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Abstract. Aiming at solving a drawback of the second-order beetle antenna search (SOBAS), a variant
of the beetle antenna search (BAS), that it is difficult to find the global optimal solution and the low con-
vergence accuracy when applied to the multimodal optimization functions with high dimension or large
variable region, a chaotic-based second-order BAS algorithm (CSOBAS) is proposed by introducing chaos
theory into the SOBAS. The algorithm mainly has three innovations: 1) chaos initialization: choosing the
one with the smallest fitness function value from twenty beetles with different positions for iterative search;
2) using chaotic map to tune the randomization parameter in the detection rule; 3) imposing a chaotic per-
turbation on the current beetle to hope to help the search to jump out the local optimal solution. Eight
different chaotic maps are used to demonstrate their impact on the simulation results. With six typical
multimodal functions, performance comparisons between the CSOBAS and the SOBAS are conducted,
validating the effectiveness of the CSOBAS and its superiority compared to the SOBAS. What’s more, the
CSOBAS with an appropriate chaotic map can achieve a very good convergence quality compared to other
swarm intelligence optimization algorithms while maintaining an individual.

1. Introduction

The beetle antenna search (BAS) [1] is a meta-heuristic algorithm proposed by Jiang et al. in 2017 based
on the foraging principle of the beetle, and requires only one individual compared to the Particle swarm
optimization (PSO) that is one of the state-of-the-art algorithms, with properties of simple calculation, fast
convergence speed, and few parameters that needs to be adjusted. The BAS algorithm has been extensively
investigated and used in several applications, and many related variants also have been yielded to improve
its convergence quality [2-8]. For instance, in [2], a variant of the BAS method (BAS-WPT) that can handle
multi-objective function and have no requirement for tuning parameters was proposed, which used a static
penalty function to exploit infeasible solutions for the constraint optimization problem. A combination of
BAS and PSO, called BSO, was developed and was tested on 23 benchmark functions to verify its perfor-
mance in [6]. Combining swarm intelligence algorithm with feedback-based step-size update strategy, the
Beetle Swarm Antennae Search Algorithm (BSAS) was developed in [7].
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While overcoming the disadvantages of BAS with low convergence accuracy and easily falling into the
local optimum, both BSO and BSAS employ swarm intelligence concepts, i.e, using m beetles or particles
instead of one individual, with high computational complexity. In the original BAS, the detecting rule
is equivalent to updating the speed of the beetle, which has lower convergence accuracy, and even the
finding of global solution fails for both high-dimensional optimization problems (such as D = 30) and
large variable region. Therefore, a new detecting rule (or say the new velocity and new position) is given in
this paper, which is equivalent to creating a driving force between difference of the two antennas. Thus we
call the improved BAS as second-order BAS (SOBAS), and the original one as the first-order BAS (FOBAS).

Compared with the FOBAS, we found in the experimental simulation via MATLAB that the SOBAS has
several advantages of high convergence quality and high success rate of finding a solution with certain
accuracy as a success condition, however, at the expense of taking more time to complete calculating.
To the best of our knowledge, a variety of optimization algorithms have been successfully employed to
some practical applications [9-13], such as robot motion planning [9, 10], image processing [12] and so
on. What’s more, as we mentioned earlier, the BAS algorithm has also been found their applications in
ship course control [5], energy management in microgrid [3] and wireless sensor network [4] and so on.
Therefore, we believe that the SOBAS also has the same potentiality to be applied to these fields.

However, along with the iteration, the SOBAS steps into the low convergence accuracy when applied
to the multimodal optimization functions, and is difficult to find the global optimal solution. Chaos is
a relatively common nonlinear phenomenon existing in nonlinear systems. The characteristics of chaos
mainly include pseudo-randomness, ergodicity and sensitivity to initial conditions. Since ergodicity can
be used as an effective mechanism to avoid the search process to stepping into the local minimum, chaos
theory has become a promising optimization tool [14, 15]. The effectiveness of chaos algorithm has already
been tested and verified in several applications [16-18], such as image encryption [16, 17]. The fusion
of chaos theory and meta-heuristic algorithm has also been successfully developed and achieved good
results [19-24]. For example, in [19], chaos theory was embedded into Firefly Algorithm (FA), twelve
different chaotic maps were used for tuning the attractive movement of the fireflies. In [20], an adaptive
FA was developed and combined with chaos, increasing FA’s global search ability. In [24], chaos was
embedded into an accelerated PSO algorithm proposed in [25], where twelve different chaotic maps were
used. Driven by them, a chaotic-based SOBAS algorithm (CSOBAS) is proposed by introducing chaos
theory into the SOBAS. Applying to six typical multimodal functions, the results show that the effectiveness
of the CSOBAS and its superiority compared to the SOBAS in terms of convergence accuracy and iteration
numbers. What’s more, the CSOBAS with an appropriate chaotic map can achieve a very good convergence
quality compared to other swarm intelligence optimization algorithms. For comparison, in Table 1, we
conclude a comparison between the CSOBAS, SOBAS and FOBAS algorithms.

