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Abstract. Recently, it is difficult to simulate, analyze and control a real knowledge-based system using
the correspondence Petri net (PN) when there exist many current states. To overcome the state explosion
problem of PN, an efficient decomposition algorithm is presented to divide a large-scale PN into a series
of corresponding sub-PNs by keeping the consistency of dynamic properties. In this novel decomposition
approach, an index function is defined to judge the subnet needs to be decomposed or not. Furthermore, an
exhaustive analysis on the consistency of related dynamic properties is also discussed between the original
PN and the corresponding sub-PNs. Finally, a case study is carried out to illustrate the feasibility and
validity of the proposed approach.

1. Introduction

SINCE Petri net (PN) was proposed by C. A. Petri in 1962, an acknowledged shortage of PN, namely
state space explosion, has restrained the further development of PN and its application [1]. Until now, this
issue has not been completely resolved. Normally, the PN with limited nodes can be used to implement
simulation, analysis and verification process [2]. However, the operation of simulating, analyzing and
verifying large-scale PN is increasingly difficult due to the state space explosion [3]. To overcome these
problems, the idea of simplification technique of PN was proposed to reduce the scale of corresponding
PN by using equivalent transformation method. In other words, the technique is to divide large-scale and
complexity PN into a group of small-scale, easy-to-analyze sub-PNs which have the same properties as
original [4-6]. According to the decomposition thinking, various decomposition approaches were employed
to control the PN scale in different industrial areas. Liu et al. [7] proposed a decomposition method to divide
a PN model of concurrent programs into multiple process nets for avoiding the deadlocks by using the
number of processes and message places in a concurrent program. Focused on the state explosion issue of
business process, Wang et al. [8] proposed a new mining technique to increase the availability of enterprise
information system by using a workflow decomposition algorithm based on PN theory. The increasing
volume of data impacts the further studies of process mining area from two aspects both of opportunities
and challenges, Aalst [9] carried out a generic decomposition algorithm by using PN to simply the mining
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process, which could be combined with different existing process discovery and conformance checking
techniques. Zhou et al. [10] proposed to a decompose algorithm using the index function and incidence
matrix to divide a large scale fuzzy PN(FPN) model into a serious of sub-FPN models with completed
inner-inference-paths for making the FPN model more adaptive in the complex engineering applications.
Furthermore, Zhou et al. [11] presented a bi-directional reasoning algorithm using FPN formalism to
execute fault diagnosis function for a complex manufacturing system by removing the irrelated places and
transitions of the goal place. Li et al. [12] used a group of simple algebraic operations to decompose PN
model and employed the proposed algorithm to model and analyze the mail-sorting systems. Chen et al.
[13] utilized a matching theory to divide a large-scale PN model. Nishi and Matsumoto [14] apply the PN
decomposition algorithm to gain an optimal solution of deadlock-free and non-cyclic scheduling of dual-
armed cluster tools for decreasing the computational complexity of the semiconductor cluster tool system.
Dideban and Zeraatkar [15] proposed a decomposition algorithm of PN to reduce the cost of controller
synthesis operation in discrete event systems utilizing the P-invariant property. Ye et al. [16] presented
a two-phase decomposition algorithm to divide a large-size controller. Other typical applications of the
decomposition algorithm using PN in industrial fields can be found in references [17-20]. Although various
decomposition algorithms have been proposed to overcome the state explosion issue of PN and gained
fruitful results, the existing literature did not analyze the proposed algorithms own the ability to keep the
consistency of dynamic properties between the original PN and the obtained sub-PN models. From this
viewpoint, a decomposition algorithm utilizing index function is proposed in this paper to decompose a
large-scale PN into a series of corresponding sub-PNs via keeping the consistency of the dynamic properties
rooted in our previous works [21-22]. The main contributions of this article could be classified into the
following three aspects.

(1) Propose a decomposition algorithm for separating a large-scale PN into a series of sub-PNs utilizing
a defined index function.

(2) Investigate the consistency of the dynamic properties including dynamic place, liveness, bounded-
ness & safeness, and fairness between the original PN model and the gained corresponding decomposed
sub-PN models. Moreover, some theorems are also proposed based on the discussions above.

(3) Illustrate the validity and practicability of this method through theoretical analysis and apply this
algorithm into a case study.

