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Abstract. In this paper, a new meta-heuristic algorithm, called beetle swarm optimization (BSO) algo-
rithm, is proposed by enhancing the performance of swarm optimization through beetle foraging princi-
ples. The performance of 23 benchmark functions is tested and compared with widely used algorithms,
including particle swarm optimization (PSO) algorithm, genetic algorithm (GA) and grasshopper opti-
mization algorithm (GOA). Numerical experiments show that the BSO algorithm outperforms its coun-
terparts. Besides, to demonstrate the practical impact of the proposed algorithm, two classic engineering
design problems, namely, pressure vessel design problem and himmelblau’s optimization problem, are
also considered and the proposed BSO algorithm is shown to be competitive in those applications.

1. The first section

In the past decade, various optimization algorithms have been proposed and applied to different re-
search fields. Procedures may vary to solve different optimization problems, but the following questions
need to be considered in advance before selecting the optimization algorithm: (1) Parameters of the prob-
lem. The problem can be divided into continuous or discrete depending on the parameters. (2) Constraints
of variables. Optimization problems can be classified into constrained and unconstrained ones based on
the type of constraints [1]. (3) The cost function of a given problem. The problem can be divided into
single-objective and multi-objective problems [2]. Based on the above three points, we need to select the
optimization algorithm according to the parameter type, constraint and target number.

The development of optimization algorithms is relatively mature at present, and many excellent op-
timization algorithms have been applied in various fields. We can divide the optimization algorithms
into two categories: gradient-based methods and meta-heuristic algorithms. For simple problems such
as continuous and linear problems, some classical algorithm gradient algorithms can be utilized, such as
Newton’s method [3], truncated gradient method [4], gradient descent method [5],etc. For more complex
problems, meta-heuristics such as genetic algorithm [6], ant colony algorithm [7] and particle swarm opti-
mization algorithm [8] can be considered. And the meta heuristic algorithm becomes very popular because
of its stability and flexibility and its ability to better avoid local optimization [9].
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Table 1: Algorithm Classification

Meta-heuristic Algorithms

Evolutionary Algorithms

Genetic Algorithm [6]
Evolution Strategies[10]
Probability-Based Incremental Learning[11]
Genetic Programming[12]
Biogeography-Based Optimizer[13]

Physics-based Algorithms

Simulated Annealing[14]
Gravitational Local Search[15]
Big-Bang Big-Crunch[16]
Gravitational Search Algorithm[17]
Charged System Search[18]
Central Force Optimization[19]
Artificial Chemical Reaction Optimization
Algorithm[20]
Black Hole algorithm[21]
Ray Optimization algorithm[22]
Small-World Optimization Algorithm[23]
Galaxy-based Search Algorithm[24]
Curved Space Optimization[25]

Swarm-based Algorithms

particle swarm optimization algorithm[8]
Honey Bees Optimization Algorithm[26]
Artificial Fish-Swarm Algorithm[27]
Termite Algorithm[28]
Wasp Swarm Algorithm[29]
Monkey Search[30]
Bee Collecting Pollen Algorithm[31]
Cuckoo Search[32]
Dolphin Partner Optimization[33]
Firefly Algorithm[34]
Bird Mating Optimizer[35]
Fruit fly Optimization Algorithm[36]

People usually divide the meta-heuristic algorithm into three types, which are based on the principles
of biological evolution, population and physical phenomena. The evolutionary approach is inspired by the
concept of natural evolution. The population based optimization algorithm is mainly inspired by the social
behavior of animal groups, while the physical phenomenon based method mainly imitates the physical
rules of the universe.Table 1 summarizes the algorithms included in each category.

In face of so many existing meta-optimization algorithms, a concern naturally rises. So far, there have
been many different types of optimization algorithms. Why do we need more algorithms? We will men-
tion that there is no free lunch (NFL) [37] theorem, no matter how smart or how clumsy the optimization
algorithm is, their performance is logically equivalent. That is, there is no optimization algorithm that can
solve all optimization problems. This theorem makes the number of algorithms increase rapidly over the
past decade, which is one of the motivations of this paper.