Table 1: Comparison on between the CSOBAS, SOBAS and FOBAS algorithms.

Algorithms Convergence quality ~Success rate  Time complexity Applicable type
FOBAS low low low Two dimension
SOBAS high high high Low and high dimension

CSOBAS higher higher higher Low and high dimension

The rest of this paper is organized as follows. Section 2 introduces the second-order BAS. The CSOBAS
is introduced in Section 3 with eight chaotic maps. Then, Section 4 gives the simulation comparison be-
tween the CSOBAS and the SOBAS by applying to six multimodal optimization functions. The last chapter,
i.e, Section 5, summarizes the paper.
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2. The Second-Order BAS Algorithm
The general formula for multimodal optimization problems is formulated as:
min f(x1,x2,-++ ,Xp) s.t. a; <x; < b;.

where x = [x1,x,---,xp]T is a vector of decision variables, the superscript T stands for transpose. D
denotes the dimension; a; and b; are the lower bound and upper bound of the i-th decision variables,
respectively; f(x) is then the objective function to be optimized.

A beetle relies on the long antennas on both left and right to detect the odour value around itself, then
flies toward the larger odour value in the next step, looping until food is found. Therefore, the resulting
BAS algorithm mainly is divided into two steps, i.e, detecting and searching. The searching rule (1) is used
to explore,

X, =

db,
db.

(1)

Ni— NI

xt —
=x'+

~ N I

X

where x{ and x] are the left and right antenna coordinate of the beetle at time ¢, respectively. d denotes the
distance between two antennas for a beetle, b is a normalized random unit vector to enhance the searching
ability,

rand(D, 1)

b= e + norm(rand(D, 1))

The detecting rule is:

= xt + égsign(f(xi) - fx)), N

where f(-) is the function to be optimized. sign(-) is a symbolic function in MATLAB. £ denotes step length
of a beetle,

E=A¢,

where A is a random number close to one.
Compared to the FOBAS, the SOBAS has mainly changed in two places. First, the detection rules (2)
are replaced with:

v = v — B — f), )

1 1 1
VH = VmaX(VtJr > Vmax) - VrnaX(VtJr < _Vmax)

+Vt+1(vt+l < Vrnax)(vt+1 = _Vmax)/

(4)

Xi‘+1 - Xt + Vt+1, (5)

where Viax = c1é. The parameters c; € (0,1) and ¢; € (0,1) are valued as 0.7 and 0.2 in this paper,
respectively. For ¢, in each iteration, setting

&= M&E - &)+ &o; (6)

for step size with a minimal resolution, where A = 0.95, & is a constant and valued as 5 X 1075.
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3. Chaos-Based SOBAS

3.1. Analysis on SOBAS Algorithm

1) Since the initialization process is random, when the initial solution of the beetle is far away from the
optimal solution, plus that the number of iterations is a certain amount, there is no guarantee that
the beetle will eventually step to the optimal solution. If the initial solution is better, it may help to
improve the convergence quality of the SOBAS.

2) For the detecting rule (3), when the odor strength values of the left and right antenna around the
beetle are equal, updating new speed and position will depend largely on the parameter c;v, due to
c1 € (0,1), this makes the SOBAS easily fall into the local optimal solution.

Therefore, by using the ergodicity of chaos theory, we first generate a large number of initial beetle swarms,
and select a beetle with the best fitness function value to perform iterative search with the current position.
We use chaotic maps to tune the parameter ¢; and impose a chaotic perturbation on position of the current
beetle to jump out the dilemma of the poor convergence quality and the local minimum when the SOBAS
is used for the multimodal optimization function.

