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Available at: http://www.pmf.ni.ac.rs/filomat

Modification of Gesture-Determined-Dynamic Function with
Consideration of Margins for Motion Planning of Humanoid Robots

Zhijun Zhanga,b, Lingdong Konga,b,c, Yaru Niua,b,d, Ziang Lianga

aSchool of Automation Science and Engineering, South China University of Technology, Guangzhou, China
bCenter for Brain Computer Interfaces and Brain Information Processing, South China University of Technology, Guangzhou, China

cSchool of Computer Science and Engineering, Nanyang Technological University, Singapore
dSchool of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA

Abstract. The gesture-determined-dynamic function (GDDF) offers an effective way to handle the control
problems of humanoid robots. Specifically, GDDF is utilized to constrain the movements of dual arms
of humanoid robots and steer specific gestures to conduct demanding tasks under certain conditions.
However, there is still a deficiency in this scheme. Through experiments, we found that the joints of the
dual arms, which can be regarded as the redundant manipulators, could exceed their limits slightly at the
joint angle level. The performance straightly depends on the parameters designed beforehand for the GDDF,
which causes a lack of adaptability to the practical applications of this method. In this paper, a modified
scheme of GDDF with consideration of margins (MGDDF) is proposed. This MGDDF scheme is based on
quadratic programming (QP) framework, which is widely applied to solving the redundancy resolution
problems of robot arms. Moreover, three margins are introduced in the proposed MGDDF scheme to
avoid joint limits. With consideration of these margins, the joints of manipulators of the humanoid robots
will not exceed their limits, and the potential damages which might be caused by exceeding limits will
be completely avoided. Computer simulations conducted on MATLAB further verify the feasibility and
superiority of the proposed MGDDF scheme.

1. Introduction

A robot is a programmable machine capable of executing complex tasks automatically. Traditionally,
robots are designed to perform mechanical actions with no regard to how they look. With the evolution
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of the robotic industry, as well as the higher psychological requirement of human beings, more and more
robots are designed and conducted to appear and behave like human beings [1]. Such similarity can
be for functional purposes, for example, interacting with human instruments and facilities, or for other
experimental purposes [2, 3]. In general, these humanoid robots are endowed with similar body structures
of human beings, i.e., a head, a torso, two arms, and two legs [4]. Some of them also have their head parts
designed to replicate emotional expressions of the human face, such as eye-blinking and lip-sipping [5].
An automatic perception for facial expressions of humanoid robots proposed by Zhang et al. demonstrated
the potential in developing personalized robots with social intelligence [6]. Trovato et al. created a facial
expression generator applied to a KOBIAN-R robot to establish an adaptive system based on human
communication and facial anatomy [7]. Such a system is effective for the implementation of complex
interactions between humans and robots. For a XIN-REN robot, a facial expression learning method based
on energy conservation principle proposed by Ren et al. successfully ensured smoother trajectories for
multi-frame imitation of humanoid robots [8].

In addition to the head, the arms are also crucial and indispensable for a humanoid robot. Recently,
various novel humanoid robots equipped with arms have been studied and further applied in home
service, personal entertainment, inspection, health care, manufacturing, and so on [10–13]. The dual
arms of humanoid robots can not only conduct tasks [14], but also convey emotions with body language
[15, 16]. To perform daily tasks with dual-arms of humanoid robots, the motion planning problem should
be considered. Aly et al. proposed a system to generate the dynamic characteristics of gestures and postures
of the NAO robot during nonverbal communications [17, 18]. Tondu et al. designed an anthropomorphic
robot arm and its ancillary motion control method [19]. One of the basic problems of dual-arm motion
planning is the inverse kinematic problem [20], i.e., given the trajectories of end-effector, computing joint
variables at each time instant [21]. Most dual arms of humanoid robots have more than three degrees of
freedom (termed as DOF). This redundancy improves the flexibility of dual arms when the humanoid robots
implement end-effector tasks [22]. However, the redundant DOF also inevitably increases the difficulties
of computation [23].

The traditional redundancy resolution method is pseudo-inverse method [24]. Wang et al. proposed a
closed-loop method for solving the inverse kinematics in Ref. [25], which was based on pseudo-inverse
method, to control the dual arms on a mobile platform. In addition, the inverse of matrices has to
be considered when utilizing the pseudo-inverse method to solving inverse kinematics, which can be
challenging [26]. Quadratic programming (termed as QP) methods are preferred recently, and a QP-based
task priority framework is proposed in Ref. [27] to resolve the kinematic redundancy problem. Inspired by
the aforementioned optimization method, a QP-based online generation scheme for generating expected
gestures of dual arms is proposed by Zhang et al. [9], and a gesture-determined-dynamic function (termed
as GDDF) is designed and introduced to the kinematics of humanoid robots. This GDDF scheme can not
only handle the redundancy resolution problem within the joint limits, but also dynamically adjust gestures
to the desired position. Different from the exiting pseudo-inverse method [28–30] or very few QP-based
methods focusing on single arm [31, 32, 37], together with the numerical QP solver, the GDDF scheme can
generate dual-arm behaviors for humanoid robots [38–41] in 3-D space online.

