
Filomat 34:15 (2020), 5173–5185
https://doi.org/10.2298/FIL2015173L

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

Population Based Optimization via Differential Evolution and
Adaptive Fractional Gradient Descent

Zijian Liua, Chunbo Luoa,c, Peng Renb, Tingwei Wangb, Geyong Minc

aUniversity of Electronic Science and Technology of China
bChina University of Petroleum (East China)

cUniversity of Exeter, UK

Abstract. We propose a differential evolution algorithm based on adaptive fractional gradient descent
(DE-FGD) to address the defects of existing bio-inspired algorithms, such as slow convergence speed and
local optimum. The crossover and selection processes of the differential evolution algorithm are discarded
and the adaptive fractional gradients are adopted to enhance the global searching capability. For the
benchmark functions, our proposed algorithm Specifically, our method has higher searching accuracy than
several state of the art bio-inspired algorithms. Furthermore, we apply our method to specific tasks –
parameters estimation of system response functions and approximate value functions. Experiment results
validate that our proposed algorithm produces accurate estimations and improves searching efficiency.

Introduction

Searching global optimum is a universal and challenging task to optimization methods [1]. Conventional
gradients based search algorithms [2] were created to solve the convex optimization problem [3]. And
they are widely applied to machine learning [4], pattern recognition [5] and other optimization tasks [6].
However, they are not applicable to non-convex, non-differentiable or discontinuous [7] problems. To solve
these complex problems, bio-inspired algorithms (BIAs) [8] have been put forward.

Biological population consists of a group of individuals, and each one shows rather low-level competence
and ad-hoc behaviors. Once the individuals in the group communicate with others, the group behaves
intelligently and systemically. Inspired by intelligent and efficient biological mechanisms, many scientists
present several BIAs. Kennedy et al. proposed a particle swarm optimization (PSO) [9] method to deal with
the optimization problem. Inspired by the mechanism of ants for finding the shortest hunting path, Dorigo
et al. proposed an ant colony system algorithm (ACS) [10] for solving the traveling salesman problem.
Although the existing methods have achieved notable performance on optimization tasks, there is still slow
convergence speed and easy to fall into local optimum [11].

2010 Mathematics Subject Classification. Primary 90C59
Keywords. Bio-inpsired algorithm, fractional gradients, approximate value function
Received: 02 November 2018; Accepted: 22 March 2019
Communicated by Shuai Li
Research supported partly by the University of Electronic Science and Technology of China 985 Project Fund (Project No.

A10985xxx132), the National Natural Science Foundation of China (Project No. 61871096), and partly by the Qingdao Applied
Fundamental Research (Project No. 16-5-1-11-jch)

Email addresses: liu6zijian@std.uestc.edu.cn (Zijian Liu), c.luo@uestc.edu.cn (Chunbo Luo)

Z. Liu et al. / Filomat 34:15 (2020), 5173–5185 5174

To overcome these defects, we present a differential evolution algorithm based on adaptive fractional
gradient descents, which shows satisfactory global search capacity than conventional gradient descent
and other three state of the art methods – Particle Swarm Optimization (PSO) [9], Gravitational Search
Algorithm (GSA) [12], Differential Evolution (DE) [13]. In addition, our method is applied to parameter
estimation [14] of system response function and approximate function [15], to predict the output value and
improve the efficiency of the robot seeking for the target.

We come up with an adaptive fractional gradient operator for the first time, which guarantees the
solution to avoid falling into local optimum of fractional order. Moreover, we assign a novel rule to avoid
initial position overlaps [16, 17] with fractional extreme points and calculated point.

This article is organized as follows. Section 1 presents a novel optimization method. Section 2 validates
the performance of our method with different orders, and compare it with three state of the art methods –
Particle Swarm Optimization, Differential Evolution Algorithm, Gravitational Search Algorithm. Section 3
applies proposed method into applications.