3.2. The CSOBAS
The CSOBAS is now reformulated with more detail as follows:

1. Chaos initialization:

(1) Randomly generating a D-dimensional vector x; = (x1,1,-+,x1,p) with each component value
x1;€(0,1),i=1,2,---,D.

(2) Mapping the decision variables x;,; to chaotic variables cx; ; based on equation (7):

X1j = Xmin,i
Xy = &, 7)

Xmax,i — Xmin,i

where Xmax; and Xmin ; are the upper and lower bounds of the i-th decision variable, respectively.

(3) According to the chaotic map, cx;i1; = pcx;j, (taking the Logistics equation as an example),
i=1,2,---,N,j=1,2,--- ,D -1, we obtain ¢x;,cXp, - - - ,cxy. Here, N denotes the number of the
beetles.

(4) Converting the chaotic variables cx;, i = 1,2,--- , N, to decision variables x; based on (8)
Xij = Xmin,j + (Xmax,j = Xmin, j)CX;- (8)

(5) Calculating the objective function value, and choosing the corresponding solution of the beetle
having the smallest function value from the N beetles as an initial solution to start an iterative
search.

2. Chaotic disturbance:

(1) Based on the employed chaotic map, generating a D-dimensional vector z; = (z1,1,--*,Z1,p),
where

z1,i = 4z0,(1 — zo,).

(2) Converting each component of z; into an allowable perturbation range [—f, f] with a perturba-
tion Ax = (Axy, -+, Axp), where

Ax; = —ﬁ + ZﬁZLi.

Zy = Z7.
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(3) Generating new position

X = Xt 4yl

and new position with a disturbance

t+1

— i t+1
ew =X VT 4+ Ax.

X
(3) Evaluating the corresponding fitness function values, if f(xttl) < f(x'*1), then x*1 = xttL .

The pseudo-code of the CSOBAS algorithm is shown in Algorithm 1.

Algorithm 1 Chaotic SOBAS.

Input: The objection function f(x), x = [x1,x2, -+ ,xp]T, and the required parameters;
Chaos initialization;
Initialize speed of the beetle as zero, and ¢; = 0.7;
Initialize each element of vector Xp.s € R™ to x°;
Initialize the best objective function value, fys, to f (Xpest);
Randomly generating a D-dimensional vector zy = (zo,1, - - , Zo,p) with each component value zg; € (0, 1),
i=1,2,---,D.
while ¢ < iteration number do
d=¢&J/5;
Generate the direction vector unit 5;
Search the location of two antennas for a beetle according to (1);
Map the variable c; to chaotic variable based on a chaotic map;
Generate the new position x' according to (5);
Impose a chaotic disturbance on the current position;
Update x';
if f(x') < fiest then
Xpest = X!
f best = f (xt)
end if
Update step length £ based on (6);
end while
Output: x4 and the corresponding function value fyes.

3.3. Chaotic Map

Different chaotic maps have different enhancement capabilities for CSOBAS in multimodal function
optimization. In this paper, we have chosen eight different chaotic maps [24] to show their impact on the
optimization results.

1) Circle map
0.5 .
Xip1 =X +0.2— o sin(2mtx;) mod (1),

where mod (1) denotes the remainder of division of the number by 1.

2) Iterative map
. QT
Xiy1 = sin(—),
i+1 ( X; )

where a € (0,1). @ = 0.7 is used for the experiments.
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3) Logistic map
Xiy1 = pxi(l = x;),
where u = 4.

4) Piecewise map

Xi
7 0<xi<p
Xi—p X
_ ) o5 p<x <05
Xiv1 = 1-p—x;
5y 05<xi<1- p
%, 1-p<xi<1,

where p € [0,0.5], x € (0,1). p is valued as 0.2 in this paper.
5) Sine map
X1 =  sin(),
where0 <« <4,and @ = 3.2.
6) Singer map
Xiv1 = a(7.86x; — 23.31x7 + 28.75x7 — 13.302875x7),

where a € [0.9,1.08] and o = 1.02 ..

7) Sinusoidal map
Xip1 = axiz sin(7tx;).
If « = 2.3 and xp = 0.7, it can be rewritten as

Xit1 = sin(7mx;).

