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Abstract. Recently, a typical neural dynamics called Zhang dynamics (ZD) has been developed for online solution
of dynamic linear matrix-vector inequality. This paper show a summary result by presenting the discrete-time forms
of such a ZD for dynamic linear matrix-vector inequality solving. Specifically, by exploiting four different kinds
of Taylor-type difference rules, the resultant discrete-time ZD (DTZD) algorithms, which are called respectively the
DTZD-I, DTZD-II, DTZD-III, and DTZD-IV algorithms, are established. These algorithms can achieve excellent
computational performance in solving dynamic linear matrix-vector inequality. The theoretical and numerical results
are presented to further substantiate the efficacy of the presented four DTZD algorithms.

1. Introduction

In recent years, dynamic linear matrix-vector inequality has been considered as a powerful formulation and design
technique for many scientific and engineering problems [1]–[5]. Solving the dynamic linear matrix-vector inequality
effectively is a significant issue in numerous fields [1]–[3], [6]–[10]. To dynamic linear matrix-vector inequality, a
typical neural dynamics termed Zhang dynamics (ZD) has been studied by Zhang et al [6]–[9]. In [7], a variant of the
exponent-type formula was designed, and the resultant continuous-time ZD (CTZD) model was developed. Differing
from [7] that focuses on solving the dynamic linear matrix-vector inequality directly, [9] presented another CTZD
model to solve this dynamic inequality aided with an equality conversion. For the CTZD models in [7] and [9], the
former is depicted in an implicit dynamics, while the latter is depicted in an explicit dynamics. The theoretical analysis
and simulation results have further shown the efficacy of such two CTZD models.

For a continuous-time model, it is generally and necessary to develop the corresponding discrete-time form for the
purposes of potential digital hardware implementation and numerical algorithm development [10]–[15]. The common
way to discretize a continuous-time model is the exploitation of the Euler-type difference rule [16]. The related
researches have indicated that the numerical algorithm derived via this difference rule generally has an order O(τ2)
steady-state residual error (SSRE) for solving a dynamic problem [2], [16], where τ denotes the sampling gap. That
is, the SSRE reduces by 100 times when the τ value decreases by 10 times. Based on the Taylor series expansion [16],
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four kinds of difference rules have been reported in [13]–[15], [17]–[20] for the first-order derivative approximation.
Each of Taylor-type difference rules has a smaller truncation error than the Euler-type difference rule, i.e., O(τ2) versus
O(τ). The related researches on ZD have verified that the numerical algorithm derived via the Taylor-type difference
rule always has an order O(τ3) SSRE for solving a dynamic problem [13]–[15], [17]–[20]. That is, when the value
of τ decreases by 10 times, the SSRE reduces by 1000 times. Recently, more other forms of Taylor-type difference
rules have been designed and studied [21]–[24]. By summarizing these results [13]–[15], [17]–[24], the Taylor-type
difference rule is more effective than the Euler-type difference rule on the discretization of a continuous-time model,
especially on ZD discretization.

In this paper, a summary result based on the previous work [6]–[9] is provided by presenting and investigating
four discrete-time ZD (DTZD) algorithms to solve dynamic linear matrix-vector inequality. Such four algorithms
are derived by exploiting the Taylor-type difference rules in [13]–[15], [17]–[20], which are called respectively the
DTZD-I, DTZD-II, DTZD-III, and DTZD-IV algorithms in this paper. Then, theoretical results are given to highlight
the excellent properties of the presented four DTZD algorithms. Numerical results are also presented to substantiate
the efficacy of the presented DTZD-I, DTZD-II, DTZD-III, and DTZD-IV algorithms. The theoretical and numerical
results further indicate that the SSRE changes in an O(τ3) manner for each of the presented algorithms.

The rest of this paper is organized into five sections. Section 2 shows the preliminary of solving dynamic linear
matrix-vector inequality. In section 3, four Taylor-type difference rules are presented, and the resultant DTZD-I,
DTZD-II, DTZD-III, and DTZD-IV algorithms are established. In Section 4, numerical results are presented, which
are synthesized using the presented DTZD-I, DTZD-II, DTZD-III, and DTZD-IV algorithms. Section 5 concludes
this paper with final remarks. The main contributions of this paper are as follows.