1. A Differential Evolution Algorithm based on Adaptive Fractional Gradient Descent

The task of optimization method is to find an optima (minimum or maximum) from feasible solutions
space x ∈ X for a certain problem, with respect to environmental condition function f (x) : RD

→ R. The
usual aim is to obtain the optimal position x? that minimizes or maximizes the environmental condition
function. This section proposes a novel evolution algorithm which combines advantages of DE and
FGD methods. Adaptive fractional gradient operator ensures satisfactory global search competence, and
Differential Evolution guarantees efficient convergence speed.

1.1. Differential Evolution
Differential evolution (DE) [13] is a method that optimizes a problem by iteratively improving a candidate

solution. As one of the BIAs, DE is used for multi-dimensional functions but do not require for the
optimization problem to be differentiable. And the computation processes are given as follows

1. Step one: Initialization
All individuals X0 = {x0

1, x
0
2, · · · , x

0
N} are randomly generated in the domain

X0 = (BU − BL)R(N,D) + BL (1)

where BU and BL are the upper and lower boundary of the searching space. N is the number of
population, and D is the dimension of each individual. The function R(N,D) generates an N × D
matrix, whose elements follow uniform distribution.

2. Step two: Mutation
For an individual k at step t, if the environmental condition f (xt

k) is the smallest one among all the
environmental conditions f (Xt), we set the position of individual as the best position k at step t. All
individuals are aggregated to the current best position

vt
i = xt

i − λ(xt
i − xt

?) (2)

λ ∈ (0, 1) is the searching parameter, and xt
i is the position of individual i at step t. Therefore, the

generated vector vt
i is an admixture of individuals (xt

i , x
t
?).

3. Step three: Selection
If the environmental condition of the generated position vt

i is better than the original one, the individual
i will move to the new position at step t+1 (xt+1

i = vt
i). Otherwise, it will remain on where it is (xt+1

i = xt
i).

The new position of individual i at step t + 1 is

xt+1
i =

vt
i , f (vt

i) < f (xt
i)

xt
i , f (vt

i) ≥ f (xt
i)

(3)

The optimal position is obtained by repeating the mutation and selection steps. However, DE models
usually converge to the local optimum and the convergence speed is slow.

Z. Liu et al. / Filomat 34:15 (2020), 5173–5185 5175

-5 0 5 10

-2

0

2

4

6

8

Figure 1: The computing result of GD method falls into the local optima

1.2. Gradient Descent
Different from DE method, gradient descent (GD) approach is a traditional searching algorithm, which

ensures that GD usually finds a determined solution under the same initial conditions. At each step, it will
descend along the steepest direction which is the first order gradient

∇ f (x) =
f (x) − f (x − ∆x)

∆x
(4)

where ∇ denotes the first order gradient operator. And the iteration formula of GD is given as follows

xt+1 = xt
− µ∇ f (xt) (5)

where µ is the learning rate. With step t increasing, candidate solution will follow along the steepest
direction until the derivative is equal to zero.

The GD algorithm has been applied to numerous optimization tasks for its effectiveness and efficiency.
However, the algorithm is easy to fall into local optimal solution (shown in Figure 1). In addition, the
searching speed slows down when it gets close to the minimum point, because the gradient becomes small.

1.3. Fractional Gradient Descent
The fractional gradient descent (FGD) method is the generalization of GD method. Moreover, we assign

a novel rule to avoid initial position overlaps with fractional extreme points and calculated point.
We generalize the Cauchy formula for repeated integration from natural number to real number and

utilize the Gamma function to replace the discrete nature of the factorial function. Therefore, the formula
of fractional integration is given as follows

(Jn f)(x) =
1

(n − 1)!