The remaining sections are organized as follows. Section 2 explains the related information on PN.
Section 3 discusses the proposed algorithm and gives an example to illustrate its implementation process of
our algorithm. In Section 4, consistency on dynamic properties between the original PN and decomposed
sub-nets is discussed. In Section 5, a case study is given to demonstrate the solution of the algorithm, and
Section 6 presents conclusion and future work.

2. Petri Net and Relevant Information

The related notions, dynamic properties and analysis methods of PN are introduced based on previous
literature mentioned above.
A. Related Notions

Definition 1 Petri Net: Petri Net (PN) is defined as six-tuple:
∑

= {P,T; F,K,W,M0} . Where, P is a finite
set of places, T is a finite set of transitions, F ⊆ (P × T) ∪ (T × P) is a finite set of arcs , K = {1, 2, 3, · · · } is a
capacity function of p , W : F→ {1, 2, 3, · · · } is a weight function, and M0 is the initial marking.

Definition 2 Pre-set and Post-set: For a PN
∑

= {P,T; F,K,W,M0}, •x = {y|(y, x) ∈ F} the pre-set of x and
x• = {y|(x, y) ∈ F} is the post-set or output set of x . Where, x, y ∈ P ∪ T .

Definition 3 Enabling Rule: For a PN
∑

= {P,T; F,K,W,M0} , a transition t is enabled when the marking
M(p) can be fired by

∀p ∈ •t : M(p) ≥W(p, t) ∧ ∀p ∈ t• : M(p) + W(t, p) ≤ K(p) (1)

(1) M′ is M′s succeeding fact after t is enabled, marked as M[t > M′

(2) Result of transition is enabled
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If there exists a M[t > , the transition t can be enabled under M , and M[t > M′ . The result of M′ is
described as follows.

For ∀p ∈ P

M′(p) =


M(p) −W(p, t)p ∈ •t − t•

M(p) + W(t, p)p ∈ t• − •t
M(p) −W(p, t) + W(t, p)p ∈ •t ∩ t•

M(p)p < •t•
(2)

B.Dynamic Properties
The properties are used to explore the question such as ‘what can we do with the PN models?’. The

properties could be classified into two types: dynamic properties (depend on the initial marking) and
structure properties (independent of the initial marking). The discussion is carried out on the dynamic
properties, which are reachability, boundedness and safeness, liveness, and fairness.

Properties 1: Reachability
Reachability is the basis to explore the dynamic properties of any system. The related concepts are

described as follows.
Definition 4: For a PN

∑
= {P,T; F,K,W,M0} , the direct reachable condition from M to M′ is that there

exist t ∈ T , transition sequence t1, t2, ..., tk and marking sequence M1,M2, ...,Mk , then M[t1 > M1[t2 >
M2...Mk−1[tk > Mk R (M) is a set of all markings from M.

Definition 5: For a PN
∑

= {P,T; F,K,W,M0} , M0 is the initial marking. R(M0) is the reachability marking
set which is the smallest set and meet two conditions, which are

(1) M0 ∈ R(M0) ;
(2) M ∈ R(M0) and there exists a t ∈ T such as M[t > M′ and M′ ∈ R(M0) .
Properties 2: Boundedness and Safeness
Definition 6: For a PN

∑
= {P,T; F,K,W,M0} , the sufficient condition of place P is bounded and could

be described as
For p ∈ P , if there exists a positive integral B such as ∀M ∈ R (M0): M(p) ≤ B . The bound of place p

marked as B(p) is the smallest positive integral:

B(p) = min
{
B|∀M ∈ R(M0) : M(p) ≤ B

}
(3)

p is safe iff B(p) = 1
Definition 7: For a PN

∑
= {P,T; F,K,W,M0} ,

∑
is bounded when any p ∈ P is bounded, and the

bounded of
∑

is B(
∑

) = max
{
B(p)|p ∈ P

} ∑
= {P,T; F,K,W,M0} ,

∑
is safe iff B(

∑
) = 1

Properties 3: Liveness
Definition 8: For a PN

∑
= {P,T; F,K,W,M0} , M0 is an initial marking and t ∈ T . The condition of

transition t is live could be described as for any M0 ∈ R(M0) , there exists M′ ∈ R(M0) such as M[t > .
∑

is
live means that any t ∈ T is live.

However, the definition 8 is too strict and only limited number of PN model owns this property. For
this reason, different levels liveness are introduced as definition 9.