However, there is still a deficiency in the GDDF scheme. On the basis of a series of experiments, we
find that at some parameter groups during execution, the joint might slightly exceed its limit. That is to
say, if the parameter is falsely selected, dead-lock of robot arms or even damages could occur, which is
perilous for the practical applications. To remedy this disadvantage, a modified GDDF method named
MGDDF is proposed in this paper. With consideration of three kinds of margins (i.e., MGDDF-1, MGDDF-2
and MGDDF-3, which will be carefully discussed in the following sections) are introduced to the MGDDF
method to constrain the movement of the joints.

The remainder of this paper is listed as follows. The overviews of related works are presented in Section
II. Section III gives the preliminary and problem formulation of dual arms. The traditional GDDF method
and the proposed MGDDF method are discussed in Section IV. Simulations and experiments are made in
Section V to verify the effectiveness of the proposed method. Section VI offers a concluding remarks.

The main contributions of this paper can be summarized as follows:
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• With consideration of three margins, a modified scheme named MGDDF is proposed for solving
kinematic problems of dual arms of humanoid robot.

• The gesture of dual arms can be smoothly achieved by using MGDDF method, and the joints would
not exceed their limits during the whole execution of tasks.

2. Related Works

The motion planning of humanoid robots have been studied for a few decades. Gouda et al. proposed
a whole-body motion planning approach of NAO robot using onboard sensing and achieved reliable
motion sequences when operating in complex environment [42]. A path planning method which computes
dynamics and collision avoidance for full-body gestures of humanoid robots was proposed by Kagami et al.
[43]. This method contains a filtering function that constrains the zero moment point of each trajectory
to obtain statically stabilization for the entire body. Without lost of generality, Dalibard et al. presented a
collision-free method for whole-body working control of humanoid robots [44]. In Ref. [45], Ohashi et al.
introduced a linear inverted pendulum mode and designed a collision avoidance method for a robot with
an upper body to discriminate the start/stop of force of robot arms. On the basis of Lyapunov stability
theory, an adaptive control method was proposed by Liu et al. to satisfy the coordination of dual arms of
humanoid robots [46]. Simulation results prove that when applying this method, the internal force of the
arms can be held and the position errors are arbitrarily small.

As for the motion optimization, Ayusawa et al. proposed a novel re-targeting method with geometric
parameter identification, motion planning and inverse kinematics to handle control problems of humanoid
robots [47]. A practical experiment performed on HRP-4 robot further verified the excellent performance
of this method. In Ref. [48], an optimization-based approach was proposed by Schulman et al. to find
collision-free trajectories of a 18 degrees-of-freedom robot with dual arms. Hong et al. who focused on
real-time pattern generation utilized the linear pendulum model to solve the walking control problem of
MAHRU-R robot with feed-forward and feed-back controller [49]. The desired task hierarchy which is based
on quadratic programming was solve by Liu et al. to reduce the risk of instability when humanoid robots
conducting operations [50]. According to HRP-2 robot, a novel plan for foot placements was proposed by
Kanoun et al. to formulate the deformation problem as the inverse kinematic problem and to further be
described as a locomotion phase of the desired tasks. [51]. For the posture control problem, Choi et al.
proposed a kinematic resolution method based on the center of mass Jacobian with embedded motion of
humanoid robots [52]. A motion planning using swept volume approximation was researched by Perrin
et al. to achieve the 3-D obstacle avoidance [53].

In the field of gesture generation, Yanik et al. proposed a gesture recognition scheme for path shaping
of simulated robot [54]. They first extracted gesture data from sequential skeletal depth and then clustered
them by a growing neural gas algorithm. Cheng et al. presented a hand-gesture-recognition method which
can track gestures of a dance robot in real-time [55]. The hand gestures were recorded as signals detected
by a 3-axis sensor and represented as discrete cosine transform coefficients. Furthermore, a artificial
communicator for gesture recognition, proposed by Zhang et al., was utilized for human-robot cooperative
assembly [56]. In Ref. [57], the tracking control of manipulators was solved by nonlinear observers which
provided joint coordinate rates. Arteaga et al. utilized this method by associating Euler-Lagrange equations
to describe gesture motions and achieved high control accuracy.

