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Abstract. Beetle antennae search algorithm (BAS) is based on the searching behavior of longhorn beetles.
This newly proposed metaheuristic algorithm is used in the path and function synthesis of multi-bar
mechanism. The optimization results are compared with that of other metaheuristic algorithms like genetic
algorithm (GA), particle swarm optimization (PSO) and differential evolution (DE) et al. While BAS uses
only one group of initial parameters to search the best result, the convergence and efficiency are tested with
eight case studies results. Newly added parameter q increases the possibility to find better results during
iterations and deals with a higher number of independent parameters efficiently. Revised BAS exhibits
good performance both in path synthesis of four-bar mechanism with or without prescribed timing, while
optimized parameters increases from 6 to 34, and extends to path and function combined synthesis of
Stephenson III six-bar double dwell mechanism with 14 parameters.

1. Introduction

Mechanism synthesis includes function, motion and path generation [1]. The most studied problems
are path synthesis of four-bar mechanism, where the coupler can pass a series of desired points with
or without prescribed timing [2–20], and function and path combined synthesis of six-bar double dwell
mechanism, where the coupler can pass through a series of desired points and the output link can realize the
desired angles during the dwell portion [14, 21, 22]. The six-bar dwell mechanism works as an alternative
of cam mechanism and to meet certain requirements which are hardly satisfied by four-bar mechanism
sometimes [22]. In the optimization of path and function synthesis, the optimization goal is to minimize the
combination of the summation square errors of the obtained and desired coupler points and summation
square errors of the obtained and desired output angles. The constraints of the Grashof condition and the
sequence condition of the crank angle (clockwise or anti-clockwise) are included into objective function by
adding penalty factors [8].
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Many studies in the literature focused on applying different algorithms into mechanism synthesis
problems [23]. Alizade et al. firstly used penalty factors to include the parameter constraints into the cost
function thus simplified the optimization of the four-bar mechanism [2]. Cabrera et al. optimized 3 cases
of four-bar mechanism path synthesis problems with genetic algorithm and got accurate and valid results
[4]. Laribi et al. applied a combined genetic algorithm-fuzzy logic method (GA-FL) to solve path synthesis
of four-bar mechanism, and the case study results showed it was more efficient compared to traditional
genetic algorithm [5]. Smaili and Diab applied ant-gradient search method to a hybrid synthesis of four-bar
mechanism [6]. Acharyya and Mandal compared the performance of three metaheuristic algorithms, GA,
PSO and DE, by solving three examples of four-bar mechanism path synthesis. Results show that DE
works better with fast convergence velocity to optimal result and a very low error on target points [8].
Other studies combined two or more metaheuristic methods or newly proposed algorithms were applied to
solve path synthesis problems, such as hybrid particle swarm optimization (HPSO) [16], malaga university
mechanism synthesis algorithm (MUMSA) [14], and GA-DE hybrid evolutionary algorithm (GA-DE) [9].
Algorithms mimicking human or animal behavior have also been applied to solve path and function
synthesis of multi-bar mechanisms, such as the imperialist competitive algorithm (ICA) [24], cuckoo search
algorithm [21], and modified krill herd algorithm (MKH) [17] et al. They performed very well in mechanism
optimization problems based on the case studies results listed in literature.

The approach presented in this paper to deal with the synthesis of mechanisms using beetle antennae
search algorithm. Beetle antennae search algorithm is a newly proposed bio-inspired optimization algo-
rithm which mimics the function of antennae and the random walk mechanism of beetles [25]. With only
one group of initial parameter, two main steps of detecting and searching are implemented. This algorithm
has been applied to different constraint optimization problems extensively and successfully, and the results
show fast convergence velocity to global optimum [26].

The paper is structured as follows: Section 2 describes the position analysis of four-bar mechanism and
Stephenson III Six-bar double dwell mechanism; Section 3 defines the goal functions of four-bar and six-bar
path synthesis and presents the implement steps of BAS algorithm; Section 4 analyzes the results calculated
by the proposed method for eight classical design examples used in path and function synthesis problems;
Section 5 discusses the results got by BAS, compares the performance of BAS with other algorithms used
in mechanism synthesis and summarizes the conclusions of the paper.

2. Position analysis of four-bar mechanism and six-bar mechanism

2.1. Four-bar linkage mechanism
The four-bar linkage mechanism is illustrated in Figure 1. Based on closed-loop vector equation, the

position of coupler point P is derived as below:

Figure 1: The planar four-bar linkage mechanism.
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Loop: r1eiθ0 + r4eiθ4 − r2eiθ2 − r3eiθ3 = 0 (1)

{
r1 cos(θ0) + r4 cos(θ4) − r2 cos(θ2) − r3 cos(θ3) = 0
r1 sin(θ0) + r4 sin(θ4) − r2 sin(θ2) − r3 sin(θ3) = 0 (2)