Definition 9: For a PN
∑

= {P,T; F,K,W,M0} , t ∈ T.
(1) Level-0 live (or dead): if t can never be fired in any firing sequence.
(2) Level-1 live: ∃M ∈ R(M0) : M[t >
(3) Level-2 live: For any integral n , there exists σ ∈ T∗ such as M0[σ > and #(t/σ) ≥ n Where, #(t/σ) ≥ n

represents the appearing number of t in sequence.
(4) Level-3 live: If there exists an infinite transition sequence σ such as that of M0[σ > and the times that

t appears in σ is infinite.
(5) Level-4 live (or live): If for any M ∈ R (M0) , t is the level-1 live in σ
Properties 4: Fairness
Fairness discusses the relationships between two transitions of two transition groups.
Definition 10: For a PN

∑
= {P,T; F,K,W,M0} , t1, t2 ∈ T. The condition of t1 and t2 belongs to the fair

relation and is given below.
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If there exists a positive integral k , for any M ∈ R (M0) and any σ ∈ T∗ : M[σ > such as following
equation.

#
(
qi
/
σ
)

= 0 → #
(
q j
/
σ
)
≤ ki, j ∈ {1, 2} , i , j (4)

∑
is a fair PN model when any two transitions in

∑
belongs to fair relation.

C.Incidence Matrix and State Equation
par Incidence matrix and state equation are widely applied into PN area to analyze the relative properties
of PN. The corresponding notions are introduced below, respectively.

Definition 13: For a PN
∑

= {P,T; F,K,W,M0} ( n transitions and m places), the incidence matrix
C = [ci j]m×n is Ci j = C+

i j − C−i j , where:

C+
i j =

{
1 (t j, pi) ∈ F
0 others and C−i j =

{
1 (pi, t j) ∈ F
0 others (i = {1, 2, · · · ,m}, j = {1, 2, · · · ,n}) (5)

Definition 14: For a PN
∑

= {P,T; F,K,W,M0}, M0 is the initial marking of
∑

, C is the incidence matrix
of

∑
. If there are M ∈ R(M0) and an nonnegative integer vector X, the state equation is described as

M = M0 + CX and an nonnegative integer vector X, the state equation is described as M = M0 + CX.

3. A Decomposition Algorithm of PN model

The main idea of the proposed algorithm is that equivalent transforms the original PN to a group of
subnets using an index function. The index function for the related notions is then introduced.
A.Index Function and Decomposition

Definition 15: For a PN
∑

= {P,T; F,K,W,M0}, function f : P → {1, 2, · · · , k} and ∀p1, p2 ∈ P , ∃t ∈ T . If
there exists {p1, p2} ⊆ t• ∨ {p1, p2} ⊆

•t such that f (p1) , f (p2) . Then, f is the index function of
∑

and f (p) is
the index of place p .

Definition 16: For a PN
∑

= {P,T; F,K,W,M0} , f : P → {1, 2, · · · , k} is the index function of
∑

.∑
i = (Pi,Ti; Fi,M0i ) (i = 1, 2, ..., k) are the corresponding decomposed subnets of

∑
, where:

(1) Pi = {p ∈ P| f (p) = i}, i = 1, 2, · · · , k
(2) Ti = {t ∈ T|∃p ∈ P, t ∈ p• ∪ •p} , i = 1, 2, · · · , k
(3) Fi = F ∩ {(Pi × Ti) ∪ (Ti × Pi)} , i = 1, 2, · · · , k
(4) M0i = R(M0), i = 1, 2, · · · , k

Based on the definitions 15 and 16, a λ(p) is proposed in definition 17 to represent the number of place
which belongs to the same pre-set or post-set of transition in place set.

Definition 17: For ∀p ∈ P ,

λ(p) =

∣∣∣∣∣∣num(p1)|∀t ∈ T,∃p1 ∈ P, p1 , p, s.t.
{

i f p ∈ t•, p1 ∈ t•

i f p ∈ •t, p1 ∈
•t

∣∣∣∣∣∣
Where num(p) is the number of satisfied requirement places.
B.The Proposed Decomposition Algorithm

The steps of this algorithm are given as follows.
Input: PN model

∑
= (S,T; F) .