3. Preliminary and Problem Formulation

The forward kinematics of dual arms of humanoid robots can be described as

pL = =L(θL), pR = =R(θR) (1)

where pL and pR denote the position vectors of the end effector. θL and θR stand for the vectors of left
and right joints. =L(·) and =R(·) are continuous nonlinear functions. These two equations can be obtained
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when the manipulator is given. For redundant manipulator, the inverse kinematic problem is basic and the
motion states of each joint should be solved according to the trajectories of the end effector.

Inspired by previous work in Ref. [9], an online optimization algorithm to solve the redundancy problem
is presented. The following equations at velocity level are obtained

θ̇T
LAθ̇L

2
+
θ̇T

RBθ̇R

2
+ cT

LθL + cT
RθR (2)

JL(θL)θ̇L = ṗL + ℘L

(
pL − =L(θL)

)
(3)

JR(θR)θ̇R = ṗR + ℘R

(
pR − =R(θR)

)
(4)

θ−L 6 θL 6 θ
+
L (5)

θ−R 6 θR 6 θ
+
R (6)

θ̇−L 6 θ̇L 6 θ̇
+
L (7)

θ̇−R 6 θ̇R 6 θ̇
+
R (8)

where superscript T denotes the transpose of a vector or a matrix. θ̇L and θ̇R ∈ Rn denote joint-velocity
vectors of left and right arms. A ∈ Rn×n and B ∈ Rn×n are coefficient matrices of quadratic terms. cL and
cR are coefficient vectors related to linear terms. JL(·) and JR(·) ∈ Rn×m are the Jacobian matrices of the left
and right arms, respectively. ṗL and ṗR ∈ R

n denote velocity vectors of the end effector. The position-error
feedbacks ℘L

(
pL − =L(θL)

)
and ℘R

(
pR − =R(θR)

)
are considered with non-negative parameters ℘L and ℘R.

The series of inequalities (5)-(8) are the constraints of joints and joint-velocities. θ±L and θ±R denote physical
joint limits, while θ̇±L and θ̇±R denote joint-velocity limits, respectively.

The aforementioned dual formulas (3)-(8) can be combined as matrix forms to offer a much more clear
expression, i.e.,
• position-error feedback equalities (3)-(4) are combined as[

JL 0m×n
0m×n JR

]
·

[
θ̇L
θ̇R

]
=

[
ṗL
ṗR

]
+

℘L

(
pL − =L(θL)

)
℘R

(
pR − =R(θR)

) ; (9)

• joint limit inequalities (5)-(6) are combined as[
θ−L
θ−R

]
6

[
θL
θR

]
6

[
θ+

L
θ+

R

]
∈ R2n; (10)

• joint-velocity limit inequalities (7)-(8) are combined as[
θ̇−L
θ̇−R

]
6

[
θ̇L
θ̇R

]
6

[
θ̇+

L
θ̇+

R

]
∈ R2n. (11)

With the consideration of objective function (2) and modified constrains (9)-(11), the following standard
QP can be formulated as follows

min.
Θ̇TMΘ̇

2
+ cTΘ (12)

s. t. J(Θ)Θ̇ = Υ̇ + ℘(Υ − =(Θ)) (13)
Θ− 6 Θ 6 Θ+ (14)
Θ̇− 6 Θ̇ 6 Θ̇+ (15)

where Θ = [θT
L , θ

T
R], c = [cT

L , c
T
R], Θ− = [θ−T

L , θ−T
R ]T, Θ+ = [θ+T

L , θ+T
R ]T, Θ̇ = dΘ/dt = [θ̇T

L , θ̇
T
R], Θ̇− = [θ̇−T

L , θ̇−T
R ]T,

Θ̇+ = [θ̇+T
L , θ̇+T

R ]T, Υ̇ = [ṗT
L , ṗ

T
R]T,

M =

[
A 0n×n

0n×n B

]
∈ R2n×2n, (16)
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J =

[
JL 0n×n

0n×n JR

]
∈ R2m×2n, (17)

℘ =

[
℘L 0m×m

0m×m ℘R

]
∈ R2m×2m. (18)

It is worth pointing out that vector c and matrix M are determined by a definite redundancy-resolution
scheme. Matrix ℘ stands for the feedback gain and is determined by practical effect. Different goals can
be obtained by choosing different criteria of vector c and matrix M. The following three schemes are
introduced, i.e.,
•MKE scheme:
If vector c = [0; 0], and matrix M = [IL, 0; 0,IR] (where I denotes inertia matrix), then the QP problem

(12)-(15) forms a minimum-kinetic-energy (MKE) scheme.
• RMP scheme:
If vector c = [λ(θL −θL(0));λ(θR −θR(0))] (where λ is a non-negative parameter), and matrix M = I is an

identity matrix, then the QP problem (12)-(15) forms a repetitive motion planning (RMP) scheme.
•MVN scheme:
If vector c = [0, and matrix M = I is an identity matrix, then the QP problem (12)-(15) forms a minimum-

velocity-norm (MVN) scheme.