θ3 = 2 arctan(
−A ±

√

A2 − 4BC
2B

) + θ0 (3)

where
A = cos(θ2 − θ0) − K1 + K2 cos(θ2 − θ0) + K3
B = −2 sin(θ2 − θ0)
C = K1 + (K2 − 1) cos(θ2 − θ0) + K3
K1 = r1/r2,K2 = r1/r3,K3 = (r2

4 − r2
1 − r2

2 − r2
3)/(2r2r3)

(4)

So we get the positions of P as below:{
xp = x0 + r2 cos(θ2) + rp cos(θ3 + θp)
yp = y0 + r2 sin(θ2) + rp sin(θ3 + θp) (5)

2.2. Stephenson III six-bar linkage mechanism
The six-bar linkage mechanism is illustrated in Figure 2. Based on closed-loop vector equation, the

position of coupler point P and the angle of output link θ6 are derived as below:

Figure 2: The planar six-bar linkage mechanism.

{
Loop1: r1eiθ + r4eiθ4 − r2eiθ2 − r3eiθ3 = 0
Loop2: r′1eiθ′0 + r6eiθ6 − r2eiθ2 − rPei(θ3+θp)

− r5eiθ5 = 0
(6)

Loop1:
α = r2 cos(θ2) − r1 cos(θ0), β = r2 sin(θ2) − r1 sin(θ0)
γ = (r2

4 + α2 + β2
− r2

3)/(2r4), λ = atan2(α, β)
θ4 = atan2(cos(λ)γ/β, [1 − (cos(λ)γ/β)2]

1/2
) − λ

θ3 = atan2(r4 sin(θ4) − β, r4 cos(θ4) − α)

(7)
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Loop2:
α1 = r2 cos(θ2) + rp cos(θ3 + θp) − r6 cos(θ6)
β1 = r2 sin(θ2) + rp sin(θ3 + θp) − r6 sin(θ6)
γ1 = (r2

6 + α2
1 + β2

1 − r2
5)/(2r6), λ1 = atan2(α1, β1)

θ6 = atan2(cos(λ1)γ1/β1, [1 − (cos(λ1)γ1/β1)2]
1/2

) − λ1
θ5 = atan2(r6 sin(θ6) − β1, r6 cos(θ6) − α1)

(8)

So we get the positions as below:
xA = x0, yA = y0
xD = x0 + r1 cos (θ0), yD = y0 + r1 sin (θ0)
xF = x0 + r′1 cos (θ

′

0), yF = y0 + r′1 sin (θ
′

0)
xP = x0 + r2 cos (θ2) + rp cos (θ3 + θp)
yP = y0 + r2 sin (θ2) + rp sin (θ3 + θp)

(9)

3. Optimization implementation

3.1. Goal function of four-bar mechanism optimization
Equation (10) computes the position error between a set of target points indicated by the designer that

should be met by coupler point P of a four-bar mechanism and the set of positions of the coupler of the
designed four-bar mechanism (see Figure 1). In (10), N is the number of required target points, (Pi

Xd,P
i
Yd)

and (Pi
X,P

i
Y) are the coordinates of the desired and generated precision points respectively. The coordinates

of the generated precision points are calculated using (5). Also, three constraints have been used in the
optimization problem: the Grashof criterion, the sequence of the crank angle (clockwise or anti-clockwise)
and the range of the design variables. To define the complete optimization problem, the first two constraints
were included by adding penalty functions.

min

 N∑
i=1

[(Pi
Xd − Pi

X)
2

+ (Pi
Yd − Pi

Y)
2
] + M1h1(X) + M2h2(X)

 (10)

where xi ∈ [limin, l
i
max],∀xi ∈ X,X = [r1, r2, r3, r4, rp, θp, θ0, x0, y0, θ1

2, . . . , θ
N
2 ].

h1(X) =

{
1, the Grashof condition false
0, the Grashof condition true

h2(X) =

{
1, the sequence condition of the crank angle false
0, the sequence condition of the crank angle true

(11)

where h1(X) and h2(X) evaluate the Grashof condition and the sequence condition of the crank angle
respectively, M1 and M2 are the penalty factors for two penalty functions and X denotes the design variables.

3.2. Goal function of Stephenson III six-bar mechanism optimization
Equation (12) computes the position error and output angle errors between a set of target values indicated

by the designer and the set of values of the coupler of the designed six-bar mechanism (see Figure 2). (12)
consists of two different parts and it is used to optimize a six-bar dwell mechanism that will pass through
the precision points of coupler point P, while satisfying the coordinated requirement between input and
output angles in the dwell portion with desired accuracy level (see Figure 2).

min

 N∑
i=1

[(Pi
Xd − Pi

X)2 + (Pi
Yd − Pi

Y)2] +

M∑
i=1

(θi
6d − θ

i
6)

2
+ M1h1(X) + M2h2(X) + M3h3(X)

 (12)
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where xi∈[limin,limax],∀xi∈X, X = [r1, r2, r3, r4, r5, r6, rp, θp, θ0, x0, y0, θ1
2, . . . , θ

N
2 ]

Therefore, the objective function is consisted of two parts. The first part which is formulated in the
same way as (10). The second part defines the error of the output angle at the dwell period and it can be
formulated as:

∑M
i=1 (θi

6d − θ
i
6)2, where M is the required number of target angles during dwell period, θi

6d
and θi

6 are the desired and generated output angles respectively. The coordinates of point P and the output
angle θ6 are calculated using position analysis in Section 2.2.

