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Abstract. In this paper, firstly, a new six-step Zhang et al discretization (SSZeaD) formula is proposed,
which is with the truncation error proportional to the fourth power of sampling period. Then, the SSZeaD
formula is used to discretize a ship course system (SCS) for tracking control, and thus the SSZeaD-type
SCS model is developed. For comparison purposes, the classical Euler forward formula (EFF) with the
truncation error proportional to the first power of sampling period is also used to discretize the SCS, and
thus the EFF-type SCS model is obtained. Besides, there is an important parameter called stepsize, which
is closely related to the stability and the precision of the above two discrete-time models. In view of the
importance of the stepsize, the effective stepsize domains of these two discrete-time models are confirmed
by theoretical analyses. Finally, numerical experimental results well verify the higher tracking precision of
the SSZeaD-type SCS model as compared with the EFF-type SCS model.

1. Introduction

Tracking control is often deemed as a fundamental issue, which has been analyzed and applied in
various kinds of scientific and engineering fields [1–12], such as robotic kinematics [1, 13–16]. For achieving
the tracking control purpose of a system, a controller needs to be designed to force the error between the
actual output and the desired output as close to zero as possible [17, 18]. In [19], the feedback linearization
method is used to enhance the tracking performance of a linear hydraulic-actuator by adjusting the operator
input as well as reducing and nearly eliminating the load dependence of the tracking response. In [20], the
backstepping method is used to construct the adaptive neural tracking controller for a class of nonlinear non-
strict-feedback systems. In [21], by adopting zeroing neural dynamics (or termed, zeroing neurodynamics,
ZN) method [22–27], a ZN controller is designed to solve the tracking control problem of general-form
single-input single-output nonlinear system illustrated by a ship course system (SCS). In fact, the above-
mentioned ZN method is proposed by Zhang et al [1, 28–30], and is designed mainly for solving different
time-dependent problems such as tracking control problem. More specifically, the ZN method is a novel
class of recurrent neurodynamic method [1, 23], which well integrates neural networks and dynamic
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systems into a whole, and fully exploits their both advantages, e.g., parallel computing and dynamic
updating [1, 31–35]. It is worth noting that we have on the foundation of [21] done further research in
tracking control problem of the SCS in this paper.

All the above literatures are focused on the research of continuous-time models. However, it may be
a difficult task for directly adopting the continuous-time models to handle the corresponding discrete-
time problems [36, 37]. Since digital computers and technologies are widely used in numerous scientific
disciplines and industrial applications, e.g., modern industrial control system [38], many signals are made
up of discrete-time variables rather than continuous-time ones [1]. Besides, the discrete-time models are
more suitable to represent practical engineering problems as compared with the continuous-time ones
[1, 36]. For this purpose, it is necessary to develop and investigate the corresponding discrete-time models
instead of the above continuous-time models for discrete-time problems solving.

In general, in terms of numerically solving continuous-time models [39, 40], various numerical differ-
entiation methods have been developed to approximate the first-order derivative [41, 42]. For instance, the
classical Euler forward formula (EFF) is usually considered as the first and also the simplest one-step-ahead
finite difference formula that has been proposed in 1755 and widely applied for decades [1, 43, 44]. In
recent years, a class of one-step-ahead time-discretization method using Taylor expansion and derivation
has been proposed and applied by Zhang et al since 2014 [44–48], which is referred to as ZeaD (Zhang et al
discretization) method in this paper. Specially, the EFF can be regarded as a one-step ZeaD formula.

In this paper, in order to achieve higher precision in approximating the first-order derivative and
discretizing more effectively the continuous-time models [46], a six-step ZeaD (SSZeaD) formula with O(14)
precision is proposed (where 1 is the sampling period). Then, it is used to discretize the SCS, and thus the
SSZeaD-type SCS model is developed. For comparison purposes, the EFF with O(1) precision is also used
to discretize the SCS, and thus the EFF-type SCS model is obtained. Besides, we mainly concentrate on the
stability and the tracking precision of the SSZeaD-type SCS model and the EFF-type SCS model for tracking
control. There is an important parameter termed stepsize in the above two discrete-time models, which is
closely related to their stability and precision [46]. If the value of the stepsize is outside its effective domain,
no matter how small the sampling period is, the tracking errors of discrete-time models are impossible to
achieve convergence, which means the failure of problems solving. Therefore, in a proper domain of the
stepsize (that is, the effective stepsize domain), it makes sense for the discrete-time problems solving.