In this paper, a new optimization, namely Beetle Swarm Optimization (BSO) algorithm, is proposed
by combining beetle foraging mechanism with group optimization algorithm. The rest of the paper is
structured as follows. Section 2 describes the Beetle Swarm Optimization algorithm developed in this
study. Section 3 tests the performance of the algorithm on the unimodal functions, multimodal functions
and fixed-dimension multimodal functions. Section 4 applies the BSO algorithm to the multi-objective
problems to further test the performance of the algorithm. Section 5 draws conclusions.
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2. Beetle Swarm Optimization (BSO)

2.1. Beetle Antennae Search Algorithm
A meta-heuristic optimization algorithm based on the search behavior of long-horned beetles was pro-

posed by Jiang X et al. [38, 39]. When using BAS to optimize nonlinear systems, a simple two-step building
procedure is employed as follows: (i) model the searching behavior; (ii) formulate the behavior of detect-
ing. In this section, the position of beetle at time t (t=1,2,. . . ) is denoted as xt, denote the concentration
of odor at position x to be f (x) known as a fitness function, where the maximum (or minimum) value
corresponds to the point of odor source.

Mathematically, BAS model is stated as follows. The random search directions of beetles are shown as
follows[38]:

−→
b =

rands(n, 1)
‖rands(n, 1)‖

. (1)

where rands(.) denote the random function, and indicates the space dimension. Then create the beetle’s left
and right spatial coordinates[38, 40]:

xrt = xt + d0 ∗
−→
b
/
2, (2)

xlt = xt
− d0 ∗

−→
b
/
2. (3)

where xrt represents the position coordinates of the right antennae at time t, and xlt represents the coor-
dinates of the left antennae at time t. d0 represents the distance between two antennae. Use the fitness
function value to represent the scent intensity at the right and left antennae, we denote them as f (xrt) and
f (xlt).

In the next step, Setting the beetle’s iterative mechanism to formulate the detect behavior, the model as
follows[38]:

xt+1 = xt + δt
∗
−→
b ∗ si1n( f (xrt) − f (xlt)). (4)

where δt represents the step factor, the step size usually decreases as the number of iterations increases.
si1n(.) represents a sign function.

It is worth pointing out that searching distance d0 and δ. In general, setting the initial step length as a
constant, and the initial step length increases as the fitness function dimension increases. To simplify the
parameter turning further more, we also construct the relationship between searching distance d and step
size δ as follows [39]:

δt = c1δ
t−1 + δ0orδt = eta ∗ δt−1. (5)

dt = δt
/
c2. (6)

where c1 , c2 and are constants to be adjusted by designers, we recommend eta’s value is 0.95.

2.2. Beetle Swarm Optimization Algorithm
With the continuous deepening of the experiment, we found that the performance of the BAS algo-

rithm in dealing with high-dimensional functions is not very satisfactory, and the iterative result is very
dependent on the initial position of the beetle. In other words, the choice of initial position greatly affects
the efficiency and effectiveness of optimization. Inspired by the swarm optimization algorithm, we have
made further improvements to the BAS algorithm by expanding an individual to a group.That is the beetle
swarm optimization (BSO) algorithm we will introduce.

In this algorithm, each beetle represents a potential solution to the optimization problem, and each
beetle corresponds to a fitness value determined by the fitness function. Similar to the particle swarm
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algorithm, the beetles also share information, but the distance and direction of the beetles are determined
by their speed and the intensity of the information to be detected by their long antennae.

In mathematical form, we borrowed the idea of particle swarm algorithm. There is a population of n
beetles represented as X = (X1,X2, · · ·,Xn) in an S-dimensional search space, where the ith beetle represents
an S-dimensional vector Xi = (xi1, xi2, · · ·, xiS)T ,represents the position of the ith beetle in the S-dimensional
search space, and also represents a potential solution to the problem. According to the target function,
the fitness value of each beetle position can be calculated. The speed of the ith beetle is expressed as
Vi = (Vi1,Vi2, · · ·,ViS)T .The individual extremity of the beetle is represented as Pi = (Pi1,Pi2, · · ·,PiS)T , and
the group extreme value of the population is represented as P1 = (P11,P12, · · ·,P1S)T [41]. Mathematical
model for simulating its behavior is as follows:

Xk+1
is = Xk

is + λVk
is + (1 − λ)ξk

is. (7)

where s = 1, 2, · · ·, S ; i = 1, 2, · · ·, n ; k is the current number of iterations. Vk
is is expressed as the speed of

beetles, and ξis represents the increase in beetle position movement. λ is a positive constants.
Then the speed formula is written as [8, 42, 43]:

Vk+1
is = ωVk

is + c1r1(Pk
is − Xk

is) + c2r2(Pk
1s − Xk

1s). (8)

where c1 and c2 are two positive constants, r1 and r2 are two random functions in the range[0,1]. ω is the
inertia weight. In the standard PSO algorithm, ω is a fixed constant, but with the gradual improvement of
the algorithm, many scholars have proposed a changing inertia factor strategy [41, 44, 45].