∫ x

0
(x − t)n−1 f (t)dt (6)

(Jν f)(x) =
1

Γ(ν)

∫ x

0
(x − t)ν−1 f (t)dt (7)

Z. Liu et al. / Filomat 34:15 (2020), 5173–5185 5176

-1 -0.5 0 0.5 1

X

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Y

=0

=0.4

=0.8

=1.0

=1.4

=1.8

=2.0

y=x2

y=2

y=2x

Figure 2: Fractional gradient of function f (x) = x2 with different orders

where n is an integer, and ν is a real number. The gamma function is denoted as Γ(ν) =
∫
∞

0 (x − t)ν−1 f (t)dt.
Owing to the reversibility of differentiation and integration, if ν = 1 − α, the formula of fractional

difference is rewritten as follows

(J1−α f)(x) =
1

Γ(1 − α)

∫ x

0
(x − t)−α f (t)dt (8)

(Dα−1 f)(x) =
1

Γ(1 − α)

∫ x

0

f (t)
(x − t)α

dt (9)

(Dα f)(x) =
1

Γ(1 − α)
d
dx

∫ x

0

f (t)
(x − t)α

dt (10)

In addition, the Grünwald-Letnikov fractional discrete difference of order α is defined as follows

(Dα f)(x) =
1
hα

[‖ x−a
h ‖]∑

j=0

(−1) j Γ(α + 1) f (x − jh)
Γ(α + j − 1)Γ(j + 1)

(11)

where h denotes the step of calculation, [a, x] is the duration of f (x), and a is the initial point. [A] means the
maximum integer less than A. We use the following symbol to simplify the expression

ωαj =

1, j = 0(
1 − α+1

j

)
ωαj−1, j ≥ 1

(12)

Then the iterative formula of fractional discrete difference is simplified as follows

(Dα f)(x) =
1
hα

[‖ x−a
h ‖]∑

j=0

ωαj f (x − jh) (13)

Z. Liu et al. / Filomat 34:15 (2020), 5173–5185 5177

Therefore, the formula of GD approach is generalized as the real order

xt+1 = xt
− µDα f (xt) (14)

With step t increasing, solution will descend along the fractional gradient until the derivative of fractional
order is equal to zero. Furthermore, GD method is a special case of the FGD (fractional order α = 1). Once
the method is determined, a knotty issue need to deal with the sensitivity to the initial point a at each
iteration. In general, a can be specified as an arbitrary value. However, when the initial point a overlaps
with fractional extreme points or calculated points, the fractional derivative will become undefined and
discontinuous. Therefore, a must be different from fractional extreme points or calculated points. Hence,
we assign a novel rule to determine the boundary value as follows

a = (BU − BL) sgn[(X0
− BL) − (BU − X0)] + BL (15)

where sgn[·] is a sign function. Therefore, when (X0
− BL) > (BU − X0), the function value equals one.

Otherwise, it becomes zero.

1.4. Overall Optimization
We propose a differential evolution algorithm based on adaptive fractional gradient descent (DE-FGD).

In particular, an adaptive fractional gradient operator is presented for the first time. And it ensures more
stable global search competence, which is given as follows

αt+1
i =

αt
i + t

M (1 − αt
i), ‖x

t+1
i − xt

i‖ < ε

αt
i , otherwise

(16)

where M is the maximum iterative steps, and ε is the threshold which is small (we set ε to 0.001). Then our
proposed method is presented as follows

xt+1
i = xt

i − λ(xt
i − xt

?) − µDαt
i f (xt

i) (17)

where λ(xt
i − xt

?) is called DE part, and µDαt
i f (xt

i) is called FGD part.
In this scenario, we combine gradient descent method with evolution algorithm, and remove the

comparison process of DE part and update the fractional order from a constant α to a variable αt
i of

FGD part. In addition, the order αt
i for different individual i is different. For one thing, each individual

explores environment along their own fractional gradient Dαt
i f (xt

i). For another, they tend to aggregate the
current best position xt

?. For a specific instance, we assume that there are 9 agents, and the fifth agent
is the current best xt

?. Each agent explores along their own fractional gradient that is called FGD. At the
same time, except the fifth agent, all agents tend to aggregate the current best agent, which is called DE.
Therefore they follow the combination directions, which are called DE-FGD. And the evolution process of
all agents searching global optimum at one step is shown in Figure 3 and DE-FGD method is demonstrated
in Algorithm 1.