The rest of this paper is divided into five sections. In Section 2, a SSZeaD formula with O(14) precision
is proposed with the corresponding proof. In Section 3, two different discrete-time SCS models (i.e., the
SSZeaD-type SCS model and the EFF-type SCS model) are proposed for comparative analyses. In Section 4,
the detailed proofs are provided about the effective stepsize domains of such two different discrete-time SCS
models. Section 5 presents the numerical experimental results, which accord with the theoretical results.
Section 6 summarizes the whole paper. Before ending this section, it is worth pointing out that the main
contributions of this paper are the following.

• In view of the importance of discretizing continuous-time models, the SSZeaD formula with O(14)
precision is proposed to discretize the SCS. For comparison purposes, the EFF with O(1) precision is
also used to discretize the SCS.

• As the stepsize is closely related to the stability and the precision of discrete-time models, the effec-
tive stepsize domains of the SSZeaD-type SCS model and the EFF-type SCS model are confirmed,
respectively.

• The higher tracking precision of the SSZeaD-type SCS model is illustrated for tracking different
desired outputs of the SCS, as compared with the EFF-type SCS model.

For readers’ convenience, the acronyms used in this paper are summarized as below.

Acronyms

SCS: Ship course system.
ZN: Zeroing neurodynamics.
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Figure 1: Diagrammatic drawing of simplified SCS.

ZeaD: Zhang et al discretization.
SSZeaD: Six-step Zhang et al discretization.
EFF: Euler forward formula.

2. SSZeaD Formula

In this section, we propose the high-precision SSZeaD formula, which is presented with the correspond-
ing proof below.

Theorem 2.1. Assume that the first five derivatives of arbitrary function r are continuous on [t0, tf], and that tk−5,
tk−4, tk−3, tk−2, tk−1, tk, tk+1 ∈ [t0, tf]. Thereinto, tk+i is denoted as (k + i)1, with k ∈ N representing the updating
index and 1 ∈ R+ denoting the sampling period. Then, the SSZeaD formula is proposed as

ṙ(tk) =
20r(tk+1)

511 +
3r(tk)
171 − 71r(tk−1)

2041 − 13r(tk−2)
341 +

3r(tk−3)
341 +

13r(tk−4)
1021 − 11r(tk−5)

2041 + O(14). (1)

Proof According to Taylor expansion, we have the expressions of r(tk+1), r(tk−1), r(tk−2), r(tk−3), r(tk−4) and
r(tk−5) as below:

r(tk+1) = r(tk) + 1ṙ(tk) +
12

2
r̈(tk) +

13

6
r(3)(tk) +

14

24
r(4)(tk) + O(15), (2)

r(tk−1) = r(tk) − 1ṙ(tk) +
12

2
r̈(tk) − 1

3

6
r(3)(tk) +

14

24
r(4)(tk) + O(15), (3)

r(tk−2) = r(tk) − 21ṙ(tk) + 212r̈(tk) − 4
3
13r(3)(tk) +

2
3
14r(4)(tk) + O(15), (4)

r(tk−3) = r(tk) − 31ṙ(tk) +
9
2
12r̈(tk) − 9

2
13r(3)(tk) +

27
8
14r(4)(tk) + O(15), (5)

r(tk−4) = r(tk) − 41ṙ(tk) + 812r̈(tk) − 32
3
13r(3)(tk) +

32
3
14r(4)(tk) + O(15), (6)

and

r(tk−5) = r(tk) − 51ṙ(tk) +
25
2
12r̈(tk) − 125

6
13r(3)(tk) +

625
24
14r(4)(tk) + O(15). (7)

Based on the algebraic operations “[(2) × 80 − (3) × 71 − (4) × 78 + (5) × 18 + (6) × 26 − (7) × 11]/204”, the
following equation is obtained:

ṙ(tk) =
20r(tk+1)

511 +
3r(tk)
171 − 71r(tk−1)

2041 − 13r(tk−2)
341 +

3r(tk−3)
341 +

13r(tk−4)
1021 − 11r(tk−5)

2041 + O(14).