This paper adopts the strategy of decreasing inertia weight, and the formula is as follows [41]:

ω = ωmax −
ωmax − ωmin

K
∗ k. (9)

Where ωmin and ωmax respectively represent the minimum and maximum value of ω. k and K are the
current number of iterations and the maximum number of iterations. In this paper, the maximum value of
ω is set to 0.9, and the minimum value is set to 0.4 [46],so that the algorithm can search a larger range at the
beginning of evolution and find the optimal solution area as quickly as possible. As ω gradually decreases,
the beetle’s speed decreases and then enters local search.

The ξ function, which defines the incremental function, is calculated as follows:

ξk+1
is = δ

k
∗ Vk

is ∗ si1n( f (Xk
rs) − f (Xk

rs)). (10)

In this step, we extend the update (4) to a high dimension. δ indicates step size. The search behaviors of
the right antenna and the left antenna are respectively expressed as:

Xk+1
rs = Xk

rs + Vk
is ∗ d/2, (11)

Xk+1
ls = Xk

ls − Vk
is ∗ d/2. (12)

Figure 1 shows the trajectories of the beetle swarm in three-dimensional space. To represent the search
path more visually, we used a small population size and showed the location change process of 10 iterations
in 3D space. Because factors such as step length and inertial weight coefficient are decreasing in the iterative
process, the algorithm will not converge to the target point too quickly, thus avoiding the group falling into
the local optimum greatly.

The BSO algorithm first initializes a set of random solutions. At each iteration, the search agent updates
its location based on its own search mechanism and the best solution currently available. The combination
of these two parts can not only accelerate the population’s iteration speed, but also reduce the probability
of the population falling into the local optimum, which is more stable when dealing with high-dimensional
problems.

The pseudo code of the BSO algorithm is presented in Algorithm 1.
In theory, the BSO algorithm includes exploration and exploitation ability, so it belongs to global op-

timization. Furthermore, the linear combination of speed and beetle search enhances the rapidity and
accuracy of population optimization and makes the algorithm more stable. In the next section, we will
examine the performance of the proposed algorithm through a set of mathematical functions.
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(a) three-dimensional diagram (b) vertical view

Figure 1: Beetles Search Path in 2D Space(a) and 3D Space(b)

Algorithm 1 Procedure:
Input: Initialize the swarmXi(i = 1, 2, ...,n);

Initialize population speed v ;
Set step size δ , speed boundary vmax and vmin , population size sizepop and maximum number of itera-
tions K ;
Calculate the fitness of each search agent;
while k < K do

Set inertia weight ω using (9);
Update d using (6);
for each search agent do

Calculate f (Xrs) and f (Xls) using (11)(12);
Update the incremental function ξ by the (10);
Update the speed formula V by the (8);
Update the position of the current search agent by the (7);

end for
Calculate the fitness of each search agent f (x);
Record and store the location of each search agent;
for each search agent do

if f (x) < fpbest then
fpbest = f (x)

end if
if f (x) < f1best then

f1best = f (x)
end if

end for
Update x∗ if there is a better solution;
Update step factor δ by the (5);

end while
Output: xbest and fbest.
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3. Results and Discussion

In the optimization field, a set of mathematical functions with optimal solutions is usually used to
test the performance of different optimization algorithms quantitatively. And the test functions should be
diverse so that the conclusions are not too one-sided. In this paper, three groups of test functions with
different characteristics are used to benchmark the performance of the proposed algorithm which are uni-
modal functions, multimodal functions and fixed-dimension multimodal functions [47–49] .The specific
form of the function is given in table 2-4, where Dim represents the dimension of the function, Ran1e repre-
sents the range of independent variables, that is, the range of population, and fmin represents the minimum
value of the function. In the comparative experiment, the experimental environment was the same. Matlab
version was 2016a, win10 operating system, and the processor model was Inter(R) Core(TM) i7-8550u CPU
@1.80GHz 2.00GHz.