When the searching procedure falls into the local optimal solution, where ‖xt+1
i −xt

i‖ < ε and Dαt
i f (xt

i) = 0,
we update the fractional order. Hence, Dαt+1

i f (xt
i) , Dαt

i f (xt
i). Namely, Dαt+1

i f (xt
i) , 0, and then it steps out

the local optimal point. In the end, αM
i = 1, it will stop at the point where DαM

i f (xt
i) = ∇ f (xt

i) = 0. In
addition, when λ = 0, Eq. 17 degrades into the adaptive fractional gradient descent method. When µ = 0,
the equation is converted to the differential evolutionary approach. Therefore, we regard FGD and DE
methods as two special cases of our proposed DE-FGD algorithm.

2. Experiments

In this section, we firstly investigate the impact of different initial fractional orders to our proposed
method. We make an empirical comparison with other state-of-the-art evolution algorithms, such as PSO,
DE and GSA. All the experiments are conducted on five benchmark functions. Specifically, we test the
convergence stability of all the models, visualizes the searching paths and evaluate their performance in
terms of the optimal value they achieve.

Z. Liu et al. / Filomat 34:15 (2020), 5173–5185 5178

Figure 3: The evolution process of multiple agents searching global optimum at one step (taking the seventh agent for example,
each one explore along the FGD direction and tends to aggregate the current best along the DE direction. The direction of vector
composition is DE-FGD)

Algorithm 1: Differential Evolutionary Algorithm Based on Adaptive Fractional Gradient Descent
Input: Population size N; Dimension D; Maximum iteration steps Max it
Output: Optimal solution x?

1 Function
2 Generate initial positions, X0;
3 Define objective function, f (x);
4 Set an extremely minimum value container f? (initialize to infinity);
5 Determine initial fractional order α0

j , j = (1, 2, · · · ,N);
6 while t < Max it do
7 Search for the minimum value of current positions, min{ f (Xt)} and arg minxt

j
{ f (Xt)};

8 if min{ f (Xt)} < f? then
9 Update extremely minimum value container, f? = min{ f (Xt)};

10 Update extremely solution container, x? = arg minxt
j
{ f (Xt)};

11 end
12 for i = 1 to N do

13 Searh optimal solution iteratively, xt+1
i = xt

i − λ(xt
i − x?) − µD

αt
i

x f (xt
i);

14 if ‖xt+1
i − xt

i‖ < ε then
15 Update fractional order, αt+1

i = αt
i + t

Max it (1 − αt
i);

16 else
17 Keep the order, αt+1

i = αt
i ;

18 end
19 end
20 t = t + 1;
21 end
22 EndFun;

2.1. Performance evaluation of DE-FGD algorithm with different initial orders

In comparison with high risk of falling into local optimum of integral gradient methods, which is
obtained by calculating the difference between current and adjacent value, the fractional gradient that is

Z. Liu et al. / Filomat 34:15 (2020), 5173–5185 5179

gained by computing weighted values in the whole domain shows satisfactory global characteristic for
searching. However, for different initial orders, the global searching performance of the algorithm will be
different. Therefore it is particularly important to choose appropriate preliminary order for solving specific
problems.

Here we investigate the influence of different initial fractional orders to our proposed method, and
the experiments are conducted on a specific binary scalar value function, which contains several local
optimal points. Thus finding the global optimum is a difficult task. And the binary scalar value function is
represented as follows

f (x, y) = (x − 1)2
− cos(2πx) + (y − 1)2

− cos(2πy) (18)

-4

0

-2

0

20

2 -4
-2

0

40

4
2

46
6

0

10

20

30

40

Figure 4: 3D image of function f (x, y) = (x− 1)2
− cos(2πx)−

cos(2πy)

-4 -2 0 2 4 6

-4

-2

0

2

4

6

Figure 5: Contour image of function f (x, y) = (x − 1)2
−

cos(2πx) − cos(2πy)