• In this paper, four different types of DTZD algorithms are presented and studied for dynamic linear matrix-
vector inequality solving. This paper is an important improvement by showing a summary result of four DTZD
algorithms to solve dynamic linear matrix-vector inequality.

2) The numerical results show that the SSRE of each DTZD algorithm is in the order O(τ3). This paper is the first
attempt to present four algorithm with O(τ3) error pattern for dynamic linear matrix-vector inequality solving.

3) This paper reveals that different kinds of difference rules would lead to different types of DTZD algorithms.
This finding presents a potential for the development of numerical algorithm with excellent computational
performance for various dynamic problems solving.

2. Dynamic linear matrix-vector inequality

In this section, the problem formulation of dynamic linear matrix-vector inequality is presented. Then, the CTZD
model in the previous work [9] is given for dynamic linear matrix-vector inequality solving.

The following problem of dynamic linear matrix-vector inequality [6]–[9] is studied in this paper:

A(t)x(t) 6 b(t), (1)

where coefficients A(t) ∈ Rn×n and b(t) ∈ Rn are smoothly time-varying, and x(t) ∈ Rn is the unknown vector to be
obtained. The goal of this paper is to determine a feasible solution x(t) such that (1) holds true for any time instant
tk = kτ with k = 0, 1, 2, · · · . To guarantee the existence of x(t) in (1), we limit the investigation of this paper to the
situation where A(t) is nonsingular at any time instant tk = kτ.

In [9], by introducing elegantly a vector, the dynamic linear matrix-vector inequality (1) is converted to a dynamic
equation, which is formulated as follows:

A(t)x(t) − b(t) +D(t)y(t) = 0, (2)

where D(t) = diag{y1(t), y2(t), · · · , yn(t)} ∈ Rn×n and y(t) = [y1(t), y2(t), · · · , yn(t)]T
∈ Rn with superscript T

denoting the transpose operator. To solve the dynamic linear matrix-vector inequality (1) and the dynamic matrix-
vector equation (2), the following CTZD model is presented in [9]:

A(t)ẋ(t) + 2D(t)ẏ(t) = −Ȧ(t)x(t) + ḃ(t) − γ(A(t)x(t) − b(t) +D(t)y(t)), (3)



F. Xu et al. / Filomat 34:15 (2020), 5103–5111 5105

where γ > 0 ∈ R is used to scale the solution convergence, ẋ(t), ẏ(t), Ȧ(t), and ḃ(t) denote the time derivatives of x(t),
y(t), A(t), and b(t), respectively.

By defining u(t) = [xT(t), yT(t)]T
∈ R2n, W(t) = [A(t), 2D(t)] ∈ Rn×2n, P(t) = [−Ȧ(t), 0] ∈ Rn×2n, and Q(t) =

[A(t),D(t)] ∈ Rn×2n, (3) is reformulated as follows:

u̇(t) =W†(t)(P(t)u(t) + ḃ(t)) − γW†(t)(Q(t)u(t) − b(t)), (4)

where u̇(t) ∈ R2n denotes the time derivative of u(t), and W†(t) denotes the right pseudoinverse of W(t) [9], [25]. For
details about the CTZD model (4), please refer to . In the ensuing section, such a model is discretized for the purpose
of potential hardware implementation [10]–[15].

3. DTZD algorithms

In this section, by exploiting the Taylor-type difference rules in [13]–[15], [17]–[20], four different DTZD algo-
rithms are developed for dynamic linear matrix-vector inequality solving.

Lemma 1. The Taylor-type difference rules exploited in this paper are formulated as follows [13]–[15], [17]–[20]:

u̇k ≈
6uk+1 − 3uk − 2uk−1 − uk−2

10τ
, (5)

u̇k ≈
2uk+1 − 3uk + 2uk−1 − uk−2

2τ
, (6)

u̇k ≈
5uk+1 − 3uk − uk−1 − uk−2

8τ
, (7)

u̇k ≈
26uk+1 − 33uk + 18uk−1 − 11uk−2

30τ
, (8)

where uk = u(t = kτ) and k = 2, 3, 4, · · · .