Four constraints have been used in this optimization problem: the satisfaction of the Grashof criterion,
the sequence of the crank angle, the range of the design variables and the non-violation of the transmission
angle (the transmission angle is defined as an acute angle between the coupler and output links). The first
three constraints are the same as in the first objective problem defined in Section 3.1. The last constraint is
verified at each target point. The goal is to keep the minimum transmission angle of the mechanism larger
than the desired value when the designed mechanism passes through those target points. To define the
complete optimization problem, the first two and the last constraints were included into goal function by
adding penalty functions.

h1(X) =

{
1, the Grashof condition false
0, the Grashof condition true

h2(X) =

{
1, the sequence condition of the crank angle false
0, the sequence condition of the crank angle true

h3(X) =

{
1, non-violation of transmission angle false
0, non-violation of transmission angle true

(13)

where h1(X), h2(X) and h3(X) evaluate the Grashof condition, the sequence condition of the crank angle
(clockwise or anti-clockwise) and non-violation of transmission angle (more than 20◦) respectively,M1,M2
and M3 are the penalty factors for those functions and X denotes the design variables.

3.3. Optimization algorithm: Beetle Antennae Search Algorithm
Beetle antennae search algorithm (BAS) is a newly proposed metaheuristic algorithm inspired by the

searching behavior of longhorn beetles [25, 26]. It imitates the function of antennae and the random walk
mechanism of beetles in nature, and then two main steps of detecting and searching are implemented.
Unlike other swarm intelligence algorithms and evolutionary algorithms like GA, DE and PSO, BAS uses
only one initial particle to search the best value instead of a group of particles. The main formula of the
natural inspired BAS consist of two aspects: searching behavior and detecting behavior.

The position of the beetle is denoted as a vector xxxt at tth iteration (t = 1, 2, . . . ,Tmax) and the fitness
function at position x is denoted as f (x) and minimum value of f (x) corresponds to the optimization goal.
Tmax is defined as maximum iteration times.

The searching behavior is used to explore the next antennae positions by introducing a serial of nor-
malized random unit vectors bbbi, i = 1, 2, . . . , q. Newly added parameter q serves to explore design space by
increasing the number of antennae pairs. Parameter q increases the possibility to find better results during
iterations and deals with a higher number of independent parameters efficiently. The searching behaviors
of both right-hand and left-hand sides of q antennae pairs respectively are presented as below:

xri = xt + dtbi, xli = xt − dtbi, i = 1, 2, . . . , q (14)

xxxti = xt−1 − δ
tsi1n( f (xri − xli), i = 1, 2, . . . , q (15)

where xri, xli, i = 1, 2, . . . , q denote the positions lying in the searching area of right-hand side and left-hand
side of q groups of antennae. q is newly proposed in this paper to adapt the dimension increasing of variable
x. f (xri) and f (xli),i = 1, 2, . . . , q are fitness functions of xri, xli, i = 1, 2, . . . , q individually. si1n(•) represents a
sign function. dt and δt are antennae length and step length individually, both account for the convergence
speed and follow a decreasing function of iteration number t both. The initialization of d and δ should be
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adapted to the searching space. Using equation (15), each antenna goes to left or right by a step size with
smaller fitness function.

In cost function, we normalize xti, i = 1, 2, . . . , q based on the side constraints, evaluate the values of
cost function f (xti), i = 1, 2, . . . , q, refresh the value of x̃best, fbest, and get the normalized xbest with min( fti), i =
1, 2, . . . , q and corresponding xt during each iteration. fbest, x̃best and xbest are defined as the minimum goal
function and corresponding variable x and normalized variable.

To tune the parameters, we decrease the searching length d and step length δ as follow:

dt = c1dt−1, δt = c2dt (16)

where c1 and c2 are constant, and used to decrease the value of the searching length d and step length δ
during each iteration. Based on trajectory optimization problems, suggested parameters are listed as below,
while it is adjustable based on the optimization problems.

d0 = 0.10, δ0 = 0.05, c1 = 0.9998, c2 = 0.5, q = 40,Tmax = 50000 (17)

Table 1: Flow chart of the variable BAS algorithm

Algorithm: Variable BAS algorithm for multi-dimensional constrained optimization

Input: Initialize variable x0 in standard normalization form so as to satisfy optimization
constraints and set the parameters d0, δ0, c1, c2, q,Tmax.
Output: xbest, fbest
While t < Tmax or stopping criterion is not satisfied do
1) Search in design space with normalized random unit vector in left and right directions
for all antennae according to (14);
2) Update the state variable xti, i = 1, 2, . . . , q according to equation 15;
3) Normalize xti, i = 1, 2, . . . , q and get the cost function min( fti), i = 1, 2, . . . , q ;
4) If min( fti), i = 1, 2, . . . , q satisfies optimum condition then refresh the value x̃best, fbest and
get the normalized xbest with min( fti), i = 1, 2, . . . , q and corresponding xt;
5) Decrease the searching length d and step length δ according to (16);
Return: x̃best, xbest, fbest.

