i)a
√

2
,

(3 − i)ac + 2b
4

,
ac2

+ (1 + i)bc

2
√

2

)}
,

ker(Ws − iI) = Span
{( (1 + i)a

−
√

2
, 1, 0, 0, 0, 0

)}
, ker(W∗

s − iI) = Span
{(

0, 0, 0, 0, 1,
(1 + i)c
√

2

)}
.
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Note that dim[ker(Ws − I) + ker(W∗
s − I)] = 4, and

dim[ker(Ws + I) + ker(W∗

s + I)] ≤ 3

if and only if ac = 2ib and |c| = |a|. These are the necessary and sufficient condition for Ws and W∗
s to have a

common eigenvector. In that case, a common eigenvector is

v := (0, 0,
√

2a, ic, 0, 0).

Case 1: ac = 2ib , 0 and |c| = |a|. Let Ws = W1 ⊕W2, where W1 = Ws| Span{v}⊥ and W2 = Ws| Span{v}.
We will prove that W1 is irreducible. Assume W1 = W3 ⊕W4 on H3 ⊕ H4 where dim Hi ≥ 2 for i = 3, 4,
since W1 and W∗

1 have no common eigenvector anymore. Without loss of generality, we may assume that
ker(Ws − iI) ⊆ H3. Note that

ker(Ws + iI) = Span
{( (1 − i)ab

2
√

2
,

3ib
2
,

(1 + i)a
−2

,
(i − 1)c
√

2
, 1, 0

)}
.

Since abc , 0, ker(Ws + iI) is not orthogonal to ker(Ws − iI), and so ker(Ws + iI) ⊆ H3 by Lemma 2.2. By the
same argument as above,

ker(Ws − iI) + ker(Ws + iI) + ker(W∗

s + iI) + ker(W∗

s − iI) ⊆ H3, and so dim H3 ≥ 4,

which is a contradiction. Therefore H3 and H4 are minimal reducing subspaces for Ws.
In the remaining cases, Ws and W∗

s have no common eigenvector. We will show that Ws is irreducible.
Assume to the contrary that Ws = W1 ⊕W2 on H1 ⊕H2 where dim Hi ≥ 2 for i = 1, 2.

Case 2: ac , 0 and either ac , 2ib or |c| , |a|. Without loss of generality, assume

ker(Ws − iI) ⊆ H1.

Since ker(W∗
s + iI) is not orthogonal to ker(Ws − iI), it follows that ker(W∗

s + iI) ⊆ H1. Since ac , 0, if
ker(Ws − iI) ⊥ ker(Ws + iI) and ker(W∗

s − iI) ⊥ ker(W∗
s + iI), then

2b
ac

+ i =
|a|2 + 3
|a|2 + 1

= −
|c|2 + 3
|c|2 + 1

,

which is a contradiction. Thus, by using Lemma 2.2, we can show that

ker(Ws − iI) + ker(W∗

s + iI) + ker(Ws + iI) + ker(W∗

s − iI) ⊆ H1.

Since a , 0, neither ker(Ws − I) nor ker(Ws + I) is orthogonal to ker(Ws − iI). Thus σ(W1) = {1,−1, i,−i} by
Lemma 2.2. Since ±1 ∈ σ(W1) and dim H2 ≥ 2, it follows that σ(W2) = {−1, 1}. Let w1 ∈ ker(W2 − I) and
w2 ∈ ker(W∗

2 − I). Then

w1 = c1e1 + c2u1 and w2 = d1e6 + d2u2

for some constants c1, c2, d1, d2. Since w1,w2 ⊥ H1, if we assume that c2 , 0 and d2 , 0, then

(1 + i)(ab/c − 2) = |a|2 and (1 − i)(bc/a + 2) = −|c|2.

But we can check that these imply a contradiction. Thus c2 = 0 or d2=0. That is, either e1 or e6 belongs to
H2, which contradicts to the fact that H2 ⊥ H1.

Case 3: c = 0 and ab , 0. Then

ker(Ws − iI) = Span
{( (1 + i)a

−
√

2
, 1, 0, 0, 0, 0

)}
, ker(W∗

s − iI) = Span{e5},

ker(Ws + iI) = Span
{( (1 + i)ab

2
√

2
,
−b
2
,

(1 + i)a
−2

, 0, 1, 0
)}
,

ker(W∗

s + iI) = Span
{
(0, 1, 0,

(1 − i)a
√

2
,

b
2
, 0)

}
.
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Assume that H1 contains ker(W∗
s − iI). By using Lemma 2.2, we can show that

ker(Ws − iI) + ker(Ws + iI) + ker(W∗

s + iI) + ker(W∗

s − iI) ⊆ H1

Also, Wse5 ∈ H1. It follows that dim H1 ≥ 5, which is a contradiction.
Case 4: a = 0 and bc , 0. By the same argument as in Case 3, we can show that dim H1 ≥ 5, which is a

contradiction.
Therefore Ws is irreducible, and the proof is complete.

In Theorem 1.5(i), we assumed that σ(A) is not equal to {λ, λω, λω2
}. We pretty sure that the theorem is

true for this case.
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