Table 2: Description of unimodal benchmark functions
Function Dim Ran1e fmin

f1(x) =
∑n

i=1 x2
i 30 [-100,100] 0

f2(x) =
∑n

i=1 |xi| +
∏n

i=1 |xi| 30 [-10,10] 0

f3(x) =
∑n

i=1

(∑i
j−1 x j

)2
30 [-100,100] 0

f4(x) = maxi { |xi| , 1 ≤ i ≤ n} 30 [-100,100] 0

f5(x) =
∑n−1

i=1 [100
(
xi+1 − x2

i

)2
+ (xi − 1)2] 30 [-30,30] 0

f6(x) =
∑n

i=1 ([xi + 0.5])2 30 [-100,100] 0
f7 =

∑n
i=1 ix4 + random [0, 1) 30 [-1.28,1.28] 0

Table 3: Description of multimodal benchmark functions

Function Dim Ran1e fmin

f8(x) =
∑n

i=1 −xi sin(
√
|xi|) 30 [-500,500] -418.9829*Dim

f9(x) =
∑n

i=1 [x2
i − 10 cos(2πxi) + 10] 30 [-5.12,5.12] 0

f10(x) = −20 exp(−0.2
√

1
n
∑n

i=1 x2
i ) − exp( 1

n
∑n

i=1 cos(2πxi)) + 20 + e 30 [-32,32] 0

f11(x) = 1
4000

∑n
i=1 x2

i −
∏n

i=1 cos( xi
√

i
) + 1 30 [-600,600] 0

f12(x) = π
n {10 sin(πy1) +

∑n−1
i=1 (yi − 1)2[1 + 10sin2(πyi+1)] + (yn − 1)2

}

+
∑n

i=1 u(xi, 10, 100, 4)

yi = 1 + xi+1
4 ,u(xi, a, k,m) =


k(xi − a)mxi > a

0 − a < xi < a

k(−xi − a)mxi < −a

30 [-50,50] 0

f13(x) = 0.1{sin2(3πx1) +
∑n

i=1

(xi − 1)2[1 + sin2(3πxi + 1)]+

(xn − 1)2[1 + sin2(2πxn)]
}

+
∑n

i=1 u(xi, 5, 100, 4)

30 [-50,50] 0

Figure 2 shows the two-dimensional versions of unimodal function, multimodal function and fixed-
dimension multimodal function respectively. The unimodal test function has only one global optimal solu-
tion, which is helpful to find the global optimal solution in the search space, and it can test the convergence
speed and efficiency of the algorithm well. From Figure 2, it can also be seen that the multimodal func-
tion and the fixed-dimension multimodal test function have multiple local optimal solutions, which can be
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Table 4: Description of fixed-dimension multimodal benchmark functions

Function Dim Ran1e fmin

f14(x) = ( 1
500 +

∑25
j=1 ( j +

∑2
i=1 (xi − ai j)6)−1)−1 2 [-65,65] 0.998

f15(x) =
∑11

i=1 [ai −
x1(b2

i +bix2)
b2

i +bix3+x4
]
2

4 [-5,5] 0.0003

f16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [-5,5] -1.0316

f17(x) = (x2 −
5.1
4π2 x2

1 +
5
πx1 − 6)2 + 10(1 − 1

8π ) cos x1 + 10 2 [-5,5] 0.398

f18(x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]

×[30 + (2x1 − 3x2)2
× (18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)]

2 [-2,2] 3

f19(x) = −
∑4

i=1 ci exp(−
∑3

j=1 ai j(x j − pi j)2) 3 [1,3] -3.86

f20(x) = −
∑4

i=1 ci exp(−
∑6

j=1 ai j(x j − pi j)2) 6 [0,1] -3.32

f21(x) = −
∑5

i=1 [(X − ai)(X − ai)T + ci]
−1

4 [0,10] -10.1532

f22(x) = −
∑7

i=1 [(X − ai)(X − ai)T + ci]
−1

4 [0,10] -10.4028

f23(x) = −
∑10

i=1 [(X − ai)(X − ai)T + ci]
−1

4 [0,10] -10.5363

used to test the algorithm to avoid the performance of the local optimal solution, and the fixed-dimension
multimodal function compared with unimodal test function is more challenging.