4. Results

Using the goal function and algorithm described in Section 3, eight different and classic path or function
synthesis problems are solved with BAS. Optimization results obtained by BAS for the four-bar mechanism
path synthesis problem (solved with or without prescribed timing) and the Stephenson III six-bar double
dwell mechanism path and function synthesis problem (with prescribed timing) are compared with the
results in literature.

4.1. Case 1: Path generation without prescribed timing

The first case of this section is a four-bar path synthesis problem with six points aligned in a vertical
straight line without prescribed timing. The meaning of letters of designed variables is the same as in
Section 2. The final error is computed by (10) and the problem is defined as:

Design Variables:

X = [r1, r2, r3, r4, rp, θp, θ0, x0, y0, θ
1
2, . . . , θ

6
2]
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Target Points:

{Ci
d} = {(20, 20), (20, 25), (20, 30), (20, 40), (20, 45)}

Limits of design variables:

r1, r2, r3, r4, rp ∈ [0, 60]; x0, y0 ∈ [−60, 60];θ0, θ
1
2, . . . , θ

6
2, θp ∈ [0, 2π]

Parameters of the BAS algorithm:

d0 = 0.10, δ0 = 0.05, c1 = 0.9998, c2 = 0.5, q = 40,Tmax = 50000

Table 2 shows that BAS found the best design overall corresponding to an error of 1.241e − 5 on target
positions. The comparison of coupler paths of different algorithms and the best mechanism designed by
the BAS algorithm are shown in Figure 3. In Figure 3(b), blue line is the trajectory of coupler during whole
rotation of crank, black points are target points and red points are obtained points by BAS. The joints with
hexagon background are fixed joints and the joints without hexagon background are rotating joints. In the
rest part, the meanings of signals in best mechanism figures of other cases are the same. All the simulations
of best mechanisms obtained by BAS are given in supplementary materials.

(a) (b)

Figure 3: (a) Coupler paths of best mechanisms obtained from listed algorithms in Case 1. (b) The optimized
mechanism in Case 1 (BAS).

4.2. Case 2: Path generation with prescribed timing

The second test problem considered in this study regards a four-bar path synthesis problem with five
non-aligned points with prescribed timing. The four-bar mechanism has its crank fixed in the origin of the
coordinate system and the fixed link is parallel to the X-axis, which means θ0 = x0 = y0 = 0. The final error
is also computed by (10) and the problem is defined as:

Design Variables:

X = [r1, r2, r3, r4, rp, θp]
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Table 2: Optimization results obtained for Case 1

MUMSA[14] GA[8] DE[8] GA-DE[9] BAS

r1 31.788264 28.771330 35.020740 13.251600 19.492081
r2 8.204647 5.000000 6.404196 5.940780 6.264472
r3 24.932131 35.365480 31.607220 58.311800 20.100163
r4 31.385926 59.136810 50.599490 53.720700 19.021916
rp 37.108246 14.850370 46.461261 61.301156 39.853805
θp 0.398977 1.570796 1.106544 -1.300260 0.367966
θ0 4.015959 5.287474 0.000000 0.196076 4.424562
x0 -6.366519 29.913290 60.000000 -35.362100 -13.030072
y0 56.836760 32.602280 18.077910 36.770400 51.179667
θ1

2 1.366547 6.283185 6.283185 1.660150 5.969982
θ2

2 2.330773 0.318205 0.264935 2.046840 0.455500
θ3

2 2.871039 0.638520 0.500377 2.428110 1.020271
θ4

2 3.394591 0.979950 0.735321 2.809010 1.555070
θ5

2 3.970960 1.412732 0.996529 3.190090 2.111741
θ6

2 4.963490 2.076254 1.333549 3.573790 2.883925
Error 0.002057 1.101697 0.122738 0.000017 0.000012

Target Points:

{Ci
d} = {(3, 3), (2.759, 3.363), (2.372, 3.663), (1.890, 3.862), (1.355, 3.943)}

[θ1
2, θ

2
2, θ

3
2, θ

4
2, θ

5
2] = [π/6, π/4, π/3, 5π/12, π/2]

Limits of design variables:

r1, r2, r3, r4, rp ∈ [0, 5];θp ∈ [0, 2π]

Parameters of the BAS algorithm:

d0 = 0.10, δ0 = 0.05, c1 = 0.9998, c2 = 0.5, q = 40,Tmax = 10000

Table 3 shows BAS found a better solution than the other referenced algorithms achieving a final error
of 7.467e − 7 on target positions. The comparison of coupler paths of different algorithms and the best
mechanism designed by the BAS algorithm are shown in Figure 4.