4. Proposed Methods

Humanoid robots are not only asked to finish the end-effector tasks, but also are demanded to “behave”
naturally as a human [8, 38, 39]. Being the most straight way of expressing feelings and emotions, gestures of
humanoid robots have been widely designed and exerted to accomplish natural human-robot interactions
[38, 40, 41]. A gesture-determined-dynamic function (GDDF) is presented in Ref. [9]. Associating with a QP
framework (12)-(15) and the GDDF method, the researchers expect to cause expected gestures of humanoid
robots.

4.1. GDDF Scheme
To generate the expected movement and to execute the end-effector tasks, some joints of the dual arms

should be dynamically adjustable [9, 16, 20, 33–36]. The joint limits and joint-velocity limits have already
been formulated into QP problem (12)-(15). A dynamic function which can change the upper and the
lower bounds of the limits should be found, and the bounds should be related to the expectation values.
Besides, the generated curves should be smooth during the executing process. The following function is
then designed to satisfy the demand and the joints can adjust to the expected gesture, i.e.,

Θ̃±(t) = Θ± +
∆Θ±

1 + e−(t−τ)/%
(19)

where ∆Θ± = Θ±1 − Θ±, and Θ1 = [ΘT
1L; ΘT

1R] sets the goal configuration of joint. % is a parameter affecting
the variation trend. Parameter τ = Td/N, with Td denoting the task execution time and N > 1 denoting
the parameter affecting the proximity between the adjusted value and the actual value (set point). ∆Θ
determines whether Θ̃ increases or decreases. Normally speaking Θ̃+ decreases while Θ̃− increases. Fraction
1/[1 + e−(t−τ)/%] is a gradual and smooth function and it influences the curve shape of the joint limit. When
time t approaches infinite, e−(t−τ)/% will approach 0, thus the fraction will approach 1, and Θ̃± will approach
Θ± + ∆Θ± = Θ±1 .

Function (19) can lead to the expected movement smoothly and slowly. On the basis of smooth function
(19) and QP-based framework (12)-(15), the GDDF scheme can be successfully established. The upper and
lower bounds of the inequalities will constrain the movement of the joints, and make the joints move just as
expected. For dual arms of humanoid robots, all the joints can be adjusted to the tasks at the same time. As
for each i-th joint, we can set Θ+

1i = Θ+ and Θ−
1i = Θ−, and the corresponding joints would reach the target

values equally. To achieve the joints’ expected gestures, a series of values of parameters %, τ and N which
influence the proximity between the adjusted value and the actual value can be easily set.
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Figure 1: Graphical representation of the margins of MGDDF-1. Both upper bound and lower bound of joint limits are greater than
zero.

4.2. MGDDF Scheme with Consideration of Margins

The gestures can be smoothly achieved by using GDDF method. However, there is still a deficiency in
this scheme. Through the experiment we find that the joint might exceed its limit slightly at some parameter
groups. To remedy this problem, three kinds of margins are introduced to constrain the movement of the
joints. This modified GDDF method is termed as MGDDF method.
•MGDDF-1:
Firstly, joint limit (14) is rewritten as

Θ̃− 6 Θ 6 Θ̃+ (20)

Secondly, a margin set at velocity level is considered, and the joint limit constraint (20) is modified as
follows

ν
(
(2 − κ)Θ̃−(t) −Θ

)
6 Θ̇ 6 ν

(
κΘ̃+(t) −Θ

)
(21)

where Θ̇ denotes the joint velocity and ν > 0 is a parameter which is applied to scale the feasible region of
Θ̇. For simplicity, ν is set as ν = 2 in the following experiments. The critical coefficient κ ∈ (0, 1) is selected
to define a critical region (Θ−i , (2 − κ)Θ−i ] and [κΘ+

i ,Θ
+
i ), which is shown in Fig. 1. It is worth noting that,

MGDDF-1 is suitable for the case that the upper bound and lower bound of joint limits are greater than
zero.

Moreover, for the i-th joint, the joint-velocity constraint of MGDDF-1 are be formulated as follows

max
{
Θ̇−, ν

(
(2 − κ)Θ̃−i (t) −Θi

)}
≤ Θ̇i

min
{
Θ̇+, ν

(
κΘ̃+

i (t) −Θi

)}
≥ Θ̇i.