Proof. See [17]–[20]. �

By using (5) to discretize the CTZD model (4), the corresponding DTZD-I algorithm for dynamic linear matrix-
vector inequality solving is obtained as follows:

uk+1 =
1
2

uk +
1
3

uk−1 +
1
6

uk−2 +
5
3
τW†

k (Pkuk + ḃk) − hW†

k (Qkuk − bk), (9)

where h = 5γτ/3 > 0 ∈ R is the step size. In addition W†

k , Pk, Qk, bk and ḃk denote W†(t = kτ), P(t = kτ), Q(t = kτ),
b(t = kτ) and ḃ(t = kτ), respectively.

Similarly, by using (6) to discretize (4), the corresponding DTZD-II algorithm for dynamic linear matrix-vector
inequality solving is obtained as follows:

uk+1 =
3
2

uk − uk−1 +
1
2

uk−2 + τW†

k (Pkuk + ḃk) − hW†

k (Qkuk − bk), (10)

where h = γτ > 0 ∈ R is the step size.
Furthermore, based on (7) and (8), the other two DTZD termed the DTZD-III and DTZD-IV algorithms for

dynamic linear matrix-vector inequality solving are derived as follows:

uk+1 =
3
5

uk +
1
5

uk−1 +
1
5

uk−2 +
8
5
τW†

k (Pkuk + ḃk) − hW†

k (Qkuk − bk), (11)

uk+1 =
33
26

uk −
9
13

uk−1 +
11
26

uk−2 +
15
13
τW†

k (Pkuk + ḃk) − hW†

k (Qkuk − bk). (12)
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(a) State trajectories of xk with tk = kτ
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(b) Residual errors

0 200 400 600 800 1000
−4

−2

0

2

k

v1

0 200 400 600 800 1000
−4

−2

0

2

k

v2

0 200 400 600 800 1000
−4

−2

0

2

v3

k

(c) Profiles of the testing error function εk

Figure 1: Numerical results using the presented DTZD-I algorithm (9) with h = 0.5 and τ = 0.01 to solve dynamic linear matrix-vector inequality.

Therefore, we have obtained four DTZD algorithms [i.e., (9), (10), (11), and (12)] to solve the dynamic linear
matrix-vector inequality (1). For each DTZD algorithm, three initial states (i.e., u0, u1, and u2) are needed to start the
iteration. In this case, based on an initial state u0, the other two initial states u1 and u2 are obtained via the following
iterations:u1 = u0 + τW†

0(P0u0 + ḃ0) − hW†

0(Q0u0 − b0),
u2 = u1 + τW†

1(P1u1 + ḃ1) − hW†

k (Q1u1 − b1).

For the presented four DTZD algorithms, i.e., (9)–(12), we have the following theoretical results (with the corre-
sponding proofs being generalized from the previous work [17]–[20] and thus omitted here).

Lemma 2. Each of the presented four DTZD algorithms (9)–(12) is a convergent method, which combines with order
of the truncation error being O(τ3) for all tk ∈ [t0, tfinal], where O(τ3) is a vector with every element being O(τ3).

Lemma 3. Consider a solvable dynamic linear matrix-vector inequality problem (1). For general case of h ∈ (0, 1),
the SSRE of each of the presented four DTZD algorithms (9)–(12) is of order O(τ3).
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0 100 200 300 400 500 600 700 800 900 1000
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

X: 479

Y: 4.216e−005

k

ek

(b) Residual errors
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Figure 2: Numerical results using the presented DTZD-II algorithm (10) with h = 0.5 and τ = 0.01 to solve dynamic linear matrix-vector inequality.

4. Numerical results

In this section, numerical results are presented to substantiate the efficacy of the presented DTZD-I, DTZD-II,
DTZD-III, and DTZD-IV algorithms.

For illustration and verification, the dynamic linear matrix-vector inequality (1) is considered, with the coefficient
matrix A(t) and vector b(t) being as follows:

A(t) =

5 + sin(2t) cos(2t)/2 cos(2t)
cos(2t)/2 5 + sin(2t) cos(2t)/2
cos(2t) cos(2t)/2 5 + sin(2t)

 ∈ R3×3 and b(t) =

 sin(2t)
cos(2t)

sin(2t) + cos(2t)

 ∈ R3.

The presented four DTZD algorithm are exploited to sovle this dynamic linear matrix-vector inequality, and the related
numerical results are given in Figs. 1–4 and Table 1.