Table 3: Optimization results obtained for Case 2

PSO[16] HPSO[16] GA[24] MUMSA[14] BAS

r1 3.057620 3.787720 3.063042 3.773269 3.713526
r2 1.861840 1.998420 1.995962 2.000004 1.997874
r3 3.845910 4.133130 3.305823 4.116971 4.046953
r4 2.970630 2.745130 2.524706 2.746157 2.719239
rp 2.496827 2.369722 2.372148 2.368437 2.370297
θp 0.724356 0.784148 0.804418 0.783157 0.786537

Error 0.000586 0.000986 0.000002 0.000002 0.000001
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(a) (b)

Figure 4: (a) Coupler paths of best mechanisms obtained from listed algorithms in Case 2. (b) The optimized
mechanism in Case 2 (BAS).

4.3. Case 3: Path generation with prescribed timing

In case 3, the coupler point of the four-bar mechanism has to pass a close-loop path generation with
prescribed timing. The error function is described by (10). The problem is described as below:

Design Variables:

X = [r1, r2, r3, r4, rp, θp, θ0, x0, y0, θ
1
2]

Target Points:

{Ci
d} =


(0.5,1.1), (0.4,1.1), (0.3,1.1), (0.2,1.0), (0.1,0.9), (0.05,0.75),
(0.02,0.6), (0,0.5), (0,0.4), (0.03,0.3), (0.1,0.25), (0.15,0.2),
(0.2,0.3), (0.3,0.4), (0.4,0.5), (0.5,0.7), (0.6,0.9), (0.6,1.0).


Limits of design variables:

r1, r2, r3, r4, rp ∈ [0, 5]; x0, y0 ∈ [−5, 5];θ0, θ
1
2, θp ∈ [0, 2π]

Parameters of the BAS algorithm:

d0 = 0.10, δ0 = 0.05, c1 = 0.9998, c2 = 0.5, q = 8,Tmax = 50000

It can be seen from Table 4 that BAS found a better solution than the other referenced algorithms.
The final error, 9.029e − 3, is comparable with the result obtained by MUMSA (error= 0.00911) [14]. The
comparison of coupler paths of different algorithms and the best mechanism designed by the BAS algorithm
are shown in Figure 5.

4.4. Case 4: Path generation with prescribed timing

The fourth test case considered in this study is a problem of path generation with prescribed timing.
The six coupler optimized points consist of a semi-archer arc and the problem (error is defined by (10)) is:
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(a) (b)

Figure 5: (a) Coupler paths of best mechanisms obtained from listed algorithms in Case 3. (b) The optimized
mechanism in Case 3 (BAS).

Table 4: Optimization results obtained for Case 3

PSO[16] HPSO[16] GA[8] MUMSA[14] GA-DE[9] MKH[17] BAS

r1 2.926100 2.850000 3.057878 4.453772 47.437900 1.004290 1.054180
r2 0.487700 0.370000 0.237803 0.297057 0.324770 0.421800 0.423871
r3 2.909900 2.904800 4.828954 3.913095 0.472857 0.878210 0.914564
r4 2.150300 0.500000 2.056465 0.849372 47.309300 0.580130 0.598871
rp 1.493947 1.973700 2.003475 2.651983 0.341251 0.523400 0.545027
θp -0.332546 1.027396 1.177913 2.464734 -1.215383 0.814773 0.822747
θ0 0.719000 0.760000 1.002168 2.738736 3.320290 0.292940 0.285040
x0 -0.384600 0.940000 1.776808 -1.309243 0.526988 0.268860 0.267700
y0 -0.675200 -1.171200 -0.641991 2.806964 0.723930 0.177150 0.154427
θ1

2 0.215900 0.513400 0.226186 4.853543 3.512330 0.885950 1.176411
Error 0.049200 0.011100 0.033700 0.019600 0.010861 0.009110 0.009029

Design Variables:

X = [r1, r2, r3, r4, rp, θp, θ0, x0, y0]

Target Points:

{Ci
d} = {(0, 0), (1.9098, 5.8779), (6.60989.5106), (13.09, 9.5106), (18.09, 5.8779), (20, 0)}

[θ1
2, θ

2
2, θ

3
2, θ

4
2, θ

5
2] = [π/6, π/3, π/2, 2π/3, 5π/6, π]

Limits of design variables:

r1, r2, r3, r4, rp ∈ [0, 50]; x0, y0 ∈ [−50, 50];θ0, θp ∈ [0, 2π]
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Parameters of the BAS algorithm:

d0 = 0.10, δ0 = 0.05, c1 = 0.9997, c2 = 0.5, q = 40,Tmax = 30000

Table 5 shows that BAS found the best design overall corresponding to an error of 0.786 on target
positions. This solution is significantly better than those available in literature. The comparison of coupler
paths of different algorithms and the best mechanism designed by the BAS algorithm are shown in Figure
6.

(a) (b)

Figure 6: (a) Coupler paths of best mechanisms obtained from listed algorithms in Case 4. (b) The optimized
mechanism in Case 4 (BAS).