Output: The index function value of each place pi .
Step 1: X = P , Y = ∅ , k = 1 ;
Step 2: X = ∅ , move to step 6. Otherwise, calculate each place’s λ(p) in X ;
Step 3: If there are some λ(p) in X which is not zero, then choose a place λ(p) , 0 and move to a new

set. Meanwhile, delete the place and related arcs in original net. The new net expressed as N′ = (P′,T; F′) .
If X = P′ , move to Step 2;Otherwise, move to step 4;
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Fig. 1. Original PN Model Fig. 2. Two decomposed subnets

Step 4: If all places in X can be connected, then Xk = X , X = Y , Y = ∅ , k = k + 1 ;and back to step 2;
Otherwise, move the unconnected places in X to Y , and X , Y express as X′ , Y′. Xk = X′ , X = Y′, Y = ∅ ,
k = k + 1 , move to step 2;

Step 5: For ∀p ∈ P , if p ∈ Xk , f (p) = k .
C.Algorithm Complexity

The core operation of the presented is the step 3. The step 3 could be divided into two phases. Assume
there are n places in the vector X. The function of the 1st phase is to check λ(p) of each place p is equaled to 0
in X one-by-one. The complexity of the 1st phase is n . In the 2nd phase, if there exists λ(p) is not 0, choose
any one place (λ(p) , 0) from the X and move it to a new set. Then, define the new net as N′ = (P′,T; F′) .
Otherwise, move to step 4. At this time. The complexity of the 2nd phase is also n . Hence, the algorithm
complexity of the step 3 is n2 . Furthermore, the entire algorithm complexity of the presented algorithm is
n2 .
D.Simple Example of Implementing the Proposed Algorithm

A PN could be divided into a series of simple subnets after implementing the proposed algorithm. An
example is used to illustrate the proposed algorithm. Assume the original PN model is described in Figure
1 and use p(k) to represent λ(p) = k . par The implementation process is given in the following steps.

Step 1: X = P , Y = ∅ , k = 1 ;
Step 2: Calculate λ(p) for X = {p1(1), p2(1), p3(0), p4(1), p5(1), p6(0), p7(0)} .
Step 3: Move p1 (λ(p1) , 0) to Y , then X = {p2(0), p3(0), p4(1), p5(1), p6(0), p7(0)} , Y = {p1} ;
Step 4: Move p1 to Y , then X = {p2(0), p3(0), p5(0), p6(0), p7(0)} , Y = {p1, p4} ;
Step 5: p3 and p7 in X are unconnected with other places, so move them to Y .
X = {p2(0), p5(0), p6(0)} , Y = {p1, p3, p4, p7}

Step 6: Because the λ(p) in X both equals zero. X1 = {p2, p5, p6} , X = {p1, p3, p4, p7} , Y = ∅ , k = 2 ;
Step 7: The results are f (p1) = f (p3) = f (p4) = f (p7) = 2 and f (p2) = f (p5) = f (p6) = 1

Finally, the PN is decomposed into two corresponding subnets as Figure 2.

4. Analysis on the consistency of dynamic properties

The proposed algorithm is verified by the analysis of consistency.
a.Dynamic place
The consistency of the dynamic place means that the number of token in decomposed subnets can keep

unanimous with the original PN model after being enabled by the same transition sequence.
Theorem 1: For a

∑
= {P,T; F,K,W,M0} ,

∑
= {Pi,Ti; Fi,Ki,Wi,M0 i }(i = 1, 2, · · · , k) is the corresponding

subnet. If there exists ∈ M0 [> , Mi ∈ M0 i (i = 1, 2, · · · , k) such as Mi(pi) = M (pi ∈ P) after being enabled by
the same transition sequence.

Proof: To prove this theorem, some hypotheses are given as follows.
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(1) The
∑

’s incidence matrix is C , the subnet
∑

i ’s incidence matrix is Ci . Ci has the same number of
row and column as C , and the corresponded place ( or transition) in the same row(or column) in Ci is the
same with that of C ;

(2) In incidence matrix, zero represents that the transition or place does not appear in
∑

i , u,ui
(i = 1, 2, · · · , k) represent the transition sequence in original PN and subnets (same dimension), and zero
means the transition in ui which does not appear;

(3) The initial marking M0 , M0 , (i = 1, 2, · · · , k) has the same dimension, the value of place which does
not appear in M0 is zero.

The PN is divided into two parts, simple subnet and complexity subnet. The complexity subnet is
implemented by the decomposition strategy. It is done step by step, until the transition’s pre-set and
post-set belong to different subnets respectively.