The proof is thus completed. �
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Figure 2: Realization of continuous-time ZN controller (9) for tracking control of SCS (8), where SCS state equations represent problem
solving process.

3. Two Different Discrete-Time SCS Models

In this section, we mainly propose two different discrete-time SCS models (i.e., the SSZeaD-type SCS
model and the EFF-type SCS model) for comparative analyses. Before developing discrete-time SCS models,
we provide a brief introduction to the SCS. The schematic diagram of the simplified SCS is shown in Figure
1. The system equations of SCS [21] can be expressed as


ẋ1(t) = x2(t),
ẋ2(t) = θ1x2(t) + θ2x3

2(t) + θ0u(t),
y(t) = x1(t),

(8)

where x1(t) represents the displacement and x2(t) represents the velocity. Besides, u(t) represents the control
input; y(t) represents the system output, i.e., the displacement; θ0, θ1, θ2 represent constant parameters.
The continuous-time ZN controller designed in [21] is directly presented by adopting the ZN method as
follows:

u(t) =
ÿd(t) + 2λẏd(t) + λ2yd(t) − 2λx2(t) − λ2x1(t) − θ1x2(t) − θ2x3

2(t)
θ0

, (9)

where yd(t) is the desired output, ẏd(t) is the first-order time derivative of yd(t), and ÿd(t) is the second-order
time derivative of yd(t). Besides, the design parameter λ ∈ R+ is for adjusting the convergence rate of the
ZN method [21–25, 49].

For a better understanding of continuous-time ZN controller (9) acting on the tracking control of SCS
(8), its realization is represented as a control system shown in Figure 2. From this figure, we can find that
the continuous-time ZN controller (9) takes effect through the state equations of SCS (8), which makes the
tracking error (or termed, error function) e1(t) as close to zero as possible.

By adopting the SSZeaD formula (1) to discretize (8), the following SSZeaD-type SCS model can be
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(b) State variables x1(tk) and x2(tk)
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Figure 3: Performance of ZN controller (11) for SSZeaD-type SCS model (10) tracking desired output yd(tk) = cos(tk) + tk, with
1 = 0.25 s.

developed with a truncation error of order O(15):

x1(tk+1) = −9x1(tk)/20 + 71x1(tk−1)/80 + 39x1(tk−2)/40 − 9x1(tk−3)/40

− 13x1(tk−4)/40 + 11x1(tk−5)/80 + 511ẋ1(tk)/20 + O(15)
= −9x1(tk)/20 + 71x1(tk−1)/80 + 39x1(tk−2)/40 − 9x1(tk−3)/40

− 13x1(tk−4)/40 + 11x1(tk−5)/80 + 511x2(tk)/20 + O(15),
x2(tk+1) = −9x2(tk)/20 + 71x2(tk−1)/80 + 39x2(tk−2)/40 − 9x2(tk−3)/40

− 13x2(tk−4)/40 + 11x2(tk−5)/80 + 511ẋ2(tk)/20 + O(15)

= 511
(
θ1x2(tk) + θ2x3

2(tk) + θ0u(tk)
)
/20 − 9x2(tk)/20 + 71x2(tk−1)/80

+ 39x2(tk−2)/40 − 9x2(tk−3)/40 − 13x2(tk−4)/40 + 11x2(tk−5)/80 + O(15),
y(tk+1) = x1(tk+1).

(10)

Accordingly, with tk being an arbitrary time instant, the continuous-time ZN controller can be discretized
as

u(tk) =
(
ÿd(tk) + 2hẏd(tk)/1 + h2yd(tk)/12 − 2hx2(tk)/1 − h2x1(tk)/12 − θ1x2(tk) − θ2x3

2(tk)
)
/θ0, (11)

where h = λ1 with h denoting the stepsize. In reality, the discrete-time ZN controller (11) can achieve the
tracking control of the SSZeaD-type SCS model (10), which is verified by numerical experiments in the
ensuing Section 5.

The conventional EFF [1, 43, 48, 50] is shown as

ṙ(tk) =
r(tk+1) − r(tk)

1
+ O(1). (12)
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(c) SSZeaD-type SCS with different 1 values
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Figure 4: Absolute tracking errors |e(tk)| for desired output yd(tk) = cos(tk) + tk when using SSZeaD-type SCS model (10) and EFF-type
SCS model (13), respectively.