8) Tent map

Xiy1 =

4. Multimodal Function

The ability to search for multimodal functions has always been one of the bases for measuring the
superiority of an optimization algorithm. In this study, we use six typical multi-modal functions to ver-
ify the effectiveness and superiority of the proposed SCOBAS algorithm compared to other optimization
algorithms.
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(a) Schaffer (b) Schwefel (c) Ackley

Figure 1: Typical 2D representations of multimodal functions;

4.1. Schaffer Function

sin? ,/xi + x% -05

© 1+0.001(x2 + x2)?

f =05, —100 < x; <100.

The Shaffer function is a multimodal function with strong oscillations (as shown in Fig.1a), whose global
minimum is —1. Due to it has numerous local minima surrounding the optimal value, it is so difficult that
the globally best value is found. Independently running CSOBAS and SOBAS (the iteration number are
set as 10° and 10%, respectively.) each with 100 times, the acquired results are listed in Table 2. Among
which, we can observe that convergence performance of the CSOBAS is better than the SOBAS, although
it may not reach the minimum -1 due to only an individual involved in the evolution. Compared to the
SOBAS, however, the convergence quality of the CSOBAS can be increased as the number of iterations
increases. Table 2 also shows the optimization results of the FOBAS for the Schaffer function. It is not
difficult to find that the SOBAS has no obvious advantage over the FOBAS. For better comparison, the
optimal function value less than —0.9 is viewed as the success condition and under 1000 iteration, we give
in Table 3 that the success rates of the CSOBAS, SOBAS and FOBAS by running these three algorithms
separately 100 times. Taking the results of running 10 times, based on Table 3, the advantages of the
CSOBAS compared to the other two algorithms can be easily found. Also, we found via MATLAB that the
average time required for the FOBAS algorithm to execute once is approximately 8.4 seconds, while the
SOBAS is around 10.5 seconds. For the CSOBAS, the computation time is increased to 13.37 seconds due to
the fusion of chaos theory. Compared to the FOBAS, the second-order BAS and the CSOBAS are increased
in terms of time complexity. However, the success rate of optimization and convergence quality are better
than the first order. The above observations are combined, revealing the effectiveness of the improved
algorithm combining chaos theory with second-order BAS. In addition, Table 4 shows that statistical results
obtained by the CSOBAS under different chaotic maps for Schaffer function. We obtain that the sine map
and singer map can achieve the best performance than others.

Table 2: Statistical results obtained by the CSOBAS and SOBAS for the Schaffer function.

1000 iterations 10000 iterations
Best Mean Worst Best Mean Worst
CSOBAS  -0.99801259 -0.87308159 -0.59286701 -0.99986608 -0.94348926 -0.94348926
SOBAS  -0.96351203 -0.57189222 -0.50134958 -0.98875641 -0.56831554 -0.50147538
FOBAS  -0.94996383 -0.51478505 -0.50000957 -0.95308699 -0.53733437 -0.50000776
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Table 3: Success rate of the CSOBAS, SOBAS and FOBAS for the Schaffer function.

Success number

1 2 3 4 5 6 7 8 9 10 Success rate

CSOBAS 51 47 43 45 43 44 51 39 37 54 100%
SOBAS 1 4 1 2 2 5 0 2 2 5 90%
FOBAS 0 1 1 1 2 6 0 3 2 0 70%

Table 4: Statistical results obtained by the CSOBAS under different chaotic maps for the Schaffer function.

1000 iterations 10000 iterations
Best Mean Worst Best Mean Worst
Circle map -0.99801259 -0.89269717 -0.72219215  -0.99368911  -0.94382899 -0.81927744
Iterative map -0.99026212  -0.85059894 -0.58324955  -0.99027576  -0.94073673 -0.82834493
Logistic map -0.99801259 -0.87308159 -0.59286701  -0.99986608  -0.94348926 -0.94348926
Piecewise map  -0.99002903 -0.80427833 -0.65429050  -0.99560813  -0.82593855 -0.65429050
Sine map -0.99572887 -0.94852500 -0.93791217 -0.9967109448 -0.96117373 -0.93999396
Singer map -0.99801259 -0.93181641 -0.79468510  -0.99027066  -0.95176927 -0.84602778
Sinusoidal map -0.99398597 -0.88524889 -0.62251305  -0.99026846  -0.95044441 -0.87241953
Tent map -0.99470661 -0.81624003 -0.65429050  -0.99391891  -0.83530897 -0.65429050
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4.2. Schwefel Function

D

fo=) (usin(VIxl), =500 < x; < 500.

i=1

Fig.1b shows typical 2D representations of the Schwefel function, whose global minimum is related to the
dimension D, which is —418.9829D. Independently running CSOBAS and SOBAS (the iteration number
is set as 10%) each with 100 times, the acquired results are listed in Table 5. Statistical results obtained by
the CSOBAS under different chaotic maps are shown in Table 6. Following them, it is clear that for the
Schwefel function, the CSOBAS is significantly better than the SOBAS in terms of convergence quality in
three dimensions. Especially, the CSOBAS with an appropriate chaotic mapping achieves global optimal
solutions within tiny error. For the Schwefel function, the singer map and sinusoidal map achieve the best
performance than others.