First, Fig. 1 shows the numerical results synthesized by the presented DTZD-I algorithm (9) using h = 0.5 and
τ = 0.01. As seen from Fig. 1(a), starting from five randomly-generated initial states, the state trajectories of xk
[being the first 3 elements of uk in (9)] are time-varying (with time tk being tk = kτ). In addition, as shown in Fig.
1(b), the residual errors of (9) are all convergent, where ‖ek‖2 = ‖Qkuk − bk‖2 = ‖Akxk − bk + Dkyk‖2. Fig. 1(c)
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(a) State trajectories of (11)
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(b) Residual errors of (11)
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(d) Residual errors of (12)

Figure 3: Numerical results using the presented DTZD-III and DTZD-IV algorithms (11) and (12) with h = 0.5 and τ = 0.01 to solve dynamic
linear matrix-vector inequality.

also indicates that the corresponding SSREs (i.e., ‖ek‖2 with k large enough) are small enough with the maximal value
being 2.829 × 10−5. This statement means that the solutions presented in Fig. 1(a) are the solutions to (2). That
is to say, the xk solution via (9) is exactly an solution to the dynamic linear matrix-vector inequality (1). For better
understanding, Fig. 1(c) shows the profiles of the testing error function εk = Akxk − bk. As seen from Fig. 1(d), all
elements of εk are less than or equal to zero, which also indicates that the above solution of xk is an exact solution
to (1). These numerical results substantiate the efficacy of the presented DTZD-I algorithm (9) for dynamic linear
matrix-vector inequality solving.

Second, Fig. 2 shows the numerical results synthesized by the presented DTZD-II algorithm (10) using h = 0.5
and τ = 0.01. As seen from Fig. 2(a), the state trajectories of xk, starting from five randomly-generated initial
states, are time-varying. In addition, as shown in Fig. 2(b), the residual errors of (10) are all convergent, and the
corresponding SSREs are also small enough with the maximal value being 4.216 × 10−5. Thus showing that the xk
solution via (10) is exactly an solution to the dynamic linear matrix-vector inequality (1). Furthermore, Fig. 2(c)
indicates that all elements of εk are less than or equal to zero, showing again that the above solution of xk is an exact
solution to (1). These numerical results substantiate that the presented DTZD-II algorithm (10) is effective in solving
dynamic linear matrix-vector inequality.
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(b) Via DTZD-II (10)
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(c) Via DTZD-III (11)
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Figure 4: Residual errors of the presented four DTZD algorithms with h = 0.5 and τ = 0.001 to solve dynamic linear matrix-vector inequality.

Third, Fig. 3 presents the numerical results synthesized by the presented DTZD-III and DTZD-IV algorithms (11)
and (12) using h = 0.5 and τ = 0.01. As shown in Fig. 3, for each of (11) and (12), the state trajectories of xk are
time-varying and the residual errors are convergent. In addition, Fig. 3 indicates that the SSREs of (11) and (12)
are small enough and are in the order of 10−5. Note that, for each DTZD algorithm, all elements of the testing error
function εk are less than or equal to zero (which are omitted here due to results similarity). These numerical results
substantiate that the presented DTZD-III and DTZD-IV algorithms (11) and (12) are also effective for dynamic linear
matrix-vector inequality solving.

Fourth, the presented four DTZD algorithms [i.e., DTZD-I (9), DTZD-II (10), DTZD-III (11), and DTZD-IV (12)]
are tested by decreasing the τ value, with the related numerical results presented in Fig. 4. As shown in Fig. 4, for
each of the presented algorithms, the residual errors are all convergent, and the corresponding SSREs are small enough
(i.e., in the order of 10−8). This result indicates again the efficacy of the presented four DTZD algorithms for dynamic
linear matrix-vector inequality solving. More importantly, it follows from Figs. 1–4 that the SSRE of each DTZD
algorithm decreases from 10−5 to 10−8 as the value of τ decreases from 0.01 to 0.001. That is, the computational
performances of (9), (10), (11), and (12) can be improved effectively by decreasing the value of τ. Thus, it can be
concluded that τ plays an important role in the presented DTZD algorithms and should be selected appropriately small
to meet the precision requirement in practice.
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Table 1: SSREs of the presented four DTZD algorithms (9), (10), (11), and (12) using different values of h and τ to solve dynamic linear matrix-
vector inequality.