0 150 300 450 600 750
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

 

 

X: 636

Y: 0.07347

X: 653

Y: 3.464e−05

k

SSZeaD-type SCS

EFF-type SCS

(a) unimodal function

0 1500 3000 4500 6000 7500
10

−15
10

−14
10

−13
10

−12
10

−11
10

−10
10

−9
10

−8
10

−7
10

−6
10

−5
10

−4
10

−3
10

−2
10

−1
10

0
10

1
10

2
10

3

 

 

X: 6614

Y: 0.0009933

X: 6444

Y: 4.882e−10

k

SSZeaD-type SCS

EFF-type SCS

(b) multimodal func-
tion

0 15 30 45 60 75
10

−18
10

−17
10

−16
10

−15
10

−14
10

−13
10

−12
10

−11
10

−10
10

−9
10

−8
10

−7
10

−6
10

−5
10

−4
10

−3
10

−2
10

−1
10

0
10

1
10

2
10

3

 

 

tk (s)

1 = 0.25 s
1 = 0.025 s
1 = 0.0025 s

(c) fixed-dimension
function

Figure 2: 2-D version of unimodal function,multimodal function and fixed-dimension multimodal function

In the part of qualitative analysis, six typical test functions are provided, including optimal trajectory
map, contour map and convergence curve of search path. In the quantitative analysis part, 50 search agents
were used, the maximum number of iterations was set to 1000, and each test function was run 30 times to
generate statistical results. Quantitative evaluation was performed using the mean, standard deviation,
and program performance time of three performance indicators. Statistical results are reported in Table 5.
BSO was compared with PSO [8] ,GA [6] and GOA [50].

3.1. Qualitative Results and Discussion

In this paper, six unimodal , multimodal and fixed-dimension multimodal functions are selected to
observe the BSO algorithm’s optimization behavior. In order to express the optimization trajectory more
intuitively, we use five search agents.

Figure 3 shows the optimal trace of each test function, the contour map of the search path, and the con-
vergence curves. The optimal trajectory gives the best beetle optimization route. Since the initial position
of the beetle is randomly generated, the optimal trajectory may be different when reproducing the result.
The contour map of the search path can more intuitively display the beetle’s trajectory, and connecting the
same z-values on the x, y plane makes it easier to observe beetle movements. The convergence curve shows
the function value of the best solution obtained so far.
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From Figure 3 it can be seen that beetles gradually move to the best point and eventually gather around
the global best point. This phenomenon can be observed in unimodal, multimodal, and fixed-dimension
multimodal functions. The results show that the BSO algorithm has a good balance between exploration
and exploitation capabilities to promote the beetle to move to the global optimum. In addition, in order to
more clearly represent the trajectory of the beetle, some of the function images are processed. Such as f10,
this paper selects the opposite form and can more intuitively observe the optimal trajectory.

The BSO algorithm of the beetle self-optimization mechanism has been added, which can more intelli-
gently avoid local optimums. During the optimization process, we found that some beetles always move
quickly toward the maximum value, and then reach the maximum value and then perform normal itera-
tions. This mechanism makes the beetle cleverly avoid the local optimum during the optimization process.
For unimodal and multimodal functions, the advantage of the self-optimization mechanism is even more
pronounced.

Figure 3 provides a convergence curve to further prove that this mechanism can improve the search
results. The convergence curve clearly shows the descending behavior of all test functions. Observe that the
BSO search agent suddenly changes during the early stage of the optimization process, and then gradually
converges. According to Berg et al. [51], this behavior ensures that the algorithm quickly converges to the
optimal point to reduce the iteration time.

3.2. Quantitative Results and Discussion

The above discussion proves that the proposed algorithm can solve the optimization problem, but pure
qualitative test can not prove the superiority of the algorithm. This section raises the dimensions of test
functions other than fixed dimensions to 5 dimensions and gives quantified results. Table 5 gives the
experimental results of the test function.

As shown in Table 5 , when dealing with the unimodal functions, the processing speed of BSO is compa-
rable to that of PSO, but it is obviously better than GA and GOA algorithm. In addition, compared with the
other three algorithms, BSO algorithm is more stable in performance. Adding the beetle search mechanism
in the process of optimization makes the algorithm have better global optimization performance, acceler-
ates the convergence speed of the algorithm, and effectively avoids the phenomenon of “premature”.