(22)

To simplify the expression of joint-velocity constraint (22), the following equations are introduced, i.e.,

ζ̃−i (t) = max
{
Θ̇−, ν

(
(2 − κ)Θ̃−i (t) −Θi

)}
(23)

ζ̃+
i (t) = min

{
Θ̇+, ν

(
κΘ̃+

i (t) −Θi

)}
. (24)

•MGDDF-2:
Considering the case that upper limit > 0 and lower limit < 0. On the basis of constraint (21), the

critical regions of MGDDF-2 are (Θ−i , κΘ−i ] and [κΘ+
i ,Θ

+
i ). The graphical representation of the margins of

MGDDF-2 is depicted in Fig. 1. Similar to MGDDF-1, the joint-velocity constraint of MGDDF-2 is simplified
as the following relationships, i.e.,

ζ̃−i (t) = max
{
Θ̇−, ν

(
κΘ̃−i (t) −Θi

)}
(25)

ζ̃+
i (t) = min

{
Θ̇+, ν

(
κΘ̃+

i (t) −Θi

)}
. (26)
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Figure 2: Graphical representation of the margins of MGDDF-2. The upper bound of joint limits is greater than zero, while the lower
bound of joint limits is less than zero.
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Figure 3: Graphical representation of the margins of MGDDF-3. Both upper bound and lower bound of joint limits are less than zero.

•MGDDF-3:
When both the upper bound and lower bound of limits are less than zero, the critical regions of MGDDF-3

are (Θ−i , κΘ−i ] and [(2 − κ)Θ+
i ,Θ

+
i ). Sharing the same process, the following result is obtained, i.e.,

ζ̃−i (t) = max
{
Θ̇−, ν

(
Θ̃−i (t) −Θi

)}
(27)

ζ̃+
i (t) = min

{
Θ̇+, ν

(
(2 − κ)Θ̃+

i (t) −Θi

)}
. (28)

Combining the aforementioned MGDDF-1, MGDDF-2 and MGDDF-3, the MGDDF scheme with con-
sideration of margins is obtained, i.e.,

min.
Θ̇TMΘ̇

2
+ cTΘ (29)

s. t. J(Θ)Θ̇ = Υ̇ + ℘(Υ − =(Θ)) (30)
ζ̃−i (t) 6 Θ̇ 6 ζ̃+

i (t) (31)

In summary, the kinematic task of the dual arms of the humanoid robot can be successfully finished
by using the proposed MGDDF scheme (29)-(31). The end-effector velocities ṗL and ṗR are integrated
into equation (30). The key function (19) determines the upper and lower bounds of inequality (31). It is
worth mentioning that the proposed MGDDF scheme can be solved by a discrete QP solver, which will be
discussed in the following sub-section.

4.3. MGDDF Solvers

According to Refs. [23, 26], a linear-variational-inequality (LVI) is introduced to solve the MGDDF
scheme (29)-(31). Equivalently, a linear projection equation is led to replace these equations, i.e.,

ΦΩ

(
d − (Γd + q)

)
− d = 0 (32)
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where ΦΩ(·) (R2n+2m
→ Ω) is a projection operator with set Ω = {d | d− 6 d 6 d+

} ⊂ R2n+2m. d = [Θ; ι],
d+ = [ζ̃+(t);ωlι] ∈ R2n+2m, d− = [ζ̃−(t);−ωlι] ∈ R2n+2m, Γ = [M,−JT(Θ); J(Θ), 0] ∈ R(2n+2m)×(2n+2m), q = [0;−Υ̇] ∈
Rn+m, and lι = [1, · · · , 1]T. Besides, d ∈ Rm denotes the primal-dual decision vector, d+

∈ Rm and d− ∈ Rm

are the upper and lower bounds, severally. ω is valued enormous ($ := 1010) in the experiments. We
define ε(d) := d − ΦΩ

(
d − (Γd + q)

)
, and the iterative algorithm causes ε(d)→ 0. d0

∈ R2n+2m is the original

primal-dual decision variable vector, k = 0, 1, 2, 3, · · · , if dk < Ω∗, then

dk+1 = dk
−
||ε(dk)||22σ(dk)

||σ(dk)||22
(33)

where ε(dk) = dk
−ΦΩ(dk

− (Γdk + q)) and σ(dk) = (Γ + I)ε(dk). In numerical calculation, ε(dk) = 10−5.

Lemma 4.1. [20] The sequence {dk
}, k = 1, 2, · · · , which is generated by QP-solution (33), satisfies

||dk+1
− d?||22 6 ||d

k
− d?||22 −

||ε(dk)4
2

||σ(dk)||22
. (34)

This lemma is applied to all d? ∈ Ω?. The solution vector d? comes from {dk
}, and its first 2n elements

consist of the optimal solution to MGDDF (29)-(31), Θ?
∈ Rn. Definitely, the first n elements constitute the

optimal solutions of the left-arm joints, while the second n elements constitute right-arm joints’ optimal
solution.

