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Abstract. Different from the traditional linearly activated gradient-based neural network model (GNN
model), two nonlinear activation functions are presented and investigated to construct two nonlinear
gradient-based neural network models (NGNN-1 model and NGNN-2 model) for matrix inversion in this
paper. For comparative and illustrative purposes, the traditional GNN model is also used to solve matrix
inversion problems under the same circumstance. In addition, the simulation results of the computer finally
confirm the validity and superiority of the two nonlinear gradient-based neural network models specially
activated by two nonlinear activation functions for matrix inversion, as compared with the traditional GNN
model.

1. Introduction

The matrix inversion plays a very important role in the scientific research and practical engineering
applications [1–3]; e.g., in MIMO system [1, 2], signal-processing [3], and and robotics [4–8]. In the past,
some numerical methods have been presented and investigated for matrix inversion [9–13]. In [9], a fast
parallel algorithm is proposed for matrix inversion, and the complexity of this algorithm is analyzed. In
[10], two new sorting methods are used for matrix inversion. In addition, these two new sorting methods
can greatly reduce the amount of calculation as compared with other traditional sorting methods. In [11],
an iterative algorithm that can solve the problem within finite iteration steps is proposed for solving the
extended Sylvester-conjugate matrix equation.

Different from numerical methods, neural networks have been studied in depth and used to find
the inverse of matrices in recent years [14–26]. In [22], a gradient-based neural network is proposed
for matrix inversion, and its global exponential convergence performance and stability are analyzed. In
[24], the software MATLAB is used to simulate the process of online matrix inversion by gradient-based
neural networks, and the efficiency of online matrix inversion is verified by simulation results. In [25],
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Wang proposed a recurrent neural network for matrix inversion in real-time, and the asymptotically stable
performance is proven.

Inspired by [22, 23, 27–36], we can find that some specially constructed nonlinear activation functions
can improve the convergence performance of neural networks. In this paper, we focus on the study of using
different nonlinear activation functions to construct nonlinear gradient-based neural networks for matrix
inversion.

2. Model Formulation

In mathematics, the formula of matrix inverse A−1
∈ Rn×n can be given as :

AX(t) = I ∈ Rn×n or X(t)A = I ∈ Rn×n, (1)

where A ∈ Rn×n denotes a known reversible matrix, I ∈ Rn×n denotes the identity matrix and X(t) ∈ Rn×n

denotes the unknown matrix to be inverted in this paper. Without loss of generality, let A−1
∈ Rn×n denotes

the corresponding inverse of A ∈ Rn×n. In the following subsections, two different nonlinear gradient-based
neural networks that can find the corresponding inverse of A ∈ Rn×n in a very short period of time are
constructed.

2.1. Gradient-based Neural Network (GNN)

In this subsection, the traditional GNN model is first exploited for online solution of the above-presented
matrix inversion. Inspired by the traditional GNN model’s design methods [22, 24, 36–40], by defining the
following norm-based energy function E(t) = ‖AX − I‖2F/2, and exploiting the negative gradient descent
formula − ∂E(t)

∂X , we can easily obtain the traditional linearly activated gradient-based neural network as:

Ẋ = −λ
∂E(t)
∂X

= −λAT (AX − I) , (2)

where X denotes the state matrix corresponding to the theoretical inversion A−1, λ denotes a adjustable
positive design parameter, and AT denotes the transpose of matrix A.