The domain of variable (x, y) is [−4, 6]2. There are several local optimal points, and the only global
optimal point is (1, 1). The function is visualized as Figure 4 and Figure 5. Figure 4 is the 3D image of
the function Eq.18, and Figure 5 shows the contour of the function Eq.18 from the top view. The darker
color means the smaller value. We use the proposed method with different initial orders to search the
global minimum. In this scenario, we just compare the searching performance of different initial orders.
Considering the generality of the problem, random initialization will disturb the comparison. Therefore,
we cut off the population based part (DE part), casually choose a fixed position with a single agent. The
calculated results are shown in Figure 6 and Figure 7.

Figure 6 demonstrates that the searching paths of DE-FGD method with different initial orders are
different. All of them are initialized from the same position (−3, 4). All agents descent along the direction
of their own fractional gradient, and these fractional orders tend to the first order. The obtained optimal
solution will converge to the optimal point where the first derivative is equal to zero.

Figure 7 confirms that our proposed method is able to obtain the optimal solution more precisely with
the order α = 1.6 than other orders. And the obtained result with fractional order (α = 0.6, 0.8, 1.6) is more
accurate than the outcome found with gradient descent algorithm (α = 1). Especially, when the order α is
equal to 1.6, our proposed method will find the global optimal solution. When the order is less than 1.0,
the computed result is more stable.

2.2. Performance comparison of DE-FGD algorithm with other mainstream optimization methods

We compare DE-FGD with other state-of-the-art optimization methods, including PSO, DE and GSA
[12]. The experiments are conducted on five benchmark functions which are presented in Table 1, to verify

Z. Liu et al. / Filomat 34:15 (2020), 5173–5185 5180

-4 -2 0 2 4 6

-4

-2

0

2

4

6

(a)

-4 -2 0 2 4 6

-4

-2

0

2

4

6

(b)

-4 -2 0 2 4 6

-4

-2

0

2

4

6

(c)

-4 -2 0 2 4 6

-4

-2

0

2

4

6

(d)

Figure 6: The minimum search trajectory on the function f (x, y) = (x − 1)2 + (y − 1)2
− cos(2πx) − cos(2πy) utilizing DE-FGD method

with different initial orders (α = 0.6 (a), 0.8 (b), 1.0 (c), 1.6 (d))

the efficiency and effectiveness of our proposed method. We set the population size to 10, and the maximum
iteration to 60. Table 2 shows the experimental results, which illustrates that proposed DE-FGD method is
able to reach the global minimum more precisely than the other three methods on functions F1,F3,F4,F5.
Especially, for function F4, the other three optimizing methods converge to the local optimal solution, but
our proposed method finds the global optimum.

3. Applications

In this section, we apply DE-FGD method to specific applications: utilizing DE-FGD algorithm to
estimate parameters of the system response function, so as to realize the prediction of the output data.
For a specific reinforcement learning model - a robot seeking for a target in the maze, parameters of an
approximate function are estimated by our algorithm, to improve the efficiency of robot searching for the
target.

Z. Liu et al. / Filomat 34:15 (2020), 5173–5185 5181

0 20 40 60 80 100

Iteration times

0

5

10

15

20

25

30

C
u

rr
e
n

t
c
o

m
p

u
te

d
 v

a
lu

e

=0.6

0 20 40 60 80 100

Iteration times

-5

0

5

10

15

20

25

30

C
u

rr
e
n

t
c
o

m
p

u
te

d
 v

a
lu

e

=0.8

0 20 40 60 80 100

Iteration times

-5

0

5

10

15

20

25

30

C
u

rr
e
n

t
c
o

m
p

u
te

d
 v

a
lu

e

=1.0

0 20 40 60 80 100

Iteration times

-5

0

5

10

15

20

25

30

C
u

rr
e
n

t
c
o

m
p

u
te

d
 v

a
lu

e

=1.6

Figure 7: The minimum search iteration result on the function f (x, y) = (x − 1)2 + (y − 1)2
− cos(2πx) − cos(2πy) utilizing DE-FGD

method with different initial orders

Table 1: List of benchmark functions

Benchmarks Domain Minimum value

F1(X) =
∑D

i=1 x2
i [−100, 100]D 0

F2(X) =
∑D−1

i=1 100(xi+1 − x2
i)2 + (xi − 1)2 [−30, 30]2 0

F3(X) =
∑D

i=1

[
sin(xi) sin(

ix2
i
π)