Corollary 4.2. For any positive constant Ξ > 0, error vector ε ∈ Rn of a dynamic system ε̇ = −Ξε, starting from
any initial state ε(0), converges to zero with a exponential convergence speed, where ε̇ is the first-order derivative of ε
with respect to time t.

Corollary 4.3. For any positive constant Ξ > 0 and disturbance ∆Ξ > −Ξ, a dynamic system with disturbance
parameter ε̇ = −(Ξ + ∆Ξ)ε is robust for the uncertain-parameter situation, where ε̇ is the first-order derivative of ε
with respect to time t.

According to dual theory and Lagrange theory [58, 59], the proposed MGDDF (29)-(31) can also be
solved by a neural network solver. To find a primal dual equilibrium vector K ∈ R2m, MGDDF (29)-(31)
should be converted into the following linear variational inequalities, i.e.,[

Θ̇∗

K
∗

]
∈ Ω :=

{ [
Θ̇∗

K
∗

] ∣∣∣∣∣ [
ζ̃−i (t)
−zlK

]
≤

[
Θ̇∗

K
∗

]
≤

[
ζ̃+

i (t)
+zlK

] }
⊂ R2n+2m (35)

where lK = [1, · · · , 1]T and z is set to approximate m-dimensional +∞. Such that( [
Θ̇
K

]
−

[
Θ̇∗

K
∗

] )T( [
I −JT

J 0

] [
Θ̇∗

K
∗

]
+

[
cTΘ

−Υ̇ − ℘(Υ − =(Θ))

] )
≥ 0,∀

[
Θ̇
K

]
∈ Ω (36)

whereI ∈ R2n×2n. According to Ref. [34], the above relationship is equivalent to a piecewise-linear-equation
system satisfy

PΩ

( [
Θ̇
K

]
−

( [
I −JT

J 0

] [
Θ̇
K

]
+

[
cTΘ

−Υ̇ − ℘(Υ − =(Θ))

] ))
−

[
Θ̇
K

]
= 0 (37)

where PΩ(·) : R2n+2m
→ Ω is the projection operator.

With projective theory, system (37) can be computed by the recurrent neural network below[
Θ̈

K̇

]
= H

(
E +

[
I J
−JT 0

] )
·

{
PΩ

( [
Θ̇
K

]
−

( [
I −JT

J 0

] [
Θ̇
K

]
+

[
cTΘ

−Υ̇ − ℘(Υ − =(Θ))

] ))
−

[
Θ̇
K

] }
(38)

whereH > 0 is designed to scale convergent rate and E ∈ R(2n+2m)×(2n+2m) denotes identity matrix.



Z. Zhang et al. / Filomat 34:15 (2020), 5033–5048 5041

Theorem 4.4. State vector [Θ̇,K ]T of (38), starting from any initial state, can globally convergent to an equilibrium
point [Θ̇∗,K ∗]T, of which the first 2n elements constitute optimal solution Θ̇∗ to MGDDF (29)-(31). Moreover, with
constantN > 0 such that∥∥∥∥∥ [

Θ̈

K̇

]
− PΩ

( [
Θ̇
K

]
−

( [
I −JT

J 0

] [
Θ̇
K

]
+

[
cTΘ

−Υ̇ − ℘(Υ − =(Θ))

] )) ∥∥∥∥∥2

2
≥ N

∥∥∥∥∥ [
Θ̈

K̇

]
−

[
Θ̈∗

K̇
∗

] ∥∥∥∥∥2

2
, (39)

the exponential stability for computing MGDDF (29)-(31) can be guaranteed.

Proof. Firstly, define the following Lyapunov function candidate, i.e.,

V

( [
Θ̈

K̇

] )
=

∥∥∥∥∥ [
Θ̈

K̇

]
−

[
Θ̈∗

K̇
∗

] ∥∥∥∥∥2

2
≥ 0. (40)

Secondly, the time derivative ofV(·) along (38) is

dV
( [

Θ̈

K̇

] )
dt

(41)

= H
( [

Θ̈

K̇

]
−

[
Θ̈∗

K̇
∗

] )T(
E +

[
I J
−JT 0

] )
×

{
PΩ

( [
Θ̇
K

]
−

( [
I −JT

J 0

] [
Θ̇
K

]
+

[
cTΘ

−Υ̇ − ℘(Υ − =(Θ))

] ))
−

[
Θ̇
K

] }
(42)

≤ −H

∥∥∥∥∥ [
Θ̇
K

]
− PΩ

( [
Θ̇
K

]
−

( [
I −JT

J 0

] [
Θ̇
K

]
+

[
cTΘ

−Υ̇ − ℘(Υ − =(Θ))