It is also used to discretize (8) and the EFF-type SCS model is thus obtained as below with a truncation
error of order O(12):

x1(tk+1) = x1(tk) + 1x2(tk) + O(12),
x2(tk+1) = (1 + 1θ1)x2(tk) + 1θ2x3

2(tk) + 1θ0u(tk) + O(12),
y(tk+1) = x1(tk+1).

(13)

To lay a basis for further discussion, it is necessary to present the following important results on the
convergence of discrete-time models.

Result 1 [51, 52] An N-step method
∑N

j=0 α jψm+ j = 1
∑N

j=0 β j fm+ j is zero-stable, whose sufficient and necessary
condition is that root condition is satisfied. That is, the roots of characteristic polynomial ρN(ξ) =

∑N
j=0 α jξ j

should satisfy |ξ| ≤ 1 with |ξ| = 1 being simple. In addition, the zero stability is also called Dahlquist
stability or root stability.

Result 2 [52, 53] An N-step method is said to be consistent (i.e., has consistency) of order p if the truncation
error for the exact solution is of order O(1p+1) where p > 0.

Result 3 [51] An N-step method is convergent, i.e., ψ[t/1] → ψ∗(t), for all t ∈ [0, tf], as 1 → 0, if and only if
the method is zero-stable and consistent. Thereinto, ψ[t/1] is the actual solution with [t/1] being the largest
integer not greater than t/1, and ψ∗(t) is the theoretical solution. That is, zero stability plus consistency
means convergence, which is also known as Dahlquist equivalence theorem.

Result 4 [51, 52] A zero-stable consistent method converges with the order of its truncation error.

According to above four results, we can obtain the following two theorems.
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(b) State variables x1(tk) and x2(tk)
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Figure 5: Performance of ZN controller (11) for SSZeaD-type SCS model (10) tracking desired output yd(tk) = sin(tk) + 2 cos(tk), with
1 = 0.2 s.

Theorem 3.1. The SSZeaD-type SCS model (10) is zero-stable, and the EFF-type SCS model (13) is also zero-stable.

Proof The characteristic polynomial of the SSZeaD-type SCS model (10) can be expressed as

ρ6(ξ) = ξ6 +
9
20
ξ5 − 71

80
ξ4 − 39

40
ξ3 +

9
40
ξ2 +

13
40
ξ − 11

80
. (14)

The roots of characteristic polynomial (14) are ξ1 = 1, ξ2 = −0.7039 + 0.6585i, ξ3 = −0.7039 − 0.6585i,
ξ4 = −0.8027, ξ5 = 0.3802 + 0.1995i, and ξ6 = 0.3802 − 0.1995i, where i denotes the imaginary unit. Ev-
idently, these roots are on or in the unit circle, and thus the SSZeaD-type SCS model (10) is zero-stable.
Similarly, the root of characteristic polynomial of the EFF-type SCS model (13) is ξ1 = 1, which is on the
unit circle. Therefore, the EFF-type SCS model (13) is also zero-stable. The proof is thus completed. �

Theorem 3.2. The SSZeaD-type SCS model (10) is consistent and convergent, which converges with the truncation
error of order O(15), and the EFF-type SCS model (13) is also consistent and convergent, which converges with the
truncation error of order O(12).

Proof From the SSZeaD-type SCS model (10), we know that the truncation error is of order O(15); thus, on
the basis of Result 1 and Result 2, the SSZeaD-type SCS model (10) is zero-stable and consistent. Moreover,
taking Result 3 and Result 4 into consideration, we obtain that the SSZeaD-type SCS model (10) converges
with the truncation error of order O(15). In the same manner, on the grounds of Result 1 and Result 2,
the EFF-type SCS model (13) is zero-stable and consistent. Therefore, in light of Result 3 and Result 4, the
EFF-type SCS model (13) converges with the truncation error of order O(12). The proof is thus completed.�
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(c) SSZeaD-type SCS with different 1 values
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Figure 6: Tracking errors |e(tk)| for desired output yd(tk) = sin(tk) + 2 cos(tk) using SSZeaD-type SCS model (10) and EFF-type SCS
model (13), respectively.

4. Effective Stepsize Domains

The stepsize is an important parameter since it determines the stability and the precision of discrete-time
models. In this section, we present detailed proofs about effective stepsize domains of the SSZeaD-type
SCS model (10) and the EFF-type SCS model (13).