2.2. Nonlinear Gradient-Based Neural Network-1 Model

In the previous subsection, the traditional gradient-based neural network model was presented for
matrix inversion. It is worth pointing out that the convergence performance of this traditional GNN model
(2) can still be improved by adding a specially constructed nonlinear activation function [41–43]. In this
subsection, an improved nonlinear gradient-based neural network model (i.e., the NGNN-1 model) is
proposed for matrix inversion by using a nonlinear function (i.e., the power-sigmoid function):

Ẋ = −λATΨ (AX − I) , (3)

where λ > 0 denote an adjustable design parameter used to adjust the convergence rate of the NGNN-1
model and the Ψ(·) denotes a specially constructed nonlinear activation function (i.e., the power-sigmoid
function) to improve the convergence performance of the NGNN-1 model for matrix inversion. And this
nonlinear activation function is defined as follows:

Ψ(v) =

vp, if|v| ≥ 1;
1+exp(−η)
1−exp(−η) ·

1−exp(−ηv)
1+exp(−ηv) , otherwise;

where v ∈ R and |v| denotes the absolute value of v, and the design parameters (η, p) have to meet this
conditions: η ≥ 1, p ≥ 3.
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(a) The state matrix of traditional GNN model
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(b) The convergence of residual error ‖AX − I‖F of GNN
model

Figure 1: Simulative results synthesized by the traditional GNN model (2) with design parameter λ = 1 starting from zero initial state.

2.3. Nonlinear Gradient-Based Neural Network-2 Model
In this subsection, for the purpose of further improving the convergence performance of NGNN-1

model (3), the other improved nonlinear gradient-based neural network model (i.e., the NGNN-2 model) is
proposed for matrix inversion by using another nonlinear function (i.e., the sign-bi-power function). And
this sign-bi-power function Φ(·) is defined as follows:

Φ(v) = sgnq(v) + sgn1/q(v), (4)

where the parameter r ∈ (0, 1) and sgnq(·) represents the following formula:

sgnq(v) =


|v|q, if v > 0;
0, if v = 0;
−|v|q, if v < 0;

where v ∈ R and |v|means the same as |v| in the above subsection.
Therefore, by adding such a sign-bi-power function, the second nonlinear gradient-based neural network

model (i.e., the NGNN-2 model) mentioned above can be obtained as:

Ẋ = −λATΦ (AX − I) . (5)

Note that the sign-bi-power function Φ(·) can accelerate NGNN-2 model (5) to finite-time convergence,
while the power-sigmoid function Ψ(·) only speed up the infinite convergence rate of NGNN-1 model (3).
This is the first time to apply this function to activate traditional GNN model, and accelerate the traditional
GNN model from infinite-time convergence to finite-time convergence.

3. Illustrative Example

In the above section, the traditional GNN model (2), NGNN-1 model (3) and NGNN-2 model (5) have
been presented and investigated for matrix inversion. In this section, an illustrative example is used to
verify the efficacy of such three models [GNN model (2), NGNN-1 model (3) and NGNN-2 model (5)].
Without loss of generality, we set this invertible matrix A as follows:

A =

[
1 −2
2 −1

]
.
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(a) The state matrix of NGNN-1 model
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(b) The convergence of residual error ‖AX−I‖F of NGNN-
1 model

Figure 2: Simulative results synthesized by the NGNN-1 model (3) with design parameter λ = 1 starting from zero initial state.
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(a) The state matrix of NGNN-2 model
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(b) The convergence of residual error ‖AX−I‖F of NGNN-
2 model

Figure 3: Simulative results synthesized by NGNN-2 model (5) with design parameter λ = 1 starting from zero initial state.

through mathematical methods, its corresponding inversion A−1 can be obtained as follows:

A−1 =

[
−0.3333 0.6667
−0.6667 0.3333

]
.

First of all, let us set the design parameter λ = 1. Starting from zero initial state X(0) ∈ R2×2, the
traditional GNN model is first presented to find the inversion of the matrix A, and the corresponding
computer simulative results are shown in Fig. 1, which show the transient behavior of state matrix and
the transient behavior of ‖AX − I‖F synthesized by GNN model for matrix A inversion. As seen from Fig.
1(a), state matrix X(t) ∈ R2×2 of the traditional GNN model can converge to the theoretical solution tardily.
Beside, from Fig. 1(b), we can see the transient behavior of ‖AX − I‖F of the traditional GNN model can
converge to zero about 6.7 seconds.