When dealing with multimode functions, BSO algorithm shows good performance again. Because
multimodal functions have multiple local optimal solutions, the results can be directed to show that BSO
algorithm is effective and efficient in avoiding local optimal solutions.

For the fixed-dimension multimodal functions, the proposed algorithm gives very competitive results.
The BSO algorithm has the ability to balance the exploration and exploitation of the individual and can
solve more challenging problems.

3.3. Analysis of Convergence Behavior

Convergence curves of BSO,GA,GOA and PSO are compared in Figure 4 for all of the test functions. The
figure shows that BSO has good processing ability for unimodal functions, multimodal functions and fixed-
dimension functions, and the processing process is very stable. Especially when solving more complex
fixed-dimension functions, BSO shows more obvious advantage than other algorithms. It can be seen that
BSO is enough competitive with other state-of-the-art meta-heuristic algorithms.

As a summary, the results of this section revealed different characteristics of the proposed BSO al-
gorithm. Efficient and stable search capabilities benefit from beetle-specific optimization features. The
increase in the exploration function of the left and right must greatly improve the stability of the search,
making the exploration and exploitation capabilities more balanced, and the BSO can handle better for
high-dimensional and more complex problems. Overall, the success rate of the BSO algorithm seems to
be higher in solving challenging problems. In the next sections, BSO performance is validated on more
challenging multi-objective issues.
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Figure 3: Behavior of BSO on the 2D benchmark problems
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Table
5:C

om
parision

ofoptim
ization

results
obtained

for
the

unim
odal,m

ultim
odal,and

fixed-dim
ension

m
ultim

odalfunctions

F
BSO

PSO
G

A
G

O
A

ave
std

avetim
e(s)

ave
std

avetim
e(s)

ave
std

avetim
e(s)

ave
std

avetim
e(s)

F1
0

9.36E-76
0.5153

0
0

0.4597
0.0025

0.0017
3.7335

0.4004
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Figure 4: Comparison of convergence curves of BSO and literature algorithms obtained in all of the benchmark problems
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4. BSO for Multi-objective Optimization

In order to better illustrate the superiority and competitiveness of BSO algorithm in solving constrained
optimization problems, two multi-objective functions in BAS algorithm are used in this paper, and the
results are compared with the results of other algorithms.

4.1. BSO for a Pressure Vessel Design Problem

L

Rs

r

Rh

r

Figure 5: schematic of pressure vessel

As shown in Figure 5, two hemispheres cover the ends of the cylinder to form a pressure vessel. The
goal is to minimize the total cost including material costs, welding costs and molding costs [52]:

min fcos t(x) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3

There are four variables in pressure vessel problem where x1 is the thickness of the shell( Rs ), x2 is the
thickness of the head( Rh ) , x3 is the inner radius ( r ), and x4 is the length of the section of the cylinder of
the container ( L ). Rs and Rh are integral times of 0.0625, the available thickness of rolled steel plates, and
r and L are continuous. The constraint function can be stated as follows:

s.t.11(x) = −x1 + 0.0193x3 ≤ 0,

12(x) = −x2 + 0.00954x3 ≤ 0,

13(x) = −πx2
3x4 −

4
3
πx3

3 + 1296000 ≤ 0,

14(x) = x4 − 240 ≤ 0,

x1 ∈ {1, 2, 3, ..., 99} × 0.0625,

x2 ∈ {1, 2, 3, ..., 99} × 0.0625,

x3 ∈ [10, 200],

x4 ∈ [10, 200].

Table 6 illustrates the best results obtained by the BSO algorithm just using 100 iterations and other
various existing algorithm to solve the pressure vessel optimization. And most of these results are taken
from Jiang et al.(2017).The results show that the best results of BSO algorithm are better than most existing
algorithms and in the case where the population number is properly selected (we suggest 50 individuals),
the convergence rate is faster and has good The robustness. The BSO algorithm iterative process is shown
in Figure 6.
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Table 6: comparisons results for pressure vessel function

methods x1 x2 x3 x4 11(x) 12(x) 13(x) 14(x) f ∗

[53] 0.8125 0.4375 42.0984 176.6378 -8.8000e-7 -0.0359 -3.5586 -63.3622 6059.7258