# h τ = 0.1 τ = 0.01 τ = 0.001 manner
0.3 6 2.373 × 10−2 6 4.580 × 10−5 6 4.704 × 10−8

0.4 6 2.177 × 10−2 6 3.518 × 10−5 6 3.535 × 10−8

(9) 0.5 6 1.943 × 10−2 6 2.788 × 10−5 6 2.847 × 10−8 O(τ3)
0.6 6 1.706 × 10−2 6 2.331 × 10−5 6 2.397 × 10−8

0.7 6 1.554 × 10−2 6 2.011 × 10−5 6 2.039 × 10−8

0.3 6 5.020 × 10−2 6 6.963 × 10−5 6 7.062 × 10−8

0.4 6 4.249 × 10−2 6 5.332 × 10−5 6 5.378 × 10−8

(10) 0.5 6 3.593 × 10−2 6 4.215 × 10−5 6 4.291 × 10−8 O(τ3)
0.6 6 3.137 × 10−2 6 3.528 × 10−5 6 3.533 × 10−8

0.7 6 2.755 × 10−2 6 3.049 × 10−5 6 3.035 × 10−8

0.3 6 2.711 × 10−2 6 4.092 × 10−5 6 4.946 × 10−8

0.4 6 2.279 × 10−2 6 3.710 × 10−5 6 3.732 × 10−8

(11) 0.5 6 2.013 × 10−2 6 2.953 × 10−5 6 3.005 × 10−8 O(τ3)
0.6 6 1.808 × 10−2 6 2.445 × 10−5 6 2.499 × 10−8

0.7 6 1.652 × 10−2 6 2.134 × 10−5 6 2.137 × 10−8

0.3 6 4.313 × 10−2 6 6.544 × 10−5 6 6.557 × 10−8

0.4 6 3.632 × 10−2 6 4.868 × 10−5 6 4.876 × 10−8

(12) 0.5 6 3.159 × 10−2 6 3.922 × 10−5 6 3.929 × 10−8 O(τ3)
0.6 6 2.784 × 10−2 6 3.240 × 10−5 6 3.263 × 10−8

0.7 6 2.397 × 10−2 6 2.783 × 10−5 6 2.798 × 10−8

Fifth, for further investigation, we simulate the DTZD-I (9), DTZD-II (10), DTZD-III (11), and DTZD-IV (12)
using different values of h and τ to solve the dynamic linear matrix-vector inequality (1). The corresponding numerical
results are provided in Table 1, which indicates that all of the presented DTZD algorithms are effective on solving (1),
e.g., in the order of 10−5 and 10−8. Furthermore, the following summaries are obtained from Table 1 (as well as Fig.
4).

• The SSRE of each DTZD algorithm changes in an O(τ3) manner. That is, by fixing h, when τ decreases by
10 times, the SSRE of each DTZD algorithm is reduced by 100 times, which coincides with Lemmas 2 and
3. This statement also means that the computational performances of the presented four DTZD algorithms are
improved effectively when the τ value is decreased.

• By fixing τ, when h is increased, the SSRE of each DTZD algorithm is decreased. This statement shows that
the computational performances of the presented four DTZD algorithms can be further improved by increasing
the value of h appropriately.

Based on these qualitative and quantitative results, it can be concluded that, for the presented four DTZD algorithms,
different computational performances can be achieved by selecting appropriate h and τ.

In summary, the above results (i.e., Figs. 1–4 and Table 1) indicate the efficacy of the presented the presented
DTZD-I, DTZD-II, DTZD-III, and DTZD-IV algorithms for dynamic linear matrix-vector inequality solving.

5. Conclusions

In this paper, four different types of DTZD algorithms [i.e., DTZD-I (9), DTZD-II (10), DTZD-III (11), and
DTZD-IV (12)] have been presented and investigated to solve the dynamic linear matrix-vector inequality (1). Then,
theoretical results have been provided to highlight the excellent computational properties of the presented algorithms.
That is, the SSRE for each DTZD algorithm presented in this paper changes in an O(τ3) manner, showing that
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the computational performance is improved effectively by decreasing the value of τ. Numerical results have been
presented to further substantiate the efficacy of the presented four DTZD algorithms. A future research direction can
be the study of the the presented four DTZD algorithms using different types of (nonlinear) activation functions [25]
for dynamic linear matrix-vector inequality solving. Another future research direction is the development of more
DTZD algorithms by referring to more Taylor-type difference rules [21]–[24].
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