Then, we can simplify the number of subnets to two subnets and generate the incidence matrices as
follows.

C1 =
p1
p2

T1 ∩ T2 T1 − T2 T2 − T1(
t0 t0 0
0 0 0

)
C2 =

p1
p2

T1 ∩ T2 T1 − T2 T2 − T1(
0 0 0
t1 0 t1

)
C =

p1
p2

T1 ∩ T2 T1 − T2 T2 − T1(
t0 t0 0
t1 0 t1

)
(6)

Then,
∑

and
∑

i have the same transition sequence.

u1 = (
T1 ∩ T2

Z0

T1 − T2
Z1

T2 − T1
0 )T

u2 = (
T1 ∩ T2

Z0

T1 − T2
0

T2 − T1
Z2

)T

u = (
T1 ∩ T2

Z0

T1 − T2
Z1

T2 − T1
Z2

)T

(7)

There exists an equation as follows.

M01 =

p1 p2(
k0 0

)T
M02 =

p1 p2(
0 k1

)T
M0 =

p1 p2(
k0 k1

)T (8)

Finally, the results are as follows.

M1 = M01 + C1u1 =

p1 p2

(k0 + (z0 + z1)t0, 0)T (9)

M2 = M02 + C2u2 =

p1 p2

(0, k1 + (z0 + z2)t1)T (10)

M = M0 + Cu =

p1 p2

(k0 + (z0 + z1)t0, k1 + (z0 + z2)t1)T (11)

Hence, the theorem 1 is proved and Mi(pi) = M (pi ∈ P)
Theorem 2: For a PN

∑
= {P,T; F,K,W,M0} ,

∑
= {Pi,Ti; Fi,Ki,Wi,M0 i }(i = 1, 2, · · · , k) is the corresponding

subnet. The necessary and sufficient condition of
∑

is live is that
∑

i is live.
Proof: (Necessity) If

∑
is live⇔ Each t ∈ T in

∑
is live⇔ For t ∈ T , any reachability marking M ∈ [M0 >

has M′ ∈ [M > from M , M′[> holds.
Assume at least one of

∑
i is dead and assume

∑
p is the decomposed subnet. It means that there is at

least one transition in
∑

i is dead. This is in contrast to the previous conclusion All t ∈ T in
∑

are live. So
the assumption does not hold water. The necessity is proved.
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(Sufficiency) If each
∑

i is live. Conclusions can get about
∑

as follows.

P =
k
∪
i=1

Pi where, Pi ∩ P j = ∅ (i, j = 1, 2, ..., k, i , j)

T =
k
∪
i=1

Ti where, Ti ∩ T j , ∅ (i, j = 1, 2, ..., k, i , j)

F =
k
∪
i=1

Fi

M0(p) =


M01 (p ∈ P1)
M02 (p ∈ P2)

...
M0k (p ∈ Pk)

Assume
∑

is dead⇔ At least one of t ∈ T in
∑

is dead. ⇔ T =
k
∪
i=1

Ti , t belongs to one of Ti. Assume t

belongs to Tp , and then Tp is dead. This is in contrast to the previous conclusion. The assumption does not
hold. The necessity is proved.

Lemma 1[23] For a PN
∑

= {P,T; F,K,W,M0} , and C is the corresponding incidence matrix of
∑

. The
necessary and sufficient condition

∑
of is bounded is that live is that ∃m dimensional positive integral

vector Y , s.t.CY ≤ 0, where m = |P|means the number of place in
∑

.
Theorem 3: For a PN

∑
= {P,T; F,K,W,M0} ,

∑
= {Pi,Ti; Fi,Ki,Wi,M0 i }(i = 1, 2, · · · , k) is the subnet. The

necessary and sufficient condition of
∑

is bounded is that
∑

i is bounded.
Proof: (Necessity) If

∑
is bounded⇔ There exists a conclusion as follows.