Table 5: Optimization results obtained for Case 4

MUMSA[14] GA[8] PSO[8] GA-DE[9] BAS

r1 50.000000 50.000000 50.000000 50.000000 47.234502
r2 5.000000 5.000000 5.000000 5.000000 8.847399
r3 7.031047 6.970090 7.031020 5.905343 25.047471
r4 48.134183 48.199300 48.134200 50.000000 50.000000
rp 21.353356 21.219120 21.353282 18.819312 50.000000
θp 0.651729 0.638006 0.651724 0.000000 5.710719
θ0 0.042825 0.050845 0.042829 0.463633 0.822595
x0 12.197494 12.237700 12.197500 14.373772 16.553117
y0 -15.998203 -15.833200 -15.998100 -12.444295 -48.147379

Error 2.580350 2.582860 2.580360 2.349649 0.786368

4.5. Case 5: Path generation without prescribed timing
This test case regards an elliptical path generation synthesis problem without prescribed timing in which

the trajectory is defined by 10 points. The problem (error is defined by (10)) is:
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Design Variables:

X = [r1, r2, r3, r4, rp, θp, θ0, x0, y0, θ
1
2, . . . , θ

10
2 ]

Target Points:

{Ci
d} =

{
(20,10), (17.66,15.142), (11.736,17.878), (5,16.928), (0.60307,12.736),
(0.60307,7.2638), (5,3.0718), (11.736,2.1215), (17.66,4.8577), (20,0).

}
Limits of design variables:

r1, r2, r3, r4, rp ∈ [0, 80]; x0, y0 ∈ [−80, 80];θ0, θ
1
2, . . . , θ

10
2 , θp ∈ [0, 2π]

Parameters of the BAS algorithm:

d0 = 0.10, δ0 = 0.05, c1 = 0.9998, c2 = 0.5, q = 40,Tmax = 40000

(a) (b)

Figure 7: (a) Coupler paths of best mechanisms obtained from listed algorithms in Case 5. (b) The optimized
mechanism in Case 5 (BAS).

Table 6 shows that BAS found the best design overall corresponding to an error of 4.252e − 4 on target
positions. The comparison of coupler paths of different algorithms and the best mechanism designed by
the BAS algorithm are shown in Figure 7.

4.6. Case 6: Path generation and function synthesis with prescribed timing

This test case regards a path and function combined synthesis problem with prescribed timing in which
the coupler of six-bar mechanism must pass through a set of precision points and its output link has to
maintain an accuracy angle in the dwell portion (Figure 2). The final error is computed by (12) and the
problem is defined as below:

Design Variables:

X = [r1, r2, r3, r4, r5, r6, rp, θp, r
′

1, θ0, θ
′

0, x0, y0, θ
1
2]
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Table 6: Optimization results obtained for Case 5

MUMSA[14] GA[8] PSO[8] DE[8] GA-DE[9] BAS

r1 79.516068 79.981513 52.535162 54.360893 80.000000 71.868123
r2 9.723973 9.109993 8.687886 8.683351 8.420320 9.261862
r3 45.842524 72.936511 36.155078 34.318634 51.342600 44.454296
r4 51.438480 80.000000 80.000000 79.996171 42.453200 43.053351
rp 8.728939 0.000000 1.481055 1.465250 10.653040 8.782072
θp -0.345226 0.000000 1.570796 1.570669 2.646545 1.636258
θ0 5.596945 0.026149 1.403504 2.129650 4.281770 1.601166
x0 2.021109 10.155966 11.002124 10.954397 5.533720 16.754036
y0 13.216588 10.000000 11.095585 11.074534 0.477183 15.298668
θ1

2 0.637687 6.283185 6.282619 6.283185 2.093500 0.125842
θ2

2 1.325533 0.600745 0.615302 0.616731 2.812910 0.816721
θ3

2 2.008034 1.372812 1.305421 1.310254 3.516050 1.535133
θ4

2 2.695566 2.210575 2.188053 2.193570 4.206380 2.181149
θ5

2 3.384579 2.862639 2.913049 2.917170 4.890510 2.875384
θ6

2 4.082938 3.420547 3.499313 3.490746 5.573980 3.572807
θ7

2 4.798455 4.072611 4.125586 4.132017 6.264580 4.285406
θ8

2 5.511706 4.910373 4.919977 4.922075 0.676198 5.001621
θ9

2 6.212792 5.682440 5.685021 5.695372 1.383070 5.713342
θ10

2 0.637187 6.283185 6.282323 6.282970 2.093480 0.125829
Error 0.004700 2.281273 1.971004 1.952326 0.000602 0.000425

Target Points:

{Ci
d} =



(-0.5424,2.3708), (0.2202,2.9871), (0.9761,3.4633),
(1.0618,36380), (0.8835,3.7226), (0.5629,3.7156),
(0.1744,3.6128), (-0.2338,3.4206), (-0.6315,3.1536),
(-1.0,2.8284), (-1.3251,2.4600), (-1.5922,2.0622),
(-1.7844,1.6539), (-1.8872,1.2654), (-1.8942,0.9448),
(-1.8096,0.7665), (-1.6349,0.8522), (-1.1587,1.6081).