]20
[−4, 4]D -1.8013

F4(X) = 0.5 +
sin2
√

x2
1+x2

2−0.5

[1+0.001(x2
1+x2

2)]2 [−4, 4]2 0

F5(X) =
∑D

i=1 (xi − 1)2
− cos(2πxi) [−4, 6]D -2

3.1. Parameter estimation of system response function
In general, for an LTI (linear time invariant) SISO (Single-Input and Single-Output) system [20], it is

usually modelled as follows
n∑

j=0

an− jy(k − j) =

m∑
i=0

bm−ix(k − i) (19)

Z. Liu et al. / Filomat 34:15 (2020), 5173–5185 5182

Table 2: Comparison of DE-FGD algorithm with three mainstream methods in benchmark functions

Best value F1 F2 F3 F4 F5

PSO 0.0242 0.1158 -1.7987 0.0097 -1.9993

DE 0.1161 0.2236 -1.7817 0.0097 -1.0466

GSA 1.2028 3.7705 -1.7480 0.0097 -1.9974

DE-FGD 0.0099 0.1345 -1.8013 8.1 × 10−7 -1.9998

This is a linear difference equation with constant coefficient. To compute parameters (a j, bi) of system,
we construct an energy function as follows

E =

 n∑
j=0

an− jy(k − j) −
m∑

i=0

bm−ix(k − i)

2

(20)

2 4 6 8 10

Epochs

0

0.2

0.4

0.6

0.8

V
a
lu

e

a

b

Figure 8: The estimated parameter value of the system re-
sponse function

0 5 10 15 20 25

Time

0

0.2

0.4

0.6

0.8

1

V
a
lu

e

Real value

Predictive value

Figure 9: Output data of the response system of predictive
value and real value

We substitute input and output data (x, y) and minimize the energy function by adjusting parameters.
Furthermore, we utilize our proposed DE-FGD algorithm to compute iteratively.

at+1
j = at

j − λ(at
j − a?j) − µDα

a j
E (21)

bt+1
i = bt

i − λ(bt
i − b?i) − µDα

bi
E (22)

where (a?j , b
?
i) = arg mina j,bi {E}, and the partial fractional gradient are given as follows

Dα
a j

E = a−αj

2y2(k − j)a2
j

Γ(3 − α)
+

2y(k − j)a jK1

Γ(2 − α)
+

K2
1

Γ(1 − α)

 (23)

Dα
bi

E = b−αi

2x2(k − i)b2
i

Γ(3 − α)
+

2x(k − i)biK2

Γ(2 − α)
+

K2
2

Γ(1 − α)

 (24)

Z. Liu et al. / Filomat 34:15 (2020), 5173–5185 5183

where parameters K1,K2 are given as follows

K1 =
∑
p, j

apy(k − p) −
m∑

q=0

bqx(k − q) (25)

K2 =
∑
q,i

bqx(k − q) −
n∑

p=0

apy(k − p) (26)

Randomly picking an LTI system, we solve the parameters by utilizing our proposed method.

y(k) + 0.5y(k − 1) + 0.2y(k − 2) = x(k) (27)

where x(k) = ε(k) denotes a step signal. We estimate parameters in 10 epochs, and the result is shown
in Figure 8. From Figure 8, we observe that after 4 epochs, parameters tend to be stable swiftly, and the
calculated results are a = 0.1961, b = 0.4959. So they approximate to the actual parameters.