For p ∈ P in
∑

, ∃ positive integral B , ∀M ∈ R(M0) then M(p) ≤ B holds.
Based on theorem 1, for ∀M ∈ R(M0) , the token is consistent in

∑
and

∑
i . For pi ∈ Pi, there exists a

positive integral Bi such as Mi(pi) ≤ Bi by ∀Mi ∈ R(M0 i ) , where Bi and B′s relation can be described as

B =
k

min
i=1
{Bi|∀Mi ∈ R(M0i ) : Mi(pi) ≤ Bi} (12)

(Sufficiency) If
∑

i is bounded, assume the incidence matrix of
∑

i is Ci. From the Lemma 1, there exists
a mi dimensional positive integral vector Yi (i = 1, 2, · · · , k) such as that of CiYi ≤ 0 (i = 1, 2, · · · , k), where
mi = |Pi|(i = 1, 2, · · · , k) .

There exists C = (C1,C2, · · · ,Ck) which satisfies the following equations.

(C1,C2,C3, · · · ,Ck)


Y1
Y2
Y3
...

Yk


= C1Y1 + C2Y2 + C3Y3 · · · + CkYk ≤ 0 (13)

There exists a m dimensional positive integral vector Y = (Y1,Y2,Y3, · · · ,Yk)−1 such as CY ≤ 0 . Where,

m =
k∑

i=1
mi =

k∑
i=1
|Pi| and P =

k
∪
i=1

Pi

Furthermore, pi ∩ p j = ∅(i, j = 1, 2, · · · , k, i , j) .

So, there is
k∑

i=1
|Pi| = |P|. So m = |P| and

∑
is bounded.

Theorem 4: For a PN
∑

= {P,T; F,K,W,M0} ,
∑

= {Pi,Ti; Fi,Ki,Wi,M0 i }(i = 1, 2, · · · , k) s the subnet. The
necessary and sufficient condition of

∑
is safe is that each

∑
i is safe.

Proof: Based on theorem 3, for t ∈ T , there is B(p) =
k

min
i=1
{Bi(pi)}, where B is p′s bound.

(Necessity)
∑

is safe⇔ B(
∑

i) =
k

max
i=1
{B(pi)} = 1⇔ B(p) ≤ 1,B(

∑
) = 1⇔

∑
is safe.
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(Sufficiency)
∑

is safe⇔ B(
∑

) = max{B(p)|p ∈ P} = 1

⇔max{B(p)|p ∈ P} = max{
k

min
i=1

Bi(pi)|pi ∈ Pi} = 1

⇔ pi ∈ Pi,Bi(pi) = 1⇔
∑

i is safe
To prove the consistency on the fairness, the concepts of repeated vector and repeated Petri net are

given.
Definition 18: For a PN

∑
= {P,T; F,K,W,M0} , and C is the corresponding incidence matrix of

∑
. If

there exists n dimensional non-trivial non-negative integer vector such as that of CTX ≥ 0 . X is a repeated
vector of N , where n = |T| .

Definition 19: For a PN
∑

= {P,T; F,K,W,M0} , if there exists repeated vector in
∑

. Then,
∑

is a repeated
Petri net.

Theorem 5: For a PN
∑

= {P,T; F,K,W,M0} ,
∑

= {Pi,Ti; Fi,Ki,Wi,M0 i }(i = 1, 2, · · · , k) is the decomposed
subnet. If

∑
is a repeated PN, and then each

∑
is a repeated PN.

Proof: If
∑

is a repeated PN. X is one of any repeated vector of
∑

. In other words, X is a n dimensional
non-trivial non-negative integer vector (n = |T|) and CTX ≥ 0 , where C is an incidence matrix of

∑
. Assume

Ci is the corresponding incidence matrices of
∑

i . Based on the definition 18, there exists C = (C1,C2, · · · ,Ck)
, which satisfies the following equations.

CTX = (C1,C2, · · · ,Ck)TX =


C1

T

C2
T

...
Ck

T

 X =


C1

TX
C2

TX
...

Ck
TX

 ≥ 0 (14)

It means that Ci
TX ≥ 0 (i = 1, 2, · · · , k). So each

∑
i is repeated Petri net.

Lemma 2[23]: For a PN
∑

= {P,T; F,K,W,M0} , C is the corresponding incidence matrix of
∑

.The
necessary and sufficient condition of

∑
is fair is that each repeated vector in

∑
does not include zero vector

and any two repeated vectors in
∑

have a linear correlation.
Theorem 6: For a PN

∑
= {P,T; F,K,W,M0} ,

∑
= {Pi,Ti; Fi,Ki,Wi,M0 i }(i = 1, 2, · · · , k) , is the subnets.