[54] 1 0.625 51.2519 90.9913 -1.0110 -0.136 -18759.75 -149.009 7172.3

[55] 0.8125 0.4375 42.0870 176.7791 -2.210e-4 -0.0360 -3.5108 -63.2208 6061.1229

[56] 1.0000 0.6250 51.0000 91.0000 -0.0157 -0.1385 -3233.916 -149.0000 7079.0370

[57] 0.8125 0.4375 41.9768 182.2845 -0.0023 -0.0370 -22888.07 -57.7155 6171.0000

[58] 0.9375 0.5000 48.3290 112.6790 -0.0048 -0.0389 -3652.877 -127.3210 6410.3811

[59] 0.8125 0.4375 40.3239 200.0000 -0.0343 -0.05285 -27.10585 -40.0000 6288.7445

[60] 1.1250 0.6250 58.1978 44.2930 -0.0018 -0.0698 -974.3 -195.707 7207.4940

[61] 1.1250 0.6250 48.9700 106.7200 -0.1799 -0.1578 97.760 -132.28 7980.8940

[62] 1.1250 0.6250 58.2789 43.7549 -0.0002 -0.0690 -3.71629 -196.245 7198.4330

[39] 0.8125 0.4375 42.0936 176.7715 -9.43e-05 -0.0359 -413.6252 -63.2285 6062.0468

BSO 0.8125 0.4375 42.0984 176.6366 0.0000 -0.0359 0.0000 -63.3634 6059.7000
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Figure 6: Iteration process for pressure vessel design problem
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Table 7: comparisons results for himmelblau function

methods x1 x2 x3 x4 x5 11(x) 12(x) 13(x) f ∗

[64] 78 33 29.995256 45 36.775813 92 98.8405 20 .0000 -30665.54

[65] 78 33 29.995256 45 36.775813 92 98.8405 20 -30665.539

[67] 81.49 34.09 31.24 42.2 34.37 91.78 99.3188 20.0604 -30183.576

[67] 78 33 29.995256 45 36.7258 90.71 98.8287 19.9929 -30665.539

[39] 78 33 27.1131 45 45 92 100.417 20.0206 -31011.3244

BSO 78 33 27.071 45 44.9692 92 100.4048 20 -31025.5563

4.2. BSO for Himmelblau’s Optimization Problem

This problem is proposed by Himmelblau [63] and is a common function for nonlinear constrained op-
timization problems. It is widely used in the optimization field. It consists of five variables, three equality
constraints and six inequality constraints. The specific forms are as follows:

min f (x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.29329x1 − 40792.141,

s.t.11(x) = 85.334407 + 0.0056858x2x5 + 0.00026x1x4 − 0.0022053x3x5,

12(x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2
3,

13(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4,

0 ≤ 11(x) ≤ 92,

90 ≤ 12(x) ≤ 110,

20 ≤ 13(x) ≤ 25,

78 ≤ x1 ≤ 102,

33 ≤ x2 ≤ 45,

27 ≤ x3 ≤ 45,

27 ≤ x4 ≤ 45,

27 ≤ x5 ≤ 45.

Table 7 shows the performance results of the existing algorithm and the BSO algorithm. The number of
iterations is set to 100. Evidently, the best result generated from the BSO shows the most excellent perfor-
mance among all the results listed in Table . The above experiments justify that the proposed BSO algorithm
is effective to handle constraint optimum problem and could achieve a good performance with high con-
vergence rate. In the experiment process, when the population size is 50 and the number of iterations is
1000, the effect is the most stable. The BSO algorithm iterative process is shown in Figure 7.
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Figure 7: Iteration process for himmelblau’s optimization problem

5. Conclusions

This paper proposes a new meta-heuristic algorithm called beetle group optimization. The algorithm
combines the beetle’s foraging mechanism with the group optimization algorithm, and establishes a math-
ematical model and applies it to unimodal functions, multimodal functions, fixed-dimension multimodal
benchmark functions. The results show that compared with the current popular optimization algorithms,
the BSO algorithm still gives very competitive results, and has good robustness and running speed. In
addition, the BSO algorithm also exhibits higher performance when dealing with nonlinear constraints.
Compared with other optimization algorithms, BSO can handle multi-objective optimization problems ef-
ficiently and stably.

Finally, in the research process, we found that the change in step size and speed will affect the efficiency
and effectiveness of BSO optimization. Therefore, in the next work, we will further study the impact of
different parameter settings on BSO.
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