It is worth noting that although the traditional GNN model can converge to zero for matrix inversion, it
takes longer time(about 6.7 seconds). For the purpose of improving the convergence rate of the traditional
GNN model, a nonlinear activation function (power-sigmoid function) is added to the traditional GNN
model, so a nonlinear gradient-based neural network model (NGNN-1 model) can be obtained for matrix
inverse. The corresponding computer simulative results are shown in Fig. 2. Fig. 2(a) displays the transient
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Figure 4: The convergence of the residual error ‖AX− I‖F synthesized by GNN model (2), NGNN-1 model (3) and NGNN-2 model (5)
with different λ.

behavior of state matrix X(t) ∈ R2×2 of the NGNN-1 model for matrix A inversion. Besides, from Fig. 2(b),
we can see that the residual error ‖AX− I‖F of the NGNN-1 model can converge to zero in only 3.7 seconds.

Besides, the sgn-bi-power function is used to construct the second nonlinear gradient-based neural
network for matrix inverse. In addition, the transient behavior of state matrix X(t) ∈ R2×2 and the residual
error ‖AX− I‖F of the NGNN-2 model are show in Fig. 3, from which we can see the state matrix X(t) ∈ R2×2

can converge to the theoretical inverse A−1 for a short time and the residual error ‖AX− I‖F can converge to
zero only within finite time 1.03 seconds.

In addition, the numerical value of the tunable design parameter will also have an impact on the
convergence rate of the presented three gradient-based neural network models [GNN model (2), NGNN-1
model (3) and NGNN-2 model (5)] for matrix inversion. The transient behavior of the residual error ‖AX−I‖F
synthesized by GNN model (2), NGNN-1 model (3) and NGNN-2 model (3) with design parameter λ = 10
for online matrix inversion is shown in figure Fig. 4(a), from which, we can see that the convergence
time of GNN model (2), NGNN-1 model (3) and NGNN-2 model (5) can be shortened from 6.7 seconds
to 0.67 seconds, from 3.7 seconds to 0.37 seconds, and from 1.03 seconds to 0.103 seconds respectively as
compared with these in the case of the parameter λ = 1. Fig. 4(b) displays the transient behavior of the
residual error ‖AX − I‖F synthesized by GNN model (2), NGNN-1 model (3) and NGNN-2 model (5) with
design parameter λ = 100 for online matrix inversion. From such a subfigure, the convergence time of
GNN model (2), NGNN-1 model (3) and NGNN-2 model (5) can be further shortened from 0.67 seconds
to 0.067 seconds, from 0.37 seconds to 0.037 seconds, and from 0.1 seconds to 0.01 seconds respectively as
compared with these in the case of the parameter λ = 10. Obviously, with the increase of the adjustable
design parameters λ, the convergence rates of these three models [GNN model (2), NGNN-1 model (3) and
NGNN-2 model (5)] are correspondingly accelerated.

In summary, from the above computer simulation results, we can see that the traditional GNN model
(2), the NGNN-1 model (3) and the NGNN-2 model (5) are valid for matrix inversion. Besides, the two
nonlinear gradient-based neural network models [NGNN-1 model (3) and NGNN-2 model (5)] require
shorter time as compared with the traditional GNN model for matrix inversion.

4. Conclusions

In this paper, two nonlinear activation functions are exploited to construct two different nonlinear
gradient-based neural network models [NGNN-1 model (3) and NGNN-2 model (5)]) for matrix inversion.
In addition, the traditional gradient-based neural network (GNN) model has also been presented for matrix
inversion under the same conditions. Computer simulation results have verified the effectiveness of the
above three models for matrix inversion, and also show the superiority of the two nonlinear gradient-based
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neural network models [NGNN-1 model (3) and NGNN-2 model (3)] for matrix inversion as compared to
the GNN model (2).
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