Table 5: Statistical results obtained by the CSOBAS and SOBAS for the Schwefel function.
CSOBAS SOBAS
Smin Best Mean Worst Best Mean Worst
d=2  -837.9658 -837.9657  -785.7350  -599.5720  -790.9040  -516.6586  -361.1783
d=10 -4189.829 -3331.1754 -2430.1700 -1805.8915 -2905.5422 -2321.9474 -1852.0266
d=30 -12569.487 -8138.5710 -6301.5662 -5415.6316 -6758.5250 -5609.1751 -4527.6119

Table 6: Statistical results obtained by the CSOBAS under different chaotic maps for the Schwefel function.

D=10 D=30
Best Mean Worst Best Mean Worst
Circle map -4140.7318 -4133.9665 -4127.7499 -12413.4182 -12401.9560 -12392.1602

Iterative map -3479.1771 -2462.6692 -1805.8915 -8909.3380  -6630.8275  -4817.6648
Logistic map -3331.1754 -2430.1700 -1805.8915 -8138.5710  -6301.5662  -5415.6316
Piecewise map  -2149.5322 -1779.7561 -1309.3467 -5417.6747  -4012.8150  -2290.7057

Sine map -3071.0364 -23607.417 -1858.6114 -7285.1326  -5796.2906  -4462.0319
Singer map -4187.1411 -4185.5580 -4183.6375 -12559.5028 -12556.8613 -12553.2917
Sinusoidal map -4183.3942 -4176.8718 -4175.0514 -12537.6491 -12528.8477 -12525.5593
Tent map -3222.2081 -3157.1287 -3093.2322  -9598.1698  -9474.4398  -9367.5328

4.3. Ackley Function

D D
1 1
f5 = —20exp(—0.2 4 5 E x?) - exp(B E cos(2mx;)) +e+20, —32<x; <32.
i=1 i=1
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Ackley function as shown in Fig.1c has global minimum 0 at x = 0. Independently running CSOBAS and
SOBAS (the iteration number is set as 10°) each with 100 times, the acquired results are listed in Table
7 corresponding to different chaotic maps. It seems that the used nine chaotic maps have no ability to
promote the CSOBAS to evolve towards global solution. Nonetheless, the CSOBAS has good convergence
compared to some optimization results reported on the published literatures (see Table 8).

Table 7: Statistical results obtained by the CSOBAS for the Ackley function.

D=10 D=30
Best Mean Worst Best Mean Worst
Circle map 2.78926044 3.84395946 4.34573354 3.35760474 3.90342474 4.28759109

Iterative map 2.81079403 3.83627088 4.52597306 3.55103932 3.86281907 4.23645169
Logistic map 231936109 3.84311711 4.40991821 3.53694629 3.88469066 4.27347645
Piecewise map  2.75576992 3.82085980 4.42282728 3.45483688 3.86946217 4.21110517

Sine map 2.18245896 3.85177438 4.51014045 3.21384731 3.87340812 4.21746946
Singer map 249577164 3.34583611 3.82160929 2.92993465 3.49550091 3.83245892
Sinusoidal map 2.61266444 3.89757496 4.55430115 3.49839287 3.89879102 4.36952746
Tent map 2.80197338 3.88177101 4.54087356 3.41690571 3.86849009 4.35649447

4.4. Comparison Between The CSOBAS and Other Algorithms.

We place the best results of the CSOBAS in Table 8 from Table 4, Table 6 and Table 7, and compare them
with other optimization algorithms such as FA, Chaotic Firefly algorithm (CFA), Whale Optimization algo-
rithm (WOA). We obtained their respective program code from [2, 26, 27] to conduct compare experiment
to better show the SCOBAS. From which, it is seen that the results optimized by the CSOBAS under singer
map are clearly better than ones obtained by other algorithm for Schwefel function. For both Schaffer and
Ackley functions, the convergence quality is worse than others, the reason is that only one beetle in the
CSOBAS participates in search, which cuts the convergence accuracy and quality.