Proposition 4.1. The effective stepsize domain of the SSZeaD-type SCS model (10) is (0, 8/51).

Proof The first error function e1(t) = y(t) − yd(t) = x1(t) − yd(t) is constructed, and the ZN design formula
[49] is presented as below:

ė1(t) = −λe1(t). (15)

Then, we use the SSZeaD formula (1) to discretize the ZN design formula (15) directly, and the following
equation can be obtained:

20
51 e1(tk+1) + 51h+9

51 e1(tk) − 71
204 e1(tk−1) − 39

102 e1(tk−2) + 9
102 e1(tk−3) + 13

102 e1(tk−4) − 11
204 e1(tk−5) + O(15) = 0. (16)

The characteristic equation of (16) is

20
51
ξ6 +

51h + 9
51

ξ5 − 71
204

ξ4 − 39
102

ξ3 +
9

102
ξ2 +

13
102

ξ − 11
204

= 0. (17)

In order to calculate the effective stepsize domain, (16) must be stable, i.e., six roots of (17) all inside a
unit circle. For six-order equation (17) with parameter h, it may be difficult to solve all six roots inside a
unit circle. However, by the application of bilinear transformation ξ = (1 + s)/(1− s) [48], we just make sure
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Table 1: Routh stability criterion table for equation (18).

s6 L1 136 − 255h 255h + 408 51h
s5 L2 544 204h + 102 0
s4 L3

20808h2+29376h−16320
102h−41 51h

s3 L4
249696h3+80784h2−32016h+20400

1530h2−615h+200 0
s2 L5 51h
s1 L6 0
s0 L7

L1 = 8 − 51h
L2 = 82 − 204h
L3 = −26010h2+10455h−3400

102h−41

L4 = −249696h3+580176h2+2976h+30080
1530h2−615h+200

L5 = −795906h4−2910519h3−13640409h2−816765h−642600
15606h3−36261h2−186h−1880

L6 = 21973248h4+41478912h3+30022512h2+3285760h+1285200
15606h4+57069h3+267459h2+16015h+12600

L7 = 51h
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Figure 7: Trajectories of seven functions in the first column of Table 1 corresponding to SSZeaD-type SCS model (10), and trajectories
of two functions corresponding to EFF-type SCS model (13).

that all coefficients of the first column in Routh stability criterion table are greater than zero [48]. Through
the bilinear transformation, the following equation is gained:

(8 − 51h)s6 + (82 − 204h)s5 + (136 − 255h)s4 + 544s3 + (255h + 408)s2 + (204h + 102)s + 51h = 0. (18)

The Routh stability criterion table corresponding to equation (18) is presented in Table 1. According to
Routh stability criterion [54], we finally obtain 0 < h < 8/51. That is, the effective stepsize domain of the
SSZeaD-type SCS model (10) is (0, 8/51). The proof is thus completed. �

Proposition 4.2. The effective stepsize domain of the EFF-type SCS model (13) is (0, 2).

Proof We use the EFF (12) to discretize the ZN design formula (15) directly, and the following equation can
be obtained:

e1(tk+1) − (1 − h)e1(tk) + O(12) = 0. (19)
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Table 2: Maximum steady-state absolute tracking errors of SSZeaD-type SCS model (10) and EFF-type SCS model (13) equipped
with discrete-time ZN controller (11) using different values of stepsize h and sampling period 1 when tracking desired output
yd(tk) = sin(tk) + 2 cos(tk).

Stepsize Sampling period Model (10) Model (13)
1 = 0.2 s 1.5828 × 10−3 4.3240 × 10−1

h = 0.09 1 = 0.02 s 3.8192 × 10−8 9.7322 × 10−3

1 = 0.002 s 5.4415 × 10−13 9.9360 × 10−5

1 = 0.2 s 1.5210 × 10−3 4.1874 × 10−1

h = 0.11 1 = 0.02 s 3.1494 × 10−8 8.0211 × 10−3

1 = 0.002 s 4.9943 × 10−13 8.1300 × 10−5

1 = 0.2 s 1.4555 × 10−3 4.0297 × 10−1

h = 0.13 1 = 0.02 s 2.6770 × 10−8 6.8155 × 10−3

1 = 0.002 s 5.3946 × 10−13 6.8796 × 10−5

1 = 0.2 s 6.9327 × 101 3.7718 × 10−1

h = 0.16 1 = 0.02 s ∞ 5.5572 × 10−3

1 = 0.002 s ∞ 5.5898 × 10−5

1 = 0.2 s ∞ 1.6959 × 103

h = 2 1 = 0.02 s ∞ ∞
1 = 0.002 s ∞ ∞

Note that “∞” means that the item is above the order of 1013 in the table.