] )) ∥∥∥∥∥2

2
−H

∥∥∥∥∥ ( [
Θ̈

K̇

]
−

[
Θ̈∗

K̇
∗

] ) ∥∥∥∥∥2

2
≤ 0. (43)

On the basis of Lyapunov theory, with positive-definedV and negative-dfined V̇, state vector [Θ̇,K ]T

of (38) is stable and converges to equilibrium point [Θ̇∗,K ∗]T globally, in view that V̇ = 0 when [Θ̇,K ]T =
[Θ̇∗,K ∗]T = 0. It follows that the first 2n elements of [Θ̇∗,K ∗]T constitute the optimal solution to MGDDF
(29)-(31). Also note that

dV
( [

Θ̈

K̇

] )
dt

≤ −H

( [
Θ̈

K̇

]
−

[
Θ̈∗

K̇
∗

] )T(
NE +

[
I −JT

J 0

] )
·

( [
Θ̈

K̇

]
−

[
Θ̈∗

K̇
∗

] )
≤ −SV

( [
Θ̈

K̇

] )
(44)

where convergence rate S = NH > 0. Therefore, with ∀t ≥ t0, we haveV([Θ̇,K ]T) = O(e−S(t−t0)) such that∥∥∥∥∥ [
Θ̈

K̇

]
−

[
Θ̈∗

K̇
∗

] ∥∥∥∥∥2

2
= O(e−S(t−t0)/2). (45)

In reference to (45), we can draw the conclusion that the exponential computation speed of MGDDF
(29)-(31) can be achieved. The proof is thus completed.

5. Simulations and Experiments

In this section, the practicability of the proposed MGDDF scheme is verified by simulative experiments.
The comparison between MGDDF and the traditional GDDF scheme is also provided. Specifically, the
experiments are based on the dual arms of a humanoid robot, which contain 14 DOF (7 of each arm), and
the skeleton structure is shown in Fig. 4. The execution task lasts for 18s. In addition, the upper and lower
bounds of the joint limit 6, 7, 13 and 14 are set as the same value, respectively.
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Figure 4: The skeleton structure of dual arms of the humanoid robot used in simulations.

5.1. Adjustments of the GDDF Scheme

Set the parameters of the QP problem (29)-(31) as follows: N = 1, % = 2, κ = 0.85, Θ−
1L = [0,−54π/180,

−10.5π/180, 0,−131π/180, π/3, 55π/180]T (rad), Θ+
1L = [9π/180, 18π/180, 22.5π/180, π/2, 0, π/3, 55π/180]T

(rad), Θ−
1R = [−9π/180,−18π/180,−22.5π /180, π/2,−131π/180, π/3,−25π/36]T (rad), and Θ+

1R = [0, 54π/180,
10.5π/180, π, 0, π/3,−25π/36]T (rad).

At first, to show the adjustment to the traditional GDDF scheme, the inequality (31) of the QP problem
(29)-(31) is not applied directly. For the GDDF scheme, when the margin is not considered, the upper limit
and lower limits would overlap and the result is shown in Fig. 5. Specifically, the black line stands for
the joint limit and the green line stands for the limit with margins. From the figure we can see that the
movement of the joint is constrained by the limit with margins. Because of the margins, Θ−1 and Θ+

1 of joint
7 is not the same, so we propose that when the limit with margins reaches the goal value, they would hold
that value. After adjustment, the joint would not exceed the margins. Fig. 5 (b) gives the result of this
modification.

We use the following equations to simplify, i.e.,

Θ+
set(t) = Θ+ +

∆Θ+

1 + e−(t−τ)/%
(46)

Θ−set(t) = Θ− +
∆Θ−

1 + e−(t−τ)/%
. (47)

For joint 6, 7 and 13, the upper limit and lower limit both > 0, the following equations are introduced,
i.e.,

κΘ̃+ =

κΘ+
set(t), κΘ̃+ > Θ+

1

Θ+
1 , κΘ̃+ 6 Θ+

1

κΘ̃− =

(2 − κ)Θ−set(t), κΘ̃+ < Θ−1

Θ−1 , κΘ̃− > Θ−1
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Figure 5: Comparisons between GDDF scheme with non-adjustment-margin and adjustment-margin. (a) Without adjustment. (b)
With adjustment.
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Figure 6: Comparisons between GDDF and MGDDF when % = 2, N = 2. (a) Limit of joint 6 with margin. (b) Limit of joint 6 without
margin. (c) Limit of joint 7 with margin. (d) Limit of joint 7 without margin.

and function (19) should be rewritten as

Θ̃+ =

Θ+
set(t), Θ̃+ > Θ+

1 /κ

Θ+
1 /κ, Θ̃+ 6 Θ+

1 /κ

Θ̃− =

Θ−set(t), Θ̃− < Θ−1 /(2 − κ)

Θ−1 /(2 − κ), Θ̃− > Θ−1 /(2 − κ).