4.5. Two-Dimensional Multimodal Function with Fixed Global Minimum
1) Goldstein-Price function:

fo=(1+ (x4 x2 + 1)*(19 — 14x1 + 327 — 1433 + 63122 + 3%3))(30 + (2x1 — 3x2)?
(18 — 32x + 1222 + 48x, — 36x1%2 +27x3))  —2<x < 2.
The global minimum is 3 occuring at x = (0, -1).

2) Six-Hump Camel-Back function:

1
f5 = 4x% — 2.13(‘11 + gx? + X1Xp — 4x§ + 4x§, -5<x; <5.
The global minimum is —1.0316285 occuring at x = (0.08983, —0.7126) or x = (—0.08983, 0.7126).

3) Branin function:
5.1 5 1
fo = (x2— Hx% + ;xl - 6)2 +10(1 - g)cosxl + 10, —5<x <5b.

The global minimum is approximately 0.398 and it is reached at the three points (—3.142,2.275),
(3.142,2.275) and (9.425, 2.425).
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Table 8: Comparison between the CSOBAS and other algorithms.

5169

population Iteration fi(D=2) fo(D =30) f3(D = 30)
CSOBAS 1 1000 -0.99801259 -12559.5028 2.92993465
SOBAS 1 1000 -0.96351203 -6758.5250 19.42693137
BAS-WPT [2] 1 1000 -0.68251 -5165.1503 19.7447
PSO [26] 30 1000 -0.99028 -8752.5627 1.1865
FA [26] 30 1000 -1 -9561.4278 0.0017231
CFA [26] 30 1000 -1 -5862.5174 8.925
CFA-II [26] 30 1000 -1 -8265.8782 2.5094
WOA [27] 30 1000 -1 -9016.2679 8.8818E-16
CAPSO [24] 30 5000 N/A N/A 1.2
CAPSO [23] 30 5000 N/A N/A 8.57

Figure 2: The Goldstein-Price function.
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Figure 3: The Branin function.

Figure 4: The Branin function.
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With 1000 iterations, Fig. 2, Fig. 3 and Fig. 4 show the evolutionary process for both the different
chaotic maps based CSOBAS and the SOBAS that reach the minimum value for f3, f4 and f5, respectively.
The conclusion that can be shared is that the number of iterations required for the CSOBAS that reaches the
global minimum of the optimization functions for the first time with an appropriate chaotic map is much
smaller than the SOBAS. For f3, the performance of the sinusoidal map is best than the others. Iterative
map is suitable for f;, but it requires more runs. Tent map fails to make the CSOBAS evolve to the global
minimum for fs, f; and fs.

5. Conclusions

A chaotic-based second-order BAS algorithm (CSOBAS) that contributes to urging the SOBAS to escape
from the local minima and improve convergence quality for multimodal functions has been developed.
Eight different chaotic maps have been used, from the corresponding simulation results, it is obtained that
the singer map can achieve the best convergence with high probability. Six typical multimodal functions,
i.e, Schaffer, Schwefel, Ackley, Goldstein-Price, Six-Hump Camel-Back and Branin function, have been in-
troduced. For the Schaffer function, convergence quality of the CSOBAS is clearly better than the SOBAS,
although it may not reach the minimum -1 due to only an individual involved in the evolution. Com-
pared to the SOBAS, however, the convergence quality of the CSOBAS can be increased as the number of
iterations increases. For the two functions Schwefel and Ackley, the convergence qualities achieved by the
CSOBAS significantly outperform the SOBAS regardless of the dimension D = 10 or D = 30. For the last
three functions with a fixed minimum, the iterations number required for the CSOBAS is smaller than the
SOBAS. Combined with the above observations, the CSOBAS algorithm proposed in this paper is effective
for multimodal function optimization.

Compared with swarm intelligent optimization algorithms such as BSO and BSAS, only one individual
is one of the advantages of second-order BAS, however it also has caused disadvantage for the SOBAS. Al-
though it is now capable of handling high-dimensional optimization problems, lower convergence quality
is still a problem for large variable region. This is also what we need to improve in the future.
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