The characteristic equation of (19) isξ−1+h = 0. In the same manner, by applying the bilinear transformation
ξ = (1 + s)/(1 − s), the following equation is obtained:

(2 − h)s + h = 0.

According to Routh stability criterion [54], we figure out 0 < h < 2, which is also consistent with that in
[55–57]. That is, the effective stepsize domain of the EFF-type SCS model (13) is (0, 2). The proof is thus
completed. �

5. Numerical Experiments and Comparisons

In this section, we further investigate the tracking precision of the SSZeaD-type SCS model (10) and the
EFF-type SCS model (13) as well as the effectiveness of the designed controller applying to the tracking
control of SCS. The numerical experiments are conducted with the constant parameters θ0 = θ1 = θ2 = 100
selected.

The task duration is set as 75 s and stepsize h is set as 0.1. The corresponding numerical results
are presented in Figure 3 and Figure 4. Thereinto, Figure 3 describes the performance of controller (11)
for the SSZeaD-type SCS model (10) tracking the desired output yd(tk) = cos(tk) + tk, with 1 = 0.25 s.
After computational time is approximately 10 s (i.e., k = 40), the actual output y(tk) nearly completely
tracks the desired output yd(tk) in Figure 3(a). Figure 3(b) describes the trajectories of discrete-time state
variables x1(tk) and x2(tk). The control input u(tk) is presented in Figure 3(c), and absolute tracking error
|e(tk)| = |y(tk) − yd(tk)| is presented in Figure 3(d). Besides, Figure 4 describes absolute tracking errors |e(tk)|
when using the SSZeaD-type SCS model (10) and the EFF-type SCS model (13), respectively. Specifically,
in Figure 4, we attempt to choose several different values of sampling period for comparison study, i.e.,
1 = 0.1 s, 0.01 s, 0.25 s, 0.025 s and 0.0025 s. In Figure 4(a), the steady-state absolute tracking errors of the
EFF-type SCS model (13) and the SSZeaD-type SCS model (10) are of orders 10−2 and 10−5, respectively,
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when 1 = 0.1 s. Comparatively, in Figure 4(b), the steady-state absolute tracking errors of the EFF-type SCS
model (13) and the SSZeaD-type SCS model (10) are of orders 10−4 and 10−10, respectively, when 1 = 0.01 s.
This reflects the fact that the SSZeaD-type SCS model (10) has higher tracking precision as compared with
the EFF-type SCS model (13). In Figure 4(c), the steady-state absolute tracking errors of the SSZeaD-type
SCS model (10) are of orders 10−3, 10−8 and 10−13, when 1 = 0.25 s, 0.025 s and 0.0025 s, respectively. That
is, as the value of 1 decreases by 10 times, the steady-state absolute tracking error of the SSZeaD-type SCS
model (10) reduces by about 105 times, which approximately presents the O(15) pattern. Comparatively,
in Figure 4(d), the steady-state absolute tracking errors of the EFF-type SCS model (13) are of orders 10−1,
10−3 and 10−5, when 1 = 0.25 s, 0.025 s and 0.0025 s, respectively. In other words, as the value of 1 decreases
by 10 times, the steady-state absolute tracking error of the EFF-type SCS model (13) reduces by about 102

times, which approximately presents the O(12) pattern.
The task duration is set as 80 s and stepsize h is set as 0.12 with numerical results presented in Figure