We substitute the estimated value into the response function formula, and the predictive and real value
are drawn in Figure 9. And Figure 9 illustrates that predicted value almost coincides with the real value,
which has a good approximation fitting effect. Therefore, the DE-FGD method is able to estimate the system
response function parameters, so as to achieve the accurate prediction of output signals.

3.2. Parameter estimation of value state function in reinforcement learning
Different from supervised learning and unsupervised learning, reinforcement learning [21, 22] is a sig-

nificant method that has gained recent research interest in the machine learning community, e.g. intelligent
control and data analysis.

Reinforcement learning uses the framework of Markov decision processes (MDPs) to stipulate the inter-
action between a learning agent and its environment . Namely, a learning agent interacts with environment
in discrete time (shown in Figure 10). At each step t. the agent receives a reward rt. Then it chooses an
action at from a series of available actions A. The agent moves to a new state st+1 and the new reward rt+1
related with the transition (st, at, st+1) is determined.

Figure 10: Interaction between a learning agent with environment

Generally speaking, reinforcement learning mainly contains model learning, model-free learning and
value function approximation. In continuous space or a wide range of discrete space, the computing
resource is limited. We thus could not use a table to record each value of the space location and action
strategy, so we consider using parameter estimation method and construct an estimation function Vθ(x).
By using the constructor as the approximation of the value function Vπ(x), the approximation is measured
by the sum of squares as follows

Eθ = Ex∼π

[
(Vπ(x) − Vθ(x))2

]
(28)

where x is a state vector, θ is a parameter vector. To minimize Eq. 28, we utilize our method to update the
estimated parameter vector as follows:

θ = θ − λ(θ − θ?) − µDα
θEθ (29)

Z. Liu et al. / Filomat 34:15 (2020), 5173–5185 5184

Dα
θEθ = Vθ(x)−α

[
2Vθ(x)2

Γ(3 − α)
+

2Vπ(x)Vθ(x)
Γ(2 − α)

+
Vπ(x)2

1 − α

]
Dα
θVθ(x) (30)

For a specific instance of reinforcement learning – robot seeking target in a maze [23]. Firstly, the robot
prepares in the starting position (2, 2) (Figure 11 a). Then, it performs an action (up, down, left and right)
in the state space (Figure 11 b), with getting a series of feedback rewards. Eventually, the robot reaches
destination (8, 8) (Figure 11 c).

2 4 6 8

1

2

3

4

5

6

7

8

9

(a)

2 4 6 8

1

2

3

4

5

6

7

8

9

(b)

2 4 6 8

1

2

3

4

5

6

7

8

9

(c)

Figure 11: The diagram of robot searching for the target in the maze (a: ready, b: action, c: termination)

Compared with model free learning method [24] recording 81 (9×9) state values, our method only
records a parameter vector θ. It thus economizes memory resources. And satisfactory global search
competence ensures that robot converges to the target more quickly.

Conclusion

To deal with the limitations of the current state of the art optimization algorithms, we propose a novel
differential evolution algorithm based on adaptive fractional gradient descent (DE-FGD). Furthermore, in
order to validate the performance of our proposed method, we explore an appropriate order for solving
specific problems and compare our DE-FGD algorithm with state of the art optimizers (PSO, DE and GSA).
It is evident that our proposed method is able to obtain the optimal solution more precisely with the
order α = 1.6 than other orders. Eventually, we apply our method into specific applications – estimating
parameters of the system response function and approximate function, to predict the output value and
improve the efficiency of the robot seeking for the target.

Acknowledgments

We would like to express our gratitude to the all reviewers for their very valuable and insightful remarks
and comments.

References

[1] S. Mirjalili, A. Lewis, S. Sadiq, Autonomous particles groups for particle swarm optimization, Arabian Journal for Science and
Engineering 39 (2014) 4683–4697.