{δi

2} =

{
0◦, 15◦, 40◦, 60◦, 80◦, 100◦, 120◦, 140◦, 160◦,
180◦, 200◦, 220◦, 240◦, 260◦, 280◦, 300◦, 320◦, 345◦.

}
where θi

2 = θ1
2 + δi

2, i = 1, . . . , 18
Input-output angle correlation during dwell period:

θi
2 + {160◦, 180◦, 200◦, 220◦} → θi

6 = 210◦

θi
2 + {345◦, 0◦, 15◦} → θi

6 = 225◦

Parameters of the BAS algorithm:

d0 = 0.05, δ0 = 0.025, c1 = 0.9999, c2 = 0.5, q = 10,Tmax = 50000

Table 7 shows that BAS found the best design overall corresponding to final error of 1.952e− 4 on target
positions and angles. The comparison of coupler paths and output angles of different algorithms and
the best mechanism designed by the BAS algorithm are shown in Figure 8. In Table 7, DE(B), MUMSA
and BAS considered the direct synthesis of six-bar mechanism while DE(A) first considered the four-bar
mechanism and later considered the output angle, DE(C) only considered ten coupler points of dwell
portion and ignored the other eight coupler points. The minimum transmission angle constraint used in
different optimization methods maintains at the same value, 20◦.
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(a) (b)

(c)

Figure 8: (a) Coupler paths of best mechanisms obtained from listed algorithms in Case 6. (b) Output angle
in Case 6. (c) The optimized mechanism in Case 6 (BAS).

4.7. Case 7: Path generation without prescribed timing

This test case regards an ”8” shape path generation synthesis problem without prescribed timing in
which the trajectory is defined by 12 points. The problem (error is defined by (10)) is:

Design Variables:

X = [r1, r2, r3, r4, rp, θp, θ0, x0, y0, θ
1
2, . . . , θ

12
2 ]
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Table 7: Optimization results obtained for Case 6

DE[22]A DE[22]B DE[22]C MUMSA[14] BAS

r1 1.814500 1.806500 2.092600 1.713529 1.838058
r2 0.991100 0.982600 1.146400 0.926020 1.006098
r3 1.999500 2.017700 1.989000 1.991373 1.997801
r4 2.031500 2.000900 1.972700 1.848672 2.008472
r5 4.367400 5.776900 6.663300 5.354980 6.106587
r6 2.492400 2.529600 2.551700 2.549790 2.551492
rp 2.817400 2.871100 2.717800 2.975936 2.815041
θp 0.777600 0.783712 0.845246 0.831651 0.783870
θ0 6.269879 0.011582 6.242261 0.067677 6.277428
r′1 4.415800 5.281700 6.290700 4.873740 5.638282
θ
′

0 0.235595 0.017031 6.181183 0.096703 6.257864
x0 0.011500 0.041500 -0.272900 0.175257 -0.013849
y0 0.015700 -0.037700 0.093100 -0.118703 0.011592
θ1

2 0.000520 0.003648 -0.040620 6.222361 6.281768
Evaluations 53310 93405 93405 93405 50000

Error 0.000251 0.005653 0.035375 0.001400 0.000195

Target Points:

{Ci
d} =

{
(4.15,2.21), (4.50,2.18), (4.53,1.83), (4.13,1.68), (3.67,1.58), (2.96,1.33),
(2.67,1.06), (2.63,0.82), (2.92,0.81), (3.23,1.07), (3.49,1.45), (3.76,1.87).

}
Limits of design variables:

r1 ∈ [0, 5]; r2, r3, r4 ∈ [0, 10]; rp ∈ [0, 14]; x0, y0 ∈ [−5, 5];θ0, θ
1
2, . . . , θ

12
2 , θp ∈ [0, 2π]

Parameters of the BAS algorithm:

d0 = 0.05, δ0 = 0.025, c1 = 0.9995, c2 = 0.5, q = 40,Tmax = 20000

Table 8 shows that BAS found the best design overall corresponding to an error of 9.942e − 5 on target
positions. Only θ1

2 is listed in Table 8 for simplicity, and all the angle parameters of BAS are given in
supplementary materials. The comparison of coupler paths of different algorithms and the best mechanism
designed by the BAS algorithm are shown in Figure 9.

4.8. Case 8: Path generation without prescribed timing
This test case regards a leaf shape path generation synthesis problem without prescribed timing in which

the trajectory is defined by 25 points [27]. The problem (error is defined by equation 10) is:
Design Variables:

X = [r1, r2, r3, r4, rp, θp, θ0, x0, y0, θ
1
2, . . . , θ

25
2 ]

Target Points:

{Ci
d} =


(7.03,5.99), (6.95,5.45), (6.77,5.03), (6.4,4.6), (5.91,4.03),
(5.43,3.56), (4.93,2.94), (4.67,2.6), (4.38,2.2), (4.04,1.67),
(3.76,1.22), (3.76,1.97), (3.76,2.78), (3.76,3.56), (3.76,4.34),
(3.76,4.91), (3.76,5.47), (3.8,5.98), (4.07,6.4), (4.53,6.75),
(5.07,6.85), (5.05,6.84), (5.89,6.83), (6.41,6.8), (6.92,6.58).