5 and Figure 6. Besides, the desired output is yd(tk) = sin(tk) + 2 cos(tk). Thereinto, Figure 5 describes
the performance of controller (11) for the SSZeaD-type SCS model (10), which is similar to that in Figure
3. Figure 6 describes absolute tracking errors |e(tk)| when using the SSZeaD-type SCS model (10) and the
EFF-type SCS model (13), respectively, which is similar to that in Figure 4. Similarly, in Figure 6, we choose
several different values of sampling period to undertake a comparative study, such as 1 = 0.1 s, 0.01 s, 0.2 s,
0.02 s and 0.002 s. In Figure 6(a), the steady-state absolute tracking errors of the EFF-type SCS model (13) and
the SSZeaD-type SCS model (10) are of orders 10−2 and 10−5, respectively, when 1 = 0.1 s. Comparatively, in
Figure 6(b), the steady-state absolute tracking errors of the EFF-type SCS model (13) and the SSZeaD-type
SCS model (10) are of orders 10−4 and 10−10, respectively, when 1 = 0.01 s. The steady-state absolute
tracking errors of the SSZeaD-type SCS model (10) are of orders 10−3, 10−8 and 10−13, when 1 = 0.2 s, 0.02 s
and 0.002 s, respectively, in Figure 6(c), which approximately presents the O(15) pattern. The steady-state
absolute tracking errors of the EFF-type SCS model (13) are of orders 10−1, 10−3 and 10−5, when 1 = 0.2 s,
0.02 s and 0.002 s, respectively, in Figure 6(d), which approximately presents the O(12) pattern. To sum up,
the performance of the SSZeaD-type SCS model (10) in comparison with the EFF-type SCS model (13) is
greater.

Besides, the maximum steady-state absolute tracking errors of the SSZeaD-type SCS model (10) and the
EFF-type SCS model (13) are listed in Table 2, when tracking the desired output yd(tk) = sin(tk) + 2 cos(tk),
with the different values of stepsize and sampling period. From Table 2, we observe that the maximum
steady-state absolute tracking error of the SSZeaD-type SCS model (10) approximately presents the O(15)
pattern, when the value of stepsize is in (0, 8/51). Besides, the maximum steady-state absolute tracking
error of the EFF-type SCS model (13) approximately presents the O(12) pattern, when the value of stepsize is
in (0, 2). However, when the value of stepsize is outside (0, 8/51) (such as 0.16 and 2), the approximate O(15)
pattern of the SSZeaD-type SCS model (10) is no longer valid, which indirectly verifies the effectiveness
of Proposition 4.1. Meanwhile, when the value of stepsize is outside (0, 2) (such as 2), the approximate
O(12) pattern of the EFF-type SCS model (13) is no longer valid, which indirectly verifies the effectiveness
of Proposition 4.2.

It is worth pointing out that the trajectories of seven functions L1 ∼ L7 in the first column of Table 1
corresponding to the SSZeaD-type SCS model (10), and trajectories of two functions 2−h and h corresponding
to the EFF-type SCS model (13) are shown in Figure 7(a) and Figure 7(b), respectively. From Figure 7(a),
we can find the intersection of L1 ∼ L7 being greater than zero, of which h is (0, 8/51). That is, the effective
stepsize domain of the SSZeaD-type SCS model (10) is (0, 8/51), which accords with the obtained theoretical
result in Proposition 4.1. From Figure 7(b), we can find that the intersection of 2 − h and h greater than
zero is (0, 2). In other words, the effective stepsize domain of the EFF-type SCS model (13) is (0, 2), which
conforms to the obtained theoretical result in Proposition 4.2.

6. Conclusion

In this paper, the proposed six-step Zhang et al discretization (SSZeaD) formula (1) with O(14) precision
has been used to discretize the ship course system (SCS) (8), and thus the SSZeaD-type SCS model (10) has
been developed. For comparison, Euler forward formula (EFF) (12) with O(1) precision has been also used to
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discretize the SCS (8), and thus the EFF-type SCS model (13) has been obtained. Besides, the effective stepsize
domains of these two discrete-time SCS models have been confirmed by the corresponding theoretical
analyses. Finally, numerical experimental results have further validated the higher tracking precision of the
SSZeaD-type SCS model (10) as compared with the EFF-type SCS model (13) in effective stepsize domains.
One of our future research directions is to generalize the design method of the SSZeaD-type SCS model (10)
with the proposed SSZeaD formula (1) to solve other discrete-time engineering problems. Developing the
discretization-effective specific and general forms of multiple-step ZeaD formulas with higher precision can
also be an interesting future research direction. Besides, the stepsize domain confirmation and optimum of
the general SSZeaD-type SCS model can also be an interesting research topic, which will be studied in the
future work.
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