The necessary and sufficient condition of
∑

is fair is that each
∑

i is fair.

5. Case Study

In this section, a PN (demonstrated in Figure 3) is used to reveal the feasibly of the proposed decompo-
sition algorithm. Hence, the corresponding index functions of each place are

f (p1) = f (p4) = 1 , f (p3) = f (p6) = 2 , f (p2) = f (p5) = 3
Figure 4 shows the corresponding subnets after implementing our algorithm.
a.Analysis on the consistence of dynamic place
Through analysis on the consistence of dynamic place when t1, t2, t3 were enabled, the incidence matrices

were calculated as follows.

C =



−1 0 0 0
−1 −1 1 0
0 0 −1 0
1 0 0 −1
1 1 −1 0
0 0 1 −1


C1 =



−1 0 0 0
0 0 0 0
0 0 0 0
1 0 0 −1
0 0 0 0
0 0 0 0


C2 =



0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0
0 0 0 0
0 0 1 −1


C3 =



0 0 0 0
−1 −1 1 0
0 0 0 0
0 0 0 0
1 1 −1 0
0 0 0 0


The initial state of each net is described as follows.
M0 = ( 1 1 1 0 0 0 )−1 M01 = ( 1 0 0 0 0 0 )−1

M02 = ( 0 0 1 0 0 0 )−1 M03 = ( 0 1 0 0 0 0 )−1

After implementing transition sequence t1t2t3t4, then,
u = ( 1 1 1 1 )−1 u1 = ( 1 0 0 1 )−1 u2 = ( 0 0 1 1 )−1 u3 = ( 1 1 1 0 )−1

Put these conditions into state equations:
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Fig. 3. Original PN model
∑

Fig. 4. The decomposed subnets of Fig.3

Fig. 5. Each sub-PN’s reachable marking graph

M = M0 + Cu M1 = M01 + C1u1 M2 = M02 + C2u2 M3 = M03 + C3u3

M0 = ( 0 0 0 0 1 0 )−1 M1 = ( 0 0 0 0 0 0 )−1

M2 = ( 0 0 0 0 0 0 )−1 M3 = ( 0 0 0 0 1 0 )−1

Then, Mi(pi) = M (pi ∈ P) (i = 1, 2, 3) can be gained. It means that the composed subnets maintain the
unity of dynamic place with original PN model.

b.Analysis on the consistence of liveness and fairness
Lemma 3 [23]: For a PN

∑
= {P,T; F,K,W,M0} , if t ∈ T , there exists any M ∈ M0[> such that M′[t > .

Then, t is live.
Lemma 4 [23]: For a PN

∑
= {P,T; F,K,W,M0} , G(PN) is corresponded reachable marking graph. Then,

(1) If there exist end notes in G(PN) , none of one transition is live;
(2) If transition t in

∑
is live, each note in G(PN) will have basic cycle with direct arc marked as t .

Figure 5 shows the reachable marking graphs for each decomposed subnet.
Based on lemma 3 and 4,

∑
1 ,

∑
2 and

∑
3 are live.

The conclusions could be obtained that T1 ∩ T2 = {t4} , T1 ∩ T3 = {t1} , T2 ∩ T3 = {t3} . Then, conclusions
are reached as follows.

(1) The reachable marking graphs about
∑

1 and
∑

2 are isomorphism about {t4} ;
(2) The reachable marking graphs about

∑
1 and

∑
3 are isomorphism about {t1} ;

(3) The reachable marking graphs about
∑

2 and
∑

3 are isomorphism about{t3} .
So,

∑
is fair,

∑
1 ,

∑
2 and

∑
3 are fair respectively.

c.Analysis of the consistency on boundedness and safeness
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A PN is safe if there is no more than one token in each place. From figure 3, the conclusion is that
∑

1 ,∑
2 and

∑
3 are all safe nets. So, they are all bounded.

6. Conclusion and future work

This paper proposes a decomposition method to control the scale of PN by using an index function. The
framework of this algorithm is given and the implementation process is discussed in an example. This paper
also analyzes the consistency on the dynamic properties between the original PN model and corresponding
decomposed subnets. The correctness of the proposed algorithm is verified by a case. However, other
high-level Petri nets (HLPNs) which are extended based on the PN are also faced with the state explosion
issue in the modelling process. So the future work for us is to modify this proposed algorithm which
satisfies the characters of other HLPNs.
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