For joint 14, the upper limit and lower limit both < 0, hence

Θ̃+ =

Θ+
set(t), Θ̃+ > Θ+

1 /(2 − κ)

Θ+
1 /(2 − κ), Θ̃+ 6 Θ+

1 /(2 − κ)

Θ̃− =

Θ−set(t), Θ̃− < Θ−1 /κ

Θ−1 /κ, Θ̃− > Θ−1 /κ.

5.2. Comparisons between GDDF and MGDDF
In this part, experiments are made to compare the proposed MGDDF scheme with the traditional GDDF

scheme. Joints 6, 7, 13 and 14 are the main research objets. Similar to before, Θ+
1 and Θ−1 of joints 6, 7, 13

and 14 are set as the same values.
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Figure 7: Comparisons between GDDF and MGDDF when % = 2, N = 3. (a) Limit of joint 7 with margin. (b) Limit of joint 6 without
margin. (c) Limit of joint 7 with margin. (d) Limit of joint 7 without margin. (e) Limit of Joint 14 with margin. (d) Limit of joint 14
without margin.
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Figure 8: Comparisons between GDDF and MGDDF when % = 2, N = 4. (a) Limit of joint 6 with margin. (b) Limit of joint 6 without
margin. (c) Limit of joint 7 with margin. (d) Limit of joint 7 without margin.
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Figure 9: Comparisons between GDDF and MGDDF when % = 3, N = 1. (a) Limit of joint 6 with margin. (b) Limit of joint 6 without
margin. (c) Limit of joint 7 with margin. (d) Limit of joint 7 without margin. (e) Limit of joint 13 with margin. (f) Limit of joint 13
without margin. (g) Limit of joint 14 with margin. (h) Limit of joint 14 without margin.
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Figure 10: Comparisons between GDDF and MGDDF when % = 4, N = 1. (a) Limit of joint 7 with margin. (b) Limit of joint 7 without
margin. (c) Limit of joint 14 with margin. (d) Limit of joint 14 without margin.

The parameter % is set as % = 2 and N is set as N = 2. From Fig. 6 we could see that when applying the
GDDF scheme, joint 6 exceeds the limit of margins, and it cannot exceed its real limit. The similar situation
happens in the experiment of joint 7.

Now parameter N changes from 2 to 3. Joints 6, 7 and 14 exceed their limits again. From Fig. 7 (a)
(c) and (e) we could see that by containing the margins, the proposed MGDDF can successfully complete
the task. Similar conclusion can be drew when parameters % = 2 and N = 4 for joints 6 and 7 in Fig. 8,
parameters % = 3 and N = 1 for joints 6, 7, 13 and 14 in Fig. 9, and parameters % = 4 and N = 1 for joints 7
and 14 in Fig. 10.

5.3. The “Ball-catch” Experiment

To validate the feasibility of the proposed method, a “ball-catch” experiment which is based on the
14 DOF humanoid is designed. For this experiment, the end-effector task is to move the ball up, left,
down, and then back. Fig. 11 demonstrates the motion trajectories and joint state of the dual arms of the
humanoid robot in this experiment. The task can be completed and all the 14 joints maintain their joint
limits successfully. All the simulative experiment results illustrated above verify the effectiveness of the
proposed MGDDF method.
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Figure 11: Motion trajectories of humanoid robot when applying to a “ball-catch” experiment. (a) Tracking trajectories of each joint.
(b) Joint state of the dual arms.

6. Conclusions

In this paper, the gesture-determined-dynamic function (GDDF) scheme is promoted and its deficiency
is fixed. With consideration of three margins, a modified scheme named MGDDF is proposed for solving
kinematic problems of dual arms of humanoid robots. Embeded into a quadratic programming framework,
the gesture of dual arms can be smoothly achieved by using MGDDF method, and the joints would not
exceed their limits during the execution of tasks. Computer simulations verify the feasibility, accuracy and
superiority of the proposed MGDDF method for solving motion planning and gesture determination of
humanoid robots.

Nomenclature

The full name of abbreviations proposed in this paper are listed as follows:

GDDF Gesture-determined-dynamic function.
MGDDF Modified gesture-determined-dynamic function.
QP Quadratic programming.
DOF Degrees-of-freedom.
MKE Minimum-kinetic-energy.
RMP Repetitive motion planning.
MVN Minimum-velocity-norm.
LVI Linear-variational-inequality.
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