[2] R. Fletcher, C. Reeves, Function minimization by conjugate gradients, Computer Journal 7 (1964) 149–154.
[3] T. Yang, L. Zhang, Efficient Stochastic Gradient Descent for Strongly Convex Optimization, Computer Science 50 (2013) 139–151.
[4] L. Bottou, Large-Scale Machine Learning with Stochastic Gradient Descent, Proceedings of COMPSTAT’2010, 2010.
[5] J. Maclean, J. Tsotsos, Fast Pattern Recognition Using Gradient-Descent Search in an Image Pyramid, International Conference

on Pattern Recognition, 2000. Proceedings 2 (2000) 873–877.
[6] P. Zhou, Z. Liu, X. Wang, Y. Ma, H. Ma, X. Xu, S. Guo, Coherent beam combining of fiber amplifiers using stochastic parallel

gradient descent algorithm and its application, IEEE journal of selected topics in quantum electronics 15 (2009) 248–256
[7] H. Yang, S. Amari, Complexity Issues in Natural Gradient Descent Method for Training Multilayer Perceptrons, Neural Compu-

tation 10 (1998) 2137–2157.

Z. Liu et al. / Filomat 34:15 (2020), 5173–5185 5185

[8] S. Olariu, Y. Zomaya, Handbook Of Bioinspired Algorithms And Applications, Chapman & Hall/CRC, 2006
[9] J. Kennedy, R Eberhart, Particle swarm optimization, Proc. of 1995 IEEE Int. Conf. Neural Networks 4 (2011) 1942–1948.

[10] M. Dorigo, L. Gambardella, Ant Colony System: A cooperative learning approach to the traveling salesman problem, IEEE
Transactions on Evolutionary Computation 1 (1997) 53–66.

[11] J. Koehler, Conditions that Obviate the No-Free-Lunch Theorems for Optimization, Informs Journal on Computing 19 (2007)
273–279.

[12] E. Rashed, H. Nezamabadi-Pour and S. Saryazdi, GSA: a gravitational search algorithm, Information sciences 179 (2009) 2232–
2248.

[13] R. Storn, K. Price, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces, Journal
of global optimization 11 (1997) 341–359.

[14] F. Brown, D. Pietra, L. Mercer, The mathematics of statistical machine translation: parameter estimation, Computational Linguis-
tics 19 (1993) 263–311.

[15] G. Lagoudaki, Value Function Approximation, Springer US, 2017.
[16] B. Du, Y. Chen, Y. Wei, S. Cheng, Y. Wang, Discussion on extreme points with fractional order derivatives, Control Conference,

2016.
[17] Y. Pu, J. Zhou, Y. Zhang, N. Zhang, G. Huang, P. Siarry, Fractional Extreme Value Adaptive Training Method: Fractional Steepest

Descent Approach, IEEE Transactions on Neural Networks & Learning Systems 26 (2015) 653–662.
[18] M. Torge, R. Bottlender, A. Strauβ, J. Möller, An introduction to the fractional calculus and fractional differential equations, Wiley,

1993.
[19] Y. Tan, Z. He, B. Tian, A Novel Generalization of Modified LMS Algorithm to Fractional Order, IEEE Signal Processing Letters

22 (2015) 1244–1248.
[20] K. Peng, Q. Lang, A. Billings, R. Tomlinson, Comparisons between harmonic balance and nonlinear output frequency response

function in nonlinear system analysis, Journal of Sound & Vibration 311 (2008) 56–73.
[21] L. Busoniu, R. Babuska, D. Schutter, D. Ernst, Reinforcement Learning and Dynamic Programming Using Function Approxima-

tors, CRC Press, Inc, 2010.
[22] R. Sutton, A. Barto, Reinforcement Learning: An Introduction, Bradford Book, IEEE Transactions on Neural Networks 16 (2005)

285–286.
[23] F. Uwano, K. Takadama, Communication-Less Cooperative Q-Learning Agents in Maze Problem, Springer International Pub-

lishing, 2017.
[24] J. Perkins, D. Pendrith, On the Existence of Fixed Points for Q-Learning and Sarsa in Partially Observable Domains, Nineteenth

International Conference on Machine Learning, 2002.