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(a) (b)

Figure 9: (a) Coupler paths of best mechanisms obtained from listed algorithms in Case 7. (b) The optimized
mechanism in Case 7 (BAS).

Table 8: Optimization results obtained for Case 7

PSO[16] HPSO[16] MKH[17] BAS

r1 4.550300 4.535900 2.876450 2.816277
r2 1.101300 1.113300 1.146440 1.138263
r3 3.955800 14.738100 4.407730 4.050992
r4 3.933000 16.801700 4.757130 4.195776
rp 3.941572 3.941866 2.666575 2.668280
θp -0.539171 -1.521104 -1.136351 5.191079
θ0 0.000000 0.000000 0.165020 0.207060
x0 0.000000 0.000000 1.142650 1.122700
y0 0.000000 0.000000 0.482370 0.524666
θ1

2 -0.201400 -0.181600 -0.313990 6.119106
Error 0.171600 0.096400 0.000160 0.000099

Limits of design variables:

r1, r2, r3, r4, rp ∈ [0, 5]; x0, y0 ∈ [−5, 5];θ0, θ
1
2, . . . , θ

2
25, θp ∈ [0, 2π]

Parameters of the BAS algorithm:

d0 = 0.10, δ0 = 0.05, c1 = 0.9998, c2 = 0.5, q = 40,Tmax = 40000

Table 9 shows that BAS found the second best design: the final error of 3.978e − 2 on target positions is
slightly larger than the optimum value of 0.03916 obtained by the MKH algorithm [17]. Only θ1

2 is listed
in Table 9 for simplicity, and all the angle parameters of BAS are given in supplementary materials. The
comparison of coupler paths of different algorithms and the best mechanism designed by the BAS algorithm
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(a) (b)

Figure 10: (a) Coupler paths of best mechanisms obtained from listed algorithms in Case 8. (b) The
optimized mechanism in Case 8 (BAS).

Table 9: Optimization results obtained for Case 8

MKH[17] GA-FL[5] Ant-Gradient[6] BAS

r1 9.994320 9.000000 13.080000 9.613219
r2 1.930270 3.010000 1.890000 1.945984
r3 4.572420 8.800000 8.410000 4.908082
r4 7.366740 8.800000 6.750000 6.676828
rp 8.042540 11.099500 14.450000 8.640923
θp 0.187430 -0.681000 0.195000 0.169408
θ0 -0.617630 0.489000 -0.381500 5.726073
x0 -2.313010 -2.400000 -8.770000 -2.921463
y0 2.861890 -4.000000 1.200000 2.719026
θ1

2 ∗ ∗ ∗ 0.452979
Error 0.039160 0.902200 0.550400 0.039778

are shown in Figure 10. The coupler trajectories of the best mechanisms obtained by MKH and BAS are
very similar in Figure 10(a).

5. Discussion and conclusions

This study applied the BAS algorithm to path synthesis of four-bar mechanisms with (test problems 2, 3
and 4) or without prescribed timing (test problems 1, 5, 7 and 8), as well as to function and path combined
synthesis of a Stephenson III six-bar dwell mechanism (test problem 6). These are classical benchmark
problems usually selected in literatures to test different methodologies. Optimization constraints were
included in the cost function using a penalty function approach. The final error on target point positions
and output angles evaluated for the optimum designs of BAS was always lower than for the other algorithms
except for Case 8 (see Tables 2 through 9). Since target trajectories set for problems 1, 5, 7 and 8 must fit an
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increasing number of control points, the number of optimization variables increased from 15 (Case 1) to 34
(Case 8). Remarkably, the BAS algorithm could always work well requiring only with small adjustments
of algorithm parameters. The number of trajectory control points was 6 for problem 2 but raised to 10 for
problems 3 and 4. Remarkably, in problem 4, the error obtained by BAS algorithm was almost three times
smaller than for the other algorithms. In test problem 6, the error function combined errors on positions of
control points and the angle of output link in dwell portion. BAS was again much more accurate than other
algorithms such as DE and MUMSA. The most important advantage of BAS algorithm is that it needs only
one group of initial parameters but not a population like other metaheuristic algorithms such as DE, GA,
PSO, MKH and MUMSA. This simplifies the optimization process as it may not be easy to generate good
initial designs. Furthermore, BAS is inherently much faster than population-based algorithms because it
works with only one particle. The results obtained in the analyzed mechanism design problems prove
the validity of the developed algorithm. To the best of our knowledge, this is first work that extends
beetle antennae search (BAS) algorithms to mechanical design. BAS is applied to path synthesis of four-bar
mechanism and extended to path and function combined synthesis of six-bar dwell mechanism. BAS
achieves better convergence and efficiency compared to other metaheuristic algorithms and opens a new
avenue for path and function synthesis problem.
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